最新整式的乘除拔高练习题
(2021年整理)整式的乘除拔高题
(完整)整式的乘除拔高题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)整式的乘除拔高题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)整式的乘除拔高题的全部内容。
1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007 200820061⨯+.3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
(完整版)整式的乘除提高练习题(精准校对-课后练习)
(完整版)整式的乘除提高练习题(精准校对-课后练习)整式的乘除提高练习题一、填空1.若2a +3b=3,则9a ·27b 的值为_____________.2.若x 3=-8a 9b 6,则x=______________.3.计算:[(m 2) 3·(-m 4) 3]÷(m ·m 2) 2÷m 12__________.4.用科学记数法表示0.000 507,应记作___________.5.a 2+b 2+________=(a+b )2 a 2+b 2+_______=(a -b )2(a -b )2+______=(a+b )26.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)7.设是一个完全平方式,则=_______。
8.已知,那么=_______。
9.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.二.计算:(本题8分)(1)(2)(3))(2x 2y -3xy 2)-(6x 2y -3xy 2)(4)(-32ax 4y 3)÷(-65ax 2y 2)·8a 2y(5)(45a 3-16a 2b+3a )÷(-13a )(6)(23x 2y -6xy )·(12xy )(7)(x -2)(x+2)-(x+1)(x -3)(8)(1-3y )(1+3y )(1+9y 2)12142++mx x m 51=+x x 221xx +()()02201214.3211π--??? ??-+--()()()()233232222x y x xy y x ÷-+-?(9)(ab+1)2-(ab -1)2 (10)(998)2 (11)197×203(12) a 3÷a ·a 2; (13)(-2a )3-(-a )·(3a )2(14)t 8÷(t 2·t 5);(15)x 5·x 3-x 7·x+x 2·x 6+x 4·x 4.(16)0.252008×(-4)2009 (17)(a -b) 2·(a -b) 10·(b -a );(18)2(a 4) 3+(a 3) 2·(a 2) 3+a 2a 10 (19)x 3n+4÷(-x n+12) 2÷x n .(20)2202211(2)()()[(2)]22----+---+--;(21)32236222()()()()x x x x x ÷+÷-÷-(22) 333)31()32()9(?-?-;(23) 19981999)532()135(?-.(24)21012()1(3)3π--+---- (25)[5xy 2(x 2-3xy)+(3x 2y 2)3]÷(5xy)2(26)(2m+1)(2m-1)—m ·(3m-2) (27)10002-998×1002 (简便运算)(28) (-2y 3)2+(-4y 2)3-(-2y)2·(-3y 2)2 (29)(3y+2)(y-4)-3(y-2)(y-3)三(本题8分)先化简,再求值:(1),其中,。
(完整)整式的乘除拔高题.docx
1.算:( 1)( 2+1)( 22+1 )(24+1)⋯(22n+1) +1( n 是正整数);( 2)( 3+1)( 32+1 )(34+1)⋯(32008+1)-34016.22.利用平方差公式算:2009 ×2007 -20082.( 1)利用平方差公式算:22007.2008200720062007 2( 2)利用平方差公式算:.2008 200613.解方程: x( x+2 )+( 2x+1 )( 2x- 1) =5( x2+3 ).1.(律探究)已知x≠1,算( 1+x)( 1- x) =1 - x2,(1- x)( 1+x+x 2) =1- x3,(1- x)( ?1+x+x 2+x 3)=1- x4.(1)察以上各式并猜想:( 1- x)( 1+x+x 2+⋯ +x n) =______.( n 正整数)(2)根据你的猜想算:①(1-2)(1+2+22+2 3+24+25)=______ .② 2+2 2+23+⋯ +2n=______ (n 正整数).③( x- 1)( x99+x 98+x 97+⋯ +x2+x+1 ) =_______ .(3)通以上律你行下面的探索:①( a-b)( a+b)=_______.②( a- b)( a2+ab+b2) =______.③( a- b)( a3+a2b+ab2+b3) =______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m, n 和数字 4.221、已知 m+n -6m+10n+34=0,求 m+n的值2、已知2246130、都是有理数,求yx y x y, x y x 的值。
3.已知(a b)216, ab 4, 求a2b2与 (a b) 2的值。
3练一练1 .已知(a b) 5, ab 3 求 (a b)2与 3(a2b2 ) 的值。
2 .已知a b 6, a b 4 求ab与 a2b2的值。
3、已知a b 4, a2b2 4 求 a2b 2与 (a b) 2的值。
难点突破“整式乘除(提高)”压轴题50道(含详细解析)
难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+; 33312336++=,而2(123)36++=,3332123(123)∴++=++; 33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= . 根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.。
1.整式乘除综合拔高【学生版】
整式乘除综合拔高训练一、单选题1.若1x >,0y >,且满足3yyx xy x x y,==,则x y +的值为( ).A .1B .2C .92D .1122.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .33.若124816326421111111(1)(1)(1)(1)(1)(1)(1)33333333A =-+++++++……21(1)13n ++,则A 的值是 A .0 B .1C .2213nD .1213+n4.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( ) A .2 B .4C .6D .85.计算22222100-9998-972-1++⋅⋅⋅+的值为( ) A .5048 B .50C .4950D .50506.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30 B .32C .18-D .97.计算(-2)1999+(-2)2000等于( )A .-23999B .-2C .-21999D .219998.若999999a =,990119b =,则下列结论正确是( )A .a <bB .a b =C .a >bD .1ab =9.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( ) A .4 B .8C .12D .1610.6张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a=2bB .a=3bC .a=4bD .a=b11.若3a b +=,则226a b b -+的值为( ) A .3 B .6C .9D .1212.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1D .±5213.已知:2m 3n 5+=,则m n 48(⋅= ) A .16 B .25C .32D .6414.已知14m 2+14n 2=n -m -2,则1m -1n 的值是( )A .1B .0C .-1D .-1415.如果(x 2+ax +8)(x 2﹣3x +b )展开式中不含x 3项,则a 的值为( ) A .a = 3 B .a =﹣3C .a = 0D .a = 1二、填空题16.已知a=255,b=344,c=433,则a ,b ,c 的大小关系为______.17.已知2320x y --=,则23(10)(10)x y ÷=_______.18.已知2328162x ⨯⨯=,则x 的值为____________.19.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .20.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.三、解答题21.设a ,b ,c ,d 都是正整数,并且54a b =,32c d =,19c a -=,求d b -的值.22.做这样一道题目:“若x满足(80-x)(x-60)=30,求(80-x)2+(x-60)2的值”时,我们采用如下方法:设80-x=a,x-60=b,则a+b=(80-x)+(x-60)=20,ab=(80-x)(x-60)=30,∴(80-x)2+(x-60)2=a2+b2=(a+b)2-2ab=202-2×30=340.请你根据上述材料,解决以下问题:若x满足(30-x)(x-20)=-10,求(30-x)2+(x-20)2的值.23.化简.(1)( x- y)( x+ y) ( x2+ y2) ( x4+ y4)·…·(x16+ y16);(2)(22+1)(24+1)(28+1)(216+1).24.先阅读,再填空解题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(x+5)(x-6)=x2-x-30.观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:_________________________________________________________________________________根据以上的规律,用公式表示出来:____________________________________根据规律,直接写出下列各式的结果:(a+99)(a-100)=________;(y-80)(y-81)=________.25.已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.26.阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!(1)已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值;(2)已知a2+a-1=0,求代数式a3+2a2+2018的值.27.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积. 例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c 的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题: 已知a+b+c=11,ab+bc+ac=38,求a 2+b 2+c 2的值.(3)如图3,将两个边长分别为a 和b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF .若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.28.已知0a b c ++=,2221a b c ++=. (1)求ab bc ca ++的值; (2)求444a b c ++的值.29.阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b.例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么log a(MN)=log a M+log a N.完成下列各题:(1)因为________,所以log28=______.(2)因为_________,所以log216=______.(3)计算:log2(8×16)=______ +______=_______.30.已知(a+2018)(a+2020)=2019,求(a+2019)2的值.31.已知5m=a,25n=b,求:53m+6n的值(用a,b表示).32.计算:211-2⎛⎫ ⎪⎝⎭×211-3⎛⎫ ⎪⎝⎭×211-4⎛⎫ ⎪⎝⎭×…×211-9⎛⎫ ⎪⎝⎭×211-10⎛⎫⎪⎝⎭.33.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x =N (a >0,a≠1),那么x 叫做以a 为底N 的对数,记作:x=log a N .比如指数式24=16可以转化为4=log 216,对数式2=log 525可以转化为52=25. 我们根据对数的定义可得到对数的一个性质:log a (M•N )=log a M+log a N (a >0,a≠1,M >0,N >0);理由如下:设log a M=m ,log a N=n ,则M=a m ,N=a n∴M•N=a m •a n =a m+n ,由对数的定义得m+n=log a (M•N ) 又∵m+n=log a M+log a N ∴log a (M•N )=log a M+log a N 解决以下问题:(1)将指数43=64转化为对数式_____; (2)证明log aMN=log a M ﹣log a N (a >0,a≠1,M >0,N >0) (3)拓展运用:计算log 32+log 36﹣log 34=_____.34.