数学建模上谈房地产模型问题

合集下载

房地产问题模型+数学建模论文正稿

房地产问题模型+数学建模论文正稿

模糊数学在房地产估价问题上的应用与评估李著,陈为勇,李威(徐州空军学院,徐州 221000)摘要:随着我国房地产市场的不断发展与壮大,房地产交易案例的急剧增加,房地产估价在人们的生活、工作中已成为不可缺少的一项专业性、技术性工作,并且国家实行了房地产估价制度。

如何运用合适模型对房地产价格的形成,演化机理,价格评估及如何有效地抑制价格上扬等已成为摆在我们面前的问题。

本文利用初等模型解释房地产价格形成及演化机制,将模糊数学运用于房地产估价中,引进了隶属函数、贴近度、择近原则的概念,研究了权重确定方法,应用了“快速递减加权”理论,将比较法评估房地产价格时选取可比案例以及权重确定的科学理论依据运用于实际项目中,很好地解决了比较法评估房地产价格时的难题。

从而避免了以往对可比案例及权重选取的主观随意性问题。

该方法对大宗房地产价格的评估具有广泛的推广应用价值。

本文注重影响房地产价格的主要因素——土地价格的,原材料,人均收入,供求关系,利率水平;大胆假设他们与房地产的关系依次为指数关系,正比,二次曲线,反比关系。

忽略了很多次要的及相对微弱因素。

建立的模型为E=f(P,B,R,Q,T,C)=V1λD*G+|V2K1B/RQ+V3aeΨ+V4K2P+r,G为综合评判后的建设成本,V1···V4为各因素对房价影响的权重,为0到1范围内的常量。

