模具钢深冷处理

合集下载

深冷处理的工艺操作过程

深冷处理的工艺操作过程

深冷处理的工艺操作过程一、入炉温度1.深冷处理应在工件淬火冷却到室温后,立即进行,以免在室温停留时间过长引起奥氏体热稳定化2.冷处理温度一般-60~-80ºC,钢碳及合金元素含量(质量分数)越高,Mf越低,深冷处理温度越低二、冷却方法1.工件不直接放入保温冷却液(如酒精和干冰混合液)中,而应放入充入空气的低温箱中冷却2.对于形状复杂、尺寸较大的工件应随设备一起由室温降至处理温度以防工件开裂三、保温时间1.马氏体转变主要在连续冷却过程中,单件冷处理达到温度后,转变结束即可出炉2.装炉量多时,为保证工件心部都达到冷处理温度,故应在冷处理温度保温1~3h四、温度回升1.冷处理结束后,工件从冷处理设备中取出,在空气中回升到室温,并及时擦拭工件表面结霜,涂以防锈油2.未到室温不能进行回火,达到室温后应及时回火,以防开裂五、低温回火冷处理后的工件应在160~180ºC温度回火2h深冷处理主要是采用液态氟为冷却剂(-196摄氏度),利用气化潜热的快速冷却方式,将淬火后的模具冷至-120摄氏度以下,并保持一段时间。

深冷处理的效果主要有:残余奥氏体几乎可全部转变成马氏体;材料组织细化并可析出微细碳化物;耐磨性比未深冷处理的模具高2--7倍,比普通冷处理的模具高1--8倍。

为了防止深冷处理时产生开裂,深冷处理前须在100摄氏度热水中进行一次回火,并且深冷处理在50——60摄氏度的热水中快速升温,由于表面膨胀而收到减小应力的效果。

深冷处理可提高耐磨性外,还可作为稳定模具尺寸的一种处理方法简单地说吧,这是为了消除淬火件中的残余奥氏体。

工件在淬火的时候,奥氏体转化成马氏体,体积会膨胀,从而产生压力。

压力的存在会阻止剩余的奥氏体向马氏体转化。

因而会有一部分奥氏体不能转变,从而保存下来。

残余奥氏体的存在不仅会降低工件的强度,而且会在以后的使用中,由于受到外来应力,诱发马氏体相变,从而导致工件尺寸变化。

为了消除残余奥氏体,从理论上讲有两种方法,其一是释放应力,其二是降低温度,即所谓的冷处理。

深冷处理工艺

深冷处理工艺

深冷处理工艺及设备一、什么是深冷处理?深冷处理是将金属在-150℃下进行处理,使柔软的残余奥氏体几乎全部转变成高强度的马氏体,并能减少表面疏松,降低表面粗糙度的一个热处理后工序,当这个工序完成后,不仅仅是表面,几乎可以使整个金属的强度增加,耐磨性增加,韧性增加,其他性能指标改善,从而使得模具和刀具翻新数次后仍然具有高的耐磨性和高的强度,寿命成倍增加。

而未进行深冷处理的刀剪产品,翻新后寿命会显著降低。

深冷处理不仅应用于刀剪产品,而且能应用于制作刀剪产品的模具上,同样可以使模具寿命显著提高。

二、深冷处理的机理1、消除残余奥氏体:一般淬火回火后的残余奥氏体在8~20%左右,残余奥氏体会随着时间的推移进一步马氏体化,在马氏体转变过程中,会引起体积的膨胀,从而影响到尺寸精度,并且使晶格内部应力增加,严重影响到金属性能,深冷处理一般能使残余奥氏体降低到2%以下,消除残余奥氏体的影响。

如果有较多的残余奥氏体,强度降低,在周期应力作用下,容易疲劳脱落,造成附近碳化物颗粒悬空,很快与基体脱落,产生剥落坑,形成较大粗糙度的表面。

2、填补内部空隙,使金属表面积即耐磨面增大:深冷处理使得马氏体填补内部空隙,使得金属表面更加密实,使耐磨面积增加,晶格更小,合金成分析出均匀,淬火层深度增加,而且不仅仅是表面,使翻新次数增加,寿命提高。

3、析出碳化物颗粒:深冷处理不仅减少残余马氏体,还可以析出碳化物颗粒,而且可细化马氏体孪晶,由于深冷时马氏体的收缩迫使晶格减少,驱使碳原子的析出,而且由于低温下碳原子扩散困难,因而形成的碳化物尺寸达纳米级,并附着在马氏体孪晶带上,增加硬度和韧性。

深冷处理后金属的磨损形态与未深冷的金属显著不同,说明它们的磨损机理不同。

深冷处理可以使绝大部分残余奥氏体马氏体化,并在马氏体内析出高弥散度的碳化物颗粒,伴随着基体组织的细微化,这种改变无法用传统的金属学,相变理论来解释,也不是以原子扩散形式来进行的,一般 -150℃~-180℃下,原子已经失去了扩散能力,只能以物理学能量观点来解释,其转变机理目前尚未研究清楚。

什么是深冷处理?其作用和适用范围是什么?

什么是深冷处理?其作用和适用范围是什么?