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系35.已知x 2m =2,求(2x 3m )2-(3x m )2的值.36.已知实数a ,b ,c 满足222()810410a b b c b c -++--+=.()1分别求a ,b ,c 的值;()2若实数x ,y ,z 满足xy a x y =-+,yz cy z a =+,zx cz x b=-+,求xyz xy yz zx ++的值.37.阅读下面的解答过程.已知x 2-2x -3=0,求x 3+x 2-9x -8的值. 解:因为x 2-2x -3=0,所以x 2=2x +3.所以x 3+x 2-9x -8=x ·x 2+x 2-9x -8=x ·(2x +3)+(2x +3)-9x -8=2x 2+3x +2x +3-9x -8=2(2x +3)-4x -5=1.请你仿照上题的做法完成下面的题.已知x 2-5x +1=0,求x 3-4x 2-4x -1的值.38.当a 、b 为何值时,多项式a 2+b 2-4a +6b +18有最小值?并求出这个最小值.39.5,2,a b ab +==-求22a b +和2a-b ()的值.40.运用乘法公式简便计算:(1)9997 2 (2)2118611851187-⨯41.计算:(1)432(-2x z)y ·842x y ÷(-15x 2y 2) (2)(32)(32)x y x y +---(3)2(4)(2)(5)x x x +-+- (4)(3ab+4)2-(3ab -4)242.已知,32,35m n ==求(1)323m n +; (2) 433m n -.43.() 1已知4m a =,8n b =,用含a ,b 的式子表示下列代数式:①求:232m n +的值②求:462m n -的值()2已知2328162x ⨯⨯=,求x 的值.44.先化简再求值:22(3)(3)(3)6(2)a b b a a b b b ⎡⎤+-+--÷-⎣⎦ 其中13a =-,2b =-.45.已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2﹣4a ﹣8b+20=0,c=3cm ,求△ABC 的周长.46.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.47.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?48.已知 a m =2,a n =4,a k =32(a≠0). (1)求a 3m+2n ﹣k 的值;(2)求k ﹣3m ﹣n 的值.49.先化简,再求值:(1)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12; (2)[(x +2y)(x -2y)-(x +4y)2]÷4y ,其中x =-5,y =2.50.计算(1)x 3•x 4•x 5(2)2321(6)(2)3xy xy x y --; (3)(﹣2mn 2)2﹣4mn 3(mn+1); (4)3a 2(a 3b 2﹣2a )﹣4a (﹣a 2b )2。
整式乘法练习拔高题
《乘法公式》练习题二1、(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2.2、(-2a 2-5b)( )=4a 4-25b 23、(a +b)2=(a -b)2+4、a 2+b 2=[(a +b)2+(a -b)2]( )5、()()()()()24811111x x x x x +-+++=6、()()23322332m n n m -+=7、______________)23)(32(=--y x y x 8、______________)32)(64(=-+y x y x 9、________________)221(2=-y x10、____________)9)(3)(3(2=++-x x x 11、_____________)3)(3()2)(1(=+---+x x x x 12、____________)2()12(22=+--x x 13.224)__________)(__2(y x y x -=-+ 14.______________)1)(1)(1)(1(42=++-+x x x x 15、 (x +4)(-x +4)=_____ 16、 (x +3y )(_____)=9y 2-x 2 17、 (-m -n )(_____)=m 2-n 218、 98×102=(_____)(_____)=( )2-( )2=_____ 19、 -(2x 2+3y )(3y -2x 2)=_____ 20、 (a -b )(a +b )(a 2+b 2)=_____ 21、(_____-4b )(_____+4b )=9a 2-16b 2 22、 (_____-2x )(_____-2x )=4x 2-25y 2 23、 (65x -0.7y )(65x +0.7y )=_____24、(41x +y 2)(_____)=y 4-161x 2二、选择题1.下列多项式乘法,能用平方差公式进行计算的是( ) A.(x +y )(-x -y ) B.(2x +3y )(2x -3z )C.(-a -b )(a -b )D.(m -n )(n -m ) 2.下列计算正确的是( ) A.(2x +3)(2x -3)=2x 2-9 B.(x +4)(x -4)=x 2-4C.(5+x )(x -6)=x 2-30D.(-1+4b )(-1-4b )=1-16b 2 3.下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b )(-b +a )B.(xy +z )(xy -z )C.(-2a -b )(2a +b )D.(0.5x -y )(-y -0.5x )4.(4x 2-5y )需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y )2D.(4x +5y )2 5.a 4+(1-a )(1+a )(1+a 2)的计算结果是( ) A.-1 B.1 C.2a 4-1D.1-2a 46.下列各式运算结果是x 2-25y 2的是( ) A.(x +5y )(-x +5y ) B.(-x -5y )(-x +5y ) C.(x -y )(x +25y )D.(x -5y )(5y -x )7.下列多项式乘法中不能用平方差公式计算的是( ) (A ) ))((3333b a b a -+ (B ) ))((2222a b b a -+ (C ) )12)(12(22-+y x y x (D ) )2)(2(22y x y x +- 8.下列多项式乘法中可以用平方差公式计算的是( ) (A ) ))((b a b a -+- (B ))2)(2(x x ++ (C ) )31)(31(x y y x -+(D ) )1)(2(+-x x9、已知,,a b c 满足0a b c ++=,8abc =,那么111ab c++的值是( )(A )正数; (B )零 (C )负数 (D )正负不能确定 10、设(5a+3b )2=(5a-3b )2+M ,则M 的值是( )A. 30abB. 60abC. 15abD. 12ab三、化简计算1. 1.03×0.972. (-2x 2+5)(-2x 2-5)3. a (a -5)-(a +6)(a -6)4.、(2x -3y )(3y +2x )-(4y -3x )(3x +4y ) 5、(31x +y )(31x -y )(91x 2+y 2) 6.、(x +y )(x -y )-x (x +y )7、 3(2x +1)(2x -1)-2(3x +2)(2-3x ) 8. 9982-49. 2003×2001-20022 10、3x-4y)2-(3x+y)2; 11、(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;12、1.23452+0.76552+2.469×0.7655; 13、(x+2y)(x-y)-(x+y)2.14、(a- 2b+c)(a+2b-c)-(a+2b+c)2; 15、(x+y)4(x-y)4;四、解答题1.化简:))(())(())((a c a c c b c b b a b a +-++-++-2.化简求值:22)2()2()2)(12(+---+-x x x x ,其中211-=x3.解方程:)1)(1(13)12()31(22+-=-+-x x x x4.(1)已知2)()1(2-=---y x x x , (2)如果2215,6ab ab a b +=+=求xy y x -+222的值; 求2222a b a b -+和的值5.探索题:(x -1)(x +1)=x 2-1 ; (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1 ; (x-1)4325(1)1x xx x x++++=-根据前面各式的规律可得 (x -1)(x n +x n -1+…+x +1)=_____. 试求654322122222++++++的值判断200520042003 (212)22+++++的值末位数6、已知z 2=x 2+y 2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z).7、已知m 2+n 2-6m+10n+34=0,求m+n 的值8、已知a +a1=4,求a 2+21a和a 4+41a的值.9、已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.10、如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值.11、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.12、观察下面各式:12+(1×2)2+22=(1×2+1)2 22+(2×2)2+32=(2×3+1)2 32+(3×4)2+42=(3×4+1)2 ……(1)写出第2005个式子;(2)写出第n 个式子,并说明你的结论. 13、多项式x 2+kx+25是另一个多项式的平方,则k= 14、①已知6x y +=,7xy =,试求22x y +的值。
整式的乘除拔高题( 二)
整式的乘除较难题(二)一.学新知识应用1、阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,比较x 、y 的大小. 解:设123456788=a ,那么x=(a+1)(a-2)=2-a 2a -,y=a (a-1)=2a a - . ∵x-y=2-a 2a --(2a a -)=-2<0∴x <y看完后,你学到了这种方法吗再亲自试一试吧,你准行!问题:计算1.345×0.345×2.69-31.345-1.345×20.345计算3.456×2.456×5.456-33.456-21.456.2、我们把符号“n!”读作“n 的阶乘”,规定“其中n 为自然数,当n ≠0时, n!=n •(n-1)•(n-2)…2•1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720. 又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加碱,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!= ;(2)(3+2)!-4!= ;(3)用具体数试验一下,看看等式(m+n )!=m!+n!是否成立?3. 小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点,例如:(x-1)3+x+1x =3-1x ,(2a+b )(224a -2ab+b )=338a +b ,小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式”,小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差)”小明说:“还有,我发现左边那个二项式和最后的结果有点像”小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍”小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系”亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗?(1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算(-x-2y )22-24x xy y +吗?(3)下列各式能用你发现的乘法公式计算的是.A .(a-3)(239a a -+)B .(2m-n )(2222m mn n ++)C .(4-x )(16+4x+2x )D .(m-n )(222m mn n ++)(4)直接用公式计算:(3x-2y )(22964x xy y ++)=(2m-3)(246m m ++9)=4、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200-5)(200+5)①=2002-52②=39975(1)例题求解过程中,第②步变形是利用(填乘法公式的名称);(2)用简便方法计算:9×11×101×10001.