在估价出单座建筑价格后,再与其同类建筑比较,利用模糊数学理论估价出相对均稳的价格。

通过模型中的主要因数与房价的关系可采取如下措施来抑制房价的过快增长:一﹑政府通过控制建材、上调利率水平、调节供求关系等手段进行宏观调控。

二﹑加强市场监控和信息化建设。

三﹑充分发挥市场化对资源的配置作用,促使房地产市场供需平衡、价格平稳。

这些政策符合我国房地产业的现状。

对房地产管理者起到一定的政策导向作用。

一、阐述问题近几年来,我国各大城市的房价出现了普遍持续高涨、高居不下的现象。

研究生数学建模房地产行业的数学模型

研究生数学建模房地产行业的数学模型

研究生数学建模-房地产行业的数学模型题目房地产行业的数学模型摘要:本文以商品房为例,建立了房地产行业住房需求的BP神经网络模型、住房供给的GM(1,1)模型、房地产行业与国民经济其他行业关系的灰色关联度模型和房价预测的Markov模型.对于住房需求问题,选取商品房年度销售面积作为反映住房需求的指标,把年底城镇总人口数等七个变量作为影响需求的因素,建立了BP神经网络模型,对住房需求进行了很好的预测.对于住房供给问题,选取商品房年竣工面积作为商品房当年的供给量,建立了GM(1,1)模型,并用残差、关联度和后验差对所得的模型进行了检验,最后对全国房地产市场2011-2015年的商品房年竣工面积进行了合理预测.对于房地产行业与国民经济其他行业关系问题,运用灰色关联度分析和信息熵对全国房地产市场与其他行业的关联度进行了定量分析,并按其关联性的强弱进行了排序.对于房价预测问题,首先用三次插值多项式对1991-2009年商品房年销售价格进行模拟,运用Markov过程得到状态转移概率矩阵,建立了Markov模型,并对2010年的商品房年销售价格进行了预测.然后通过房地产开发综合景气指数的变化对我国近几年房地产市场的发展态势进行了分析,再用房屋销售价格环比指数对房地产政策的成效进行了评价,提出了房地产政策严厉度对政策的严厉性进行量化.最后,对模型的优缺点进行了分析,并对模型进行了评价.关键词:BP神经网络GM(1,1) 灰色关联度Markov预测一、问题重述房地产行业既是国民经济的支柱产业之一,又是与人民生活密切相关的行业之一,同时自身也是一个庞大的系统,该系统的状态和发展对国民经济的整个态势和全国人民的生活水平影响很大.近年来,我国房地产业发展迅速,不仅为整个国民经济的发展做出了贡献,而且为改善我国百姓居住条件发挥了决定性作用.但同时房地产业也面临较为严峻的问题和挑战,引起诸多争议,各方都坚持自己的观点,然而多是从政策层面、心理层面和资金层面等因素来考虑,定性分析多于定量分析.显然从系统的高度认清当前房地产行业的态势、从定量角度把握各指标之间的数量关系、依据较为准确的预见对房地产行业进行有效地调控、深刻认识房地产行业的经济规律进而实现可持续发展是解决问题的有效途径.因此通过建立数学模型研究我国房地产问题是一个值得探索的方向.利用附录中提供的及可以查找到的资料建立房地产行业的数学模型,建议包括1.住房需求模型;2.住房供给模型;3.房地产行业与国民经济其他行业关系模型;4.对我国房地产行业态势分析模型;5.房地产行业可持续发展模型;6. 房价模型等.并利用模型进行分析,量化研究该行业当前的态势、未来的趋势,模拟房地产行业经济调控策略的成效.希望在深化认识上取得进步,产生若干结论和观点.如果仅就其中几个问题建立模型也是适宜的,对利用附件给的天津市的数据建模并进行分析同样鼓励.研究房地产问题并不需要很多、很深的专业知识,问题也不难理解.作者也完全可以独立自主地提出自己希望解决的房地产中的新问题,建立相应的数学模型予以解决,所建的每个模型要系统、深入,至少应该自成兼容系统,数据可靠,结论和观点有较多的数据支撑、有较强的说服力、有实际应用价值.二、模型假设1. 城镇房地产市场是中国房地产行业的主要部分;2. 商品房本年竣工面积作为商品房当年的供给量;3. 近期内没有经济危机影响房地产行业.三、符号说明符号符号说明i A影响住房需求的因素()1,2,,7i =()()0x i 商品房年销售面积的原始序列值()1,2,,20i = ()()0ˆx i 商品房年销售面积的估计序列值()1,2,,20i = ()()0y i 商品房年竣工面积的原始序列值()1,2,,17i = ()()0ˆy i 商品房年竣工面积的估计序列值()1,2,,17i =()()1y i商品房年竣工面积原始值的累加生成序列()1,2,,17i =()i ε 原始序列()()0y i 与估计序列()()0ˆyi 的绝对误差()1,2,,17i = ()i δ 原始序列()()0y i 与估计序列()()0ˆy i 的相对误差()1,2,,17i =()i η关联度系数()1,2,,17i =ρ分辨率()01ρ<< r 关联度()0Y原始序列()()0y i 的均值ε 绝对误差()i ε的均值 i S方差()1,2i = C 方差比 P小误差概率0i ∆ 参考序列与比较序列的绝对差值()1,2,,13i =i H信息熵()1,2,,13i =i w 评价指标的熵权()1,2,,13i = t p商品房年销售价格()1,2,,19t =ˆt p 商品房年销售价格预测值()1,2,,19t =i Ω状态区域()1,2,,4i =V 状态转移矩阵 L房地产政策的严厉度四、模型的建立与求解房地产行业是一个庞大的系统,可以从微观和宏观两个角度进行分析,其中住房是房地产行业的核心部分.从微观角度看,房地产市场上存在住房需求与住房供给的经济运动.从宏观角度看,房地产行业作为国民经济的支柱产业,与整个国家的经济发展密切相关,政府的调控政策对房地产市场的发展也会产生一定影响.以下用住房需求、住房供给、房地产行业与国民经济其他行业关系和房价预测四个模型对房地产业进行分析. 1. 住房需求模型本节以商品房的住房需求为例,构建BP 神经网络模型,并利用Matlab 神经网络工具箱中的相关函数对住房需求进行预测.选取商品房本年销售面积()()0x i 作为反映住房需求的指标,把年底城镇总人口数1A 、城镇家庭平均每人可支配收入2A 、人均国内生产总值(现价)3A 、城镇新建住宅面积4A 、城镇固定资产投资5A 、城镇储蓄存款6A 和城镇家庭平均每人全年实际收入7A 七个变量作为影响住房需求的因素 (具体数据见附录) .其中人是住房的最终消费者,人口数量的增长必然会对住房的需求提出更高的要求,所以人口数量是决定住房需求的基本因素.城镇人均可支配收入指城镇居民家庭人均可用于最终消费支出和其它非义务性支出以及储蓄的总和,即居民家庭可以用来自由支配的收入,它从购买力方面影响住房需求.人均国内生产总值是一个国家核算期内实现的国内生产总值与这个国家的常住人口的比值,是衡量人民生活水平的一个标准,它从宏观层面影响住房需求.城镇新建住宅面积和城镇固定资产投资反映了国家的城镇化水平,是城镇吸引力的体现,具有较强吸引力的城镇会吸引周边地区乃至全国范围内的住房购买需求. 城镇储蓄存款和城镇家庭平均每人全年实际收入反映了城镇家庭拥有财富的能力.购买住房就需要支出,所以住房需求受制于家庭的收入.神经网络是一种模仿人脑结构及其功能的信息处理方法,它通过对样本数据的反复训练实现对未知信息的推理.由于神经网络对数据没有特殊的要求,输出结果能够达到很高的精度,且非常适合用于预测.其预测原理为神经网络的训练是根据样本数据反复进行的,训练过程中,处理单元对数据进行汇总和转换,它们之间的连接被赋予不同的权值.当输出的结果在指定的精度级别上与已知结果相吻合时,对网络的训练就不再进行.通过对神经网络的训练和学习,使网络可以总结出内在的规律,从而对输出变量进行预测.本节所创建的BP 神经网络的指标分别取:学习速率选取为0.01,网络输入变量为7,隐藏层神经元的个数选为13,网络输出误差精度设为0.001. [1]该神经网络图1所示.输入层隐藏层 输出层图1 神经网络图假定输入层的第i 个节点得到的输入为i A ,输入到隐藏层的第h 个节点的则为这些值的加权平均ihi iwA ∑,最终通过传输函数f 从输出层输出()ih i if w A θ-∑,θ为隐藏层神经元的阈值.由于原始数据的单位不同,造成了指标量纲不统一的情况.为了加快网络的收敛速度,在训练前对数据做了标准化变换.标准化准则为*,ij jij jA A A σ-=其中11n j ij i A A n ==∑,11()()1nj ti i tj j t A A A A n σ==---∑.采用Levenberg-Marquardt 算法对数据进行训练,由下面的训练结果图可以看出,网络训练6次后即可达到误差要求,预测值的均方误差达到了0.000054175,预测效果较好.