中南大学数学建模实验报告
数学建模基础实验报告(3篇)
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数模实验报告
数模实验报告摘要:本实验通过数学建模方法,对某个具体问题进行了建模与求解。
实验内容主要包括问题描述、问题分析、模型建立、模型求解及结果分析等几个部分。
通过本次实验,我们可以对数学建模的过程有较为全面的了解,同时也能够掌握一定的模型建立与求解的方法和技巧。
一、问题描述本次实验的问题是关于某个具体问题的建模与求解。
具体而言,问题是关于某个物理系统的数学描述。
物理系统的状态可以通过一组物理量来描述,而这组物理量的变化又可以通过一组数学方程来描述。
因此,问题的基本任务是找到这组数学方程,并通过求解这组方程,得到问题的解答。
二、问题分析在进行问题分析之前,我们需要对问题进行深入的了解和分析。
首先,我们需要对物理系统进行全面的观察和实验,以获得充分的数据和信息。
通过观察与实验,我们可以发现其中的一些规律和关系,这些规律和关系有助于我们建立数学模型并求解问题。
其次,我们需要通过对问题的分析,找出问题的关键要素和影响因素。
通过对关键要素和影响因素的分析,我们可以确定问题的数学描述方法,从而进一步进行模型建立与求解。
三、模型建立在进行模型建立之前,我们需要根据问题的要求和实际情况选择适当的数学工具和方法。
常用的数学工具和方法包括微积分、线性代数、概率论与数理统计等。
根据问题的特点和需求,我们可以选择适当的数学建模方法,如数值求解、最优化、动态系统等。
在模型建立过程中,我们需要明确问题的假设和约束条件,并据此构建数学模型。
模型的构建涉及到数学方程的建立和模型参数的确定等几个方面。
通过对方程和参数的合理选择和调整,我们可以使得模型能够真实地反映物理系统的行为和特性。
四、模型求解。
数学建模 -实验报告1
������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)
数学建模优秀实验报告
一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数学建模实验报告
数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。
通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。
本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。
一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。
一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。
1.2模型的求解模型的求解是数学建模的核心环节。
根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。
1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。
分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。
二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。
为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。
2.1模型的建立首先,我们需要明确问题的前提条件和目标。
假设该产品的市场价格为P,成本价格为C,单位销售量为Q。
我们的目标是最大化销售利润。
于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。
2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。
我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。
在这里,我们选择辅助函数法。
我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。
中南大学典型系统的时域响应和稳定性分析实验报告
中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。
实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。
2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。
3、分析系统特征方程的根,判断系统的稳定性。
4、探讨系统的性能指标,并初步探讨系统的优化方法。
实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。
3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。
根据根的位置,我们可以判断系统的稳定性。
由于系统的根都在左半平面,因此系统是稳定的。
4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。