问题2:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2(+a)x 的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完 全平方式,再减去2a ,整个式子的值不变,于是有: 2223x ax a +-=222x ax a ++-223a a --=22(+a)(2a)(+3a)(-a)x x x -=像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:2412a a -- 二.乘法公式应用5、一个单项式加上多项式29(-1)-25x x -后等于一个整式的平方,试求所有这样的单项式.6、设,求整式的值 若x-y=5,xy=3,求:①22x y +;②44x y +的值.三.整式的计算7、化简:(1);(2)多项式2-x x y 与另一个整式的和是222+x 3x y y +,求这一个整式解:8、已知整式22+ax-y+6x 与整式22-3x+5y-1bx 的差与字母x 的值无关,试求代数式7(232+2b ab a b -)+23a -(2222b-3ab 3a a -)的值.9. 甲乙两人共同计算一道整式乘法:(2x+a )(3x+b ),由于甲抄错了第一个多项式中a 的符号,得到的结果为62x +11x-10;由于乙漏抄了第二个多项中的x 的系数,得到的结果为22x -9x+10.请你计算出a 、b 的值各是多少,并写出这道整式乘法的正确结果解:10. 由于看错了运算符号,某学生把一个整式减去-42a +22b +32c 误以为是加上-42a +22b +32c ,结果得出的答案是2a -42b -22c ,求原题的正确答案.11. 根据题意列出代数式,并判断是否为整式,如果是整式指明是单项式还是多项式.(1)友谊商店实行货物七五折优惠销售,则定价为x 元的物品,售价是多少元?(2)一列火车从A 站开往B 站,火车的速度是a 千米/小时,A ,B 两站间的距离是120千米,则火车从A 站开往B 站需要多长时间?(3)某行政单位原有工作人员m 人,现精简机构,减少25%的工作人员,后又引进人才,调进3人,该单位现有多少人?12. 某村小麦种植面积是a 亩,水稻种植面积比小麦种植面积多5亩,玉米种植面积是小麦种植面积的3倍.(1)玉米种植面积与水稻种植面积的差为m ,试用含口的整式表示m ;(2)当a=102亩时,求m 的值.13. 红星中学校办工厂,生产并出售某种规格的楚天牌黑板,其成本价为每块20元,若由厂家直销,每块售价30元,同时每月要消耗其他人工费用1200元;若委托商场销售,出厂批发价为每块24元.(1)若每月销售x 块,用整式分别表示两种销售方式所获得的利润.(注:利润=销售总额-成本-其他费用)(2)新学期各学校教学黑板维修较多,销路较好,预计11月份可销售300块,采取哪一种销售方式获得的利润多?(3)若你是红星中学校办工厂的厂长,请你进行决策:当预计销售200块黑板时,应选择哪一种销售方式较好?14. (1)化简:32x y-[2xy-(xy-2x y+2xy )](2)已知A=22x +xy+32y ,B=2x -xy+22y ,C 是一个整式,且A+B+C=0,求C .15、如图所示,是一个正方体的平面展开图,标有字母A 的面是正方体的正面,如果正方体的相对的两个面上标注的代数式的值与相对面上的数字相等,求x 、y 的值.16计算:(1)(-845a b c )÷(4a 5b )•(332a b ) (2)[232()a x -9a 5x ]÷(3a 3x ) (3)(3mn+1)(-1+3mn )-2(32)mn (4)运用整式乘法公式计算2123-124×122 三.写多项式方法17. 阅读下面学习材料:已知多项式23x -2x +m 有一个因式是2x+1,求m 的值.根据上面学习材料,解答下面问题:已知多项式4x +m 3x +nx-16有因式x-1和x-2,试用两种方法求m 、n 的值. 四.余角和补角18、一个角的补角是它的余角的度数的3倍,则这个角的度数是多少?19、已知一个角的补角等于这个角的余角的4倍,求这个角的度数.。
完整word版整式的乘除提高练习
《整式的乘除》拔高题专项练习【题型1】1、若2x 5y 3 ____________________ 0,则4x 32y的值为m 3 m 1 4m 72、如果9 27 3 81,那么m= ________ .【变式练习】1、若5X—3y—2=0,则105x 103y= _________ .2、若32 92a 127a 181,求a 的值.3、如果2 8X 16x222,贝V x的值为_______________ .【题型2】1、___________________________________________________ 若10m 3, 10n 2,则102m 3n的值为 ________________________2、若a2n3,则a3n 4的值为________________ .3、 已知 x n 5, y n 4,贝V xy 2n = _________________ .4、 若 3m =6, 9n =2,求 32fm 4n +1 的值。
【变式练习】1、已知2m 3,2n 4,则23m 2n 的值为 ____________________2、若2x 3,4x 5,则2x 2y 的值为 _______________3、己知 2n =a , 3n =b,则 6n = ______________,t . —m . n亠 E —3m 2n 14、若 2 3,4 8,则 2 = _____ .【题型3】1、 若 x 2m+102=x 5,则 m 的值为()A.OB.1C.2 3 2、 已知 2|x29,则 x = __________ .【变式练习】 1、求下列各式中的x :①a x 3 a 2x1(a 0,a 1) •,②p x p 6 D.3p 2x (p 0,p 1).2、已知2 X 2329,则x的值是 ______________ .【题型4】1、在ax 3y与x y的积中,不想含有xy项,则a必须为____________________ .【变式练习】2 2 11. 当k= ________ 时,多项式x 3kxy 3y xy 8中不含xy项.32、若a2 pa 8 a2 3a q中不含有a3和a2项,贝U p _______________ ,q ______【题型5】1、若x26, x y 3,则x y =2 22、已知a b 11, a b 7,则ab的值是__________________________3、已知a b 5, ab 3,贝V a2 b2的值为 _____________________21 14、已知x —3,贝y x - 的值为_________________x x5、(3x 2y)2 ___________ =(3x 2y)2.6、若ab 2, a b 3,贝V a b 2的值为【变式练习】2 2 4、若 x y 8, xy 10 ,则 x y =4 42 5、若1 4 -2 0,则2的值为 ____________x x x1 1 16 .已知 a 1,贝U a 2= ___________________ ; a 4= _________________ a a a【题型6】 1、计算 a 2 ab b 2 a 2 ab b 2 的结果是 _____________________________________1、已知x 9, x y 2 5,则xy 的值为2 22 .若 m n 10, mn 24,则 m n3、若 x y 0, xy 11,则x 2 xy y 2的值为【变式练习】1、计算3x 2y 1 3x 2y 1的结果为________________________________【题型7】21、若4x mx 9是一个完全平方式,则m的值为____________________ .2、若代数式x2 y214x 2y 50的值为0,则x ____________ ,y ________【变式练习】2 21、已知4x 12x m 是一个完全平方式,则m的值为________________________ .2、若x22(m 3) 16是关于x的完全平方式,则m __________ .2 23、若m n 3,则2m 4mn 2n 6的值为 ____________________________24、若 m 2 n 8n 16 0,贝U m _____ ,n _________15•已知 a2 b 2 2a 6b 1。
整式的乘除拔高题
1.估计:之阳早格格创做(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用仄圆好公式估计:2009×2007-20082.(1)利用仄圆好公式估计:22007200720082006-⨯. (2)利用仄圆好公式估计:22007200820061⨯+. 3.解圆程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).1.(顺序商量题)已知x≠1,估计(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)瞅察以上各式并预测:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据您的预测估计:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上顺序请您举止底下的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(论断启搁题)请写出一个仄圆好公式,使其中含有字母m ,n 战数字4.1、已知m 2+n 2-6m+10n+34=0,供m+n 的值2、已知0136422=+-++y x y x ,y x 、皆是有理数,供y x 的值.3.已知 2()16,4,a b ab +==供223a b +与2()a b -的值. 练一练1.已知()5,3a b ab -==供2()a b +与223()a b +的值.2.已知6,4a b a b +=-=供ab 与22a b +的值.3、已知224,4a b a b +=+=供22a b 与2()a b -的值.4、已知(a +b)2=60,(a -b)2=80,供a 2+b 2及a b 的值 5.已知6,4a b ab +==,供22223a b a b ab ++的值.6.已知222450x y x y +--+=,供21(1)2x xy --的值. 7.已知16x x-=,供221x x +的值. 8、0132=++x x ,供(1)221x x +(2)441xx + 9、试证明没有管x,y 与何值,代数式226415x y x y ++-+的值经常正数.10、已知三角形ABC 的三边少分别为a,b,c 且a,b,c 谦脚等式22223()()a b c a b c ++=++,请证明该三角形是什么三角形?20.估计.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的估计要领,请估计(3+1)(32+1)(34+1)…(332+1)-2364的值. “完全思维”正在整式运算中的使用 1、当代数式532++x x 的值为7时,供代数式2932-+x x 的值. 2、已知2083-=x a ,1883-=x b ,1683-=x c ,供:代数式bc ac ab c b a ---++222的值.3、已知4=+y x ,1=xy ,供代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,供当2-=x 时,代数式835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N 试比较M 与N 的大小6、已知012=-+a a ,供2007223++a a 的值.()()2000199919992 1.513⎛⎫⨯⨯- ⎪⎝⎭的截止是( )A .23B .-32C .32D .-234.02267,56,43⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-三个数中,最大的是( ) A.243-⎪⎭⎫ ⎝⎛ B.256⎪⎭⎫ ⎝⎛ C.067⎪⎭⎫ ⎝⎛ 5.设A b a b a +-=+22)35()35(,则=A ( )(A )ab 30 (B )ab 60 (C ) ab 15 (D )ab 126.化简(a+b+c )2-(a -b+c )2的截止为( )A. 4acB. 4ab+4bcC. 4ab -4bcD. 2ac7.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小闭系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a8.若等式(x -4)2=x 2-8x+m 2创造,则m 的值是( )A .16B .4C .-4D .4或者-49.若142-=y x ,1327+=x y ,则y x -等于( )29.若4m 2+n 2-6n +4m +10=0,供n m - 的值;变式:已知a 2+2a+b 2-4b+5=0,供a ,b 的值.30、已知484212=++n n ,供n 的值.31、已知32=a ,62=b ,122=c ,供a 、b 、c 之间有什么样的闭系?32.已知x +x 1=2,供x 2+21x ,x 4+41x 的值28、瞅察下列算式,您创造了什么顺序?12=6321⨯⨯;12+22=6532⨯⨯;12+22+32 =6743⨯⨯;12+22 +32 + 42 =6954⨯⨯;… 1)您能用一个算式表示那个顺序吗?2)根据您创造的顺序,估计底下算式的值;12+22 +32 + … +8226.(10分)若()q x x px x +-⎪⎭⎫ ⎝⎛++332822的积中没有含2x 与3x 项,(1)供p 、q 的值;(2)供代数式23120102012(2)(3)p q pq p q --++的值;。
第1章《整式的乘除》(学生版)
