(完整版)均值不等式专题20道-带答案

合集下载

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案均值不等式专题3学校:___________姓名:___________班级:___________考号:___________⼀、填空题1.若则的最⼩值是__________.2.若,且则的最⼤值为______________.3.已知,且,则的最⼩值为______.4.已知正数满⾜,则的最⼩值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最⼩值是______.6.设正实数满⾜,则的最⼩值为________7.已知,且,则的最⼩值是________8.已知正实数x,y满⾜,则的最⼩值是______9.已知,函数的值域为,则的最⼩值为________.10.已知,,且,则的最⼩值为__________.11.若正数x,y满⾜,则的最⼩值是______.12.已知正实数x,y满⾜,则的最⼩值为______.13.若,,,则的最⼩值为______.14.若,则的最⼩值为________.15.已知a,b都是正数,满⾜,则的最⼩值为______.16.已知,且,则的最⼩值为______.17.已知点在圆上运动,则的最⼩值为___________.18.若函数的单调递增区间为,则的最⼩值为____.19.已知正实数,满⾜,则的最⼤值为______.20.已知,,则的最⼩值为____.参考答案1.【解析】【分析】根据对数相等得到,利⽤基本不等式求解的最⼩值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题考查基本不等式求解和的最⼩值问题,关键是能够利⽤对数相等得到的关系,从⽽构造出符合基本不等式的形式. 2.【解析】【分析】先平⽅,再消元,最后利⽤基本不等式求最值.【详解】当时,,,所以最⼤值为1,当时,因为,当且仅当时取等号,所以,即最⼤值为,综上的最⼤值为【点睛】本题考查利⽤基本不等式求最值,考查基本分析求解能⼒,属中档题.3.4.【解析】【分析】直接利⽤代数式的恒等变换和利⽤均值不等式的应⽤求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应⽤,主要考查学⽣的运算能⼒和转化能⼒,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满⾜,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】由题意可得经过圆⼼,可得,再+利⽤基本不等式求得它的最⼩值.【详解】圆,即,表⽰以为圆⼼、半径等于2的圆.再根据弦长为4,可得经过圆⼼,故有,求得,则,当且仅当时,取等号,故则的最⼩值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应⽤,属于基础题.6.8【解析】【分析】根据基本不等式求最⼩值.【详解】令,则当且仅当时取等号.即的最⼩值为8.【点睛】在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.7.【解析】【分析】根据基本不等式求最⼩值.【详解】因为,当且仅当时取等号,所以的最⼩值是【点睛】由已知分离,然后进⾏1的代换后利⽤基本不等式即可求解.【详解】正实数x,y满⾜,则当且仅当且即,时取得最⼩值是故答案为:【点睛】本题主要考查了利⽤基本不等式求解最值,解题的关键是进⾏分离后利⽤1的代换,在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利⽤基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成⽴,所以的最⼩值为,故答案为.【点睛】本题主要考查⼆次函数的图象与性质,以及基本不等式的应⽤,属于中档题. 在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.10.【解析】【分析】因为,所以,=(当且仅当,即,时取等号),所以的最⼩值为,故答案为.【点睛】本题考查基本不等式及利⽤基本不等式求最值,将所求式运⽤“1”的变换,化为积为常数的形式是关键,属于中档题. 11.【解析】【分析】利⽤乘“1”法,借助基本不等式即可求出.【详解】正数x,y满⾜,则,,当且仅当时取等号,故的最⼩值是12,故答案为:12【点睛】本题考查了基本不等式及其应⽤属基础题.12.2【解析】【分析】利⽤“1”的代换,求得最值,再对直接利⽤基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满⾜,,,当且仅当,即,时,取等号,的最⼩值为2.故答案为:2.【点睛】本题考查基本不等式的应⽤,熟记不等式应⽤条件,多次运⽤基本不等式要注意“=”是否同时取到,是中档题【分析】由条件可得,即有,由基本不等式可得所求最⼩值.【详解】若,,,即,则,当且仅当取得最⼩值9,故答案为:9.【点睛】本题考查基本不等式的运⽤,注意运⽤“1”的代换,考查化简运算能⼒,属于基础题.【解析】【分析】由基本不等式,可得到,然后利⽤,可得到最⼩值,要注意等号取得的条件。

均值不等式含答案

均值不等式含答案

课时作业15均值不等式时间:45分钟满分:100分课堂训练5 31.已知-+-=l(.r>0,)>0),则小的最小值是( )A V【答案】当且仅当3x=5y时取等号.42・函数f(x)=x+~+3在(一8,一2]上( )xA.无最大值,有最小值7B.无最大值,有最小值一1C.有最大值7,有最小值一1D.有最大值一1,无最小值【答案】D4【解析】Vx^-2, :.f(x)=x+~+3✓V= __(r)+(—羽+3W_2 寸(-弓+34=—1,当且仅当一x=—即x=—2时,取等号,有最大值一1,无最小值.1 43・己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ .【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理.【解析】因为x>—1, 所以x+ l>0.“ r «+7x+10 (X +1)2+5(X +1)+4 所以尸x+1= 吊4 / f+D+吊+5N2 屮 +1)•苗+5=94当且仅当x+l= 勒,即X=1时,等号成立.mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数• 课后作业一、选择题(每小题5分,共40分)・••当x=\时,工+7x+l° 灯仆-1 — $函数〉'一 丫+1 (x>—1),取侍取:小值为9.【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) —【解析】斤胃字E+芥沁+树+2胡畔4. 求函数y=以+7卄10~x+1(Q-1)的最小值. mx+n1.设X>0,则y=3-3x--的最大值是(A. 3 B・ 3—3也C. 3-2\/3 D・一1【答案】C[解析】y=3 —3x—2=3 —(3x+g)W3— =3_2^/5.当且仅当3x=p即兀=平时取“=”・2.下列结论正确的是()A.当x>0 且xH 1 时,lgx+占$2C.当诈2时,x+2的最小值为2D.当0<A W2时,x—丄无最大值X【答案】B【解析】A中,当x>0且兀工1时,lgx的正负不确定,・°・lgx +占M2或lgx+吉W—2; C中,当诈2时,(x+£)min=|; D中当1 I 30aW2 时,),=兀一?在(0,2]上递增,(x--).…ax=2-3.如果d, b 满足0<a<b, a+b= 1,则g, u,2ub, a2+b2中值最大的是()A. 3C. 3-2^3A iB • aD. cr+b 1【答案】D【解析】 方法一:*.* 0<ci<b,・ *. 1 =a+b>2a i 又 a 2+b 2^2cib 9・•・最大数一定不是“和2", 又 a 2+b 2=(a + b)2—lab = 1 — 2ab, V \ =a+b>2\[ab,ab<^,1 — 2ab> 1 —[=[, 即 cP+Z?2>^.I ? 45方法二:特值检验法:取a=y b=y 则2ab=§, a 2+b 2=^ / ^>2>Q >3,^cr+b 1 最大.4. 己知a>b>c>0.则下列不等式成立的是() 1,1 _______ 2 a~b b —f^a —c1 ___2 b~c a~c]a~b【答案】A【解析】*.\/>Z?>c>0, *.a —b>0, b —c>0, a — c>0,••・("_4士+爲C. lab 1<21 b —c= [(a~b) + (b~c)Y b~c a —b =2+三+口匚+丄宀丄5. 下列函数中,最小值为4的是(C. /(x) = 3x +4X3"v【答案】D ・ /(x) = lgx+log v 10«+5 工+4+1 —•血)=2X 严=2X = 2X(尸 +寸;+4)24,要取等号,必须寸卫+4=^^^,即工+4=1,这是不 可能的,排除.故选C.6. 今有一台坏天平,两臂长不等,其余均精确.有人说要用它 称物体的重量,只需将物体放在左、右托盘各称一次,则两次称量结 果的和的一半就是物体的真实重量•设物体放在左右托盘称得的重量 分别为“,则物体的实际重量为多少?实际重量比两次称量 的结果的一半大了还是小了?()a+bA.—^―;大 C.\[ab ;大 【答案】D4A. f(x)=x+~ 工+5B ・・22X 严 【解析】 A 、D 选项中,不能保证两数为正,排除;B 选项不 b~c a~b22+2、/三•戸=4能取等号, B ・¥力 D.\[cib ;小【解析】 设物体真实重量为血,天平左.右两臂长分别为d 12,则ml [=al2® m 【2 = bh ②①X ②得加2川2 =如2 • • m =yfcib又・・•字鼻颁且“Hb,・・・等号不能取得,故g 字. 7・已知x>0,)>0, x+2y+2xy=8,则x+ly 的最小值是( )A. 3B. 49 C 2【答案】B•: — l<x<8,8—x 9 I Q・・・+)=卄2•百亍(卄1)+吊-222屮+1)•吊—2 = 94,当且仅当x+l=—y 时“="成立,此时x=2, y=l,故选B.1 F -HxH -18 .在区间[㊁,2]上,函数.心)=工+加+c (Z?、c G R )与g (x )=: --------------------------------------------------------------------------- ---- 在同一点取得相同的最小值,那么/(对在区间百,2]上的最大值是 ( )5D 4F+x+11【解析】 Tx+2y+2x)=88—x2x+2>0, C. 8【解析】•••g(x) = -—=X+£+1N3,当x=l时取等号,即当x=l时取最小值3, :.fix)的对称轴是x=l, ・•”=—2,将(1,3)代入即得c=4, 5)=工一加+4,易得在右,2]上的最大值是4.二、填空题(每小题10分,共20分)工+29.比较大小:-7=7= ________ 2(填“>”y,“N” 或“W”)・帖+1【答案】2Q+2 J ________ 1【解析】脅7T声1+肩百浓10.当X>1时,不等式^+土鼻“恒成立,则实数"的取值范X— 1围是_______ .【答案】(一8, 3]【解析】Tx>l, ・°・x+— >0,x— 1要使x+JryNd 恒成立,设f{x) =x+-^~r(x> 1),则dW/(X)min 对x>\恒成立.又./W=x+=7=x—1+7^7+1鼻2寸(%^)><^^+1=3,当且仅当x—1=亠即兀=2时取“=”・X— 1・・・aW3.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.设兀,yWR*,且x+y+xy=2,(1)求x+y的取值范围;(2)求厂的取值范围.Y-H V【解析】(1) 2 = x+y+xy W x+y+(2,当且仅当x=y时取“•二(x+yF+4(x+y) — 8 $0.・:[(x+y)+2]2212.*/x+y>0, .*.x+y+2・・」+〉—2也一2,当且仅当x=y=羽一1时取“ ="•故x+y的取值范围是[2萌一2, +8).(2)2=x+y+xy2y[xy+xy,当且仅当x=y=\[3— 1 时取“=”.•: (y[xy)2~\~2ylxy^2.1)?W3.又x、)>0, .\y[xy+1>0. .\y[xy+ 1羽—1.・・・()5W4—2萌,即厂的取值范围是(0,4—2羽].12.某渔业公司今年初用98万元购进一艘渔船用于捕捞,每一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.(1)问捕捞几年后总盈利最大,最大是多少?(2)问捕捞几年后的平均利润最大,最大是多少?【解析】(1)设船捕捞刃年后的总盈利y万元.则,n(n— 1)y=50/?-98-[12Xn+ 2X4]= -2/r+40/?-98=-2(/1-10)2+102・:捕捞10年后总盈利最大,最大是102万元.v 4W(2)年平均利润为匚=—2 n+—-20r~49W_2〔2\” •万_20,= 1249当且仅当”=节,即n=7时上式取等号.所以,捕捞7年后的平均利润最大,最大是12万元.【规律方法】在应用均值不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定31域内,求出函数的最大值或最小值;(4)正确写出答案.。