在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。
结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。
在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。
数学建模选课实验报告(3篇)
第1篇一、实验背景随着社会的发展和科技的进步,数学建模作为一种解决实际问题的有效方法,被广泛应用于各个领域。
为了提高学生的数学建模能力和实际操作能力,我校开设了数学建模选修课程。
本实验旨在通过数学建模选课实验,探讨如何选择适合学生兴趣和实际需求的数学建模课程,以提高学生的学习效果。
二、实验目的1. 了解数学建模课程体系,明确课程设置原则;2. 掌握数学建模选课方法,提高学生选课的科学性;3. 分析数学建模课程对学生实际能力的培养效果。
三、实验方法1. 调查法:通过问卷调查、访谈等方式,了解学生对数学建模课程的需求和兴趣;2. 比较分析法:对比不同数学建模课程的教学内容、教学方法和考核方式,分析课程特点;3. 统计分析法:对实验数据进行分析,得出数学建模选课的科学方法。
四、实验步骤1. 收集数据:通过问卷调查、访谈等方式,收集学生对数学建模课程的需求和兴趣数据;2. 整理数据:对收集到的数据进行分析和整理,形成课程设置和选课建议的依据;3. 比较分析:对比不同数学建模课程的教学内容、教学方法和考核方式,分析课程特点;4. 制定选课方案:根据课程特点和学生的需求,制定数学建模选课方案;5. 实施选课方案:引导学生根据选课方案进行选课;6. 跟踪调查:对选课后的学生进行跟踪调查,了解选课效果。
五、实验结果与分析1. 学生需求分析根据问卷调查和访谈结果,学生普遍认为数学建模课程应具备以下特点:(1)课程内容与实际应用紧密结合;(2)教学方法多样化,注重学生动手能力和创新能力的培养;(3)考核方式合理,注重过程评价和结果评价相结合。
2. 课程设置分析根据学生需求,我校开设了以下数学建模课程:(1)基础数学建模;(2)应用数学建模;(3)高级数学建模;(4)数学建模竞赛辅导。
3. 选课方案制定根据课程特点和学生的需求,制定以下选课方案:(1)基础数学建模:面向所有学生,作为公共选修课;(2)应用数学建模:面向有一定数学基础的学生,作为专业选修课;(3)高级数学建模:面向对数学建模有浓厚兴趣的学生,作为选修课;(4)数学建模竞赛辅导:面向有意参加数学建模竞赛的学生,作为辅导课程。
数学建模实验报告范文
数学建模实验报告范文实验目的本次实验旨在运用数学建模的方法和技巧,对给定的问题进行分析和求解,以提高我们的问题解决能力和创新思维。
实验背景在现实生活中,我们经常面临各种各样的问题,但是如何从复杂的问题中提取关键信息,并通过数学建模的方法进行求解,是一个非常有挑战性的任务。
通过本次实验的学习和训练,我们可以更好地应对复杂问题,提高解决问题的能力和效率。
实验过程和方法本次实验我们选择了一个关于货车配送问题的案例进行研究。
具体过程如下:1. 问题理解:我们首先详细了解了货车配送问题的背景和要求,明确问题的目标和限制条件。
根据问题的描述,我们可以得到基本的数学模型:- 假设有N个配送点,每个配送点有固定的货物数量和配送时长。
- 有M辆货车,每辆货车的最大载重量和最大配送时长是已知的。
- 目标是使得总配送时间最短的同时,不超过货车的最大载重量。
2. 数据处理:我们将问题中给出的具体数据转化为计算机可处理的数据结构,并进行必要的预处理工作。
包括计算各个点之间的距离、货物数量等信息。
3. 建模与求解:我们根据问题的特点和要求,选用相应的数学模型和求解方法。
在本次实验中,我们选择了基于图论的算法,如最短路径算法和旅行商问题算法,来优化货车的配送路径和时间。
4. 结果分析:我们根据得到的结果,对货车的配送路径和时间进行分析和评估。
通过对比不同算法和参数设置的结果,找出最优解,并对结果进行可视化展示。
实验结果经过模型求解和分析,我们得到了一组满足条件的最优解。
在我们的实验中,总配送时间最短的方案是:...通过对比和分析不同算法和参数设置的结果,我们可以发现...实验总结本次实验通过对货车配送问题的研究和实践,我们学习了数学建模的基本方法和技巧。
通过模型建立、求解和分析的全过程,我们深入理解了数学建模的重要性和应用价值。
在实验过程中,我们遇到了一些困难和挑战,如如何选择合适的数学模型和求解算法等。
通过克服这些困难,我们不断提高了自己的问题解决能力和创新思维。
数学建模实验报告范文
一、实验目的通过本次数学建模实验,使学生掌握数学建模的基本步骤和方法,提高学生运用数学知识解决实际问题的能力,培养学生的创新意识和团队合作精神。
二、实验内容本次实验以某城市交通拥堵问题为背景,建立数学模型,并进行求解和分析。
三、问题分析近年来,随着城市化进程的加快,交通拥堵问题日益严重。
为了缓解交通拥堵,提高城市交通效率,需要建立数学模型对交通拥堵问题进行分析。
四、模型假设1. 交通流量的变化服从泊松分布;2. 交通信号灯周期固定,绿灯时间、红灯时间比例不变;3. 交通事故发生概率服从泊松分布;4. 交通拥堵程度用道路上的车辆数表示。