20232024学年北师大版数学七年级下册章节拔高检测卷(易错专练)第1章《整式的乘除》考试时间:100分钟试卷满分:100分难度系数:0.54一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023秋•长沙期末)下列计算结果正确的是()A.a+a2=a3B.2a6÷a2=2a3C.2a2•3a3=6a6D.(3a3)2=9a62.(2分)(2023秋•防城区期末)如图在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)3.(2分)(2023秋•城关区校级期末)已知2a=5,4b=7,则2a+2b的值是()A.35 B.19 C.12 D.104.(2分)(2023秋•凤山县期末)计算(﹣1)2021×()2023的结果等于()A.1 B.﹣1 C.﹣D.﹣5.(2分)(2023秋•和田地区期末)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形.通过计算这两个图形的面积验证了一个等式,这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a﹣b)2=a2﹣2ab﹣b2.6.(2分)(2023秋•三亚期末)下列运算中正确的是()A.(a2)3=a5B.a2•a3=a6C.a5÷a2=a3D.a5+a5=2a107.(2分)(2023秋•旌阳区期末)如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为()A.6 B.8 C.10 D.128.(2分)(2022秋•江汉区校级期末)如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b29.(2分)(2023春•拱墅区期末)设a,b为实数,多项式(x+a)(2x+b)展开后x的一次项系数为p,多项式(2x+a)(x+b)展开后x的一次项系数为q:若p+q=6,且p,q均为正整数,则()A.ab与的最大值相等,ab与的最小值也相等B.ab与的最大值相等,ab与的最小值不相等C.ab与的最大值不相等,ab与的最小值相等D.ab与的最大值不相等,ab与的最小值也不相等10.(2分)(2021秋•中山区期末)从前,一位农场主把一块边长为a米(a>4)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加4米,相邻的另一边减少4米,变成长方形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.没有变化B.变大了C.变小了D.无法确定二、填空题(本大题共10小题,每题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023秋•宜阳县期末)计算:[(x﹣y)2﹣(x+y)2]÷xy=.12.(2分)(2023秋•双辽市期末)如图,长方形ABCD的周长为12,分别以BC和CD为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD的面积是.13.(2分)(2023春•历城区校级月考)如果定义一种新运算,规定=ad﹣bc,请化简:=.14.(2分)(2022秋•淅川县期末)若关于x的多项式(x+m)(2x﹣3)展开后不含x项,则m的值为.15.(2分)(2023春•东阿县期末)探索题:(x﹣1)(x+1)=x2﹣l;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…根据前面的规律,回答问题:当x=3时,(32023+32022+32021+…+33+32+3+1)=.16.(2分)(2023春•正定县期中)如图①是一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后用四块小长方形拼成如图②所示的正方形.(1)图②中,中间空余部分的小正方形的边长可表示为;(2)由图②可以直接写出(a+b)2,(a﹣b)2,ab之间的一个等量关系.17.(2分)(2023春•拱墅区校级期中)如图,长为50cm,宽为x cm的大长方形被分割成7小块.除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y cm.要使阴影A与阴影B的面积差不会随着x的变化而变化,则定值y为.18.(2分)(2022秋•怀化期末)定义一种新运算:,例如.若,则k=.19.(2分)(2022秋•铁西区期中)如图,两个正方形的边长分别为a,b(a>b),若a+b=10,ab=6,则阴影部分的面积为.20.(2分)(2021春•东台市期中)如图,一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a与2b的两个圆,已知剩下钢板的面积与一个长为a的长方形面积相等,则这个长方形的宽为.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•宜阳县期末)计算:(1)(2x﹣y)(4x2+2xy+y2)﹣7y3;(2)[(a﹣3b)2+(3a+b)2﹣(a+5b)2+(a﹣5b)2]÷(a2﹣2ab+b2).22.(6分)(2022秋•巩义市期末)杨老师在黑板上布置了一道题,小白和小红展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?并求出代数式的值.23.(8分)(2022秋•章丘区校级期末)观察下列等式:(m﹣1)(m+1)=m2﹣1,(m﹣1)(m2+m+1)=m3﹣1,(m﹣1)(m3+m2+m+1)=m4﹣1.(1)根据上面各式的规律,请写出第5个等式:;(2)根据上面各式的规律可得(m﹣1)(m n+m n﹣1+……+m2+m+1)=;(n为正整数,且n≥2).(3)求22022+22021+…+22+2的值.24.(8分)(2023秋•汉阳区期末)问题呈现:借助几何图形探究数量关系,是一种重要的解题策略,图1,图2是用边长分别为a,b的两个正方形和边长为a,b的两个长方形拼成的一个大正方形,利用图形可以推导出的乘法公式分别是图1 ,图2 ;(用字母a,b表示)数学思考:利用图形推导的数学公式解决问题.(1)已知a+b=7,ab=12,求a2+b2的值;(2)已知(2024﹣x)(2022﹣x)=2023,求(2024﹣x)2+(x﹣2022)2的值.拓展运用:如图3,点C是线段AB上一点,以AC,BC为边向两边作正方形ACDE和正方形CBGF,面积分别是S1和S2.若AB=m,S=S1+S2,则直接写出Rt△ACF的面积.(用S,m表示).25.(8分)(2023春•定边县期末)将两数和(差)的完全平方公式(a±b)2=a2±2ab+b2通过适当的变形,可以解决很多数学问题.例:若a﹣b=4,ab=1,求a2+b2的值.解:因为a﹣b=4,ab=1,所以a2+b2=(a﹣b)2+2ab=42+2×1=18.根据上面的解题思路和方法,解决下列问题:(1)已知a2+b2=56,(a+b)2=100,则ab=;(2)若x满足(2023﹣x)2+(x﹣2020)2=2021,求(2023﹣x)(x﹣2020)的值;(3)如图,在长方形ABCD中,AB=10,BC=6,点E,F分别是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和正方形CEMN,若长方形CEPF的面积为35,求图中阴影部分的面积之和.26.(8分)(2023春•蚌埠期末)[阅读理解]若x满足(9﹣x)(x﹣4)=4,求(x﹣4)2+(9﹣x)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,所以(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.[迁移运用]请仿照上面的方法求解下面问题:(1)若x满足(x﹣2023)2+(x﹣2026)2=31,求(x﹣2023)(x﹣2026)的值;(2)如图,已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD 的面积是48,分别以MF,DF为边作正方形MFRN和正方形GFDH,求阴影部分的面积.27.(8分)(2023春•平湖市期中)小马同学化简[(x﹣y)2﹣(x﹣y)(x+y)]÷(2y)的过程如下:解:原式=(x2﹣y2﹣x2﹣y2)÷(2y)①=(﹣2y2)÷(2y)②=﹣y③(1)请把x=3,y=1分别代入原式[(x﹣y)2﹣(x﹣y)(x+y)]÷(2y)以及化简后的式子﹣y,并分别求出它们的值;由两者的求值结果可知,小马同学的化简结果对吗?(2)指出小马同学化简错误的步骤:(填写序号);并写出正确的化简过程.28.(8分)(2023春•城阳区期末)阅读理解:若x满足(60﹣x)(x﹣40)=20,求(60﹣x)2+(x﹣40)2的值.解:设60﹣x=a,x﹣40=b,则ab=20,a+b=60﹣x+x﹣40=20.∴(60﹣x)2+(x﹣40)2=a2+b2=(a+b)2﹣2ab=202﹣2×20=360;类比探究:(1)若x满足(70﹣x)(x﹣20)=﹣30,求(70﹣x)2+(x﹣20)2的值.(2)若x满足(3﹣4x)(2x﹣5)=,求(3﹣4x)2+4(2x﹣5)2的值.友情提示(2)中的4(2x﹣5)2可通过逆用积的乘方公式变成[2(2x﹣5)]2.(3)若x满足(2023﹣x)2+(2020﹣x)2=2061,求(2023﹣x)(2020﹣x)的值.解决问题:(4)如图,正方形AEGO和长方形KLMC重叠,重叠部分是长方形BEFC其面积是300,分别延长FC、BC 交AO和OG于D、H两点,构成的四边形ABCD和CFGH都是正方形,四边形ODCH是长方形.设CM=x,KC=3CM=3x,KB=54,FM=20,延长AO至P,使OP=2OD,延长AE至R,使RE=2BE,过点P、R作AP、AR垂线,两垂线交于点N,求正方形ARNP的面积.(结果是一个具体的数值)。
整式的乘除提高练习题
整式的乘除之阳早格格创做例1:已知2017)2018()2016(=-⋅-a a ,供22)2018()2016(a a -+-的值. 剖析:类比“2=⋅n m ,4=-n m ,供22n m +的值”那类题的解法. 训练:1、已知7)(2=+b a ,3)(2=-b a ,则=++ab b a 22.2、已知2522=+y x ,7=+y x 且y x >,则=-y x .3、已知32=-a a ,32=-b b 且b a ≠,则=-b a .例2:已知201738+=x a ,201838+=x b ,201938+=x c ,供bc ac ab c b a ---++222的值.训练:1、若1232=++c b a ,且bc ac ab c b a ++=++222,则=++32c b a .2、已知014642222=+-+-++z y x z y x ,则=--2018)(z y x .3、假如x 没有为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小闭系是.4、估计2222222210099654321-++-+-+- =.例3:若多项式1634-++nx mx x 能被)2)(1(--x x 整除,供m 、n 的值.训练:1、若3223+-kx x 被12+x 除后余2,则=k .2、若多项式b x ax x x +++-73224能被22-+x x 整除,则a=,b=. 三、1、瞅察下列算式:①1432312-=-=-⨯②1983422-=-=-⨯③116154532-=-=-⨯④……(1)请您按以上顺序写出第4个算式;(2)把那个顺序用含字母的式子表示出去;(3)您认为(2)中所写的式子一定创制吗?并证明缘由.2、如果一个正整数能表示为二个连绝奇数的仄圆好,那么称那个正整数为“神秘数”.如:22024-=,222412-=,224620-=,果此4、12、20皆是“神秘数.(1)28战2012那二个数是“神秘数”吗?为什么?(2)设二个连绝奇数为22+k 战k 2(其中k 与非背整数),由那二个连绝奇数构制的神秘数是4的倍数吗?为什么?3、如表是由从1启初的连绝自然数组成,瞅察顺序并完毕各题的解问.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36(1)表中第8止的末尾一个数是,它是自然数的仄圆,第8止同有个数.(2)用含n 的代数式表示:第n 止的第一个数是,末尾一个数是,第n 止同有个数;(3)供第n 止各数之战.。
北师大版第一单元整式的乘除拔高题
北师大版第一单元整式的乘除拔高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.利用平方差公式计算:2009×2007-20082.(1)利用平方差公式计算:22007200720082006-⨯.(2)利用平方差公式计算:22007200820061⨯+.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).1.(规律探究题)已知x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n =______(n 为正整数). ③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索: ①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