什么是深冷处理?其作用和适用范围是什么?
什么是深冷处理?其作用和适用范围是什么?
深冷处理就是钢件淬火冷却到室温后,继续在O℃以下的介质中冷却的热处理工艺,也称为冷处理,是淬火过程的继续。

(1)深冷处理作用
最大限度减少残余奥氏体(微信公众号:hcsteel常温下的不稳定组织,容易引起尺寸变化等),以进一步提高工件淬火后的硬度和防止在使用过程中残余奥氏体的分解而引起的变形,同时强度、硬度和耐磨性都可得到不同程度的提高。

(2)深冷处理注意事项
高合金钢或高合金渗碳钢,因Mf点很低,冷处理需在-120℃以下进行,保温1~2h,冷处理后必须进行回火或时效处理,以获得更稳定的回火马氏体组织,并使残余奥氏体进一步转变和稳定化,同时使淬火应力及深冷应力充分消除。

(3)深冷处理适用范围
较适用于精度要求很高,必须保证其尺寸稳定性的工件,如量具等。

模具热处理是保证模具性能的重要工艺过程,对模具的以下性能有直接的影响。

①具的制造精度组织转变不均匀、不彻底及热处理形成的残余应力过大,造成模具在热处理后的加工、装配和模具使用过程中的变形,从而降低模具的精度,甚至报废。

③具的强度热处理工艺制定不当、操作不规范或设备状态不完好,
造成热处理模具强度(硬度)达不到设计要求。

④模具的工作寿命热处理造成的组织结构不合理、晶粒度超标等,导致主要性能如模具的韧性、冷热疲劳性能、抗磨损性能等下降,影响模具的工作寿命
①模具的制造成本作为模具制造过程的中间环节或最终工序,热
处理造成的开裂、变形超差及性能超差,大多数情况下会使模具报废,即使通过修补仍可继续使用,也会增加工时,延长交货期,提
高模具的制造成本。

模具钢深冷技术工艺

模具钢深冷技术工艺

模具钢深冷技术工艺
模具钢深冷技术工艺是一种热处理工艺,是模具钢板材料的重要加工方式。

其工艺主要在于通过冷箱设备间接使用低温条件来处理模具钢板中的残余应力。

一般情况下,低温条件的选择是按照冷箱材料的机械结构性能来确定的。

另外,冷箱材料还必须考虑材料对低温H₂等外部环境介质的抗腐蚀,以及内部环境介质的抗内腐蚀性能等因素。

模具钢深冷技术工艺一般分为两个步骤:热处理和冷处理。

在热处理步骤中,首先将模具钢板进行热处理,以满足模具钢板的基本性能要求。

其次,将热处理过的模具钢板放入冷箱内进行冷处理,以便有效地消除模具钢板中的残余应力。

模具钢深冷技术工艺也可分为单面处理和双面处理。

单面处理只是在一个面上进行处理,而双面处理则是双面进行处理,得到的效果更佳。

模具钢去应力方法

模具钢去应力方法

模具钢去应力方法模具钢在加工过程中会产生应力,这就像人在压力下会变得紧绷一样,得想办法给它松松劲儿呢。

一、自然时效法。

这就像是让模具钢去度个假,把它放在那儿,不管它,让它自己慢慢适应环境,时间一长,应力就会慢慢释放。

这个时间可能会长一点,但是效果还不错哦。

就像我们人有时候遇到烦恼,放一放,过段时间就没那么纠结了。

不过这种方法对于那些着急用的模具钢就不太合适啦,毕竟它的效率有点低。

二、热时效法。

这是个比较常用的方法呢。

把模具钢加热到一定的温度,然后再慢慢冷却。

就像给它做个热瑜伽,在加热的过程中,钢材内部的原子就活跃起来了,应力也就跟着被释放出去了。

一般来说,加热的温度得根据模具钢的种类来确定,不同的钢材就像不同体质的人,适合的温度也不一样。

冷却的时候也不能太快,不然就像人突然从热的地方到冷的地方会感冒一样,钢材也容易出问题。

三、振动时效法。

这个方法可就有点酷啦。

就像给模具钢做个按摩,用专门的振动设备让它振动起来。

在振动的过程中,应力就像被抖落的灰尘一样被去除掉。

这种方法速度比较快,而且还比较环保,不像热时效法还得消耗能源来加热。

不过呢,它也有个小缺点,就是对于一些形状特别复杂的模具钢,可能不能完全把应力去除干净。

四、深冷处理法。

听起来就有点冷飕飕的对吧?把模具钢放到很低很低的温度下,让它在低温环境里待一会儿。

这时候钢材内部的组织结构就会发生一些变化,应力也就被消除了。

这就像人在寒冷的时候会把身体缩起来,钢材在深冷处理的时候也会调整自己的状态呢。

不过这种方法需要专门的深冷设备,成本可能会高一点。

总之呢,每种模具钢去应力的方法都有自己的优缺点,就像每个人都有自己的特点一样。

我们要根据模具钢的实际情况,比如它的形状、用途、成本要求等等,来选择最适合它的去应力方法,这样才能让模具钢更好地发挥作用,就像让一个人在最适合自己的岗位上发光发热一样呢。