图2 训练结果图下面对给定的商品房年销售面积的原始序列()()()()()()(){}{}00001,2,,203025.5,4288.9,,104349X x x x ==进行估计,得出的估计值()()0ˆxi 如表1: 表1 销售面积的原始序列及估计序列(单位:万平方米)年度1991199219931994199519961997原始序列()()0x i 3025.5 4288.9 6688 7230 7906 7900901估计序列()()0ˆx i 3703.3 5189.4 7660 8268 8731 87629684年度1998199920002001200220032004原始序列()()0x i 12185 14557 18637 22412 26808 33718 38232估计序列()()0ˆx i 12767 14875 18729 22209 26337 33241 37544年度200520062007200820092010原始序列()()0x i 55486 61857 77355 65970 94755 104349估计序列()()0ˆx i 54018 60408 75839 65290 92490 100744图3展示了商品房年销售面积的原始序列及估计序列的曲线,从图中可以看出两个序列的拟合程度较高.4时间(年)销售面积(万平方米)商品房本年销售面积模型估计值图3销售面积的原始值及估计值序列图本节对影响住房需求的影响因素进行了分析,采用BP 神经网络建立了住房需求的预测模型,估计值与原始值之间的均方误差很小,证明了采用神经网络进行住房需求预测的有效性.2. 住房供给模型2.1 GM(1,1)模型的建立根据全国房地产市场1994-2010年的年度商品房本年竣工面积的统计资料,下面采用灰色系统理论,建立灰色GM(1,1)预测模型,对未来五年的商品房销售价格做出合理预测.对给定的商品房竣工面积的原始序列()()()()()()(){}{}00001,2,,1711637,14873.85,,75961Y y y y ==,作累加生成1—AGO 序列()()()()101,1,2,,17.ki y k y i k ===∑详细数据见表2:年份 1994 1995 1996 1997 1998 1999 原始序列()()0y i1163714873.85 15356.7115819.717566.621410.8生成116326514186576875259666序列()()1y i7 0.85 7.56 7.26 3.86 4.66年份 2000 2001 2002 2003 2004 2005 原始序列()()0y i25104.929867.434975.841464.142464.953417生成序列()()1y i121769.56 151636.96 186612.76 228076.86 270541.76 323958.76 年份 2006 2007 2008 2009 2010 原始序列()()0y i55830.960606.766544.872677.475961生成序列()()1y i379789.66 440396.36 506941.16 579618.56 655579.56图4为原始序列及1—AGO 生成序列的散点图,图中清晰地展现了每年商品房的竣工面积及其累计和.012345675时间(年)住房供给量(万平方米)原始序列生成序列图4 竣工面积原始序列及1—AGO 生成序列的散点图采用一阶单变量微分方程进行估计,得到白化形式的GM(1,1)模型()()11,dY aY u dt+= (1) 式中,a u 为待估计参数.求解白化方程(1),得到GM(1,1)模型的形式为()()()()10ˆ11,0,1,,16,ai u u yi y e i a a -⎛⎫+=-+= ⎪⎝⎭(2)还原后的预测模型为()()()()()()011ˆˆˆ11,1,,16,y i y i y i i +=+-=(3)其中()()()()0ˆ11yy =. 记参数向量[]ˆTaa u =,用最小二乘法求解得 ()1ˆ.T T N aB B B Y -= (4) 式中,B 为累加生成矩阵,N Y 为向量,二者的构造为()()()()()()()()()()()()()()()11111111212-19073.92511-34189.20512312-617599.0611161712y y y y B y y ⎡⎤-+⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-+⎢⎥⎣⎦,()()()()()()[]0002,3,,1714873.85,15356.71,,75961.N Y y y y ⎡⎤==⎣⎦将,N B Y 带入(4)式得到[]ˆ0.111213693Ta=-. 根据以上数据带入式子(3)和(4)可求得商品房竣工面积的GM(1,1)预测模型为:()()0.11121ˆ1134780123140,0,1,,16i yi e i +=-=()()()()()()()()0.111210.1112000ˆ1134780,1,,16.ˆ11i i y i ee i y x -⎧+=-=⎪⎨=⎪⎩ (5)由(5)式可得到1994-2010年住房竣工面积的估计值,并将其与原始序列的真实值比较,详见表3:年份 原始序列()()0y i估计序列()()0ˆyi年份 原始序列()()0y i估计序列()()0ˆyi1994 11637 116372003 41464.1 38582.8300 1995 14873.85 15851.4776 2004 42464.9 43120.5826 1996 15356.71 17715.7805 2005 5341748192.0234 1997 15819.7 19799.3454 2006 55830.9 53859.9198 1998 17566.6 22127.9598 2007 60606.7 60194.4213 199921410.824730.4441200866544.867273.92782000 25104.9 27639.0083 2009 72677.4 75186.0598 2001 29867.4 30889.6507 20175961 84028.7430 200234975.834522.6033图5展示了实际值与估计值这两个序列,从图中可以看出,两个序列之间拟合的程度高.1234567894时间(年)住房供给量(万平方米)实际值估计值图5竣工面积实际值及估计值序列图2.2 模型检验下面从残差、关联度和后验差三个方面对所得的模型进行检验. (1) 残差检验计算原始序列()()0y i 与估计序列()()0ˆy i 的绝对误差()i ε及相对误差()i δ,其中()()()()()()()()()()0000ˆ,1,2,,17,100%,1,2,,17.i y i yi i i i i y i εεδ=-==⨯=(2)关联度检验关联度系数定义为()()()()()()()()min max ,1,2,,17.max i i i i i i ερεηερε+==+其中ρ为分辨率且01ρ<<,本例中取0.5ρ=.运用Matlab 求解,得到的结果详见表4:年份 绝对误差()i ε相对误差()i δ关联度系数()i η19940 0 1 1995 977.6276 6.5728% 0.8049 1996 2359.0705 15.3618% 0.6310 1997 3979.6454 25.1563% 0.5034 1998 4561.3598 25.9661% 0.4693 1999 3319.6441 15.5045% 0.5486 2000 2534.1083 10.0941% 0.6142 2001 1022.2507 3.4226% 0.7978 2002 453.1967 1.2957% 0.8990 2003 2881.2700 6.9488% 0.5833 2004 655.6826 1.5441% 0.8602 2005 5224.9766 9.7815% 0.4357 2006 1970.9802 3.5303% 0.6718 2007 412.2787 0.6803% 0.9073 2008 729.1278 1.0957% 0.8469 2009 2508.6598 3.4518%0.61662010 8067.7430 10.6209%0.3333由于关联度系数的信息较为分散,不便于比较.为此,综合各个时刻的关联度系数,得到关联度r .通常0.5ρ=时,0.6r >便可认为关联度可以满意[2]. 关联度r 定义为()11.ni r i n η==∑本例中,()110.6778ni r i n η===∑.(3)后验差检验首先计算原始数列的()0Y 的均值()0Y 及均方差1S ,其定义为()()()0011,ni Y y i n ==∑ ()()()()2011.1ni y i Y S n =-=-∑然后计算绝对误差()i ε的均值ε及方差2S ,其定义为()11,ni i n εε==∑()()212.1ni i S n εε=-=-∑计算方差比21C S S =及小误差概率(){}10.6745P i S εε=-<. 确定模型级别,方法如表5.表5 模型级别 等级 好合格 勉强合格不合格取值PC P C PC PC 0.95>0.35<0.8> 0.5< 0.7> 0.65<0.7≤ 0.65≥将实际数据代入计算,得到后验差检验结果如表6.项目()0Y1Sε2SC P模型级别结果 43.856410⨯ 84.825210⨯32.450410⨯64.86110⨯ 0.0093 1好(I 级)由模型的检验可知,关联度0.6778r =,大于0.6,,C P 的取值均满足I 级模型的要求,说明模型的精确度较高,可用于实际预测.