3-2-1《均值不等式》含答案

3-2-1《均值不等式》含答案

基 础 巩 固一、选择题1.若a 、b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2[答案] D[解析] ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误. 对于B 、C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.2.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D.ab <a <a +b2<b[答案] B[解析] ∵0<a <b ,∴a <a +b2<b ,A 、C 错误;ab -a =a (b -a )>0,即ab >a ,故选B. 3.设x 、y ∈R ,且x +y =5,则3x +3y 的最小值为( ) A .10B .6 3C .4 6D .18 3[答案] D[解析] x +y =5,3x +3y ≥23x ·3y =23x +y =235=18 3. 4.已知正项等差数列{a n }中,a 5+a 16=10则a 5a 16的最大值为( )A .100B .75C .50D .25[答案] D[解析] ∵a 5>0,a 16>0,a 5+a 16=10, ∴a 5·a 16≤(a 5+a 162)2=(102)2=25, 当且仅当a 5=a 16=5时,等号成立.5.(2012~2013学年度湖南师大附中高二期中测试)设a >0,b >0,若3是3a与3b的等比中项,则1a +1b 的最小值为( )A .8B .4C .1 D.14[答案] B[解析] 根据题意得3a ·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B.6.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( )A .a 2+b 2B .2abC .2abD .a +b[答案] D[解析] 解法一:∵0<a <1,0<b <1,∴a 2+b 2>2ab ,a +b >2ab ,a >a 2,b >b 2, ∴a +b >a 2+b 2,故选D.解法二:取a =12,b =13,则a 2+b 2=1336,2ab =63,2ab =13,a +b =56,显然56最大.二、填空题7.设实数a 使a 2+a -2>0成立,t >0,比较12log a t 与log a t +12的大小,结果为________________.[答案] 12log a t ≤log a t +12[解析] ∵a 2+a -2>0,∴a <-2或a >1, 又a >0且a ≠1,∴a >1,∵t >0,∴t +12≥t ,∴log a t +12≥log a t =12log a t , ∴12log a t ≤log a t +128.函数y =x ·(3-2x ) (0≤x ≤1)的最大值为______________. [答案] 98[解析] ∵0≤x ≤1,∴3-2x >0,∴y =122x ·(3-2x )≤12[2x +(3-2x )2]2=98,当且仅当2x =3-2x 即x =34时,取“=”号. 三、解答题9.已知a 、b 是正数,试比较21a +1b 与ab 的大小.[解析] ∵a >0,b >0,∴1a +1b ≥21ab >0. ∴21a +1b ≤221ab=ab . 即21a +1b≤ab . 能 力 提 升一、选择题1.已知x >0,y >0,lg2x+lg8y=lg2,则 1x +13y 的最小值是( )A .2B .2 2C .4D .2 3[答案] C[解析] 由lg2x +lg8y =lg2,得lg2x +3y =lg2, ∴x +3y =1,1x +13y =(1x +13y )(x +3y )=2+x 3y +3yx ≥4, 当且仅当x 3y =3y x ,即x =12,y =16时,等号成立.2.(2012~2013学年度山西忻州一中高二期中测试)a =(x -1,2),b =(4,y )(x 、y 为正数),若a ⊥b ,则xy 的最大值是( )A.12 B .-12 C .1 D .-1[答案] A[解析] 由已知得4(x -1)+2y =0,即2x +y =2. ∴xy =x (2-2x )=2x (2-2x )2≤12×(2x +2-2x 2)2=12.3.设函数f (x )=2x +1x -1(x <0),则f (x )( ) A .有最大值 B .有最小值 C .是增函数 D .是减函数[答案] A[解析] ∵x <0,∴f (x )=2x +1x -1 ≤-2(-2x )(-1x )-1=-22-1,等号在-2x =1-x ,即x =-22时成立.∴f (x )有最大值.4.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是( )A .0B .1C .2D .4[答案] D[解析] 由等差、等比数列的性质得 (a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy +2=4.当且仅当x =y 时取等号,∴所求最小值为4.二、填空题5.已知a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg(a +b 2),则P 、Q 、R 的大小关系是________.[答案] P <Q <R[解析] 因为a >b >1,所以lg a >lg b >0, 所以12(lg a +lg b )>lg a ·lg b ,即Q >P ,又因为a +b 2>ab ,所以lg a +b 2>lg ab =12(lg a +lg b ),所以R >Q .故P <Q <R .6.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n 的最小值为________.[答案] 4[解析] 函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴m +n -1=0,即m +n =1.又mn >0,∴1m +1n =(1m +1n )·(m +n )=2+(n m +mn )≥2+2=4,当且仅当m =n =12时,等号成立.三、解答题7.今有一台坏天平,两臂长不等,其余均精确.有人说要用它称物体的质量,只需将物体放在左右托盘各称一次,则两次称量结果的和的一半就是物体的真实质量,这种说法对吗?证明你的结论.[解析] 不对.设左右臂长分别为l 1,l 2,物体放在左、右托盘称得重量分别为a 、b ,真实重量为G ,则由杠杆平衡原理有:l 1·G =l 2·a ,① l 2·G =l 1·b ,②①×②得G 2=ab ,∴G =ab ,由于l 1≠l 2,故a ≠b , 由均值不等式a +b2>ab 知说法不对, 真实重量是两次称量结果的几何平均数.8.求函数y =1-2x -3x 的值域. [解析] y =1-2x -3x =1-(2x +3x ). ①当x >0时,2x +3x ≥22x ·3x =2 6.当且仅当2x =3x ,即x =62时取等号. ∴y =1-(2x +3x )≤1-2 6.②当x <0时,y =1+(-2x )+(-3x ). ∵-2x +(-3x )≥2(-2x )·(-3x )=2 6.当且仅当-2x =-3x 时,即x =-62时取等号. ∴此时y =1-2x -3x ≥1+2 6综上知y ∈(-∞,1-26]∪[1+26,+∞).∴函数y =1-2x -3x 的值域为(-∞,1-26)∪[1+26,+∞).。