模具钢深冷处理技术

模具钢深冷处理技术

模具钢深冷处理技术
模具钢深冷处理是指将模具钢经过低温淬火(通常在-80℃~-120℃)和回火等工艺处理后,使其有力学性能达到设定要求的一种技术。

模具钢深冷处理的主要目的是使模具钢材料中的基体原子和析出物的晶体结构达到最佳状态,从而提高其强度、硬度、耐磨性和耐腐蚀性。

模具钢深冷处理的主要工艺流程如下:首先,采用负温度保温的方法将模具钢材料冷却到指定的低温(通常在-80℃~-120℃),然后保持一段时间,其时间长短取决于材料的厚度以及目标力学性能,最后采用回火的方法将模具钢调节到所需要的尺寸和成形性能。

深冷处理工艺

深冷处理工艺

深冷处理工艺及设备一、什么是深冷处理?深冷处理是将金属在-150℃下进行处理,使柔软的残余奥氏体几乎全部转变成高强度的马氏体,并能减少表面疏松,降低表面粗糙度的一个热处理后工序,当这个工序完成后,不仅仅是表面,几乎可以使整个金属的强度增加,耐磨性增加,韧性增加,其他性能指标改善,从而使得模具和刀具翻新数次后仍然具有高的耐磨性和高的强度,寿命成倍增加。

而未进行深冷处理的刀剪产品,翻新后寿命会显著降低。

深冷处理不仅应用于刀剪产品,而且能应用于制作刀剪产品的模具上,同样可以使模具寿命显著提高。

二、深冷处理的机理1、消除残余奥氏体:一般淬火回火后的残余奥氏体在8~20%左右,残余奥氏体会随着时间的推移进一步马氏体化,在马氏体转变过程中,会引起体积的膨胀,从而影响到尺寸精度,并且使晶格内部应力增加,严重影响到金属性能,深冷处理一般能使残余奥氏体降低到2%以下,消除残余奥氏体的影响。

如果有较多的残余奥氏体,强度降低,在周期应力作用下,容易疲劳脱落,造成附近碳化物颗粒悬空,很快与基体脱落,产生剥落坑,形成较大粗糙度的表面。

2、填补内部空隙,使金属表面积即耐磨面增大:深冷处理使得马氏体填补内部空隙,使得金属表面更加密实,使耐磨面积增加,晶格更小,合金成分析出均匀,淬火层深度增加,而且不仅仅是表面,使翻新次数增加,寿命提高。

3、析出碳化物颗粒:深冷处理不仅减少残余马氏体,还可以析出碳化物颗粒,而且可细化马氏体孪晶,由于深冷时马氏体的收缩迫使晶格减少,驱使碳原子的析出,而且由于低温下碳原子扩散困难,因而形成的碳化物尺寸达纳米级,并附着在马氏体孪晶带上,增加硬度和韧性。

深冷处理后金属的磨损形态与未深冷的金属显著不同,说明它们的磨损机理不同。

深冷处理可以使绝大部分残余奥氏体马氏体化,并在马氏体内析出高弥散度的碳化物颗粒,伴随着基体组织的细微化,这种改变无法用传统的金属学,相变理论来解释,也不是以原子扩散形式来进行的,一般 -150℃~-180℃下,原子已经失去了扩散能力,只能以物理学能量观点来解释,其转变机理目前尚未研究清楚。

《钢件深冷处理》标准解读

《钢件深冷处理》标准解读

《钢件深冷处理》标准解读张先鸣【摘要】为了推广应用深冷处理工艺,对标准进行了简略的解读,以便于该标准的推广和应用。

%In order to promote the application of cryogenic treatment process,the standard carries on the simple explanation,in order to facilitate the development and application of standards.【期刊名称】《模具制造》【年(卷),期】2012(000)004【总页数】3页(P89-91)【关键词】钢件;深冷处理;标准;解读【作者】张先鸣【作者单位】上海申光高强度螺栓有限公司,上海201306【正文语种】中文【中图分类】TG1421 引言通常,钢的深冷处理可分为0~-100℃的普通冷处理和-130℃以下的深冷处理两种,是将淬火后的钢件继续冷却到室温以下的某一低温,使残余奥氏体进一步转变为马氏体的一道工序,与热处理密切相关,可以说是热处理进一步的延伸[1]。

冷处理特别是深冷处理可提高工、模具钢的硬度、耐磨性和零件的尺寸稳定性,还有对高速钢刀具进行深冷处理与QPQ工艺相结合的复合处理,并取得了明显提高刀具寿命的令人满意的效果。

可见,冷处理和深冷处理的应用日趋广泛,前景看好。

国内关于金属材料的冷处理的研究20世纪60年代初开始,当时的冷处理研究工作的重点是提高金属材料尺寸的稳定性,冷处理的温度一般为-70℃,其实际应用主要是在要求尺寸稳定性的量具及某些军工产品的零件上。

随着制冷设备和制冷剂的技术开发及发展,我国从20世纪90年代开展深冷处理的工艺研究。

本世纪初,一些企业已开始将深冷处理工艺运用于工具钢、轴承钢和高速钢等零件,相关的深冷处理设备也逐步商品化。

总结国内外的文献,大多数文章认为,通过合适的深冷处理工艺可以明显提高合金结构钢、碳素结构钢等的硬度、红硬性、耐磨性和使用寿命。

深冷处理H13钢铝型材热挤模具的应用

深冷处理H13钢铝型材热挤模具的应用

深冷处理H13钢铝型材热挤模具的应用提出H13钢铝型材热挤压模具在常规热处理、淬化、回火后进行深冷算是(-196?)+(100-150?)回火,然后按常规方法氧化的新工艺。