五、模型构建1. 建立交通流量模型:假设道路上车流量为λ,则道路上的车辆数N(t)满足泊松分布,即N(t)~Poisson(λt)。
2. 建立交通信号灯模型:假设绿灯时间为t_g,红灯时间为t_r,信号灯周期为T,则有t_g + t_r = T。
3. 建立交通事故模型:假设交通事故发生概率为p,则在时间t内发生交通事故的次数X(t)满足泊松分布,即X(t)~Poisson(pt)。
4. 建立交通拥堵模型:假设道路上的车辆数为N(t),则交通拥堵程度U(t)可以用N(t)表示。
六、模型求解1. 根据泊松分布的性质,求解N(t)的期望值和方差,即E(N(t))=λt,Var(N(t))=λt。
2. 根据信号灯模型,求解绿灯时间t_g和红灯时间t_r。
3. 根据交通事故模型,求解交通事故发生次数X(t)的期望值和方差,即E(X(t))=pt,Var(X(t))=pt。
4. 根据交通拥堵模型,求解交通拥堵程度U(t)的期望值和方差。
七、结果分析与解释1. 根据模型求解结果,分析不同时间段内的交通流量、交通事故和交通拥堵程度。
2. 结合实际情况,分析影响交通拥堵的关键因素,并提出相应的缓解措施。
3. 通过模型求解,为相关部门制定交通管理政策提供依据。
八、实验总结通过本次数学建模实验,学生掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。
数学建模全部实验报告
一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
2. 提高数学建模能力,培养创新思维和团队合作精神。
3. 熟练运用数学软件进行数据分析、建模和求解。
二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。
请为公司制定招聘计划。
3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。
请建立模型分析居民出行方式选择的影响因素。
三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。
2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。
3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。
4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。
5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。
四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。
(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。
(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。
(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。
(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。
2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。
数学建模课实验报告心得(3篇)
第1篇一、前言数学建模是一门将数学理论与实际问题相结合的课程,旨在培养学生运用数学知识解决实际问题的能力。
通过参加数学建模课的实验,我对数学建模有了更深刻的认识,以下是我对实验的心得体会。
二、实验过程1. 理解实验目的在实验开始前,我明确了实验的目的:通过具体实例,掌握数学建模的基本思想和方法,提高自己的实际应用能力。
这使我更加有针对性地进行实验。
2. 实验步骤(1)选题:选择一个实际问题,明确问题的背景、目标和所需解决的问题。
(2)建立模型:运用数学知识,将实际问题转化为数学模型。
(3)求解模型:利用数学软件,对模型进行求解,得到最优解或近似解。
(4)分析结果:对求解结果进行分析,评估其合理性和可行性。
(5)撰写实验报告:总结实验过程、结果和分析,撰写实验报告。
3. 实验成果通过实验,我成功地将一个实际问题转化为数学模型,并利用数学软件求解得到最优解。
同时,我学会了如何分析结果,评估其合理性和可行性。
三、心得体会1. 数学建模的重要性数学建模是解决实际问题的有效途径。
通过数学建模,我们可以将复杂的问题简化为数学模型,从而提高解决问题的效率。
在实验过程中,我深刻体会到了数学建模在解决实际问题中的重要性。
2. 数学知识的运用数学建模实验使我更加深入地理解了所学数学知识,并将其应用于实际问题。
在实验过程中,我运用了线性规划、概率论、统计学等多种数学知识,提高了自己的综合运用能力。
3. 团队合作精神数学建模实验需要团队合作,共同完成实验任务。
在实验过程中,我与团队成员相互学习、相互帮助,共同攻克难题。
这使我认识到团队合作的重要性,培养了团队协作精神。
4. 实验技能的提升通过实验,我熟练掌握了数学建模的基本步骤,提高了自己的实验技能。
同时,我学会了使用数学软件进行求解和分析,为今后从事相关领域的工作打下了基础。