1.均值不等式(含答案)

1.均值不等式(含答案)

②如果 a1 ,a2 ,⋯,an 都是正实数,那么
a1
+ a2
+⋯ + an n

n
a1a2 ⋯ an
,当且仅当 a1
= a2
= ⋯ = an 时,等
号成立.
( 2)常用性质
①若 a > 0,b > 0,则
a2 + b2 a +b


ab ≥
2;
2
2
11 +
ab
②若 a > 0, b > 0, c > 0 ,则 a2 + b2 + c2 ≥ a + b + c ≥ 3 abc ≥ 3 ;
a3
b3 +
+
c3
≥ a+b+c.
bc ca ab
3.已知 a > 0, b > 0, n ∈ N * ,求证: (a + b)(an + bn ) ≤ 2(an +1 + bn +1) .
4.已知 a,b, c 都是实数,求证: a2 + b2 + c2 ≥ 1 (a + b + c )2 ≥ ab + bc + ca . 3
(6)若 a > b > 0, c > d > 0, 则 ac > bd > 0 ;
(7)若 a > b, ab > 0, 则 1 < 1 ; ab
(9)若 a > b > 0 ,整数 n > 1,则 n a > n b ;
(8)若 a > b > 0 ,整数 n > 1 ,则 a n > b n ; (10) | a | − | b | ≤ a +b ≤ a + b .

均值不等式含答案

均值不等式含答案

课肘作业15均值不等式时I可:45分钟满分:100分课堂训练53仁己知x + y = 1(x>0, y>0),则xy的最小值是() xyA. 15B. 66 60 D. 1 C【篆秦】53 15J + = 1>2 , 【解析】x y xyxy>当且仅当3x = 5y时取等号.42.因数f(x) = x + x + 3 在(一oo, - 2]上()A.无最丸值,有最小值7B.无最大值,有最小值有最丸值7,有最小值- 1D.有最大值一仁无最小值【答案】D4【解析】Vx<-2, A f(x) = x + +3x=- -x + - 罕3S- 2-X- + 3 xx4=—1,当且仅当—x= —4x,即x = — 2时,取等号,x••• f(x)有最丸值- 1,无最小值.3.己知两个正卖数x, y 满足x + y = 4,则使不等式x + y >m 恒成立的卖数m 的取值范围是 __________________ .4 +5>2 x + l ・x+4i+5 = 9 x 苹1【鮮析】 因为x>-1, 所以y =【答秦】【解析】 14^+y145yx519ix + /=4x + y = % + 4y x + \>54+ 2 41=妙4・x 2+ 7x + 104k 求因数y= x+i (x> - 1)的最小值.【分析】对于本題中的因数,可把x+1看成一个整体,然后形式特点,从而能用均值定理来处理.所以x + 1 >(x + 1)将因数用X+1来表示, 这样转化一下表达形式, 可以暴獴其肉在的0・ c Cx2 + 7x + 10 x + 12 + 5x + 1 +4x + 1 x+ 1当且仅当X + 1=x + 41,即X=1肘,等号成立.・•.当x=1 肘,^/<y = x+x7+x+i 10 (x>-1),取得最小值为9.规律方法]ax2 + bx + c形如f(x)二丄:\ 4 c/x/\ =mx + nax2 + bx + c m^Q,的)因数,可以把mx +n看成一个整体,设mx + n = t,那么f (x)与g (x)都可以转化为关于t的因数.课后作业.选择题(毎小題5分,共40分)11.设x>0,贝J y = 3-3x-x 的最大值是()11【解析】y = 3 — 3x — x = 3 — (3x + x)=3-2 3.当且仅当3x = 1x ,即x = 3?肘取“ =【x32.下列结论正确的是()1A. 当 x>0 且 xfl 时,lgx+i gx >2B. 当 x>0 时,x+ 1x >21C.x>2时,x + x 的最小值为21 D. 0<x<2时,x-x 无最大值x【答案】B【解析】A 中,当x>0且xfl 时,Igx 的正负不确定,・・・lgx + igx小 1 1 5 二 c N2 或 lgx + igxS-2; C 中,当 xN2|时, 时, 1 1 3y = X- x 疫上逼增’“Xi) max =2・3k 如果 a, b 满足 Ovavb, a + b = 1,则乙 a,2ab, a 2 + b 2中值最A. 3C. 3-23【答案】CB. 3-32 D. — 1(X + x ) min = 2 ; D 中多 OvX02大的是()B. aC. 2abD.呼 + 少芻亲】鮮析】方法一:••• 0<a<b,.・.i=a + b>2a, 又a?+ b2>2ab,••-最丸数一定不是a和2ab,又a2 + b2 = (a + b)2一2ab = 1 一2ab,T 1 = a+ b>2 ab, abvh1 1 1/• 1 — 2ab>1 — 2 = 2?即a2 + b2>2-1245方出二:特值检验法:取* = 3 J b = % 则2ab = g4,4.己知a>b>c>0,则下列不等式成立的是()1 +b-c>a-c 12+ b _ c<a 一c12+ b — c-a 一c12+ b — c-a 一c【答案】A【鮮析】丁a>b>c>0,•: a- b>0, b- c>0, a- c>0,• • (a _ Qi_b + b_c a2 + b2 = 95,5 14 19Q>2>Q>^/. a2 + b2最丸.11=[(a - b) + (b - c)] -a_b + b-1cb- c a-bg_b + b_cb— c a—b>2 + 2a_"b-b__c = 4.鮮析】A、D选项中,不能保证两数为正,排除;B选项不1 1 42a-b + b-cF-c>a-c5.下列函数中,最小值为4的是()4 Af(x)= :2X X X2+4f(X)= x + x B kcf(x) = 3x + 4x3-x D kf(x):=lgx + log x10芻案】cX2+5 x2 + 4 + 1 二2x 1能取等号,f(x) = 2X\2+54 = 2x X2 X2+4)M 4 要+ 4取等号,必须x2 + 4= x21+4,即x2 + 4 = 1,这是不可能的,排除.坎选C.6.今有一台坏夭平,两臂长不等,其余均精确.有人说要用它称物体的重量,只需将物体放在左.右托盘各称一次,则两次称量结果的和的一半就是物体的真卖重量.设炀体放在左右托盘称得的重量分别为a, b(a^b),则物体的卖际重量为多少卖际重量比两次称量的结果的一半大了还是小了 ()鮮析】设炀体真卖重量为m,夭平左、右两臂长分别为iI2,则mh = ah®mk = bh@① x②得m2hl2 = abhk•: m = aba +b a + b2 > ab且#b, •••等号不能取得,坎ms.7.己知x>0, y>0, x + 2y + 2xy = 8,则x+ 2y 的最小值是()A. 3B. 4[<<]BVx + 2y + 2xy = 8,8-x【聲析】— 1 <x<8,8-x 9 9Ax+2y=x + 2-28x"+x2 = (x+l)+x+9i—2>2 x + l-x+9i—2 =4,9当且仅当x+1= 9时= 成立,此时x = 2, y = 1,故选Bx + 11 X2 + X +1& 在区间〔2, 2]上,因数f(x) = x2+ bx + c(b、CGR)与g(x) = x1在同一点取得扌目同的最小值,那么f(x)在区间[J, 2]上的最丸屣是B. 4C. 8【答秦】BX2 + X + 1 1【鮮析】Vg(x) = x x =x + x1 + 1>3, x = 1 #取等号,即当x = 1时取最小值3, /• f(x)的对称轴是x = 1, /.b = — 2,将(1,3)代1入即得c = 4, A f (x) = x2 - 2x + 4,易得在〔2,2]上的最大值是4.二、填空題(毎小题10分,共20分)x2 + 29. 比较丸小:X2 + 1 ________ 2(填“V或必”)【答秦】>【鮮析】X x + 2 +21 = x2+1+ X21+1>2.110. 当x>1时,不等式x + x_i>a恒成立,则卖数a的取值施围x-1是_________ '【答秦】(一P 3]1[鮮析】Vx>1, /. x + >0,x-111要使X+ Na 恒成立,设f(x)=x+ (x>1),贝J a<f(x)min 对X>1x- 1 x- 1恒成立k1 1 1又f(x) = x+ = x- 1 + + 1>2 x- 1x +1=3,当且X-1 X-1 X-11仅当x - 1 = 1即x = 2时取“ =1x-1••• a< 3.三、鮮芻題(每小題20分,共40分.解答应写出必要的文字说朗.证朗过程或演算步骤)11. 设x, ye R+,且x + y + xy = 2,(1) 求x + y的取值范围;(2) 求xy的取值范围.【解析】⑴2= x + y+ xySx + y + (2 )2,当且仅当x = y时取“ =J/. (x + y)2 + 4(x + y) — 8>0.A [(x + y) + 2]2>12.T x + y>0,x + y + 2> 12.x + y>23 -2,当且仅当x = y = 3 - 1 时取“=坎x + y的取值苑围是[23 — 2, + oo) k (2)2 = x + y + xy>2xy + xy,当且仅当x = y = 3- 1 时取“ = J••• ( xy)2 + 2 xy<2A. (xy+1 )2< 3.又x. y>0, A xy + 1>0. A xy + 1< 3・•: 0< xy< 3 - 1.A0<xy<4 —2 3,即xy 的取值范围是(0,4-23].12. 禁渔业必司今年初用98万元购进一艘渔船用于捕撈,毎一年需要各种费用12万元.从第二年起包括维修费在肉毎年所需费用比上一年增加4万元.该那毎年捕撈总收入50万元.(1)问捕捞几年后总盈利最丸,最大是多少(2)问捕捞几年后的平均利润最丸,最大是多少【解析】(1)设那捕撈n年后的总盈利y万元.nn 一1y = 50n -98 - [12 xn+ 2x4]=—2n2 + 40n — 98=一2(n-10)2 + 102•••捕撈10年后总盈利最丸,最大是102万元. y 4n9 _ 20(2)年平均利润为门-2 n门+<-22- n-4n9-20 = 12当且仅当n = 4年即口= 7肘上式取等号.n 所以,捕撈7年后的平均利润最丸,最大是12万元.【规律方由】在应用均值不等式鮮决卖际问題时,应注意如下恩路和方法:(1) 先理鮮題克,设出变量,一般把要求最值的量定为因数;(2) 建立相应的因数关糸,把卖际问题抽象成因数的最丸值或最小值问題;(3) 在定义域肉,求出因数的最大值或最小值;(4) 正确写出答案.。