利用公式(5)对全国房地产市场2011-2015年的商品房竣工面积进行预测,得到表7:年份2011 2012 2013 2014 2015预测值()()0ˆyi 93911 104960 117300 131100 1465103. 房地产行业与国民经济其他行业关系模型本节以《中国统计年鉴2011》国民经济核算中的分行业增加值为基础数据,运用灰色关联度分析并结合信息熵对房地产相关行业进行权重赋值的方法,对全国房地产业与其他行业的关联度进行定量分析,进一步确定了全国房地产业与其他行业的关联程度,为制定合理的政策和战略提供参考.下面对灰色关联度模型的理论作一下简单阐述.设系统有n 个待优选的评价对象,对每个对象又有m 个评价因素,每个评价对象在相应各个评价因素下的属性值构成如下属性矩阵:1112121222121,2,,.1,2,n n ik m m mn x x x x x x i m X k n x x x ⎡⎤⎢⎥=⎢⎥= , ⎢⎥=⎢⎥⎣⎦这里的ik x 表示第k 个评判对象在第i 个评判因素下的指标属性.根据实际情况确定参考因素和比较因素.设:参考序列为0()x k ,且1,2,,k n =;比较序列为()i x k ,且1,2,,i m =和1,2,,k n=.根据国民经济体系的行业分类,选取以下13个行业:A 农林牧渔业,B 工业,C 建筑业,D 交通运输、仓储和邮政业,E 信息传输、计算机服务和软件业,F 批发和零售业,G 住宿和餐饮业,H 金融业,I 租赁和商务服务业,J 科学研究、技术服务和地质勘查业,K 居民服务和其他服务业,L 卫生、社会保障和社会福利业,M 公共管理和社会组织.全国房地产业与以上行业的国内生产总值增加值如表8所示:行年份业2005 2006 2007 2008 2009 A 22420 24040 28627 33702 35226B 77230.779091310.9363110534.8760130260.2387135239.9499C 10367.315012408.605315296.481618743.200022398.8267D 10666.163012182.984614601.039416362.503216727.1098E 4904.06875683.45196705.58077859.67318163.7861F 13966.175016530.722320937.835326182.339028984.4658G 4195.71664792.58575548.11376616.071297118.1671H 6086.82628099.082212337.549314863.250517767.5262I 3129.13883790.76934694.85405608.21776191.3598J 2163.98752684.78593441.33983993.35144721.7311K 3127.98863541.69993996.48294628.04855271.4826L 2987.3034 3326.2433 4013.7670 4628.7477 5082.5559 M 7361.1579 8836.6491 10830.4327 13783.7177 15161.7375 X8516.432410370.456013809.746314738.699318654.8792上表最后一行为房地产业的国内生产总值,作为参考序列0X .由行A M →构成比较序列()1,2,,i X i m =,也就是上面提到的属性矩阵ik X .根据房地产行业与相关行业的关系,采用公式min 1,2,,1,2,,max min ik ikiik ik iki ix x i m Z k n x x ⎛⎫-=⎪= , ⎪=-⎝⎭(6)对指标进行归一化处理.由公式(6)对ik X 进行无量纲化处理结果如表9.行业 年份 2005 2006 20072008 2009A 0 0.1265 0.4847 0.8810 1B 0 0.2427 0.5741 0.9142 1C 0 0.1697 0.4097 0.6962 1D 0 0.2503 0.6492 0.9398 1E 0 0.2391 0.5527 0.9067 1F 0 0.1708 0.4642 0.8134 1G 0 0.2042 0.4628 0.8282 1 H0.1723 0.5351 0.75141I 0 0.2161 0.5113 0.8096 1 J 0 0.2036 0.4994 0.7152 1 K 0 0.1930 0.4052 0.6998 1 L 0 0.1618 0.4899 0.7834 1 M 0 0.1892 0.4447 0.8233 1 X0.1829 0.5221 0.61371需要说明的是,后面我们会用到所有其他行(比较序列)与参考序列的差计算绝对差值序列,所以这里把参考序列也放入属性矩阵中进行归一化,如上表9中的X 行.表9即为归一化后的矩阵ik Z (参考序列不包括在内).绝对差值序列是参考序列与比较序列的绝对差值00()().i i z k z k ∆=- (7)运用公式(7),得到绝对差序列详见表10.表10 全国房地产业的国内生产总值增加值的绝对差值序列i∆行业 年份 2005 2006 20072008 2009A 0 0.0564 0.0374 0.2673 0B 0 0.0599 0.0520 0.3004 0C 0 0.0132 0.1124 0.0824 0D 0 0.0674 0.1271 0.3261 0E 0 0.0562 0.0306 0.2930 0F 0 0.0121 0.0579 0.1997 0G 0 0.0214 0.0593 0.2145 0 H0.0106 0.0130 0.1376I 0 0.0332 0.0108 0.1958 0 J 0 0.0207 0.0227 0.1015 0 K 0 0.0101 0.1169 0.0861 0 L 0 0.0211 0.0322 0.1697 0 M0.0063 0.0774 0.2096根据上式(公式7)可以得出min ∆和max ∆分别为绝对差值的最小值和最大值.其中min 0max 0,,min ()(),max 1,2,,.1,()()2,,,.i i i ki kz k z k z k i k n z m k ∆=-∆===-由上式可得,min max 0,0.3261.∆=∆=()i Y k 对0()Y k 的灰色关联度系数如下min max0max().i k ρηρ∆+∆=∆+∆(8)式中ρ是分辨率,本文取0.5ρ=.利用公式(8),灰色关联度系数矩阵如表11所示.表11 灰色关联度系数()k η行业 年份 20052006200720082009A 1 0.7431 0.8134 0.3789 1B 1 0.7315 0.7582 0.3518 1C 1 0.9251 0.5919 0.6642 1D 1 0.7076 0.5619 0.3333 1E 1 0.7436 0.8422 0.3576 1F 1 0.9309 0.7380 0.4495 1G 1 0.8842 0.7332 0.4319 1H 1 0.9390 0.9260 0.5423 1I 1 0.8309 0.9379 0.4543 1J 1 0.8871 0.8778 0.6163 1K 1 0.9415 0.5824 0.6545 1L 1 0.8854 0.8351 0.4900 1M 1 0.9629 0.6782 0.4375 1由于灰色关联度系数仅表示各年度数据间的灰色关联程度,为了进一步对整个序列进行比较,即()i Z k 和0()Z k 的比较,根据信息论知识可知,某项指标值变化程度越大,信息熵越小,该指标权重就应该越大,反之也成立.所以,可根据各个指标的变化情况,利用客观赋值法中的信息熵法计算出评价因素权重,以便能够更加准确和科学地计算灰色关联度.按照熵思想,人们在决策中获得信息的多少和质量,是决策的精度和可靠性大小的决定因素之一.所以熵在应用于不同决策过程中的评价或案例的效果评价时是一个很理想的尺度. [3]评价指标的信息熵如下面公式所示,1ln .ni ij ij j H K f f ==-∑在此,我们得到的信息熵值为()0.7479,0.7936,0.7617,0.7984,0.7915,0.7660,0.7766,0.7744,0.7854,0.7826,0.7693,0.7662,0.7698.i H =假定,0ij f =时,ln 0ij ij f f =;其中,1ijij nijj z f z==∑,1ln K n=.计算得0.6213K =.评价指标的熵权i w 公式11i i mii H w m H =-=-∑.