5、若123456786123456789⨯=M ,123456787123456788⨯=N 试比较M 与N 的大小6、已知012=-+a a ,求2007223++a a 的值.3.计算()()2000199919992 1.513⎛⎫⨯⨯- ⎪⎝⎭的结果是( )A .23B .-32C .32D .-234.02267,56,43⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-三个数中,最大的是( )A.243-⎪⎭⎫ ⎝⎛ B.256⎪⎭⎫ ⎝⎛ C.067⎪⎭⎫ ⎝⎛ D.不能确定 5.设A b a b a +-=+22)35()35( ,则=A ( )(A )ab 30 (B )ab 60 (C ) ab 15 (D )ab 126.化简(a+b+c )2-(a -b+c )2的结果为( )A. 4acB. 4ab+4bcC. 4ab -4bcD. 2ac7.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a8.若等式(x -4)2=x 2-8x+m 2成立,则m 的值是( )A .16B .4C .-4D .4或-49.若142-=y x ,1327+=x y ,则y x -等于( )A .-5 B.-3 C.-1 D.129.若4m 2+n 2-6n +4m +10=0,求n m - 的值;变式:已知a 2+2a+b 2-4b+5=0,求a ,b 的值.30、已知484212=++n n ,求n 的值.31、已知32=a ,62=b ,122=c ,求a 、b 、c 之间有什么样的关系?32.已知x +x 1=2,求x 2+21x ,x 4+41x 的值28、观察下列算式,你发现了什么规律?12=6321⨯⨯;12+22=6532⨯⨯;12+22+32 =6743⨯⨯;12+22 +32 + 42 =6954⨯⨯;… 1)你能用一个算式表示这个规律吗?2)根据你发现的规律,计算下面算式的值;12+22 +32 + … +8226.(10分)若()q x x px x +-⎪⎭⎫ ⎝⎛++332822的积中不含2x 与3x 项, (1)求p 、q 的值;(2)求代数式23120102012(2)(3)p q pq pq --++的值;。
整式的乘除拔高练习题
整式的乘除拔高练习题一、 填空题1.a 6·a 2÷(-a 2)3=________. 2.( )2=a 6b 4n -2. 3. ______·x m -1=x m +1n +1.4.(2x 2-4x -10xy )÷( )=21x -1-25y .5.x 2n -x n +________=( )2.6.若3m ·3n =1,则m +n =_________. 7.已知x m ·x n ·x 3=(x 2)7,则当n =6时m =_______. 8.若x +y =8,x 2y 2=4,则x 2+y 2=_________. 9.若3x =a ,3y =b ,则3x -y =_________. 10.[3(a +b )2-a -b ]÷(a +b )=_________.11.若2×3×9m =2×311,则m =___________. 12.代数式4x 2+3mx +9是完全平方式则m =___________.13. 163·83=2n ,则n=14. (-8)2×0.253= ,4100×( )101= ,0.1252005×82006= 。
, , 。
0.252006×(-4)2007= , = 。
二、选择题15.计算(-a )3·(a 2)3·(-a )2的结果正确的是……………………………( )(A )a 11 (B )a 11 (C )-a 10 (D )a 1316.下列计算正确的是………………………………………………………………( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2(C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =117.4m ·4n 的结果是……………………………………………………………………( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n18.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………( )505012(2)()25⨯-=200520051111(1)(123910)10982⨯⨯⨯⨯⨯⨯⨯⨯⨯L L 122112211(6)()6-⨯=(A )5 (B )25 (C )25 (D )10 19.下列算式中,正确的是………………………………………………………………( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91 (C )(0.00001)0=(9999)0 (D )3.24×10-4=0.000032420.(-a +1)(a +1)(a 2+1)等于………………………………………………( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 421.若(x +m )(x -8)中不含x 的一次项,则m 的值为………………………() (A )8 (B )-8 (C )0 (D )8或-822.已知a +b =10,ab =24,则a 2+b 2的值是 …………………………………() (A )148 (B )76 (C )58 (D )52三、解答题1、因式分解23 .x 5-x 3y 2 24.16x 5+8x 3y 2+xy 4 25. 16x 4-y 426.2m 2-8n 2 27. abx 2-2abx+ab28. 3mx 2+12mxy+12my 229.x 2-3(2x -3) 30.(x+2)(x -3)+4 31. p m+3-p m+132. ab -4b+4c -ac 33. a 2c -abd -abc+a 2d 34. x 3-x 2-x+135.x2-4y2+4+2y 36. x2-y2-6x+9 37. a2+b2-c2-2ab38.x2-y2-z2+2yz 39. 4x2+y2-a2-4xy 40. 1-m2-n2+2mn2、化简求值41.化简求值:x(x2-x)+2x2(x-1),其中,x=-1。
整式的乘除提高练习题
整式的乘除例1:已知(2016 a) (2018 a) 2017,求(2016 a)2(2018 a)2的值。
解析:类比“ m n 2 , m n 4,求m2 n2的值”这类题的解法。
练习:1、已知(a b)27, (a b)23,则a2 b2 ab _______________2、已知x2 y225,x y 7且x y,贝U x y ______________ 。
3、已知a2 a 3,b2 b 3且a b,则a b ________________ 。
8 8 8例2:已知 a —x 2017,b -x 2018,c -x 2019,求3 3 3a2 b2 c2 ab ac bc 的值。
练习:1、若 a 2b 3c 12,且a2 b2 c2 ab ac bc,则a b2 c3 ___________________2、已知x2 y2 z2 2x 4y 6z 14 0,则(x y z)2018_________________________ 。
3、若x是不为0的有理数,已知M (x2 2x 1)(x2 2x 1),N (x2 x 1)(x2 x 1),则M与N的大小关系是________________________ 。
222,222 2 24、计算1 2 3 4 5 6 99 100 = __________ 。
例3:若多项式x4 mx3 nx 16能被(x 1)(x 2)整除,求m、n的值。
(1) 请你按以上规律写出第4个算式; (2) 把这个规律用含字母的式子表示出来;(3) 你认为(2)中所写的式子一定成立吗?并说明理由2、如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神 秘数”。
女口: 4 22 02,12 42 22,20 62 42,因此 4、12、20都是“神 秘数。
(1) 28和2012这两个数是“神秘数”吗?为什么?(2) 设两个连续偶数为2k 2和2k (其中k 取非负整数),由这两个连续偶数构 造的神秘数是4的倍数吗?为什么?3、如表是由从1开始的连续自然数组成,观察规律并完成各题的解答12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36(1)表中第8行的最后一个数是 它是 :自然数.的平方,第 8行共 有 ____ 个数。
(完整版)整式的乘除测试题(提高)
数学幂的运算测试卷(提高卷)一、选择题(每题3分,共15分)1.下列各式中(n 为正整数),错误的有 ( )①a n +a n =2 a 2n ;②a n ·a n =2a 2n ;③a n +a n = a 2n ;④a n ·a n =a 2nA .4个B .3个C .2个D .1个2.下列计算错误的是 ( )A .(-a )2·(-a )=-a 3B .(xy 2) 2=x 2y 4C .a 7÷a 7=1D .2a 4·3a 2=6a 43.x 15÷x 3等于 ( )A .x 5B .x 45C .x 12D .x 184.计算2009201220111-2332)()()(??的结果是 ( )A .23 B .32 C .-23 D .-32二、填空题(每题3分,共21分)6.计算:a 2·a ·a 3 =___________;(x 2) 3÷(x ·x 2) 2=__________.7.计算:[(-n 3)] 2=__________;92×9×81-310=___________.8.若2a +3b=3,则9a ·27b 的值为_____________.9.若x 3=-8a 9b 6,则x=______________.10.计算:[(m 2) 3·(-m 4) 3]÷(m ·m 2) 2÷m 12__________.11.用科学记数法表示0.000 507,应记作___________.二、解答题(共64分)13.(本题满分12分)计算:(1) a 3÷a ·a 2; (2)(-2a )3-(-a )·(3a )2(3)t 8÷(t 2·t 5); (4)x 5·x 3-x 7·x+x 2·x 6+x 4·x 4.14.(本题满分16分)计算:(1)0.252008×(-4)2009 (2)(a -b) 2·(a -b) 10·(b -a );(3)2(a 4)3+(a 3) 2·(a 2) 3+a 2a 10 (4)x3n+4÷(-x n+12) 2÷x n .15.(本题满分16分)计算:(1).2202211(2)()()[(2)]22;(2)32236222()()()()x x x x x(3)333)31()32()9(;(4)19981999)532()135(.17.(本题满分4分)一般地,我们说地震的震级为10级,是指地震的强度是1010,地震的震级为8级,是指地震的强度是108.1992年4月,荷兰发生了5级地震,其后12天加利福尼亚发生了7级地震.问加利福尼亚的地震强度是荷兰地震强度的多少倍?18.(本题满分6分)已知5m =2,5n =4,求52m -n 和25m+n 的值.19.(本题满分4分)观察、分析、猜想并对猜想的正确性予以说明.1×2×3×4+l =52 2×3×4×5+1=112 3×4×5×6+1=1924×5×6×7+1=292 n(n+1)(n+2)(n+3)+1=__________(n 为整数).。
难点突破“整式乘除(提高)”压轴题50道(含详细解析)
难点突破“整式乘除(提高)”压轴题50道(含详细解析)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 .3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 . 4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 .5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --=6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= .7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= ; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数;(2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).10.对于任何实数,我们规定符号a cb d 的意义是:a cad bc b d =-.按照这个规定请你计算:当2310x x -+=时,1231x x x x +--的值.11.根据以下10个乘积,回答问题: 1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯;1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: . (2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块, 块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想.17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2)(34)53i i i ++-=-.(1)填空:3i = ,4i = .(2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值. (4)试一试:请利用以前学习的有关知识将11i i+-化简成a bi +的形式. 18.阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是 7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数)则该数可表示为10a b +,另一因数可表示为10(10)a b +-.两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数)(3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100(1)(10)a a b b ++-的运算式.