高考数学均值不等式专题含答案家教文理通用

高考数学均值不等式专题含答案家教文理通用

高考:均值不等式专题◆知识梳理1.常见基本不等式2,0,a R a ∈≥0a ≥222()22a b a b ++≥, 222a b c ab bc ac ++≥++ 若a>b>0,m>0,则b b m a a m +<+; 若a,b 同号且a>b 则11a b<。

ab b a R b a 2,,22≥+∈则;.2,,22ab b a R b a -≥+∈2.均值不等式:两个正数的均值不等式:ab b a ≥+2 变形ab b a 2≥+,22a b ab +⎛⎫≤ ⎪⎝⎭,ab b a 222≥+等。

3.最值定理:设,0,x y x y >+≥由(1)如果x,y 是正数,且积(xy P =是定值),则 时,x y +和有最小值(2)如果x,y 是正数和(x y S +=是定值),则 时,22Sxy 积有最大值()4.利用均值不等式可以证明不等式,求最值、取值范围,比较大小等。

注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

◆课前热身1. 已知,x y R +∈,且41x y +=,则x y ⋅的最大值为 . 2. 2. 若0,0x y >>1x y +=,则41x y+的最小值为 . 3. 已知:0>>x y ,且1=xy ,则22x y x y+-的最小值是 .4. 4. 已知下列四个结论①当2lg 1lg ,10≥+≠>x x x x 时且;②02x >≥当时;③x x x 1,2+≥时当的最小值为2;④当xx x 1,20-≤<时无最大值. 则其中正确的个数为◆考点剖析 一、基础题型。