按该工艺处理的成套模具使用结果证明:经过深冷处理对H13钢铝型材热挤压模具使用寿命得到进一步的提高因此增加型材的生产量和产品质量具有很大的潜力。

H13(4Cr5MoSiV1)钢是国外广泛应用的一种热作模具钢。

在我国近几年来H13钢被普遍推广用于制造铝型材热作模具。

铝型材热挤压模具在生产过程中受高温00(450C-520C),高压及铝材的剧烈摩擦作用,模具的失效主要是由于磨损和热疲劳,以及热处理不当,导致早期失效(如断裂、软、塌、缺等因素)。

目前,国内模具平均使用寿命与国际先进水平还存在一定的差距。

热处理技术和表面处理技术的落后是造成模具寿命低的主要原因。

大力发展、开发新的热处理工艺和各种表面处理技术,改善模具性能的研究方兴未艾。

深冷处理工艺是热处理工艺的发展,它作为一种强韧化技术,具有明显提高材料(工模具)的耐磨性,提高钢的材料力学性能,改善热处理质量等工艺特点,因而受到重视。

显然深冷处理技术作为强化模具基体,改善热处理质量,校正热处理的偏差,(4)与各种表面处理(氢化)技术的配合,却能成倍的提高模具的寿命,文献就报导了经过深冷处理,提高热作模具的使用寿命,在实际生产中使用寿命增加2倍,文(5)献作了H13钢深冷处理后的耐磨性提高三倍的报导。

基于上述的观点我们开展了深冷处理H13钢热作模具的工作。

深冷处理技术是一种改善金属材料性能的新工艺,其热处理的工艺规范和深冷处理工艺如图(1)所示。

深冷处理使H13合金钢的组织发生以下三个变化:1)残余奥氏体一部分乃至全部转变成马氏体;2)残余奥氏体的残余部分组织相对稳定,其组织内部踤化,所以得到强化,对韧性作出贡献;3)马氏体的晶界,晶界边缘,晶界内部分解,细化,析出大量超细微的碳化物。

模具钢深冷炉工艺

模具钢深冷炉工艺

模具钢深冷炉工艺
模具钢深冷炉工艺是采用冶金炼钢深冷炉来进行炼钢工艺,以获得调质
后更优质的模具钢件。

模具钢深冷炉工艺以新型装备,新点子,国内外先进
技术,新材料精益求精的生产出有竞争力的模具钢件。

这种工艺的关键步骤是:首先,要准备好合适的熔料,搅拌它们,加入
必要的熔融剂,进行熔炼;其次,要选择质量优良的炼钢原料,并通过炼钢
加热工艺来调质;然后将熔铸的钢液通过坩埚/偏心浇注到模具中,厚度控
制在预定范围之内;再次,将冷却下来,切削加工成型,再进行正确的热处理,控制工艺参数和工艺把握;最后,进行质量检验,以较小级别确保质量
符合标准和客户需求。

模具钢深冷炉工艺采用新型设备具有噪声低,能源利用率高,铸造材料
的凝固性和性能的可控性都很好等优点,由于它采用全封闭式循环冷却系统,不仅使用范围广泛,且能有效控制环境温度,短时间内可满足客户多样化需求。

当在冶金炼钢深冷炉中进行模具钢材料炼钢时,可更准确,精确地控制
其低碳度,从而更节约材料使用的成本,延长产品的使用寿命。

深冷处理工艺

深冷处理工艺

随着机械工业的不断发展,对金属材料的要求也越来越高,如何在材料以及热处理工艺既定的前提下尽量提高金属工件的机械性能及使用寿命,这成为很多热处理行业前沿人士思考并探索的问题。

一、问题的提出:钢材在热处理工艺之后,其硬度及机械性能均大大提高,但热处理后依然有残存的以下问题:1、残余奥氏体。

其比例大约有10%-20%,由于奥氏体很不稳定,当受到外力作用或环境温度改变时,易转变为马氏体,而奥氏体与马氏体的比容不一样,将造成材料的不规则膨胀,降低工件2312从而强而3、材料经深冷处理后内部热应力和机械应力大为降低,并且由于降温过程中使微孔或应力集中部位产生了塑性流变,而在升温过程中会在此类空位表面产生压应力,这种压应力可以大大减轻缺陷对工件局部性能的损害,从而有效地减少了金属工件产生变形、开裂的可能性。

三、深冷工艺的生产使用效果1、高速钢冷作模具深冷处理不同处理工艺对W6Cr5Mo4V2Co(M2)钢残留奥氏体的影响(体积百分数%)热处理工艺残留奥氏体AR1240℃淬火+560℃×1h×3次回火10-196℃深冷处理5.6深冷处理过程中,大量的残留奥氏体转变为马氏体,特别是过饱和的亚稳定马氏体在从-196℃至室温过程中会降低过饱和度,析出弥散、尺寸仅为20―60A并与基体保持共格关系的超微细碳化物,可以使马氏体晶格畸变减小,微观应力降低,而细小弥散的碳化物在材料塑性变形时可以阻碍位错运动,从而强化基体组织。