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数.(1)根据计算结果填写下表:(2)已知22(3)()x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .20.阅读材料解决问题:当0a b ->时,一定有a b >;当0a b -=时,一定有a b =;当0a b -<时,一定有a b <. (1)用“>”或“<”填空:(1)(1)a a +-- 0,(1)a ∴+ (1)a -;(2)已知n 为自然数,(1)(4)P n n =++,(2)(3)Q n n =++,试比P 与Q 的大小;(3)已知654321654324A =⨯,654322654323B =⨯,直接写出A 与B 的大小比较结果.21.(1)如图1,阴影部分的面积是 .(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是 .(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式: .(4)应用公式计算:222222111111(1)(1)(1)(1)(1)(1)234520172018----⋯--.22.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形z 张边长分别为a 、b 的长方形纸片拼出一个面积为(57)(94)a b a b ++长方形,则x y z ++= .23.已知将32()(34)x mx n x x ++-+展开的结果不含3x 和2x 项.(m ,n 为常数)(1)求m 、n 的值;(2)在(1)的条件下,求22()()m n m mn n +-+的值.24.如图①所示是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于 .(2)请用两种不同的方法表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,请写出2()m n +、2()m n -、mn 这三个代数式之间的等量关系: .(4)若6a b +=,5ab =,则求a b -的值.25.(1)若27a ab m +=+,29b ab m +=-.求a b +的值.(2)若实数x y ≠,且220x x y -+=,220y y x -+=,求x y +的值.26.如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)图2的阴影部分的正方形的边长是 .(2)用两种不同的方法求图中阴影部分的面积.【方法1】S =阴影 ;【方法2】S =阴影 ;(3)观察如图2,写出2()a b +,2()a b -,ab 这三个代数式之间的等量关系.(4)根据(3)题中的等量关系,解决问题:若10x y +=,16xy =,求x y -的值.27.某同学在计算23(41)(41)++时,把3写成41-后,发现可以连续运用两数和乘以这两数差公式计算:222223(41)(41)(41)(41)(41)(41)(41)161255++=-++=-+=-=.请借鉴该同学的经验,计算:2481511111(1)(1)(1)(1)22222+++++. 28.如图,在长方形ABCD 中,放入6个形状和大小都相同的小长方形,已知小长方形的长为a ,宽为b ,且a b >.(1)用含a 、b 的代数式表示长方形ABCD 的长AD 、宽AB ;(2)用含a 、b 的代数式表示阴影部分的面积.29.(1)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).(2)运用你所得到的公式,计算(2)(2)a b c a b c +---.30.已知a ,b ,c 为实数,且多项式32x ax bx c +++能被多项式234x x +-整除,(1)求4a c +的值;(2)求22a b c --的值;(3)若a ,b ,c 为整数,且1c a >,试确定a ,b ,c 的值.31.已知6()m n a a =,23()m n a a a ÷=(1)求mn 和2m n -的值;(2)求224m n +的值.32.(1)计算并观察下列各式:第1个:()()a b a b -+= ;第2个:22()()a b a ab b -++= ;第3个:3223()()a b a a b ab b -+++= ;⋯⋯这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n 为大于1的正整数,则12322321()()n n n n n n a b a a b a b a b ab b -------+++⋯⋯+++= ;(3)利用(2)的猜想计算:12332222221n n n ---+++⋯⋯+++= .(4)拓广与应用:12332333331n n n ---+++⋯⋯+++= .33.你会求2018201720162(1)(1)a a a a a a -+++⋯+++的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:2(1)(1)1a a a -+=-23(1)(1)1a a a a -++=-324(1)(1)1a a a a a -+++=-(1)由上面的规律我们可以大胆猜想,得到2018201720162(1)(1)a a a a a a -+++⋯+++= 利用上面的结论求(2)2018201720162222221+++⋯+++的值.(3)求201820172016255554+++⋯++的值.34.计算:(1)22(2)(22)a a a -++;3223(2)(222)a a a a -+++.(2)猜测122321(2)(2222)n n n n n a a a a a ------+++⋯++= ;(3)运用(2)的结论计算:12232132323232n n n n n -----+++⋯++35.(1)填空:()()a b a b -+=22()()a b a ab b -++=3223()()a b a a b ab b -+++=(2)猜想:1221()()n n n n a b a a b ab b -----++⋯++= (其中n 为正整数,且2)n .(3)利用(2)猜想的结论计算:98732333333-+-⋯+-+.36.(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①: ;方法②: ;(2)根据(1)写出一个等式: ;(3)若8x y +=, 3.75xy =,利用(2)中的结论,求x ,y ;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了22(2)()23m n m n m mn n ++=++.试画出一个几何图形,使它的面积能表示22(2)(2)252m n m n m mn n ++=++.37.对于任意有理数a 、b 、c 、d ,我们规定符号(a ,)(b c ⊗,)d ad bc =-, 例如:(1,3)(2⊗,4)14232=⨯-⨯=-.(1)求(2-,3)(4⊗,5)的值为 ;(2)求(31a +,2)(2a a -+⊗,3)a -的值,其中2410a a -+=.38.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼成一个长为2a b +,宽为a b +的大长方形,则需要A 、B 、C 类卡片各多少张?39.“杨辉三角”揭示了()(n a b n +为非负数)展开式的各项系数的规律.在欧洲,这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年,请仔细观察“杨辉三角”中每个数字与上一行的左右两个数字之和的关系:根据上述规律,完成下列各题:(1)将5()a b +展开后,各项的系数和为 .(2)将()n a b +展开后,各项的系数和为 .(3)6()a b += .下图是世界上著名的“莱布尼茨三角形”,类比“杨辉三角”,根据你发现的规律,回答下列问题:(4)若(,)m n 表示第m 行,从左到右数第n 个数,如(4,2)表示第四行第二个数是112,则(6,2)表示的数是 ,(8,3)表示的数是 .40.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()(n a b n +为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应222()2a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着33222()33a b a a b ab b +=+++展开式中的系数等等.(1)根据上面的规律,则5()a b +的展开式.(2)利用上面的规律计算:5432252102102521+⨯+⨯+⨯+⨯+.(3)若52(1)(2)(x x ax b a ++-、b 为常数)的展开式中不含2x 和x 的项,求a 、b 的值.41.如图,大小两个正方形边长分别为a 、b .(1)用含a 、b 的代数式阴影部分的面积S ;(2)如果9a b +=,6ab =,求阴影部分的面积.42.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为()b a b >,连结AF 、CF 、AC .(1)用含a 、b 的代数式表示GC = ;(2)若两个正方形的面积之和为60,即2260a b +=,又20ab =,图中线段GC 的长;(3)若8a =,AFC ∆的面积为S ,则S = .43.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下: ①把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐;②用被除式的第一项除以除式第一项,得到商式的第一项;③用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式⨯商式+余式.若余式为零,说明这个多项式能被另一个多项式整除.例如:计算432(671)(21)x x x x ---÷+,可用竖式除法如图:所以432671x x x ---除以21x +,商式为323521x x x -+-,余式为0.根据阅读材料,请回答下列问题(直接填空):(1)32(44)(2)x x x x --+÷-= ;(2)2(24)(1)x x x ++÷-,余式为 ;(3)322x ax bx ++-能被222x x ++整除,则a = ,b = .44.解答题(1)已知4x y +=,2xy =,求2()x y -的值(2)已知2()7a b +=,2()3a b -=,求22a b +的值(3)若22m n mn -=,求2222m n n m +的值. 45.你能化简9998972(1)(1)a a a a a a -+++⋯+++吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(1)(1)a a -+= ;2(1)(1)a a a -++= ;32(1)(1)a a a a -+++= ;⋯由此猜想:9998972(1)(1)a a a a a a -+++⋯+++=(2)利用这个结论,请你解决下面的问题:①求1991981972222221+++⋯+++ 的值;②若76543210a a a a a a a +++++++=,则a 等于多少?46.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:2()a b +或 222a ab b ++222()2a b a ab b ∴+=++这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:332123+=?如图2,A 表示1个11⨯的正方形,即:31111⨯⨯=B 表示1个22⨯的正方形,C 与D 恰好可以拼成1个22⨯的正方形,因此:B 、C 、D 就可以表示2个22⨯的正方形,即:32222⨯⨯=而A 、B 、C 、D 恰好可以拼成一个(12)(12)+⨯+的大正方形.由此可得:332212(12)3+=+=尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:333123++= .(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:3333123n +++⋯+= .(直接写出结论即可,不必写出解题过程)47.阅读下列材料,并解决后面的问题.材料:我们知道,n 个相同的因数a 相乘na a a ⋯可记为n a ,如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83)=,一般地,若n a b = (0a >且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=(1)计算以下各对数的值:2log 4= ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式?2log 4、2log 16、2log 64之间又满足怎样的关系式?(3)根据(2)的结果,我们可以归纳出:log log log a a a M N M += (0N a >且1a ≠,0M >,0)N >请你根据幂的运算法则:m n m n a a a +=以及对数的定义证明该结论.48.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了()(n a b n +为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:7()a b +的展开式共有 项,()n a b +的展开式共有 项,各项的系数和是 .49.