1.直接利用均值不等式求解最值。

例1:(2010年高考山东文科卷第14题)已知,x y R +∈,且满足134x y+=,则xy 的最大值为 。

均值不等式 含答案

均值不等式   含答案

课时做业15均值没有等式之阳早格格创做时间:45分钟谦分:100分课堂锻炼1.已知5x+3y=1(x>0,y>0),则xy的最小值是()A.15B.6 C.60 D.1【问案】C【剖析】∵5x +3y=1≥215xy,∴xy≥60,当且仅当3x=5y时与等号.2.函数f(x)=x+4x+3正在(-∞,-2]上()A.无最大值,有最小值7B.无最大值,有最小值-1C.有最大值7,有最小值-1 D.有最大值-1,无最小值【问案】D【剖析】∵x≤-2,∴f(x)=x+4x+3=-⎣⎢⎡⎦⎥⎤-x+⎝ ⎛⎭⎪⎫-4x +3≤-2-x⎝ ⎛⎭⎪⎫-4x +3 =-1,当且仅当-x =-4x ,即x =-2时,与等号,∴f (x )有最大值-1,无最小值.3.已知二个正真数x ,y 谦脚x +y =4,则使没有等式1x +4y≥m 恒创造的真数m 的与值范畴是____________. 【问案】⎝ ⎛⎦⎥⎤-∞,94【剖析】1x +4y =⎝⎛⎭⎪⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =54+y 4x +x y ≥54+214=94. 4.供函数y =x2+7x +10x +1(x >-1)的最小值.【分解】 对付于原题中的函数,可把x +1瞅成一个完全,而后将函数用x +1去表示,那样转移一下表白形式,不妨表露其内正在的形式特性,进而能用均值定理去处理.【剖析】果为x >-1, 所以x +1>0.所以y =x2+7x +10x +1=x +12+5x +1+4x +1=(x +1)+4x +1+5≥2x +1·4x +1+5=9 当且仅当x +1=4x +1,即x =1时,等号创造.∴当x =1时,函数y =x2+7x +10x +1(x >-1),博得最小值为9.【顺序要领】 形如f (x )=ax2+bx +cmx +n (m ≠0,a ≠0)大概者g (x )=mx +nax2+bx +c (m ≠0,a ≠0)的函数,不妨把mx +n 瞅成一个完全,设mx +n =t ,那么f (x )与g (x )皆不妨转移为闭于t 的函数.课后做业一、采用题(每小题5分,共40分)1.设x >0,则y =3-3x -1x 的最大值是( )A .3B .3-32C .3-23D .-1 【问案】C【剖析】y =3-3x -1x =3-(3x +1x )≤3-23x ·1x=3-2 3.当且仅当3x =1x ,即x =33时与“=”.2.下列论断透彻的是( ) A .当x >0且x ≠1时,lg x +1lgx ≥2B .当x >0时,x +1x ≥2C .当x ≥2时,x +1x 的最小值为2D .当0<x ≤2时,x -1x 无最大值【问案】B【剖析】A 中,当x >0且x ≠1时,lg x 的正背没有决定,∴lg x +1lgx ≥2大概lg x +1lgx ≤-2;C 中,当x ≥2时,(x+1x )min =52;D 中当0<x ≤2时,y =x -1x 正在(0,2]上递加,(x -1x )max =32. 3.如果a ,b 谦脚0<a <b ,a +b =1,则12,a,2ab ,a 2+b 2中值最大的是( )A.12B .aC .2abD .a 2+b 2【问案】D【剖析】要领一:∵0<a <b ,∴1=a +b >2a ,∴a <12,又a 2+b 2≥2ab ,∴最大数一定没有是a 战2ab , 又a 2+b 2=(a +b )2-2ab =1-2ab , ∵1=a +b >2ab ,∴ab <14,∴1-2ab >1-12=12,即a 2+b 2>12.要领二:特值考验法:与a =13,b =23,则2ab =49,a 2+b 2=59,∵59>12>49>13,∴a 2+b 2最大.4.已知a >b >c >0,则下列没有等式创造的是( ) A.1a -b +1b -c >2a -c B.1a -b +1b -c <2a -c C.1a -b +1b -c ≥2a -c D.1a -b +1b -c ≤2a -c 【问案】A【剖析】∵a >b >c >0, ∴a -b >0,b -c >0,a -c >0,∴(a -c )⎝ ⎛⎭⎪⎪⎫1a -b +1b -c =[(a -b )+(b -c )]·⎝ ⎛⎭⎪⎪⎫1a -b +1b -c =2+b -c a -b +a -bb -c≥2+2b -c a -b ·a -bb -c=4. ∴1a -b +1b -c ≥4a -c >2a -c. 5.下列函数中,最小值为4的是( ) A .f (x )=x +4x B .f (x )=2×x2+5x2+4C .f (x )=3x +4×3-x D .f (x )=lg x +log x 10 【问案】C【剖析】A 、D 选项中,没有克没有及包管二数为正,排除;B 选项没有克没有及与等号,f (x )=2×x2+5x2+4=2×x2+4+1x2+4=2×(x2+4+1x2+4)≥4,要与等号,必须x2+4=1x2+4,即x2+4=1,那是没有成能的,排除.故选C.6.今有一台坏天仄,二臂少没有等,其余均透彻.有人道要用它称物体的沉量,只需将物体搁正在左、左托盘各称一次,则二次称量截止的战的一半便是物体的真正在沉量.设物体搁正在安排托盘称得的沉量分别为a,b(a≠b),则物体的本质沉量为几?本质沉量比二次称量的截止的一半大了仍旧小了?()A.a+b2;大 B.a+b2;小C.ab;大D.ab;小【问案】D【剖析】设物体真正在沉量为m,天仄左、左二臂少分别为l1,l2,则ml1=al2①ml2=bl1②①×②得m2l1l2=abl1l2∴m=ab又∵a+b2≥ab且a≠b,∴等号没有克没有及博得,故m <a +b 2.7.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92D.112 【问案】B【剖析】∵x +2y +2xy =8,∴y =8-x2x +2>0,∴-1<x <8,∴x +2y =x +2·8-x 2x +2=(x +1)+9x +1-2≥2x +1·9x +1-2=4,当且仅当x +1=9x +1时“=”创造,此时x =2,y =1,故选B.8.正在区间[12,2]上,函数f (x )=x 2+bx +c (b 、c ∈R )与g (x )=x2+x +1x 正在共一面博得相共的最小值,那么f (x )正在区间[12,2]上的最大值是( )A.134B .4C.8 D.5 4【问案】B【剖析】∵g(x)=x2+x+1x=x+1x+1≥3,当x=1时与等号,即当x=1时与最小值3,∴f(x)的对付称轴是x=1,∴b=-2,将(1,3)代进即得c=4,∴f(x)=x2-2x+4,易得正在[12,2]上的最大值是4.二、挖空题(每小题10分,共20分)9.比较大小:x2+2x2+1________2(挖“>”“<”“≥”大概“≤”).【问案】≥【剖析】x2+2x2+1=x2+1+1x2+1≥2.10.当x>1时,没有等式x+1x-1≥a恒创造,则真数a的与值范畴是________.【问案】(-∞,3]【剖析】∵x>1,∴x+1x-1>0,要使x+1x-1≥a恒创造,设f(x)=x+1x-1(x>1),则a≤f(x)min对付x>1恒创造.又f(x)=x+1x-1=x-1+1x-1+1≥2x-1×1x-1+1=3,当且仅当x-1=1x-1即x=2时与“=”.∴a≤3.三、解问题(每小题20分,共40分.解允许写出需要的笔墨道明、道明历程大概演算步调)11.设x,y∈R+,且x+y+xy=2,(1)供x+y的与值范畴;(2)供xy的与值范畴.【剖析】(1)2=x+y+xy≤x+y+(x+y 2)2,当且仅当x=y时与“=”.∴(x+y)2+4(x+y)-8≥0.∴[(x+y)+2]2≥12.∵x+y>0,∴x+y+2≥12.∴x+y≥23-2,当且仅当x=y=3-1时与“=”.故x+y的与值范畴是[23-2,+∞).(2)2=x +y +xy ≥2xy +xy ,当且仅当x =y =3-1时与“=”.∴(xy)2+2xy ≤2.∴(xy +1)2≤3.又x 、y >0,∴xy +1>0.∴xy +1≤ 3. ∴0<xy ≤3-1.∴0<xy ≤4-23,即xy 的与值范畴是(0,4-23].12.某渔业公司今年初用98万元买进一艘渔船用于捕捞,每一年需要百般费用12万元.从第二年起包罗维建费正在内每年所需费用比上一年减少4万元.该船每年捕捞总支进50万元.(1)问捕捞几年后总盈利最大,最大是几?(2)问捕捞几年后的仄衡成本最大,最大是几?【剖析】(1)设船捕捞n 年后的总盈利y 万元.则y =50n -98-[12×n +n n -12×4] =-2n 2+40n -98=-2(n -10)2+102∴捕捞10年后总盈利最大,最大是102万元.(2)年仄衡成本为y n =-2⎝ ⎛⎭⎪⎫n +49n -20≤-2⎝ ⎛⎭⎪⎪⎫2n ·49n -20=12 当且仅当n =49n,即n =7时上式与等号. 所以,捕捞7年后的仄衡成本最大,最大是12万元.【顺序要领】 正在应用均值没有等式办理本质问题时,应注意如下思路战要领:(1)先明白题意,设出变量 ,普遍把央供最值的量定为函数;(2)建坐相映的函数闭系,把本质问题抽象成函数的最大值大概最小值问题;(3)正在定义域内,供出函数的最大值大概最小值;(4)透彻写出问案.。

均值不等式(基本不等式+知识点+例题+习题)pdf版

均值不等式(基本不等式+知识点+例题+习题)pdf版

t
t
t
答案:[2, )
例 2 求函数 y x2 3 的最小值. x2 1
解析:令 x2 1 t,t 1,则 x2 t2 1 ,带入原式化简得 y t 2 2 2 , t
当 t 2 即 t 2 时等号成立. t
答案: 2 2
例 3 已知 x 1,求 f (x) x2 x 1 的最小值. 2x 1
2
2
2 | 10
[不等式] 练习答案:
1
2
38
对勾函数:
形如 f (x) ax b (ab 0) 的函数. x
利用对勾函数性质可解决均值不等式等号不成立时的情况.
性质
a 0,b 0
y
a 0,b 0 y
图像
2 ab
Obxab a NhomakorabeaO
x
-2 ab
定义域
值域 奇偶性 渐近线
{x | x 0}
2
题型四:分离换元法求最值(二次比一次或一次比二次时用)
例 1 求函数 y x2 3 (x 1) 的值域. x 1 2
解析:令 x 1 t,t 3 ,则 x t 1,带入原式得到 y (t 1)2 3 t 4 2 ,
2
t
t
t 4 2 2 t 4 2 2 ,当 t 4 即 t 2 时等号成立.
解析:构造对勾函数 y 3x 12 ,由函数性质可知 x (3, ) 时函数单调递减, x

y
3x
12 x
y(3)
13

答案: (, 13]
练习 1 练习 2
已知 x 0 ,求函数 y x 4 的最小值. x4
已知 x 3,求函数 y 2x 3 的值域. 2x

(完整版)均值不等式高考一轮复习(教师总结含历年高考真题)

(完整版)均值不等式高考一轮复习(教师总结含历年高考真题)