同时由于超微细碳化物颗析出,均匀分布在马氏体基体上,减弱了晶界催化作用,而基体组织的细化既减弱了杂质元素在晶界的偏聚程度,又发挥了晶界强化作用,从而改善了高速钢的性能,使硬度、冲击韧性和耐磨性都显着提高。

模具硬度高,其耐磨性也就好,如硬度由60HRC提高至62-63HRC,模具耐磨性增加30%―40%。

130万次。

(2(32、试验工件为铝型材挤压模。

工件经机械加工,但未进行精细加工,按模具常规热处理工艺:1040℃淬火580℃(两次)回火,氮化。

深冷处理

深冷处理

深冷处理前言:20世纪二三十年代以来,伴随着材料科学的迅速发展,热处理原理和工艺日趋成熟,常规的热处理工艺对金属的强度和韧性很难同时有较大提高,只是以牺牲一方面性能来换取另一方面的性能,但很多的情况下,现有材料的强度和韧性尤其是耐蚀性不是十分的理想。

金属深冷工艺的提出,让人们看到了一种提高金属强度和韧性的独特热处理方法。

⑴何谓深冷处理(SSZ)所谓冷处理,一般将0~100℃的冷处理定义为普通冷处理,将-130℃以下的处理称为深冷处理,它是最新的强韧化处理工艺之一。

深冷处理按照工艺可分为深冷急热法和冷热循环法两种。

冷热循环稳定化处理是先将零件冷却到—40℃~—90℃或者更底的温度,保温一定时间,然后再把零件加热到不致降低零件机械性能的某一温度(通常为80℃~190℃),保温一段时间并重复多次这种循环过程。

“冷处理急热法”是日本大和久重雄提出的方法,该方法是将工、模具淬火后,不立即进行冷处理,先水浴后再置于处理槽当中于—80℃或—180℃下处理。

即—80℃为普通冷处理;—180℃为深冷处理,保温时间按每英寸体积为1小时计算。

保温后取出放入热水中快速加热。

在美国、前苏联、日本等国,不但把深冷技术用于高速钢、轴承钢、模具钢,以提高材料的耐磨性和强韧性,进而提高工件的整体使用寿命,同时还利用深冷技术对铝合金、铜合金、硬质合金、塑料、玻璃等进行深冷改性。

改善均匀性、稳定尺寸、减小变形、提高使用寿命。

⑵深冷处理机理钢的淬火过程就是使钢获得马氏体的过程,而淬火不能使钢中奥氏体全部转变为淬火组织,各种钢材热处理后都有部分奥氏体残存,其残存量随钢种及加热温度不同而变化,同时还有一定量的残余应力存在。

它们存在对工件的使用性能会产生或多或少的影响,深冷处理能使钢中奥氏体进一步转变为马氏体,并能改善和消除钢中残余应力的分布,析出更多的细小碳化物,从而起到弥散强化的作用,对无相变材料能使晶界发生畸变,从而增强基体性能。

⑶深冷处理的优点SSZ处理的最大优点是因γR的马氏体化使得工件硬度升高,从而提高了工件的耐蚀磨碎性能。

模具钢的热处理与表面处理技术

模具钢的热处理与表面处理技术

模具钢的热处理与表面处理技术一、预热处理预热处理是模具钢热处理的第一步,其主要目的是消除模具钢在锻造、铸造过程中产生的内应力,防止在后续的热处理过程中产生变形和裂纹。

预热处理通常采用高温回火或等温退火的方法进行。

二、锻造锻造是模具钢热处理的另一个重要步骤,其主要目的是通过改变模具钢的显微组织结构,提高其力学性能和抗冲击能力。

锻造过程中,模具钢的加热温度、变形程度和冷却速度都会对其最终的组织结构和性能产生重要影响。

三、退火退火是模具钢热处理中常用的一种方法,其主要目的是通过将模具钢加热到一定温度,保温一定时间,然后缓慢冷却,以获得理想的显微组织和机械性能。

退火过程中的加热温度和冷却速度对模具钢的性能有着重要影响。

四、淬火淬火是模具钢热处理中非常关键的一步,其主要目的是通过快速冷却,使模具钢的表面和心部同时达到临界点以下,获得马氏体组织,从而提高模具钢的硬度、强度和耐磨性。

淬火过程中的冷却速度对模具钢的显微组织和性能有着重要影响。

五、回火回火是模具钢热处理的另一个重要步骤,其主要目的是通过将模具钢加热到一定温度,保温一定时间,然后缓慢冷却,以调整模具钢的显微组织结构,提高其韧性和抗冲击能力。

回火过程中的加热温度和保温时间对模具钢的性能有着重要影响。

六、深冷处理深冷处理是模具钢热处理的一种方法,其主要目的是通过将模具钢冷却到零下70℃以下,提高模具钢的硬度、强度和耐磨性。

深冷处理过程中的冷却速度和冷却时间对模具钢的性能有着重要影响。

七、表面强化处理表面强化处理是模具钢热处理的一种方法,其主要目的是通过物理或化学手段,提高模具钢表面的硬度和抗磨性。

表面强化处理的方法有很多种,包括渗碳、渗氮、高频淬火等。

八、渗氮渗氮是模具钢表面强化处理的一种方法,其主要目的是通过将模具钢表面渗入氮元素,提高其表面的硬度和抗磨性。

渗氮处理后的模具钢具有较高的耐腐蚀性和耐磨性。

九、渗碳渗碳是模具钢表面强化处理的一种方法,其主要目的是通过将模具钢表面渗入碳元素,提高其表面的硬度和抗磨性。

Cr12MoV模具钢应用的主要问题和热处理研究进展

Cr12MoV模具钢应用的主要问题和热处理研究进展

Cr12MoV模具钢应用的主要问题与热处理研究进展1引言近20年来,我国模具工业发展非常迅速,尤其是近几年.模具需求一直以每年15%左右的速度快速增长,国民经济的高速发展对模具工业提出了越来越高的要求,也为其发展提供了强大的动力。

