教学中如何突破重点解决难点讲课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学中如何突破重点解决难点
每节课我们都要围绕一个知识点进行教学,并进行有效的挖掘与延伸,针对学生的实际情况,对知识中难以理解接受的知识进行有效的突破。衡量数学教学是否有效的基本标准之一,就是看教师在教学中能否突出重点,根据学生实际,突破难点。本文提出了确定教学重点和难点应注意的几个要点,并尝试找出突出重点、突破难点的实践策略。我以苏教版小学数学教材中“解决问题的策略”为例,就教学中如何突出重点、突破难点谈一些体悟
一、确定教学重点和难点应注意的几个要点
1.根据教材的知识结构,从知识点中梳理出重点
理解知识点,首先是要理解这部分内容整体的知识结构和内容间的逻辑关系,再把相应的教学内容放到知识的结构链中去理解。其次是理解整个单元的知识点,特别是要详细地知道每节课的知识点,在教学中做到不遗漏、不添加。如果知识点是某单元或某内容的核心,是后继学习的基石或有广泛应用等,那么它就是教学重点。教学重点一般由教材决定,对每个学生是一致的。一节课的知识点可能有多个,但重点一般只有一两个。以六年级上册“解决问题的策略——替换”为例,本课的知识点有:(1)掌握解决问题的一般步骤,能按步骤解决问题;(2)会用“替换”的策略理解题意、分析数量关系;(3)学会检验,掌握检验的方法;(4)明白替换问题的特点:在和一定的数量关系下,将一种数量替换成另一种数量;(5)理解用“替换”策略解决倍数关系和相差关系问题的同和异;(6)感受“替换”策略解决特定问题
的价值。梳理这些知识点后,本课的教学重点有两个:一是让学生学会用“替换”的策略理解题意、分析数量关系,二是让学生明白替换问题的特点:在和一定的数量关系下,将一种数量替换成另一种数量。
2.根据学生的认知水平,从重点中确定好难点。
数学教学重点和难点与学生的认知结构有关,是由于学生原有数学认知结构与学习新内容之间的矛盾而产生的。把新知识纳入原有的数学认知结构,从而扩大原有数学认知结构的过程是同化。当新知识不能同化于原有的数学认知结构,要改造数学认知结构,使新知识能适应这种结构的过程是顺应。从学生的认知水平来分析,通过同化掌握的知识点是教学重点,通过顺应掌握的知识点既是教学重点,又是教学难点。当然,在实际教学中,由于学生个体认知水平的差异,同化的知识对有的学生而言,也是学习难点,顺应的知识对有的学生而言,不一定是学习难点。总之,要根据学生实际,在把握重点的基础上,确定好难点。仍以六年级上册“解决问题的策略——替换”为例,“替换”是一种应用于特定问题情境下的解题策略,从学生的认知结构上看,掌握这一解题策略的过程是顺应的过程。因此,这节课的教学重点就是教学难点,即会用“替换”的策略理解题意、分析数量关系。除此以外,这节课的另一个教学难点是在用“替换”的策略解决相差关系的问题时,要找准总数与份数的对应数量,理解总数的变化。
3.把握教材与学生的实际,区分教学重点和难点。
分析教材,我们认为教学重点指的是“在整个知识体系中处于重要地位或发挥突出作用的内容”。因此,教学重点是基于数学知识的
内在逻辑结构而客观存在的。分析学生的认知结构,我们知道教材上的重要知识点是要学生通过同化或顺应去实现的,在同化或顺应的过程中出现教学难点。由于难点与重点形成的依据不同,所以有的内容是重点又是难点,有的内容是重点但不一定形成难点,还有的内容是难点但不一定是重点。教学中,还需要教师在分析教材和学生的基础上,区分好教学重点和难点。以六年级上册“解决问题的策略——假设”为例,教学重点和难点都是通过画图和列表的方法,学会用假设策略分析数量关系,确定解题思路,解决问题。教学实践中。我们发现列表假设的方法蕴含了变元思想,比画图假设的方法更抽象,学生难以理解。因此可直接给出表格,让学生看懂表格后,再填表解决问题。最后通过比较,找出两种方法的共同点,从本质上理解假设策略
二、突出重点、突破难点的几条主要策略
1.把握好重点和难点是突出重点、突破难点的前提。通过上文的分析,我们可以得出这样的结论:要想在教学中做到突出重点、突破难点,首先是深钻教材,从知识结构上,抓住各章节和每节课的重点和难点。其次是备足学生,根据学生实际的认知水平,并考虑到不同学生认知结构的差异,把握好教学重点和难点。课前的精心准备、准确定位,就为教学时突出重点和突破难点提供了有利条件。
2.找准知识的生长点是突出重点、突破难点的条件。
小学数学是系统性很强的学科。数学教学就是要借助于数学的逻辑结构,引导学生由旧人新,组织积极的迁移,促成由已知到未
知的推理,认识简单与复杂问题的联系,不断完善认知结构。因此,新知识的形成都有其固定的知识生长点,找准知识的生长点,才能突出重点、突破难点。我们可依据以下3点找准知识生长点:(1)有的新知识与某些旧知识属同类或相似,要突出“共同点”,进而突破重、难点;(2)有的新知识由两个或两个以上旧知识组合而成,要突出“连接点”,进而突破重、难点;(3)有的新知识由某旧知识发展而来的,要突出“演变点”,进而突破重、难点。如教学“解决问题的策略”,虽然每个策略都有其适用的题目,但是在形成新策略的过程中要综合应用已有的策略,如学习替换与假设策略时要用到画图、列表等策略,且综合法与分析法贯穿始终。所以这一单元的教学,是数学认知结构改造的过程,要突出“演变点”,进而突破重、难点。
3.采用合适的教学方式是突出重点、突破难点的关键。
《全日制义务教育数学课程标准(修改稿)》指出:教师的教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。认真阅读这段话,可以知道:根据学生实际,采用合适的教学方式是突出重点、突破难点的关键。如教学“解决问题的策略”时,合适的教学方式是独立思考——尝试解题——合作交流——比较归纳——反思小结——形成体验。这样的教学方式,能使学生在经历问题解决的过程中,感悟解题