基础篇一、单变量部分1、 求)0(1>+=x xx y 最小值及对应的x 值答案当x=1最小值2 2、 2、(添负号)求)0(1<+=x xx y 最大值-23、(添系数)求)31,0()31(∈-=x x x y 最大值1214、(添项)求)2(24>-+=x x x y 最小值65、(添根号)02>≥x 求24x x y -=最大值26、(取倒数或除分子)求)0(12>+=x x x y 最大值217、(换元法)求)1(132>-+=x xxx y 最大值-9 8、(换元法)求)2(522->++=x x x y 最大值42二、多变量部分1、(凑系数或消元法)已知041>>a ,b>0且4a+b=1求ab 最大值161 2、(乘“1”法或拆“1”法)已知x>0,y>0,x+y=1求yx 94+最小值25 3、(放缩法)已知正数a ,b 满足ab=a+b+3则求ab 范围),9[+∞ 三、均值+解不等式1. 若正数a,b 满足ab=a+2b+6则ab 的取值范围是______),18[+∞_________2、已知x>0,y>0, x+2y+2xy=8则x+2y 的最小值__________4__________ 练习1. 已知x>0,y>0,且182=+yx 则xy 的最小值_______64_______ 2.)0(1324>++=k kk y 最小值_________2_________ 3. 设0≥a ,0≥b ,1222=+b a ,则21b a +的最大值为_________423_________4. 已知45<x ,求函数54124-+-=x x y 的最大值________1________ 5. 已知x>0,y>0且191=+yx 求x+y 的最小值______16__________ 6. 已知)0,0(232>>=+y x yx 则xy 的最小值是___6_____ 7. 已知a>0,b>0,a+b=2,则b a y 41+=的最小值______29________ 8. 已知+∈R y x ,且满足143=+yx 则xy 的最大值________3_______11、已知x>0,y>0,z>0,x-y+2z=0,则2y xz=_____________D_______ A 、最小值8 B 、最大值8C 、最小值81D 、最大值81注:消y12、设R y x ∈,则)41(12222y xy x +⎪⎪⎭⎫ ⎝⎛+的最小值是_______9_________ 13、若R b a ∈,,且ab>0,则下列不等式中,恒成立的是(D )A 、ab b a 222>+ B 、ab b a 2≥+C 、abb a 211>+ D 、2≥+b a a b 14、若a,b,c,d,x,y 是正实数,且cd ab +=P ,ydx b cy ax Q +⋅+=则有(C )A 、P=QB 、Q P ≥C 、Q P ≤D 、P>Q15、已知25≥x 则4254)(2-+-=x x x x f 有(D )A 、有最大值45 B 、有最小值45 C 、最大值1 D 、最小值116、建造一个容积为83m ,深为2m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为1760元 17、函数y=x(3-2x))10(≤≤x 的最大值为89 18、函数1)(+=x xx f 的最大值是(C )A 、52B 、21C 、22D 、119、已知正数x,y 满足141=+yx 则xy 有(C )A 、最小值161B 、最大值16C 、最小值16D 、最大值16120、若-4<x<1,则当22222-+-x x x 取最大值时,x 的值为(A )A 、-3B 、-2C 、-1D 、021、若122=+yx ,则x+y 的取值范围是(D ) A 、[0,2] B 、[-2,0] C 、),2[+∞- D 、]2,(--∞22、某商场中秋前30天月饼销售总量f(t)与时间t(300≤<t )的关系大致满足1610)(2++=t t t f 则该商场前t 天月饼的平均销售量最少为18 23、已知点P (x,y )在直线x+3y-2=0上,那么代数式yx273+的最小值是6提高篇一、函数与均值 1、)2(21>-+=a a a m ,)0(2122<⎪⎭⎫ ⎝⎛=-x n x 则m,n 之间关系_____m ≥n______________2、 设x ≥0,x x P -+=22,2)cos (sin x x Q +=则( C ) A 、Q P ≥ B 、Q P ≤ C 、P>Q D 、P<Q3、已知函数()x a x f 21+-=若()02≥+x x f 在()+∞,0上恒成立,则a 的取值范围是__),41[)0,(+∞⋃-∞_4、若对任意x>0,a x x x≤++132恒成立,则a 的取值范围是_______51≥a ____________5、函数xxxy 2log 2log +=的值域_______),3[]1,(+∞⋃--∞___________ 6、设a,b,c 都是正实数,且a,b 满足191=+ba 则使cb a ≥+恒成立的c 的取值范围是_D__A 、]8,0(B 、(0,10] C(0,12] D 、(0,16] 7、已知函数())1,0(log 1)1(≠>+=-a a ax f x 的图象恒过定点P ,又点P的坐标满足方程mx+ny=1,则mn 的最大值为_________81_____________ 8、已知函数()()),0(22+∞∈++=x xax x x f⑴当21=a 时,求f(x)的最小值答案:22+⑵若对任意),0(+∞∈x ,f(x)>6恒成立,求正实数a 的取值范围___a>4__ 9、0)1(42>-++x k x 对]3,1[∈x 恒成立,求k 的范围 10、若a+b=2则ba33+的最小值为______6___________11、设x,y,z 均为大于1的实数,且z 为x 和y 的等比中项,则yzx z lg lg lg 4lg +的最小值为A A 、89 B 、49 C 、29D 、9 12、已知a>1,b>1,且lga+lgb=6,则b a lg lg ⋅的最大值为(B )A 、6B 、9C 、12D 、1813、R y x ∈,且x+y=5,则yx33+的最小值为(D ) A 、10 B 、36 C 、64 D 、31814、设a>0,b>0,若3是a 3与b3的等比中项,则ba 11+的最小值为(B ) A 、8 B 、4 C 、1 D 、4115、函数)1,0(1≠>=-a a ay x的图象恒过点A ,若点A 在直线mx+ny-1=0(mn>0)上,则nm 11+的最小值为4 16、当x>1时,不等式a x x ≥-+11恒成立,则实数a 的取值范围是(D )A 、]2,(-∞B 、),2[+∞C 、),3[+∞D 、]3,(-∞17、函数)1,0(1)3(log ≠>-+=a a x y a 的图象恒过定点A ,若点A 在直线mx+ny+2=0上,其中m>0,n>0,则nm 12+的最小值为(D ) A 、22 B 、4 C 、25 D 、29二、数列与均值1、已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则cdba2)(+的最小值是__4_2、已知等比数列{a n}中a2=1,则其前3项的和S3的取值范围是。

均值不等式能力训练题含答案

均值不等式能力训练题含答案

均值不等式能力训练题一、选择题1、已知f(x)=x+-2(x<0),则f(x)有 ( )A.最大值为0 B.最小值为0C.最大值为-4 D.最小值为-42、若0<x<1,则f(x)=x(4-3x)取得最大值时,x的值为 ( )A. B. C. D.3、若正数x,y满足x+3y=5xy,则3x+4y的最小值是( )A. B. C.5 D.64、已知为正整数,实数的最大值为40,则满足条件的数对(a,b)的个数为( ) A.1 B.3 C.5 D.7二、填空题5、若,且,则的最小值为.6、已知,则的最小值为________。

7、已知x>0,y>0,xy=x+2y,若xy≥m-2恒成立,则实数m的最大值是________.三、简答题8、已知,求的最小值9、已知,且,求的最小值10、设,求函数的最小值。

11、若a>0,b>0,且+=.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.参考答案一、选择题1、C 2、D 3、C 4、C二、填空题5、 6、64 7、10三、简答题8、【解析】∵,∴,∴,当且仅当,即时,取得最小值.9、【解析】∵,且,∴,当且仅当,即时,取等号,∴的最小值为.10、解:,当且仅当,即时取等号.11、解(1)由=+≥,得ab≥2,且当a=b=时等号成立.故a3+b3≥2≥4,且当a=b=时等号成立.所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2≥4.由于4>6,从而不存在a,b,使得2a+3b=6.。

2020-2021学年高一上数学新教材必修一第2章:均值不等式(含答案)

2020-2021学年高一上数学新教材必修一第2章:均值不等式(含答案)
∴1+x= ≤ =1+ ,
∴x≤ .当且仅当a=b时等号成立.]
8.已知函数y=4x+ (x>0,a>0)在x=3时取得最小值,则a=________.
36[y=4x+ ≥2 =4 (x>0,a>0),当且仅当4x= ,即x= 时等号成立,此时y取得最小值4 .又由已知x=3时,ymin=4 ,
∴ =3,即a=36.]
A. > B. + ≤1
C. ≥2D. ≤
D[由 ≤2得ab≤4,
∴ ≥ ,故A错;
B中, + = = ≥1,故B错;
由a+b=4,得 ≤ = =2,故C错;
由 ≥ 2得a2+b2≥2× 2=8,
∴ ≤ ,D正确.]
二、填空题
6.已知a>b>c,则 与 的大小关系是________.
≤ [∵a>b>c,
2020-2021学年高一上数学新教材必修一
第2章:均值不等式
一、选择题
1.设t=a+2b,s=a+b2+1,则t与s的大小关系是()
A.s≥tB.s>t
C.s≤tD.s<t
2.下列不等式中正确的是()
A.a+ ≥4B.a2+b2≥4ab
C. ≥ D.x2+ ≥2
3.已知a>0,b>0,则下列不等式中错误的是()
+ ≥2(当且仅当a=c时取“=”);
+ ≥2(当且仅当b=c时取“=”).
从而 + + ≥6(当且仅当a=b=c时取等号).
∴ + + -3≥3,
即 + + ≥3.
[等级过关练]
1.下列不等式一定成立的是()
A.x+ ≥2B. ≥
C. ≥2D.2-3x- ≥2
B[A项中当x<0时,x+ <0<2,∴A错误.