Cr12MoV钢属于高耐磨微变形冷作模具钢,其特点是具有高的耐磨性、淬透性、微变形、高热稳定性、高抗弯强度,仅次于高速钢,是冲模、冷镦模等的重要材料,其消耗量在冷作模具钢中居首位。

该钢虽然强度、硬度高,耐磨性好,但其韧度较差,对热加工工艺和热处理工艺要求较高,处理工艺不当,很容易造成模具的过早失效。

Cr12MoV钢常用的加工工艺是:下料一锻造一球化退火一机械加工一淬火+低温回火一平磨一线切割加工一组装。

Cr12MoV钢碳化物级别应不大于2级.其化学成分要求见表1。

Cr12MoV钢属于高碳高铬钢,含碳量和含铬量高,形成了大量的碳化物和高合金度的马氏体。

使钢具有高硬度、高耐磨性。

Cr12MoV钢中的钼增加钢的淬透性并且细化晶粒,钒能细化晶粒增加韧度。

又能形成高硬度的VC,以进一步增加钢的耐磨陛。

铬又使钢具有高的淬透性和回火稳定性。

由于Cr的大量存在,钢液结晶时析出的大量共晶碳化物(主要是硬度很高的铬铁复合碳化物(Fe,Cr)7C3,)极为稳定,常规热处理无法细化。

即使经压延后,在较大规格钢材中。

仍保留明显的带状或网状碳化物,碳化物分布不均匀,而带状或网状碳化物区是一个脆性区,其塑性、韧度差,不能承受大的冲击力,裂纹很容易在这里萌生与扩展,往往成为裂纹产生的主要原因。

较大的碳化物周围常常有空洞、位错等缺陷汇聚,在交变负荷的作用下,这些缺陷进一步聚集和扩展便可萌生疲劳裂纹。

碳化物偏析严重,在碳和合金元素富集的区域,钢的熔点降低,易导致模具热处理时过热,使碳和合金元素在奥氏体中溶解度减少,降低淬火后的硬度,且导致碳合金元素富集区与贫乏区之间产生大的组织应力,从而增大模具热处理后的变形量。

深冷技术

深冷技术

1深冷处理概述1.1定义工业中一般把材料经过普通的热处理后进一步冷却到摄氏零度以下某一温度(通常为0~-100℃)的处理方法称为普通冷处理;而把低于-100℃以下(通常为-100℃~-196℃)的冷处理叫做深冷处理。

深冷处理又常称为超低温处理,它是普通热处理的延续,低温技术的一个分支。

深冷处理是将被处理工件置于特定的、可控的低温环境中,使材料的微观组织结构产生变化,从而达到提高或改善材料性能的一种新技术。

被处理材料在低温环境下由于微观组织结构发生了改变,在宏观上表现为材料的耐磨性,尺寸稳定性,抗拉强度,残余应力等方面的提高,国内外学者对此开展了很多相关研究。

随着深冷技术的发展和试验手段的完善,人们对深冷处理的研究逐步深入,材料除涉及钢铁材料外,现已延伸到粉末冶金、铜合金、铝合金及其它非金属材料(如塑料、尼龙等)。

应用行业遍布于航空航天、精密仪器仪表、摩擦偶件、工模具、量具、纺织机械零件、汽车工业和军事科学等诸多领域。

深冷处理技术的出现为低温学在工业中的实际应用和发展开辟了又一个广阔的研究领域。

1.2深冷处理发展历史早在100多年前,瑞士的钟表制造者把钟表的关键零件埋入寒冷的阿尔卑斯雪山中以提高钟表的使用寿命;而一些经验丰富的工具制造者在使用工具之前,把工具储存在冷冻室内几个月,也可以达到类似的效果。