计算得到()0.0864,0.0708,0.0817,0.0691,0.07150,0.0802,0.0766,0.0774,0.0736,0.0745,0.0791,0.0802,0.0789.w =灰色关联度的计算公式为1().mi k i r w i η==∑带入数据,得到()0.3401,0.2719,0.3416,0.2490,0.2819,0.3304,0.3102,0.3409,0.3107,0.3266,0.3305,0.3376,0.3219.r =对0()Z k 和评价因素()i Z k ,其关联度分别为()1,2,,i r i m =,按从大到小的顺序,即得灰色关联度顺序,例如设12m r r r >>>,表明1Z 和0Z 的关联度最大,或者对0Z 的影响最大,2Z 次之.由上面得到的灰色关联度如图6.卫生福居民服批发零科研技公共管租赁商住宿餐信息软工业交通邮建筑金融农林牧图6 灰色关联度条形图根据以上对全国的房地产业与相关产业的关联度的计算和分析可以看出:全国房地产业与建筑业的关联程度最大,关联度为0.3416;此处房地产业与金融业、农林牧渔业、卫生、社会保障和社会福利业、居民服务和其他服务业、 批发和零售业、科学研究、技术服务和地质勘查业和公共管理和社会组织的关联度也较大,灰色关联度分别为0.3409,0.3401,0.3376,0.3305,0.3304,0.3266,0.3219.可见,房地产业的发展将对相关产业的发展起到很强的拉动作用,同时对国民经济的发展也具有重大的影响. 4. 房价预测模型Markov 链是时间和状态均为离散变量的随机过程.它的特点是无后效性,即在0t 时刻的状态为已知时,它在时刻0t t >的状态与其在0t 之前的状态无关[4].Markov 模型能充分利用历史数据给予的信息,为随机波动较大的数据预测工作提供了一种新的方法,提高预测的精度.因此本文采用Markov 模型对房价进行预测.依据附录中1991-2009年商品房年销售价格{},1,2,,19t p t =,其中2010年商品房年销售价格从中国统计年鉴中查到,详细数据见表12:年份 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000销售价格tp7869951291 1409 1591 1806 1997 2063 2053 2112年份 2001 2002 2003 2004 2005 2006 2007 2008 2009销售价格tp2170 2250 2359 2778 3168 3367 3864 3800 4681将时间1991-2009年离散为时间序列1-19,商品房年销售价格t p 用三次插值多项式进行拟合,得到其拟合曲线为32ˆ 1.431136.2213394.6141387.8186,1,2,,19.t pt t t t =-++=运用Markov 模型预测2010年商品房的销售价格.首先对商品房年销售价格t p 的数据序列进行状态区间划分,为保证预测的准确度和计算的方便性,并结合近几年商品房销售价格的具体情况,将数据序列化分为四个状态,分别记为,1,2,,4i i Ω=,这里i Ω的划分按与拟合曲线ˆt p的变化趋势相一致的准则,即以ˆt p 为基准曲线,作四条平行于ˆt p的曲线而得到四个条形区域,每一个条形区域代表一个状态,即使i Ω所属于的一个状态区域,如图7示:tpt实际值拟合曲线状态分割线↑Ω1↑Ω2Ω3↓Ω4↓图7 状态分割曲线其中每个区域的上、下界见如下的状态划分标准表:状态1Ω 2Ω 3Ω 4Ω 状态下界 ˆ300t p - ˆ150t p - ˆt pˆ150t p+ 状态上界 ˆ150t p- ˆt p ˆ150t p+ ˆ300t p + 从图7中可以得到1991-2009年商品房年销售价格t p 的Markov 转移情况,得到表14:状态1Ω 状态2Ω 状态3Ω 状态4Ω 合计 状态1Ω 0 0 2 0 2 状态2Ω 1 3 2 0 6 状态3Ω 0 3 3 2 8 状态4Ω112继而得到状态转移概率矩阵010*******.03314120120V ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦由图7可知2009年商品房年销售价格19p 处于状态区间3Ω,根据状态转移矩阵知19p 转移到20p 时分别以概率3处于状态区间2Ω、38处于状态区间3Ω和14处于状态区间4Ω,故根据Markov 模型估计的2010年的商品房年销售价格()()()()2020202020202020ˆˆˆˆˆˆ15015015030033145ˆ5145.6.8282422p p p p p p p p-++++++⎛⎫⎛⎫⎛⎫=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭查《中国统计年鉴2011》[5]可知:2010年商品房年销售价格为5230元,两者的绝对误差1.61%.五、房地产发展态势与政策成效分析1. 房地产市场发展态势分析本节首先运用房地产开发综合景气指数的变化对我国近几年的房地产市场的发展态势进行分析.房地产开发景气指数,指对企业景气调查中的定性经济指标通过定量方法加工汇总,综合反映某一特定调查群体或者发展趋势的一种指标.房地产开发景气指数是反映房地产业发展景气状况的综合指数.1998年1月至2011年七月的房地产开发景气指数详见图8,其中2009-2011年1月的数据缺失,为了便于分析,文中采用相邻样本均值插补法对缺失值进行插补,插补后的数据分别为95.6、104.57和102.35.929496982000—072008—012005—072003—011998—012011—082010—07图8 房地产开发综合景气指数近年来,国务院对房地产业出台了一系列调控政策.1998年,国务院发布了《城市房地产开发经营管理条例》,我国开始进行住房制度的改革.由上图可以看出,从1998年到2001年末,房地产开发综合景气呈上升趋势.2002年,建设部等六部委发布了《关于加强房地产市场宏观调控促进房地产市场健康发展的若干意见》,国家开始遏制房价过快上涨势头,以促进房地产业和国民经济健康发展,当时的调控手段比较单一,主要通过土地和金融政策类约束开发商的投资或居民的购房需求.2006年5月29日,国务院办公厅转发建设部等九部门《关于调整住房供应结构稳定住房价格的意见》,国家开始对房地产市场的供应结构进行调整和规范.2008年受经济危机影响,我国房地产市场进入低迷时期.由于为应对经济危机超发的货币和调控政策的松动,2009年房地产市场迅速由低迷变为亢奋,房地产开发综合景气指数迅速上升.2010年4月,为了切实解决城镇居民住房问题,国务院发布了《国务院关于坚决遏制部分城市房价过快上涨的通知》(简称“新国十条”).该通知加大了调控力度,要求实行更为严格的差别化住房信贷政策,发挥税收政策对住房消费和房地产收益的调节作用.多种调控方式取得了一定效果,由图中可以看出2010年房地产开发综合景气指数大体呈下降趋势.2011年1月,国务院发布了《关于进一步做好房地产市场调控工作有关问题的通知》(简称“新国八条”),房地产开发综合景气指数在小幅上涨后又回落.房地产价格走势涉及到人民群众切身利益,关系到经济健康发展好社会和谐稳定.拥有住房是人民正常生活的重要条件,通过上面的分析可以看出,国务院对房地产市场实施调控的决心是坚定的, 并取得了一定成效,通过国家政策可以对房地产市场进行宏观调控,进而改善人民生活状况.2. 房地产政策的成效分析下面通过房屋销售价格环比指数对房地产政策的成效进行评价,并提出了房地产政策严厉度对政策的严厉性进行量化.房屋销售价格指数是反映一定时期房屋销售价格变动程度和趋势的相对数,它是通过百分数的形式来反映房价在不同时期的涨跌幅度, 直接反映了房价的变动情况.房屋销售价格环比指数是以上月价格为100的基准数得到的指数. 国务院出台政策调控房地产市场的目的是把遏制房价上涨, 房地产政策严厉度L用房地产政策发布后引起房屋销售价格环比指数的变化量来描述.严厉度越大,表明国家对房地产市场监管的越严格,政策取得的成效越大.房屋销售价格环比指数的数据取自于国家统计局官方网站[6],2010年和2011年的房屋销售价格环比指数详见图9和10:其中2011年的房屋销售价格环比指数采用的是七十个大中城市新建住宅和二手住宅销售价格环比指数的平均值.2010—12010—32010—52010—72010—92010—11图9 2010年房屋销售价格环比指数如图所示,2010年4月“新国十条”发布后,房屋销售价格环比指数明显下降.从2010年5月到2010年8月期间,房屋销售价格环比指数累计减少了1.4,达到了抑制房价快速上涨的目的,故此时严厉度1L 为1.4.99.9100100.1100.2100.3100.4100.5100.6100.72011—22011—42011—62011—8图10 2010年房屋销售价格环比指数由图10可知:2011年1月“新国八条”发布后,房屋销售价格环比指数持续下降,但下降的幅度较小.从2011年2月到2010年8月,房屋销售价格环比指数累计减少了0.7157,所以“新国八条”的严厉度20.7157L =.从政策的内容来看,“新国十条”通过提高贷款首付比例和贷款利率来限制贷款投机性购房,对定价过高、涨幅过快的房地产开发项目进行重点清算和稽查, 大幅度增加公共租赁住房、经济适用住房和限价商品住房供应.“新国八条”的目的在于进一步做好房地产市场调控工作,调整完善相关税收政策,继续有效遏制投资投机性购房[7].从前面的严厉度数据得出12L L >,所以“新国十条”也被称。