均值不等式练习题及答案解析

均值不等式练习题及答案解析

均值不等式练习题及答案解析一.均值不等式1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab2. 若a,b?R*,则a?b2?*?a?b222a?b时取“=”)ab 若a,b?R,则a?b?22aba?b?若a,b?R,则ab??) ?? ?2a?b2注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域y=3x解:y=3x+11y=x+xx13x =∴值域为[,+∞)2x1x· =2; x1x· =-2x1≥22x1当x>0时,y=x+≥x11当x<0时, y=x+= -≤-2xx∴值域为解题技巧:技巧一:凑项例1:已知x?54,求函数y?4x?2?14x?5的最大值。

1解:因4x?5?0,所以首先要“调整”符号,又?x?54,?5?4x?0,?y?4x?2?14x?5不是常数,所以对4x?2要进行拆、凑项,???2?3?1 ??3?1????5?4x?4x?55?4x?当且仅当5?4x?15?4x,即x?1时,上式等号成立,故当x?1时,ymax?1。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求y?x的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2x??8为定值,故只需将y?x凑上一个系数即可。

当,即x=2时取等号当x=2时,y?x的最大值为8。

32评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设0?x?,求函数y?4x的最大值。

322x?3?2x?9解:∵0?x?∴3?2x?0∴y?4x?2?2x?2????222??当且仅当2x?3?2x,即x?3?3???0,?时等号成立。

完整版)均值不等式测试题(含详解)

完整版)均值不等式测试题(含详解)

完整版)均值不等式测试题(含详解)解析:将不等式化简为x2-x+1/4+1/4≥1,即(x-1/2)2≥3/4,当x≤1/2-√3/2或x≥1/2+√3/2时,不等式成立,选项B符合条件。

3.C解析:2x+8y=2(x+4y),由于x+3y-1=0,所以2x+8y=2(x+4y)=(x+3y-1)+5y+1≥2√15,故最小值为2√15,选项C符合条件。

4.B解析:根据柯西-施瓦茨不等式,有|(mx+ny)|≤√(m2+n2)(x2+y2),代入已知条件得到|(mx+ny)|≤√3,故mx+ny的最大值为3,选项B符合条件。

5.B解析:将选项B化简为(a-b)2(a2+b2+ab)≥0,显然成立,其他选项均不成立。

6.A解析:将选项A化简为(x+1/x+2)2≥4,即(x2+1+2x/x)2≥4,由于x>0,故(x2+1+2x/x)2≥(2(x2+1))/x≥4,故选项A成立。

7.A解析:将2a+b+c表示为a+(a+b+c),代入已知条件得到a(a+b+c)+bc=4-2(a+b+c),化简得到(a+b+c-2)2=4-23,故a+b+c的最小值为3-1,选项A符合条件。

填空题:8.最大值为2,当x=1时取得。

9.最小值为2,当x=2时取得。

10.最小值为2,当x=1时取得。

11.最大值为4,当x=2时取得。

解答题:12.由于点A在直线mx+ny+1=0上,所以loga(3)-1=-(mx+ny)/a,化简得到mx+ny=-a(loga(3)-1),代入mn>0得到a>1/3,且mn=a2>0,故m=n=a/√2,所以m+n=√2a,最小值为2√2.13.设购买次数为n,则每次购买x=400/n吨,总运费为4n万元,总存储费用为4x=1600/n万元,总花费为4n+1600/n,根据均值不等式,有4n+1600/n≥2√(4n×1600/n)=80,即n≥4,故购买次数至少为4,每次购买100吨。

均值不等式的应用(习题+答案)

均值不等式的应用(习题+答案)

均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式的应用(习题+标准答案)

均值不等式的应用(习题+标准答案)

均值不等式的应用(习题+答案)————————————————————————————————作者:————————————————————————————————日期:均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式 含答案