5. 分析问题的能力在实验过程中,我学会了如何分析问题,寻找问题的本质。
这使我具备了解决实际问题的能力,为今后的学习和工作奠定了基础。
数模实验报告—实验11
数模实验报告—实验11一、实验目的本次数模实验11 的主要目的是通过建立数学模型来解决实际问题,培养我们运用数学知识和方法分析、解决复杂问题的能力,并提高我们的逻辑思维和创新能力。
二、实验内容本次实验围绕一个具体的实际问题展开,即研究某城市的交通流量分布情况。
我们需要收集相关数据,如道路网络结构、不同时间段的车流量、路口的通行能力等,并运用数学建模的方法对这些数据进行分析和处理。
三、实验步骤1、数据收集首先,我们通过实地调查和相关部门提供的数据,获取了城市道路网络的拓扑结构,包括道路的长度、宽度、车道数量等信息。
同时,还收集了不同时间段(如早高峰、晚高峰、平峰期)各个路口的车流量数据,以及路口的信号灯设置和通行能力等数据。
2、模型选择在对数据进行初步分析后,我们决定采用宏观交通流模型中的流体动力学模型来描述交通流量的变化。
该模型将交通流类比为流体,通过建立连续性方程和动量方程来描述车辆的流动情况。
3、模型建立根据所选的模型,我们定义了相关的变量和参数,如交通流量、密度、速度等,并建立了相应的数学表达式。
同时,考虑到实际情况中的各种因素,如道路拥堵、交通事故等,对模型进行了适当的修正和完善。
4、模型求解利用数值计算方法,如有限差分法或有限元法,对建立的数学模型进行求解。
通过编程实现计算过程,并对不同参数条件下的结果进行分析和比较。
5、结果分析对求解得到的结果进行分析,绘制出交通流量随时间和空间的变化曲线,以及密度分布等图像。
通过分析这些结果,评估模型的准确性和可靠性,并找出交通拥堵的关键路段和时间段。
四、实验结果经过实验和计算,我们得到了以下主要结果:1、在早高峰和晚高峰期间,城市的主要干道和路口出现了明显的交通拥堵现象,车流量较大,速度较慢,交通密度较高。
2、一些次干道和支路的交通流量相对较小,但在与主干道的连接处容易出现交通瓶颈,影响整个交通网络的通行效率。
3、通过对不同信号灯设置方案的模拟分析,发现优化信号灯的配时可以在一定程度上缓解交通拥堵,但效果有限。
数学建模实验报告
《数学建模》实验报告实验项目名称:统计回归模型二、 实验设备(环境)及要求多媒体机房,单人单机,独立完成三、 实验内容与步骤1.表1列出了某城市18位35—44岁经理的年平均收入 x1(千元),风险偏好度x2和人寿 保险额y (千元)的数据,其中风险偏好度是是根据每个发给经理的问卷调查表综合评估得 到的,它的数值越大,就越偏爱高风险,研究人员想研究此年龄段中的经理所投保的人寿保 险额与年均收入及风险偏好度之间的关系。
研究者预计,经理年均收入和人寿保险之间存在着二次关系,并有把握的认为风险偏好度对人寿保险额有线性效应,但对于风险偏好度对人寿保险额是否有二次效应以及两个自变量是否对人寿保险额有交互效应,心中没底。
专业、班 12信计实验时间2014429实验序号:实验8 、实验目的及要求通过对具体实例的分析,学会运用统计回归方法建立模型的方法。
2. 某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额和行业销售额的分季度数据(单位:百万元)。
(1)画出数据的散点图,观察用线性回归模型拟合是否合适。
(2)建立公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。
(3)建立消除了随机误差项自相关性后的回归模型。
四、实验结果与数据处理1.Matlab 代码:>> X仁[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.796 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];>> Y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133];>> X=[o nes(18,1) X1' (X1.A2)'];>> [b,bi nt,r,ri nt,stats]=regress(Y',X)处理结果:b =-60.52391.78860.0302bint =-143.4598 22.4121 -1.4742 5.05130.0002 0.0603 r =5.0447-0.498920.79872.7433-14.76584.6881-2.61746.569217.18950.2908-21.163511.3961-9.3474-7.67850.5151-27.042414.9336-1.0552rint =-22.6123 32.7016-29.0151 28.0174-3.0151 44.6125-25.5842 31.0708-41.2961 11.7646-17.4529 26.8291-30.9763 25.7415-21.2462 34.3845-6.0579 40.4368-28.0301 28.6116-46.2827 3.9558-16.1444 38.9366-37.1409 18.4462-33.0744 17.7174-27.9507 28.9809-42.7681 -11.3167-11.6494 41.5167-28.8865 26.7760stats =0.9747 289.1934 0.0000 182.0773-0.6730-3.7605-1.35602.7129-0.48170.5130-0.37250.68422.6781-1.0293-0.39300.55611.35782.3248-1.6456rint =-3.7791 3.6766-3.5324 4.1475-4.4124 1.6688-4.4677 3.1217-6.6500 -0.8710-4.2144 1.5023-0.7344 6.1602-4.2149 3.2516-2.6183 3.6443-4.1840 3.4390-2.6447 4.0132-0.7217 6.0779-4.7396 2.6810-3.8132 3.0272-3.2676 4.3798-0.4637 3.1793-1.0358 5.6855-5.2685 1.9773 stats1.0e+04 *0.0001 1.1070 0.0000 0.0003R2=1.00指因变量Y可由X1与X2100%确定,F远远小于F的检验的临界值,p远小于a, -0…'的系数均在置信区间内。
综合实验报告数学建模(3篇)
第1篇一、实验目的本次实验旨在通过数学建模的方法,对实际问题进行定量分析和求解,提高学生对数学模型构建、数学方法应用和计算机编程技能的综合运用能力。
二、实验背景随着社会经济的快速发展,各类实际问题层出不穷,数学建模作为一种解决实际问题的有效手段,在各个领域都得到了广泛应用。
本实验以我国某城市的交通拥堵问题为背景,通过数学建模方法,分析交通拥堵的原因,并提出相应的解决方案。
三、实验内容1. 问题分析本实验以我国某城市交通拥堵问题为研究对象,分析拥堵原因,建立数学模型,求解最优解。
2. 模型构建(1)假设条件- 城市道路网络为连通图,道路长度、宽度、方向等参数已知;- 交通流量在道路上的分布均匀;- 交通信号灯控制规则为固定周期;- 交通参与者遵守交通规则。
(2)模型建立基于上述假设,建立以下数学模型:- 交通流量模型:假设道路上的交通流量为Q,道路长度为L,道路宽度为W,则交通密度ρ = Q/(L×W);- 交通信号灯模型:假设信号灯控制周期为T,红灯时间为t_r,绿灯时间为t_g,则平均绿灯时间θ = t_g/T;- 交通拥堵模型:假设道路上的车辆排队长度为L_q,则拥堵程度C = L_q/L。
(3)模型求解通过计算机编程,对模型进行求解,得到最优解。
3. 结果分析根据模型求解结果,分析交通拥堵原因,并提出以下解决方案:- 优化交通信号灯控制策略:根据交通流量和拥堵程度,动态调整信号灯控制周期和绿灯时间,提高道路通行效率;- 增加道路供给:通过扩建道路、增设道路等方式,增加道路供给,缓解交通拥堵;- 优化公共交通系统:提高公共交通服务质量,鼓励市民使用公共交通工具,减少私家车出行。
四、实验总结本次实验通过数学建模方法,对某城市交通拥堵问题进行了定量分析和求解,得出以下结论:1. 交通拥堵的主要原因是交通流量过大、交通信号灯控制策略不合理;2. 优化交通信号灯控制策略、增加道路供给、优化公共交通系统是缓解交通拥堵的有效措施。
《数学建模实验》实验报告
ylabel='平均利润';
plot(buy_amount,ave_profit,'*:');
【4】运行结果:
val =4.2801 id =21 buy = 220
图像如下:
【5】结果分析:
该结果说明当报童每天买进报纸数量为220,报童的平均总收入为最大,且最大为4.2801.
2.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。当电子管损坏时有两种维修方案,一是每次更换损坏的那一只;二是当其中一只损坏时四只同时更换。已知更换时间为换一只时需1小时,4只同时换为2小时。更换时机器因停止运转每小时的损失为20元,又每只电子管价格10元,试用模拟方法决定哪一个方案经济合理?
《数学建模实验》实验报告
学号:
实验十四:计算机模拟
1.某报童以每份0.03元的价格买进报纸,以0.05元的价格出售.根据长期统计,报纸每天的销售量及百分率为
销售量
200
210
220
230
240
250
百分率
0.10
0.20
0.40
0.15
0.10
0.05
已知当天销售不出去的报纸,将以每份0.02元的价格退还报社.试用模拟方法确定报童每天买进报纸数量,使报童的平均总收入为最大?
(1)建立m文件eq1.m
function dy=eq1(x,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=1/5*sqrt(1+y(1)^2)/(1-x);
(2)建立主程序
x0=0,xf=0.9999
数学建模实验报告模版
数学建模实验报告模版一、实验目的数学建模是实际问题抽象为数学模型,通过数学方法求解得到问题的答案。
本实验的目的是通过一个具体问题的建模与求解,培养学生的实际问题抽象与解决能力。
二、实验内容本次实验选择了一个实际生活中的问题进行建模与求解。
该问题是市场调查机构要对地区餐馆的顾客满意度进行调查,以评估餐馆的服务质量。
但由于资源有限,调查机构只能选择一部分顾客进行调查。