观察下列各式:3312189+=+=,而2(12)9+=,33212(12)∴+=+;33312336++=,而2(123)36++=,3332123(123)∴++=++;33331234100+++=,而2(1234)100+++=,333321234(1234)∴+++=+++; 3333312345(∴++++= 2)= .根据以上规律填空:(1)3333123(n +++⋯+= 2)[= 2].(2)猜想:333331112131415++++= .50.已知5210a b ==,求11a b +的值.难点突破“整式乘除(提高)”压轴题50道(含详细解析)参考答案与试题解析一.选择题(共1小题)1.为了求2320112012122222++++⋯++的值,可令2320112012122222S =++++⋯++,则234201220132222222S =++++⋯++,因此2013221S S -=-,所以2320122013122221+++⋯+=-.仿照以上方法计算23201215555++++⋯+的值是( )A .201351-B .201351+C .2013544-D .2013514- 【解答】解:令23201215555S =++++⋯+,则2320122013555555S =+++⋯++,2013515S S -=-+,2013451S =-, 则2013514S -=. 故选:D .二.填空题(共6小题)2.若1m ,2m ,2015m ⋯是从0,1,2这三个数中取值的一列数,若1220151525m m m ++⋯+=,222122015(1)(1)(1)1510m m m -+-+⋯+-=,则在1m ,2m ,2015m ⋯中,取值为2的个数为 510 .【解答】解:222122015(1)(1)(1)1510m m m -+-+⋯+-=,1m ,2m ,⋯,2015m 是从0,1,2这三个数中取值的一列数,1m ∴,2m ,⋯,2015m 中为1的个数是20151510505-=,1220151525m m m ++⋯+=,2∴的个数为(1525505)2510-÷=个.故答案为:510.3.对于任何实数,我们规定符号a bc d 的意义是a bad bc c d =-.例如:121423234=⨯-⨯=-,24(2)5432235-=-⨯-⨯=-.按照这个规定,当2440x x -+=时,12123x x x x +--的值是 1- . 【解答】解:a bad bcc d=-, ∴原式(1)(23)2(1)3x x x x x =+---=-,2440x x -+=,2(2)0x ∴-=,解得2x =,∴原式341=-=-.4.若x m +与2x -的乘积是一个关于x 的二次二项式,则m 的值是 2或0 .【解答】解:2()(2)(2)2x m x x m x m +-=-+-+x m +与2x -的乘积是一个关于x 的二次二项式,20m ∴-=或20m =,解得2m =或0.故答案为:2或0.5.已知22(2017)(2018)5a a -+-=,则(2017)(2018)a a --= 2【解答】解:2222(20172018)[(2017)(2018)]15(2017)(2018)222a a a a a a -+---+----=-=-=. 故答案是:2.6.已知6192x =,32192y =,则(1)(1)2(2017)x y ----= 12017-. 【解答】解:6192x =,32192y =,6192326x ∴==⨯,32192326y ==⨯,1632x -∴=,1326y -=,11(6)6x y --∴=,(1)(1)1x y ∴--=,(1)(1)211(2017)(2017)2017x y ----∴-=-=- 7.我们知道,同底数幂的乘法法则为:m n m n a a a +=(其中0a ≠,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:()()()h m n h m h n +=,请根据这种新运算填空:(1)若h (1)23=,则h (2)= 49; (2)若h (1)(0)k k =≠,那么()(2017)h n h = (用含n 和k 的代数式表示,其中n 为正整数)【解答】解:(1)h (1)23=,()()()h m n h m h n +=, h ∴(2)224(11)339h =+=⨯=; (2)h (1)(0)k k =≠,()()()h m n h m h n +=,20172017()(2017)n n h n h k k k +∴==. 故答案为:49;2017n k +. 三.解答题(共43小题)8.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式: 2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯(1)根据上述格式反应出的规律填空:295= 9025 ,(2)设这类等式左边两位数的十位数字为a ,请用一个含a 的代数式表示其结果 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出2195的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数相乘的算式,请写出8981⨯的简便计算过程和结果.【解答】解:(1)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯, 295910100259025∴=⨯⨯+=.(2)2151210025225=⨯⨯+=,2252310025625=⨯⨯+=,23534100251225=⨯⨯+=,⋯,2(105)(1)10025100(1)25a a a a a ∴+=⨯+⨯+=++.(3)①219519201002538025=⨯⨯+=.②8981⨯ (854)(854)=+⨯- 22854=-891002516=⨯⨯+- 72002516=+- 7209=故答案为:9025、100(1)25a a ++. 9.认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:1()a b a b +=+,222()2a b a ab b +=++,323223()()()33a b a b a b a a b ab b +=++=+++,⋯下面我们依次对()n a b +展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式()n a b +的展开式是一个几次几项式?并预测第三项的系数; (2)请你预测一下多项式()n a b +展开式的各项系数之和.(3)结合上述材料,推断出多项式()(n a b n +取正整数)的展开式的各项系数之和为S ,(结果用含字母n 的代数式表示).【解答】解:(1)当1n =时,多项式1()a b +的展开式是一次二项式,此时第三项的系数为:1002⨯=, 当2n =时,多项式2()a b +的展开式是二次三项式,此时第三项的系数为:2112⨯=, 当3n =时,多项式3()a b +的展开式是三次四项式,此时第三项的系数为:3232⨯=, 当4n =时,多项式4()a b +的展开式是四次五项式,此时第三项的系数为:4362⨯=, ⋯∴多项式()n a b +的展开式是一个n 次1n +项式,第三项的系数为:(1)2n n -;(2)预测一下多项式()n a b +展开式的各项系数之和为:2n ;(3)当1n =时,多项式1()a b +展开式的各项系数之和为:11122+==, 当2n =时,多项式2()a b +展开式的各项系数之和为:212142++==, 当3n =时,多项式3()a b +展开式的各项系数之和为:3133182+++==, 当4n =时,多项式4()a b +展开式的各项系数之和为:414641162++++==,⋯∴多项式()n a b +展开式的各项系数之和:2n S =.10.对于任何实数,我们规定符号a cb d的意义是:a c ad bcb d=-.按照这个规定请你计算:当2310x x -+=时,1231x x xx +--的值.【解答】解:13(1)(1)3(2)21x xx x x x x x +=+-----,22136x x x =--+, 2261x x =-+-,2310x x -+=, 231x x ∴-=-,∴原式22(3)1211x x =---=-=.11.根据以下10个乘积,回答问题:1129⨯; 1228⨯; 1327⨯; 1426⨯; 1525⨯; 1624⨯; 1723⨯; 1822⨯; 1921⨯; 2020⨯.(1)试将以上各乘积分别写成一个“□2-〇2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-; 222020200⨯=- ⋯(4分)例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-. (或221129(209)(209)209⨯=-+=-(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯(3)①若40a b +=,a ,b 是自然数,则220400ab =. ②若40a b +=,则220400ab =. ⋯(8分)③若a b m +=,a ,b 是自然数,则2()2mab .④若a b m +=,则2()2mab .⑤若a ,b 的和为定值,则ab 的最大值为2()2a b +. ⑥若11223340n n a b a b a b a b +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⋯(10分) ⑦若112233n n a b a b a b a b m +=+=+=⋯=+=.且 112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯. ⑧若a b m +=,a ,b 差的绝对值越大,则它们的积就越小.说明:给出结论①或②之一的得(1分);给出结论③、④或⑤之一的得(2分); 给出结论⑥、⑦或⑧之一的得(3分). 12.根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯; 1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□22-∅”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)若用11a b ,22a b ,⋯,n n a b 表示n 个乘积,其中1a ,2a ,3a ,⋯,n a ,1b ,2b ,3b ,⋯,n b 为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明) 【解答】解:(1)221129209⨯=-;221228208⨯=-;221327207⨯=-; 221426206⨯=-;221525205⨯=-;221624204⨯=-; 221723203⨯=-;221822202⨯=-;221921201⨯=-;222020200⨯=-.(4分) 例如,1129⨯;假设1129⨯=□2-〇2, 因为□2-〇2(=□+〇)(□-〇); 所以,可以令□-〇11=,□+〇29=.解得,□20=,〇9=.故221129209⨯=-.(5分) (或221129(209)(209)209⨯=-+=-.5分)(2)这10个乘积按照从小到大的顺序依次是:1129122813271426152516241723182219212020⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯<⨯.(7分)(3)①若40a b +=,a 、b 是自然数,则220400ab =.(8分) ②若40a b +=,则220400ab =.(8分)③若a b m +=,a 、b 是自然数,则2()2mab .(9分)④若a b m +=,则2()2mab .(9分)⑤若11223340n n a b a b a b a b +=+=+=+=.且 112233||||||||n n a b a b a b a b ----,则112233n n a b a b a b a b .(10分)⑥若112233n n a b a b a b a b m +=+=+=+=.且112233||||||||n n a b a b a b a b ---⋯-,则112233n n a b a b a b a b ⋯.(10分)说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分); 给出结论⑤或⑥之一的得(3分).13.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?【解答】解:(1)设28和2012都是“神秘数”,设28是x 和2x -两数的平方差得到, 则22(2)28x x --=, 解得:8x =,26x ∴-=, 即222886=-,设2012是y 和2y -两数的平方差得到, 则22(2)2012y y --=, 解得:504y =, 2502y -=,即222012504502=-, 所以28,2012都是神秘数.(2)22(22)(2)(222)(222)4(21)k k k k k k k +-=+-++=+, ∴由22k +和2k 构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为21k +和21k -, 则22(21)(21)842k k k k +--==⨯,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.14.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:2(1)3x -+、2(2)2x x -+、2213(2)24x x -+是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项--见横线上的部分). 