均值不等式   含答案

课时作业15 均值不等式时间:45分钟 满分:100分课堂训练1.已知5x +3y=1(x >0,y >0),则xy 的最小值是( )A .15B .6C .60D .1【答案】 C【解析】 ∵5x +3y =1≥215xy,∴xy ≥60,当且仅当3x =5y 时取等号.2.函数f (x )=x +4x+3在(-∞,-2]上( )A .无最大值,有最小值7B .无最大值,有最小值-1C .有最大值7,有最小值-1D .有最大值-1,无最小值 【答案】 D【解析】 ∵x ≤-2,∴f (x )=x +4x+3=-⎣⎢⎢⎡⎦⎥⎥⎤-x+⎝ ⎛⎭⎪⎪⎫-4x +3≤-2-x⎝ ⎛⎭⎪⎪⎫-4x +3=-1,当且仅当-x =-4x,即x =-2时,取等号,∴f (x )有最大值-1,无最小值.3.已知两个正实数x ,y 满足x +y =4,则使不等式1x +4y≥m 恒成立的实数m 的取值范围是____________.【答案】 ⎝ ⎛⎦⎥⎥⎤-∞,94 【解析】 1x +4y =⎝ ⎛⎭⎪⎪⎫x +y 4⎝ ⎛⎭⎪⎪⎫1x +4y =54+y 4x +x y ≥54+214=94. 4.求函数y =x 2+7x +10x +1(x >-1)的最小值.【分析】 对于本题中的函数,可把x +1看成一个整体,然后将函数用x +1来表示,这样转化一下表达形式,可以暴露其内在的形式特点,从而能用均值定理来处理.【解析】 因为x >-1, 所以x +1>0.所以y =x 2+7x +10x +1=x +12+5x +1+4x +1=(x +1)+4x +1+5≥2x +1·4x +1+5=9当且仅当x +1=4x +1,即x =1时,等号成立.∴当x =1时,函数y =x 2+7x +10x +1(x >-1),取得最小值为9.【规律方法】 形如f (x )=ax 2+bx +cmx +n (m ≠0,a ≠0)或者g (x )=mx +nax 2+bx +c(m ≠0,a ≠0)的函数,可以把mx +n 看成一个整体,设mx+n =t ,那么f (x )与g (x )都可以转化为关于t 的函数.课后作业一、选择题(每小题5分,共40分)1.设x >0,则y =3-3x -1x的最大值是( )A .3B .3-32C .3-2 3D .-1【答案】 C【解析】 y =3-3x -1x =3-(3x +1x)≤3-23x ·1x=3-2 3.当且仅当3x =1x ,即x =33时取“=”.2.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值【答案】 B【解析】 A 中,当x >0且x ≠1时,lg x 的正负不确定,∴lg x +1lg x ≥2或lg x +1lg x ≤-2;C 中,当x ≥2时,(x +1x )min =52;D 中当0<x ≤2时,y =x -1x 在(0,2]上递增,(x -1x )max =32.3.如果a ,b 满足0<a <b ,a +b =1,则12,a,2ab ,a 2+b 2中值最大的是( )A.12 B .a C .2ab D .a 2+b 2【答案】 D【解析】 方法一:∵0<a <b ,∴1=a +b >2a ,∴a <12,又a 2+b 2≥2ab ,∴最大数一定不是a 和2ab , 又a 2+b 2=(a +b )2-2ab =1-2ab , ∵1=a +b >2ab ,∴ab <14,∴1-2ab >1-12=12,即a 2+b 2>12.方法二:特值检验法:取a =13,b =23,则2ab =49,a 2+b 2=59,∵59>12>49>13,∴a 2+b 2最大. 4.已知a >b >c >0,则下列不等式成立的是( ) A.1a -b +1b -c >2a -c B.1a -b +1b -c <2a -c C.1a -b +1b -c ≥2a -c D.1a -b +1b -c ≤2a -c 【答案】 A【解析】 ∵a >b >c >0, ∴a -b >0,b -c >0,a -c >0,∴(a -c )⎝ ⎛⎭⎪⎪⎫1a -b +1b -c =[(a -b )+(b -c )]·⎝ ⎛⎭⎪⎪⎫1a -b +1b -c =2+b -c a -b +a -bb -c≥2+2b -c a -b ·a -bb -c=4. ∴1a -b +1b -c ≥4a -c >2a -c.5.下列函数中,最小值为4的是( ) A .f (x )=x +4xB .f (x )=2×x 2+5x 2+4C .f (x )=3x +4×3-xD .f (x )=lg x +log x 10【答案】 C【解析】 A 、D 选项中,不能保证两数为正,排除;B 选项不能取等号,f (x )=2×x 2+5x 2+4=2×x 2+4+1x 2+4=2×(x 2+4+1x 2+4)≥4,要取等号,必须x 2+4=1x 2+4,即x 2+4=1,这是不可能的,排除.故选C.6.今有一台坏天平,两臂长不等,其余均精确.有人说要用它称物体的重量,只需将物体放在左、右托盘各称一次,则两次称量结果的和的一半就是物体的真实重量.设物体放在左右托盘称得的重量分别为a ,b (a ≠b ),则物体的实际重量为多少?实际重量比两次称量的结果的一半大了还是小了?( )A.a +b2;大 B.a +b2;小C.ab ;大D.ab ;小【答案】 D【解析】 设物体真实重量为m ,天平左、右两臂长分别为l 1,l 2,则ml 1=al 2① ml 2=bl 1②①×②得m 2l 1l 2=abl 1l 2 ∴m =ab 又∵a +b2≥ab 且a ≠b ,∴等号不能取得,故m <a +b2.7.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C.92D.112【答案】 B【解析】 ∵x +2y +2xy =8,∴y =8-x2x +2>0,∴-1<x <8,∴x +2y =x +2·8-x 2x +2=(x +1)+9x +1-2≥2x +1·9x +1-2=4,当且仅当x +1=9x +1时“=”成立,此时x =2,y =1,故选B.8.在区间[12,2]上,函数f (x )=x 2+bx +c (b 、c ∈R )与g (x )=x 2+x +1x在同一点取得相同的最小值,那么f (x )在区间[12,2]上的最大值是( )A.134 B .4 C .8D.54【答案】 B【解析】 ∵g (x )=x 2+x +1x =x +1x+1≥3,当x =1时取等号,即当x =1时取最小值3,∴f (x )的对称轴是x =1,∴b =-2,将(1,3)代入即得c =4,∴f (x )=x 2-2x +4,易得在[12,2]上的最大值是4.二、填空题(每小题10分,共20分) 9.比较大小:x 2+2x 2+1________2(填“>”“<”“≥”或“≤”).【答案】 ≥ 【解析】x 2+2x 2+1=x 2+1+1x 2+1≥2. 10.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是________.【答案】 (-∞,3]【解析】 ∵x >1,∴x +1x -1>0,要使x +1x -1≥a 恒成立,设f (x )=x +1x -1(x >1),则a ≤f (x )min 对x >1恒成立.又f (x )=x +1x -1=x -1+1x -1+1≥2x -1×1x -1+1=3,当且仅当x -1=1x -1即x =2时取“=”.∴a ≤3.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.设x ,y ∈R +,且x +y +xy =2, (1)求x +y 的取值范围; (2)求xy 的取值范围.【解析】 (1)2=x +y +xy ≤x +y +(x +y 2)2,当且仅当x =y 时取“=”. ∴(x +y )2+4(x +y )-8≥0. ∴[(x +y )+2]2≥12.∵x +y >0,∴x +y +2≥12.∴x +y ≥23-2,当且仅当x =y =3-1时取“=”. 故x +y 的取值范围是[23-2,+∞).(2)2=x +y +xy ≥2xy +xy ,当且仅当x =y =3-1时取“=”. ∴(xy )2+2xy ≤2.∴(xy +1)2≤3. 又x 、y >0,∴xy +1>0.∴xy +1≤ 3. ∴0<xy ≤3-1.∴0<xy ≤4-23,即xy 的取值范围是(0,4-23].12.某渔业公司今年初用98万元购进一艘渔船用于捕捞,每一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.(1)问捕捞几年后总盈利最大,最大是多少? (2)问捕捞几年后的平均利润最大,最大是多少? 【解析】 (1)设船捕捞n 年后的总盈利y 万元.则y =50n -98-[12×n +n n -12×4]=-2n 2+40n -98 =-2(n -10)2+102∴捕捞10年后总盈利最大,最大是102万元.(2)年平均利润为y n =-2⎝ ⎛⎭⎪⎪⎫n +49n -20 ≤-2⎝⎛⎭⎪⎪⎫2n ·49n-20=12当且仅当n =49n,即n =7时上式取等号.所以,捕捞7年后的平均利润最大,最大是12万元.【规律方法】 在应用均值不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量 ,一般把要求最值的量定为函数; (2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案.。

(完整版)均值不等式测试题(含详解)

(完整版)均值不等式测试题(含详解)

均值不等式测试题一、选择题1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( )A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( )A .x 2+1≥xB .112+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( )A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值224.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.210 5.设a>0,b>0,则以下不等式中不恒成立的是( )A.(a+b )(ba 11+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥-6.下列结论正确的是( )A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x +x 1 ≥2 D .当0<x ≤2时,x -x1无最大值 7.若a 、b 、c>0且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( )A .13-B .13+C .223+D .223-二.填空题:8.设x>0,则函数y=2-x4-x 的最大值为 ;此时x 的值是 。

9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。

10.函数y=142-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=242+x x (x ≠0)的最大值是 ;此时的x 值为 _______________.三.解答题:12.函数y=log a (x+3)-1(a>0,a ≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn>0,求n m 11+的最小值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。

【详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。

15.3【解析】【分析】由已知可知,,整理结合基本不等式可求.【详解】解:,b都是正数,满足,则,当且仅当且,即时,取得最小值3,故答案为:3.【点睛】本题主要考查了利用基本不等式求解最值,解答本题的关键是进行1的代换配凑基本不等式的应用条件,属于基础题.16.15【分析】对变形可得原式,由,利用,利用基本不等式求最值即可。

【详解】解:,且,,故.(当且仅当时取“=”).故答案为:15.【点睛】本题考查了求代数式的最值问题,利用基本不等式是解决本题的一个常见方法,考查了转化思想的应用,是一道中档题。

17.1【解析】【分析】由题意可知,点在椭圆上运动,得,则,构造基本不等式,即可求出结果.【详解】∵点在椭圆上运动,即,则,当且仅当时,取等号,即所求的最小值为.本题主要考查了利用椭圆的方程,利用基本不等式求解最小值,解题的关键是利用了的代换,从而把所求的式子变形为积为定值的形式,根据基本不等式即可求出结果.18.4【解析】【分析】利用二次函数的单调增区间求得,再利用,利用基本不等式可求最小值.【详解】的对称轴为,故,又,当且仅当时等号成立,从而的最小值为,填.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.19.3;【解析】【分析】将原式子变形得到再由均值不等式可得到最值.【详解】已知正实数,满足,根据均值不等式得到等号成立的条件为:x=2y+2.故答案为:3.【点睛】这个题目考查了均值不等式的应用,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.20.2【解析】【分析】将分子分母同时除以得到,换元令然后=t,t>0,根据基本不等式求解即可得到最小值.【详解】∵x,y>0,则=,设=t,t>0,则=(t+1)+﹣2≥2﹣2=4﹣2=2,当且仅当t+1=,即t=1时取等号,此时x=y,故的最小值为2,故答案为:2【点睛】本题考查利用换元的方法转为利用基本不等式求最值问题,属于中档题。

相关文档
最新文档