在这个问题中,我们需要确定调查的样本量大小,使其能够在一定的置信水平下准确代表整个顾客群体的意见。
三、实验步骤1.问题分析:首先,我们需要对问题进行分析,了解问题的背景和要求。
2.建立模型:根据问题的要求,我们选择了一个概率模型来描述问题。
假设顾客的满意度服从一个二项分布,即每位顾客都有可能是满意或不满意。
我们通过计算满意度的均值和方差,来代表整个顾客群体的意见。
3.数学求解:根据建立的模型,我们使用统计学方法对样本量大小进行估计,以达到一定的置信水平。
4.实验验证:最后,我们通过实验验证我们得到的样本量大小,看是否满足要求。
四、实验结果经过建模和求解,我们得到了样本量大小的估计结果。
根据我们的计算,当置信水平为95%时,我们需要调查的样本量大小为110人。
五、实验总结通过这次实验,我们学会了将实际问题抽象成数学模型,以及通过数学方法去求解这个模型。
我们也进一步了解了概率分布和统计学的知识,以及如何利用它们来进行建模和求解。
这对我们今后在实际问题中的应用具有重要意义。
在实验过程中,我们也发现了一些问题和不足之处。
例如,我们的模型可能存在一定的偏差,因为我们的假设可能与实际情况有所不同。
此外,我们的模型也有一些局限性,不适用于所有情况。
因此,在今后的学习过程中,我们需要进一步加强对数学建模的理解和应用,不断提高自己的建模能力,以更好地解决实际问题。
以上是一份关于数学建模实验的报告模板,希望对你的写作有所帮助。
实验报告的内容可根据具体实验情况进行修改和补充,以符合实际情况。
中南大学数学建模试题及答案
数学实验与数学建模实验报告学院:专业班级:姓名学号:完成时间:2010 年1月14 日承诺书本人承诺所呈交的数学实验与数学建模作业都是本人通过学习自行进行编程独立完成,所有结果都通过上机验证,无转载或抄袭他人,也未经他人转载或抄袭。
若承诺不实,本人愿意承担一切责任。
承诺人:2010年 1 月14日注意事项如下:1、2011年1月15日(第二十周星期五)之前,将电子文档发送到邮箱:xuanyunqin@(word文档命名:姓名+学号+数学实验作业)2、2011年1月15日(第二十周星期五),将实验报告电子打印稿交到物理楼数学实验室办公室,过时不再受理。
谢谢同学们合作!!!数学实验学习体会(每个人必须要写1500字以上,占总成绩的20%)实验一:Matlab 基本操作一、实验基本情况【实验重点】Matlab 软件的一些基本操作和常用命令 【实验难点】Matlab 软件的一些基本操作和常用命令 二、实验内容【目的要求】通过本实验使学生了解Matlab 软件,学会Matlab 软件的一些基本操作和常用命令,熟悉Matlab 软件的一些数值计算功能。
【实验内容】1、 计算9.248.26107sin 369.12÷⎪⎭⎫⎝⎛π+的值1.369^2+sin(7/10*pi)*(26.48^1/2)/2.9ans =5.56772、 产生一个5阶魔术方阵,并执行如下操作:(1) 将矩阵的第2行3列元素赋值给变量c(2) 将由矩阵第2,3,4行第3,5列构成的子矩阵赋值给变量d (1) >> A=magic(5) A =17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9>> B=A(2,:) B =23 5 7 14 16>> c=B(:,3) c =7(2)D=A(2:4,3:5) D =7 14 16 13 20 22 19 21 33、给出区间[0,1]上的6个等分点数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB数学建模实验报告学院:材料科学与工程专业班级:材料国际姓名:学号:完成时间:2016年12月7日目录一、数学实验学习体会 (3)二、实验一:MATLAB作图 (4)实验目的 (4)实验内容 (4)三、实验二:线性规划 (7)实验目的 (7)实验内容 (7)四、实验三:插值 (11)实验目的 (11)实验内容 (11)五、实验四:拟合 (12)实验目的 (12)实验内容 (12)六、实验五:MATLAB在材料力学里的应用 (14)实验目的 (14)实验内容 (15)七、实验六:MATLAB创建2048小游戏 (19)游戏规则 (20)游戏代码及运行结果 (20)八、心得与收获 (26)一、数学实验学习体验通过对《数学实验与建模》这门课程的学习,我初步掌握了一些建模思想、模型分析以及对于数学矩阵实验室(即:MATLAB软件)的使用。
课程分为两个阶段,即八周的数学建模讲授、八周的数学实验。
在这里,主要谈一谈运用MATLAB软件进行的数学实验给我带来的感受与收获。
通过学习,我们知道MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
正如这些强大的功能,我们才有必要认真学习并掌握这项技能,我的专业是材料科学与工程,矩阵运算和处理实验数据对于我的专业领域大有裨益,这也坚定了我熟练掌握MATLAB的决心。
我做的第一个实验是图形的绘制。
这在Microsoft软件中也可以实现,而MATLAB给我带来的直观感受就是更加“强大、丰富、专业”,不仅包含了二维三维,甚至多维度空间图形也能表现出来。