现在看来,他们已经在不自觉中运用了冷处理。

随着制冷技术的发展,在上世纪三十年代出现了深冷处理技术。

1939年俄罗斯人首次提出了深冷处理的概念,但由于当时低温深冷技术尚不完善,在较长时间内只是在理论上进行探讨,在实验室进行摸索。

美国路易斯安娜理工大学F.Barron教授在六十年代末对五种不同合金钢进行了研究。

通过对比未冷处理、低温-84℃处理的和-190℃深冷处理后的试样发现,低温处理后试样的磨粒磨损发生了较为显著的变化,而硬度变化不明显。

-84℃处理后的试样耐磨性比未冷处理的要提高2.0-6.6倍,而-190℃处理的试样耐磨性比-84℃处理的要增加2.6倍。

深冷处理

深冷处理
2.2.1 深冷处理对硬质合金的作用机理 深冷处理可以提高硬质合金的硬度和抗弯强度、冲击韧性;但同时会使其磁导率下降。
4
据分析,深冷处理对硬质合金的作用机理是使组织中的一部分α-Co转变为ε-Co,并在表层产
生一定的残余压应力,从而使材料的性能提高。
2.2.2 深冷处理对铜及铜基合金的作用机理
李智超等人研究了深冷处理对H62黄铜组织和性能的影响,研究结果表明深冷处理可以
体的形状、分布和亚结构,有利于提高钢的强韧性。
科 对合金工具钢和结构钢来说,硬度主要取决于内部残余奥氏体的量。在深冷处理过程中, 国 残余奥氏体的量受两个因素制约:一是深冷处理前材料中奥氏体的量;二是材料的马氏体开
始转变点Ms和马氏体转变结束点Mf。而马氏体开始转变点Ms主要取决于钢的化学成份,其
中中又以碳含量的影响最为显著。材料中残余奥氏体的存在,除了降低硬度以外,在使用或保
形,提高材料的强度和硬度,但是他们对有关的机理没有进行系统的研究,只是笼统的认为
化 是温度产生的应力增加了位错密度而引起的。中南工业大学的陈鼎等人则系统的研究了深冷 理 处理对常用铝合金的性能影响,他们在研究中发现了深冷处理导致铝合金发生晶粒转动的现
象,并就此提出了一系列新的铝合金的深冷强化机制。
院 2.2.4 深冷处理对非晶合金性能的影响及作用和机理 学 关于深冷处理对非晶合金性能的影响,研究发现深冷处理可以改善Co57Ni10Fe5B17非晶
合金及其它非金属材料(如塑料、尼龙等)。应用行业遍布于航空航天、精密仪器仪表、摩擦
化 偶件、工模具、量具、纺织机械零件、汽车工业和军事科学等诸多领域。深冷处理技术的出 理 现为低温学在工业中的实际应用和发展开辟了又一个广阔的研究领域。
1.2 深冷处理发展历史

冷作模具钢C型环试样深冷处理的数值模拟

冷作模具钢C型环试样深冷处理的数值模拟

冷作模具钢C型环试样深冷处理的数值模拟黎军顽;封源;吴晓春【期刊名称】《机械工程材料》【年(卷),期】2013(037)002【摘要】以自主开发的SDC99冷作模具钢C型环试样为研究对象,结合材料低温物性参数和由沸腾换热模型求解获得的沸腾换热系数,基于金属-热-力耦合理论建立了深冷处理的有限元模型,对C型环试样深冷处理进行数值模拟,研究了其温度场和组织场的演变特征.结果表明:深冷处理过程中,C型环试样缺口与中心部位的温度和冷却速率存在较大差异,尤其是冷却速率差异较大;深冷处理能有效减少残余奥氏体的含量,其体积分数由初始的15%减少到2.3%,同时马氏体的体积分数由85%提高至97.7%00;深冷处理后的残余奥氏体分布不均,主要聚集在试样的缺口附近;模拟结果与XRD试验测试结果非常吻合.【总页数】6页(P90-94,103)【作者】黎军顽;封源;吴晓春【作者单位】上海大学材料科学与工程学院,上海200072;上海大学材料科学与工程学院,上海200072;上海大学材料科学与工程学院,上海200072【正文语种】中文【中图分类】TG156.34【相关文献】1.316 L焊缝与304母材C型环试样应力腐蚀敏感性研究 [J], 卢志明;何凯伦;霍培栋;王康;金皋峰2.偏心度对C型环淬火和深冷处理组织和应力演变影响的数值研究 [J], 杨卫东;章军;封源;王沛莹;黎军顽3.C型试样淬火及深冷处理过程中变形行为的数值模拟 [J], 王沛莹;黎军顽;蔡欣4.冷作模具钢的深冷处理研究现状 [J], 钟强;李秀兰;何伟;唐泽洪;胡瑶5.冷作模具钢深冷处理组织和应力演变的RVE模型分析 [J], 宁广胜;蔡欣;陈卓;钟巍华;黎军顽因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:指出了对高速钢采用-196℃液氮深冷处理可使组织发生明显变化,有效促使残留奥氏体向马氏体转变及超细碳化物的析出,使模具获得较佳的综合力学性能,深冷处理后高速钢模具的使用寿命较常规热处理提高三倍以上,具有十分重要的使用价值。

关键词高速钢模具残留奥氏体超细碳化物使用寿命
1 引言
高速钢自1903年问世以来,一直是以制造金属切削刀具而著称,随着科学技术的飞跃发展,高速钢的应用范围不断扩大。

从60年代开始,日本以汽车、自行车工业为中心,试用高速钢做模具取得成功,现在生产的高速钢约有15%用于制造模具。

高速钢主要是用来制造冷挤压模具及冷墩压模具,特别是Mo系高速钢比W系高速钢韧性更加优越。

高速钢用于模具的主要工艺难点在于热处理技术的掌握。

目前我国使用最广泛的高速钢是钨系W18Cr4V(简称18-4-1)钢和钨钼系W6Mo5Cr4V2(简称6-5-4-2)钢[1]。

这两种钢的传统淬火回火工艺特点是:高温淬火后需在一次硬化范围内回火三次,以获得高硬度和热硬性,工艺规范如表1所示。

主要缺点是在某些场所硬度不足。

为了改善模具强韧性,近年来高速钢的传统淬火回火工艺也发生了变革。

表1 高速钢常用热处理规格
钢号淬火加热温度范围(℃)回火规范
2 深冷处理法原理及工艺过程
高速钢的冷处理是在三十年代后期提出的,按传统概念,冷处理的目的是将淬火钢件冷却到零下(一般为-60℃――-70℃),使钢内的残余奥氏体转变为马氏体。