请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方; (2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值. 【解答】解:(1)242x x -+的三种配方分别为:2242(2)2x x x -+=--,2242(4)x x x x -+=+-,22242x x x -+=-;(2)222()a ab b a b ab ++=+-,222213()24a ab b a b b ++=++;(3)222324a b c ab b c ++---+,222213()(33)(21)44a ab b b b c c =-++-++-+,222213()(44)(21)44a ab b b b c c =-++-++-+,22213()(2)(1)024a b b c =-+-+-=,从而有102a b -=,20b -=,10c -=,即1a =,2b =,1c =,4a b c ∴++=.15.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:22(2)()32a b a b a ab b ++=++(1)图③可以解释为等式: 22(2)(2)252a b a b a ab b ++=++. .(2)要拼出一个长为3a b +,宽为2a b +的长方形,需要如图所示的 块,块, 块.(3).如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个小长方形的两边长()x y >,观察图案,以下关系式正确的是 (填序号).①224m n xy -=②x y m +=③22x y m n -=④22222m n x y ++=【解答】解:(1)图③可以解释为等式:2222(2)(2)242252a b a b a ab ab b a ab b ++=+++=++ 故答案为:22(2)(2)252a b a b a ab b ++=++. (2)22(3)(2)273a b a b a ab b ++=++ 故答案为:2;7;3. (3)224m n xy -= ∴①正确;x y m +=∴②正确;x y m +=,x y n -=()()x y x y mn ∴+-=,即22x y mn -=,故③正确;22222222()()222()m n x y x y x y x y +=++-=+=+∴④正确.故答案为:①②③④.16.先阅读下列材料,再解答后面的问题.一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.(1)计算以下各对数的值:2log 4= 2 ,2log 16= ,2log 64= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,2log 4、2log 16、2log 64之间又满足怎样的关系式;(3)猜想一般性的结论:log log a a M N += (0a >且1a ≠,0M >,0)N >,并根据幂的运算法则:m n m n a a a +=以及对数的含义证明你的猜想. 【解答】解:(1)2log 42=,2log 164=,2log 646=;(2)222log 4log 16log 64+=;(3)猜想log log log ()a a a M N MN +=.证明:设1log a M b =,2log a N b =,则1b a M =,2b a N =, 故可得1212b b b b MN a a a +==,12log ()a b b MN +=, 即log log log ()a a a M N MN +=. 17.阅读理解题:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似. 例如计算:(2)(34)53i i i ++-=-. (1)填空:3i = i - ,4i = . (2)计算:①(2)(2)i i +-;②2(2)i +;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:()3(1)x y i x yi ++=--,(x ,y 为实数),求x ,y 的值.(4)试一试:请利用以前学习的有关知识将11ii+-化简成a bi +的形式. 【解答】解:(1)21i =-, 321i i i i i ∴==-=-,4221(1)1i i i ==--=,(2)①2(2)(2)4145i i i +-=-+=+=; ②22(2)4414434i i i i i +=++=-++=+;(3)()3(1)x y i x yi ++=--, 1x y x ∴+=-,3y =-,2x ∴=,3y =-;(4)21(1)(1)(1)21(1)(1)22i i i i i i i i i ++++====--+.18.阅读理解题 阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如4743⨯,它们的乘积的前两位是4(41)20⨯+=,它们乘积的后两位是7321⨯=.所以47432021⨯=;再如6268⨯,它们乘积的前两位是6(61)42⨯+=,它们乘积的后两位是2816⨯=,所以62684216⨯=.又如2129⨯,2(21)6⨯+=,不足两位,就将6写在百位;199⨯=,不足两位,就将9写在个位,十位上写零,所以2129609⨯=.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a ,个位数字是b ,(a ,b 表示1到9的整数) 则该数可表示为10a b +,另一因数可表示为10(10)a b +-. 两数相乘可得:22(10)[10(10)]10010(10)100(10)100100(10)100(1)(10)a b a b a a b ab b b a a b b a a b b ++-=+-++-=++-=++-.(注:其中(1)a a +表示计算结果的前两位,(10)b b -表示计算结果的后两位.) 问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如4473⨯、7728⨯、5564⨯等.(1)探索该类乘法的速算方法,请以4473⨯为例写出你的计算步骤.(2)设十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为 10a a + .设另一因数的十位数字是b ,则该数可以表示为 .(a ,b 表示1~9的正整数) (3)请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出. 如:100(1)(10)a a b b ++-的运算式.【解答】解:(1)47432⨯+=,4312⨯=,44733212∴⨯=.(2)十位数字与个位数字相同的因数的十位数字是a ,则该数可以表示为10a a +, 另一因数的十位数字是b ,则该数可以表示为10(10)b b +-. 故答案为10a a +、10(10)b b +-.(3)设其中一个因数的十位数字为a ,个位数字也是a 则该数可表示为10a a +,设另一因数的十位数字是b ,则该数可以表示为10(10)(b b a +-,b 表示1到9的整数). 两数相乘可得:(10)[10(10)]10010(10)10(10)a a b b ab a b ab a b ++-=+-++- 100100(10)ab a a b =++- 100(1)(10)a b a b =++-.19.以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除拔高练习题
一、 填空题
1.a 6·a 2÷(-a 2)3=________. 2.( )2=a 6b 4n -2. 3. ______·x m -1=x m +1n +1.4.(2x 2
-4x -10xy )÷( )=21x -1-2
5y .5.x 2n -x n +________=( )2.6.若3m ·3n =1,则m +n =_________. 7.已知x m ·x n ·x 3=(x 2)7,则当n =6时m =_______. 8.若x +y =8,x 2y 2=4,则x 2+y 2=_________. 9.若3x =a ,3y =b ,则3x -y =_________. 10.[3(a +b )2-a -b ]÷(a +b )=_________.
11.若2×3×9m =2×311,则m =___________. 12.代数式4x 2+3mx +9是完全平方式则m =___________.13. 163·83=2n ,则n= 14. (-8)2×0.253= ,4100×( )101= ,0.1252005×82006= 。
, , 。
0.252006×(-4)2007= , = 。
二、选择题
15.计算(-a )3·(a 2)3·(-a )2的结果正确的是……………………………( )
(A )a 11 (B )a 11 (C )-a 10 (D )a 13
16.下列计算正确的是………………………………………………………………( )
(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2
(C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1
17.4m ·4n 的结果是……………………………………………………………………( )
(A )22(m +n ) (B )16mn (C )4mn (D )16m +n
18.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为………………………( )
(A )5 (B )2
5 (C )25 (D )10 19.下列算式中,正确的是………………………………………………………………( )
(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=9
1 (C )(0.00001)0=(9999)0 (D )3.24×10-4=0.0000324
20.(-a +1)(a +1)(a 2+1)等于………………………………………………( )
(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4
21.若(x +m )(x -8)中不含x 的一次项,则m 的值为………………………( )
(A )8 (B )-8 (C )0 (D )8或-8
22.已知a +b =10,ab =24,则a 2+b 2的值是 …………………………………( )
(A )148 (B )76 (C )58 (D )52
三、解答题
1、因式分解
23 .x 5-x 3y 2 24.16x 5+8x 3y 2+xy 4 25. 16x 4-y 4
505012(2)()25⨯-=20052005
1111(1)(123910)10982⨯⨯⨯⨯⨯⨯⨯⨯⨯122112211(6)()6-⨯=
26.2m2-8n227. abx2-2abx+ab 28. 3mx2+12mxy+12my2 29.x2-3(2x-3) 30.(x+2)(x-3)+4 31. p m+3-p m+1
32. ab-4b+4c-ac 33. a2c-abd-abc+a2d 34. x3-x2-x+1
35.x2-4y2+4+2y 36. x2-y2-6x+9 37. a2+b2-c2-2ab 38.x2-y2-z2+2yz 39. 4x2+y2-a2-4xy 40. 1-m2-n2+2mn
2、化简求值
41.化简求值:x(x2-x)+2x2(x-1),其中, x=-1。
.
42.已知:(2a+2b+1)(2a+2b-1)=63,求a+b的值。
43.[(3x+2y)(3x-2y)-(x+2y)(5x-2y)]÷4x,其中x=-2,y=-3。
44.若2x+y=3,求4x·2y的值。
45.若x (y-1)-y (x-1)=4,求 -xy 的值。
46、已知:x+y=4,x 2+y 2 =10,求(x -y )2的值。
47、若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。
48、已知:x 2+y 2=26,4xy=12,求(x+y )2和(x-y )2的值。
49、已知:x+y=7,xy=-8,求5x 2+5y 2的值。
50、已知:x 2+y 2+z 2-2x-4y-6z+14=0,求(xz )y 的值。
51.[(x +21y )2+(x -21y )2](2x 2-2
1y 2),其中x =-3,y =4.
22
2
x y
52.已知x +
x 1=2,求x 2+21x ,x 4+41x
的值.
53.已知(a -1)(b -2)-a (b -3)=3,求代数式22
2b a -ab 的值.
54.已知x 2+x -1=0,求x 3+2x 2+3的值.
55.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.
3、计算
56.(1)(32a 2b )3÷(31ab 2)2×43a 3b 2; (2)(4x +3y )2-(4
x -3y )2;
(3)(2a -3b +1)2; (4)(x 2-2x -1)(x 2+2x -1);
(5)(a -61b )(2a +31b )(3a 2+12
1b 2);(6)[(a -b )(a +b )]2÷(a 2-2ab +b 2)-2ab .
57.若a、b、c、为三角形的三边,且a2+b2+c2-ab-bc-ac=0,试确定三角形的形状。
58.、若m2+m-1=0,求m3+2m2+3的值。
59、已知:a+b=5,ab=3,求代数式a3b-2a2b2+ab3的值。