还可对坐标控制、图形修饰、窗口分割等操作,如果特殊需要时还可用polar得到极坐标图形,调用semilogx得到对数坐标函数等。
三维图形有三维曲线、三维曲面,这种功能对求两个复杂三维立体图形的交线交面等很有帮助。
在二维图形绘制时可以绘出条形图、杆图、饼图,当然也可以调用函数bar3、stem3、pie3、fill3等绘制三维图形。
对三维图形可以进行精细处理,比如视点处理,色彩处理,还可以进行图形的裁剪,在实际生活中也很有用。
另外一个让我影响深刻的功能就是数据处理,对于材料科学的科研工作,往往需要在大量实验数据里找到一定规律,从而揭示一种材料性能的影响因素,实现对材料性能的调控。
而从MATLAB中最初学习到的就是插值与拟合,种类丰富,处理也十分精确,还可以自定义插值、拟合函数,最后通过plot以图形的形式展现出来。
对于数据规律性的探讨十分有帮助。
通过这么短时期的学习,是很难理解到MATLAB的精髓的,要想从使用到理解到熟练掌握还需要一个很长的学习探索过程,我相信,MATLAB软件不仅将对我的科研领域起到重要的作用,还将为我处理生活问题带来便捷。
二、实验一:MATLAB作图1.实验目的:了解MATLAB作图的基本内容掌握MATLAB作图的集中基本方式,实现对数据进行可视化作图分析2.实验内容:(1)例:在[0,2pi]用红线画sin x,用绿圈画cos x.x=linspace(0,2*pi,30);y=sin(x);z=cos(x);plot(x,y,'r',x,z, 'g0')先建M文件myfun1.m:function Y=myfun1(x)Y=exp(2*x)+sin(3*x.^2)再输入命令:fplot('myfun1',[-1,2])(3)例:画多条曲线观察函数Z=(X+Y)2x=-3:0.1:3;y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=(X+Y).^2;plot3(X,Y,Z)(4)例:画函数Z=(X+Y)2的图形.x=-3:0.1:3;y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=(X+Y).^2;surf(X,Y,Z)shading flat(5)例: 在区间[0,2π]画sin(x)的图形,并加注图例“自变量X”、“函数Y”、“示意图”, 并加格栅.x=linspace(0,2*pi,30);y=sin(x);plot(x,y)xlabel('自变量X')ylabel('函数Y')title('示意图')grid on(6)例:山峰的三维和二维等值线图[x,y,z]=peaks;subplot(1,2,1)contour3(x,y,z,16,'s')grid, xlabel('x-axis'),ylabel('y-axis')zlabel('z-axis')title('contour3 of peaks');subplot(1,2,2)contour(x,y,z,16,'s')grid, xlabel('x-axis'), ylabel('y-axis')title('contour of peaks');三、实验二:线性规划1.实验目的:了解线性规划的基本内容.掌握用数学软件包求解线性规划问题2.实验内容:(1)例: max 6543216.064.072.032.028.04.0x x x x x x z +++++=123456s.t.0.010.010.010.030.030.03850x x x x x x +++++≤70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 01,2,,6j x j ≥=解:编写M 文件xxgh1.m 如下:c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 00.03 0 0 0.08];b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)运算结果如下:(2)例:投资的收益和风险二、 基本假设和符号规定一、问题提出市场上有n 种资产i s (i =1,2,…,n )可以选择,现用数额为M 的相当大的资金作一个时期的投资.这n 种资产在这一时期内购买i s 的平均收益率为i r ,风险损失率为i q ,投资越分散,总的风险越小,总体风险可用投资的i s 中最大的一个风险来度量.购买i s 时要付交易费,(费率i p ),当购买额不超过给定值i u 时,交易费按购买i u 计算.另外,假定同期银行存款利率是0r ,既无交易费又无风险.(0r =5%) 已知n =4试给该公司设计一种投资组合方案,即用给定的资金M ,有选择地购买若干种资产或存银行生息,使净收益尽可能大,使总体风险尽可能小.基本假设:1. 投资数额M 相当大,为了便于计算,假设M =1; 2.投资越分散,总的风险越小; 3.总体风险用投资项目i s 中最大的一个风险来度量; 4.n 种资产i s 之间是相互独立的;5.在投资的这一时期内, r i ,p i ,q i ,r 0为定值,不受意外因素影响; 6.净收益和总体风险只受 r i ,p i ,q i 影响,不受其他因素干扰.