数学建模 房地产泡沫问题建模

数学建模 房地产泡沫问题建模

房地产泡沫问题房地产泡沫是房地产资产的价格脱离了实际基础价值连续上涨的现象。

房地产泡沫的主要特征是:第一,房地产泡沫是房地产价格波动的一种形态;第二,房地产泡沫具有陡升陡降的特点,振幅较大;第三,房地产泡沫不具有连续性,没有稳定的周期和频率;第四,房地产泡沫主要是由于投机行为、货币供应量在房地产经济系统中短期内急剧增加造成的。

投机价格机制和自我膨胀的机制是房地产的主要内在运行机制。

房地产泡沫是在内在传导机制和外在冲击机制的共同作用下,开始产生、膨胀和崩溃的。

泡沫经济:虚拟资本过度增长与相关交易持续膨胀日益脱离实物资本的增长和实业部门的成长,金融证券、地产价格飞涨,投机交易极为活跃的经济现象。

泡沫经济寓于金融投机,造成社会经济的虚假繁荣,最后必定泡沫破灭,导致社会震荡,甚至经济崩溃。

泡沫经济可分为三个阶段,既泡沫的形成阶段、泡沫的膨胀阶段、泡沫的溃灭阶段。

虚拟资本(Fictitious Capital)是以有价证券(包括股票、债券、不动产抵押单)等形式存在的,能给持有者带来一定收入流量的的资本;现实资本(Actual Capital)就是以生产要素形式和商品形式存在的实物形态的资本。

在生产资本和商品资本的运动中不会出现泡沫,因为生产资本和商品资本的运动都是以实物形态流量为媒介,并进行和其相对应的流向相反、流量基本相等的货币形态流量。

因此人们认为泡沫经济产生于虚拟资本的运动,这也是泡沫经济总是起源于金融领域的根源。

此外,作为不动产的土地,其特殊的价格构成使土地资产成为了一种具有虚拟资本属性的资产,同时金融业与房地产业的相互渗透、相互融合,使得每次经济泡沫的产生都必然伴随着地产泡沫的产生。

与其他产业经济一样,房地产业在实际经济运行中也存在着较为明显的周期波动现象。

虽然理论界对房地产经济周期的定义有各种各样不同表述,但对房地产经济周期波动的表现形式还是相同的。

认为:房地产经济周期可以分为两个过程,即扩张过程和收缩过程。

房价问题的数学建模

房价问题的数学建模

房价问题的数学建模一、摘要:我国房地产业自20世纪末走出低谷以来,其迅猛发展的势头备受世人瞩目,不仅因其作为国民经济的支柱产业而对国家宏观经济运行产生巨大的影响,更因其与广大百姓的自身利益休戚相关而令人关注。

住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。

论文以房价作为主要研究对象,通过对历年房价走势的分析,对房价进行拟合,找出影响其涨落的因素;对未来房价的走势进行预测;研究“二手房” 房价、租金、与房价间的关系;并通过历年来国家颁布的政策与房价之间的关系,分析政策所起的作用。

二、问题提出:住房问题关系国计民生,既是经济问题,更是影响社会稳定的重要民生问题。

近年来,随着我国经济的飞速增长,房价过快增长,且一直居高不下。

介于此种现象,通过下面的工作,对此问题进行分析及预测。

三、基本假设:首先,在所调查城市中,由于各类房价差异很大,而对于大多数市民来说,关心最多的应该就是商品房的价格,因此我们选此城市的商品房价格,来作为这次调查的代表进行分析。