过去工业上采用高速钢冷处理主要应用于缩短热处理生产周期,即用淬火+冷处理+一次回火来代替处理方法[2],即在-100℃― -196℃(液氮)处理淬火零件,其后在400℃回火一次,不必需原来2―3次的重复回火。

经深冷处理后零件的硬度和耐磨性进一步改善,耐磨性可提高40%,既缩短回火时间,节省了能量,又明显提高了模具使用寿命。

20世纪70年代以来,国内外对深冷处理的研究工作卓有成效,前苏联、美国、日本等国均已成功利用深冷处理提高工模具的使用寿命、工件的耐磨性及尺寸稳定性。

(1)深冷处理后的组织转变。

经深冷处理的淬火高速钢不但引起了奥氏体转变,同时也引起了马氏体转变。

过去几十年来强调的是残余奥氏体转变,马氏体分解这一新发现可以看作近年来高速钢深冷处理研究的新进展。

高速钢种的马氏体最终转变点Mf非常低,例如W18Cr4V钢的Mf点约-100℃,因此淬火冷却到室温会残留大量的奥氏体,一般认为钢中残留较多的奥氏体是有害的,会降低钢的硬度、耐磨性及使用寿命,还使许多物理性能特别是热性能和磁性下降。

试验证明:采用深冷处理可使钢中残留奥氏体降至最低极限,由表2可以看出W18Cr4V高速钢经淬火、回火后,深冷处理可以使回火后的残留奥氏体量降低24%。

表2 不同处理工艺对W18Cr4V钢残留奥氏体的影响(体积百分数%)
前苏联列宁格勒工业大学研究了-196℃液氮中15min的深冷处理对高速钢转变的影响,试验结果表明,-70℃――-75℃到-130℃―― -140℃范围内进行深冷处理时发生马氏体转变,当冷却到-196℃时转变停滞。

在-90℃――-120℃温度范围内,出现试样容积的见效,这证明马氏体已部分分解并在位错面上析出了碳原子和形成了超显微碳化物。

可见,社冷处理使高速钢析出碳化物的颗粒明显增多,且弥散均匀,W18Cr4V 钢经深冷处理后碳化物颗粒约增加8%,W6Mo5Cr4V2钢析出的碳化物颗粒约增加76%,基体组织亦明显细化。

(2)深冷处理对高速钢性能的影响。

深冷处理过程中,大量的残留奥氏体转变为马氏体,特别是过饱和的亚稳定马氏体在从-196℃至室温过程中会降低过饱和度,析出弥散、尺寸仅为20―60A并与基体保持共格关系的超微细碳化物,可以使马氏体晶格畸变减小,微观应力降低,而细小弥散的碳化物在材料塑性变形时可以阻碍位错运动,从而强化基体组织。

同时由于超微细碳化物颗析出,均匀分布在马氏体基体上,减弱了晶界催化作用,而基体组织的细化既减弱了杂质元素在晶界的偏聚程度,又发挥了晶界强化作用,从而改善了高速钢的性能,使硬度、冲击韧性和耐磨性都显著提高[3]。

模具硬度高,其耐磨性也就好,如硬度由60HRC提高至62-63HRC,模具耐磨性增加30%―40%。

可看出深冷处理后模具的相对耐磨性提高40%,延长深冷处理时间后,在硬度没有太大变化的情况下,相对耐磨性ξ有所增大[4]。

(3)高速钢模具深冷处理工艺过程
为防止高速钢模具(特别是形状复杂的模具)在深冷处理中发生断裂和变脆,建议淬火后的高速钢模具在560℃回火1h再进行液氮深冷处理,然后在400℃进行最终回火30-60min,这种热处理工艺不但可以防止模具断裂和脆化,而且可以提高模具寿命1.5―2倍。

高速钢模具深冷处理工艺过程为”,模具除油垢→放入保温罐中→少量多次注入液氮→保温4h→取出模具→400℃回火45min。

3 高速钢模具深冷处理应用实例
(1)凸模:汽车厂的高速钢凸模,未经深冷处理时只能使用10万次,而采用液氮经
-196℃×4h深冷处理后再400回火,使用寿命提高到130万次。

(2)冲压凹模:生产使用结果表明,深冷处理后产量提高二倍多。

(3)硅钢片冷冲模:为降低模具深冷处理后的脆性和内应力,将深冷处理与中温回火
相配合,可改善模具抗破坏性及其它综合性能,模具的刃磨寿命提高3倍以上,稳定在5―7万冲次。

4 结束语
(1)高速钢深冷处理过程中,由于残留奥氏体向马氏体以及超细碳化物的析出,硬度、耐磨性、冲击韧性、红硬性得到提高。

(2)作为一种新工艺深冷处理应用在高速模具钢的热处理中,可显著提高模具的使用寿命,具有很大的实用价值。

相关文档
最新文档