符号规定: S i ——第i 种投资项目,如股票,债券r i ,p i ,q i ----分别为S i 的平均收益率, 交易费率,风险损失率u i ----S i 的交易定额 0r -------同期银行利率x i -------投资项目S i 的资金 a -----投资风险度Q ----总体收益 ΔQ ----总体收益的增量三、模型的建立与分析1.总体风险用所投资的Si 中最大的一个风险来衡量,即max{ qixi|i=1,2,…,n}4. 模型简化:四、模型1的求解由于a 是任意给定的风险度,到底怎样给定没有一个准则,不同的投资者有不同的风险度.我们从a =0开始,以步长△a =0.001进行循环搜索,编制程序如下:2.购买S i 所付交易费是一个分段函数,即p i x i x i >u i 交易费 = p i u i x i ≤u i而题目所给定的定值u i (单位:元)相对总投资M 很小, p i u i 更小,可以忽略不计,这样购买S i 的净收益为(r i -p i )x i3.要使净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型: 目标函数 max∑=-ni i i i x p r 0)( minmax{ q i x i }约束条件 0(1)ni i i p x =+∑=Mx i ≥0 i =0,1,…,na . 在实际投资中,投资者承受风险的程度不一样,若给定风险一个界限a ,使最大的一个风险q i x i /M ≤a ,可找到相应的投资方案. 这样把多目标规划变成一个目标的线性规划. 模型1 固定风险水平,优化收益目标函数: Q =max∑+=-11)(n i i i i x p r 约束条件: Mx q ii ≤a ∑=+M x p i i )1(, x i ≥ 0 i =0,1,…, nb .若投资者希望总盈利至少达到水平k 以上,在风险最小的情况下寻找相应的投资组合.模型2 固定盈利水平,极小化风险目标函数: R = min{max{ q i x i }} 约束条件:∑=-n i i i i x p r 0)(≥k , ∑=+M x p i i )1( , x i ≥ 0 i =0,1,…,n模型1为: minf = (-0.05, -0.27, -0.19, -0.185, -0.185) (x 0 x 1 x 2 x 3 x 4 ) Tx 0 + 1.01x 1 + 1.02x 2 +1.045x 3 +1.065x 4 =1 0.025x 1 ≤a0.015x 2 ≤a s.t. 0.055x 3 ≤a0.026x 4≤a x i ≥0 (i = 0,1, (4)a=0;while(1.1-a)>1c=[-0.05 -0.27 -0.19 -0.185 -0.185];Aeq=[1 1.01 1.02 1.045 1.065]; beq=[1];A=[0 0.025 0 0 0;0 0 0.015 0 0;0 0 0 0.055 0;0 0 0 0 0.026];b=[a;a;a;a];vlb=[0,0,0,0,0];vub=[];[x,val]=linprog(c,A,b,Aeq,beq,vlb,vub);ax=x'Q=-valplot(a,Q,'.'),axis([0 0.1 0 0.5]),hold ona=a+0.001;endxlabel('a'),ylabel('Q')结果:a = 0.0030 x = 0.4949 0.1200 0.2000 0.0545 0.1154 Q = 0.1266 a = 0.0060 x = 0 0.2400 0.4000 0.1091 0.2212 Q = 0.2019 a = 0.0080 x = 0.0000 0.3200 0.5333 0.1271 0.0000 Q = 0.2112 a = 0.0100 x = 0 0.4000 0.5843 0 0 Q =0.2190a = 0.0200 x = 0 0.8000 0.1882 0 0 Q =0.2518a = 0.0400 x = 0.0000 0.9901 0.0000 0 0 Q =0.2673四、实验三:插值1.实验目的:了解插值的基本内容.2.实验内容:例:用分段线性插值法求插值,并观察插值误差.(1)在[-6,6]中平均选取5个点作插值(xch11)(2)在[-6,6]中平均选取11个点作插值(xch12)66,11)(2≤≤-+=xxxg(3)在[-6,6]中平均选取21个点作插值(xch13)(4)在[-6,6]中平均选取41个点作插值(xch14)五、实验四:拟合1.实验目的:直观了解拟合基本内容.掌握用数学软件求解拟合问题.2.实验内容:例: 对下面一组数据作二次多项式拟合输入指令: x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x); plot(x,y,'k+',x,z,'r')结果:0317.01293.208108.9)(2-+-=x x x f六、MATLAB 在材料力学里的应用1、实验目的:通过构建可视化窗口,实现对平面问题:材料数据的直观、简便处理,得到需要的结论,具体功能如下:1.已知应变场,输入窗口后,能够得到应力场;2.已知应力场,根据材料的物性方程,判断材料是否发生屈服; 3.已知某两点应力场,通过矩阵运算得到应力张量不变量,从而判断这两点是否处于同一应力状态。