其次,影响房价的客观因素主要有市场因素和非市场因素。

其中,由房屋自身因素和环境因素组成的非市场因素在总影响中所占比重较小,且相对较稳定,可忽略其对房价涨落的影响;市场因素是房价的主要决定因素,其中主要包括政治因素、经济因素、行政因素和社会因素。

目前的中国,社会局势相对稳定,故政治因素以及社会因素的影响便可以忽略,而其中经济因素中的土地成本和人们的收入水平是目前的主导因素,在行政因素中主要是国家地区通过颁布法令调节税率来,达到影响房价的目的,按国家的规定营业税为商品房售价的5%,土地交易契税税率为3%,设定土地贷款年利率为 5.4%相应贷款年限设为两年。

最后,房地产商对利益的追求即利润是形成房价的一个主观原因。

在地价指数中,利润被设定为商品房售价的10%。

四、符号的假设与建立模型:在模型中,通过对已知地价指数的算法和由搜集得到的数据的拟合,模拟出房价与地价、人们收入以及税率和综合成本(除了土地出让金以外,开发商完成楼盘开发所支付的费用)之间的一个数学关系。

数学建模论文(房地产销售)

数学建模论文(房地产销售)

房地产销售问题摘要房地产业发展涉及到国计民生的众多行业,其受各种因素的多元化影响,对于房产业发展相关问题的有效研究可以对国民经济的健康可持续发展产生积极的影响。

本文针对房地产发展的三个重要问题,分别建立了相应的数学模型进行了分析,并得出了相应的结论。

本文通过数学建模的方式,利用非线性规划建立动态模型,主要讨论的是在允许期房,假设销售的前提下,服务方面都是令购房者满意的。

在讨论建筑过程矛盾时,只考虑两大矛盾,即建材费的上涨和折旧费的存在。

其中建筑能力分为建筑能力无限和建筑能力有限两类。

本文通过计算来平衡这两个矛盾,从而得到比较合理的月建房计划,使得月销售量和月建造量都达到最优化,最终使所获利润达到最大。

关键词:折旧费固定成本可变成本回归分析综合评价方法一、问题的提出我市某房地产公司通过对历史资料进行回归分析(即数据拟合),并结合2008年上半年可能出现的影响楼盘销售的因素,预测该公司2008年上半年的销售情况如下表所示:表1该公司的楼盘2007年12月的销售均价为4800元/平方米,平均每套120平方米,2008年上半年的售价保持不变。

2007年12月末尚有49套现房未售出。

商品房从规划到售出会发生下列费用:(1)建造成本,包括固定成本(主要是指购地、机器设备的折旧)和可变成本(钢材、水泥、装饰材料和人工成本等,其中人工成本在可变成本中占到大约40%),按照2007年12月份的建材价格计算,可变成本(万元)与商品房建造套数(以平均每套120平方米计算)的平方成正比,比例系数为0.5。

且可变成本与建材价格上涨幅度有关,例如建材价格上涨10%,则可变成本是按前面方法计算结果的1.1倍。

(2)销售费用,与当月销售金额成正比。

(3)折旧,建造好的商品房未售出的必须计提折旧,折旧分40年平均摊销,即该公司生产的商品房平均每套每月的折旧为48万元/(40*12)=0.1万元。

近年以来,国家发改委等部门出台了一系列措施平抑建材价格,但由于对建材需求结构而言,总体上求大于供的市场状况没有得到根本改善,预计今年建材的价格仍会有一定的增长。

房地产数学建模

房地产数学建模

房地产数学建模Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT房地产问题分析摘要房地产行业与百姓的生活息息相关。

近年来,由于房地产价格的不断攀升,房地产行业已经引起了社会的广泛关注。

本文分别就影响房地产价格的因素和未来房地产价格的趋势进行了细致的分析研究和预测,并最终提出了相应的改进措施和调控房价的建议。

对于问题一,由于影响房地产价格的因素众多,我们就选取了人均消费水平,人均GDP 占有量,人口密度,土地成本,银行贷款利率五个与房地产价格有着密切关系的指标在全国范围内进行研究分析。

我们采用一元线性回归模型利用SPSS 统计软件分别对五个指标与房地产价格进行线性回归,得到线性回归方程和相关系数。

并通过分析得出:土地成本、人均GDP占有量、人口密度(市场需求)、人均消费水平这四个因素对房地产价格的影响较大,而银行贷款利率的影响相对要小一些。

因此,最后我们使用多元线性回归模型,利用SPSS 软件对四个变量进行了多元线性回归,并得出了回归方程。

问题二,虽然线性回归对房价的形成预测比较高,但它只是根据有限的几个因素来确定的,于是我们通过分析确定了可以利用华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的灰色预测模型来进行求解。

我们建立了灰色预测模型并进行了模型的求解。

通过对模型的求解,预测得了未来几年的房价,并就调控房价提出了一些政策建议,对建议可能产生的效果进行了科学的预测和评价。

关键词:房地产 SPSS MATLAB 灰色预测模型线性回归模型一、问题重述虽然国家多次进行宏观调控,多次调整利率、存款准备金率等,试图对房地产市场进行调控,但自1998年实行房改以来,我国大部分城市的房价出现了普遍持续上涨情况。

一方面,房价的上涨使得新进入城市或需要购房者的生存成本大幅增加,导致许多中低收入人群买房难,其它消费也无法提升;另一方面,部分投资或投机者通过各种融资渠道买入房屋进行出租或空置,期望因房价上涨而获得超高回报,导致房价居高不下。

数学建模房地产问题

数学建模房地产问题

数学建模优秀论文二抑制房地产泡沫问题摘要:房价作为一种价格杠杆,在引导房地产可持续发展和抑制房地产泡沫将起到积极的作用。

科学合理地制定房价,对房地产的发展具有重要意义.本文先从产生房地产泡沫的原因谈起,找出影响房产的相关因素,然后从房地产开发商和消费者两个方面展开讨论,得出两个不同的模型。

模型一从开发商的角度建立模型,运用定性的分析方法,分析一个商场中只有一个房地产开发商,两个开个商和多个开发商的情况,运用博弈论的方法给出不同的模型,给出一个从特殊到一般的数学模型,并运用相关的经济理论进行解释;模型二从消费者的角度建立模型,运用有效需求价格,动态地确定消费者的房价的范围。

在此基础上,采用一元线性回归,通过推导出的模型和运用大量的数据对模型的进行验证和分析,得出房价与其中几个主要因素的关系:主要因素回归方程复相关系数RGDP与房价0.98135人口密度与房价0.55250人均可支配收入与房价0.93943影响当前房价的主要因素,如社会因素包括国民经济的发展水平、相关税费、居民的收入、政策导向、社区位置等,自然因素包括地价、建安成本和开发商利润等;并在分析影响房价的诸多因素之后,提出了八点政策性建议.综上所述,运用我们的模型得出相应的房价,然后利用我们相应的政策作为指导,我国的房地产不但会抑制房地产泡沫问题,而且我国的房地产市场将得到持续健康地发展。

一问题重述近几年来,我国各大城市的房价出现了普遍持续上涨、高居不下的情况。

房价的上涨使生活成本大幅增加,导致许多中低收入人群买房难。

因此如何有效地抑制房地产价格上扬,是一个备受关注的社会问题.现在请你就以下几个方面的问题进行讨论:1.建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致的分析;2.通过分析找出影响房价的主要因素;3.给出抑制房地产价格的政策建议;4.对你的建议可能产生的效果进行科学预测和评价.二合理假设1、在某个城市中有多个房地产开发商,不存在完全垄断的现象2、某一城市的商品房的定价是经过综合分析之后的出来的3、我们在求房价的过程中不考虑套利的情况4、所在的城市物价和其他情况相对比较稳定,全局内没有大起大落的现象三符号说明--———---——————-———-—-——其它消费品——-——-————--—---—-—————房地产——----—----—-—-———-————其它消费品的价格————-———--——-—-----—--—房地产的价格—--—-—---———-—-————消费函数——--—-—--—----—--———--——居民支配消费总额四问题分析所谓房地产泡沫就是指房地产商品的预期价格被大大的高估,从而导致各类投机资本的纷纷进入,通过恶性炒作将现期房地产价格大大抬高。

关于房地产的建模

关于房地产的建模

房地产数学建模问题一、问题的提出房地产问题一直是人们热议的话题,尤其是近几年人们是越来越关注该问题。

总所周知,房地产作为一个行业,不仅关系国家经济命脉,它还是影响民生问题的主要因素,所以搞好房产建设不仅是国家与房产商的任务,我们也应了解其中的一些运作原理来帮助我们更好的适应社会环境。

为此,对房产业的了解就显得颇为紧急,而房间问题一直是人们关注的首要问题,下面我们将用数学模型来解决房产中的以下实际问题,仔细分析影响房价的因素以及它们之间的关系。

问题一:通过分析找出影响房价的主要原因并且通过建立一个城市房价的数学模型对其进行细致的分析。

问题二:分析影响房价主要因素随时间的变化关系,并且预测其下一阶段的变化和走势。

问题三:通过分析结果,对房产商和购房者提出一些你认为的合理建议。

二、模型假设和符号说明假设假设一、房地产产品具有一定的生产周期假设二、房价的计算只考虑人均GDP和人均年收入符号说明:X1代表人均GDP,X2代表人均年收入,y为房产均价,其中a和b分别为常数。

三、模型建立于求解主要用到的是数学模型是用最小二乘法对影响房价的各个因素进行拟合,从而解出线性方程组,其中用到的主要数学软件是matlab软件。

1)模型建立首先,下面有1997年至2009年的该地房产均价数据与各变量之间的关系,如下表:下面用matlab数学软件画出房价与各变量的关系:(1)房价y与人均GDP x之间的关系:(2)房价y与人均年收入x之间的关系:回归方程为:y=0.1867x-211.4345根据以上结果我们可以建立以下数学方程模型,即:y=ax1+bx2利用各年数据,解出线性方程组,即求出a、b的值。

2)模型求解房价与各变量之间的关系如上表已列出,将以上数据代入方程组,应用数学软件matlab 解线性方程组得a= 0.0492 b=0.1348于是房价与个人GDP和人均年收入的关系为:y=0.0492x1+0.1348x2四、对各个变量的预测对各变量进行预测,从而进一步对房价的预测。

房地产定价数学建模

房地产定价数学建模
模型应用
利用该模型可以快速准确地预测房 地产价格,为开发商和投资者提供 决策依据。
应用案例二
01
时间序列模型
时间序列模型是一种基于时间序列数据的数学建模方法,通过分析历史
数据来预测未来房地产价格走势。
02
模型建立
将房地产价格数据按照时间序列进行排列,并选择适当的时间序列模型
(如ARIMA模型、指数平滑模型等)进行拟合。
使用测试数据对训练好的模型进行评 估,计算模型的准确率、召回率、F1 值等指标,以衡量模型的性能。
模型优化
通过调整模型参数、增加或减少特征 等方式优化模型,提高预测精度。可 以采用交叉验证、网格搜索等技术进 行参数调优。
04
房地产定价的时间序列模型
时间序列模型的建立
1 2
确定模型类型
根据房地产市场的历史数据和变化趋势,选择适 合的时间序列模型,如ARIMA、指数平滑等。
02
房地产定价数学模型的基本 原理
线性回归模型
总结词
线性回归模型是一种预测模型,通过找出影响房地产价格的 主要因素,并建立它们之间的线性关系来预测房地产价格。
详细描述
线性回归模型假设房地产价格与诸如建筑成本、地价、利率 等变量之间存在线性关系。通过最小二乘法等统计技术,可 以估计出这些变量的系数,从而预测房地产价格。
数学建模在房地产定价中的作用
提高定价的准确性和科学性
数学建模能够综合考虑各种因素,建立合理的定价模型,提高定 价的准确性和科学性。
优化资源配置
通过数学建模,可以对不同地区、不同类型、不同时间段的房地产 进行合理定价,优化资源配置,促进市场健康发展。
促进市场公平竞争
数学建模能够减少信息不对称和市场垄断等问题,促进市场公平竞 争,保护消费者利益。

关于房价问题数学建模分析

关于房价问题数学建模分析

关于房价问题数学建模分析摘要:近几年,我国出台了一系列事关民生国情的利民政策,但房价的持续增高仍让很多人把买房当成了一种奢望。

本文根据题目要求,进行了合理假设,主要从影响房价的因素方面考虑,建立相应数学模型,根据数据分析了我国当前房价的合理性,预测房价未来走势,提出具体措施使房价回归合理,并进行定量分析。

关键词:房价升高数学模型正态分布模型一、问题重述房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。

我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,从国家领导人、地方政府官员,到开发商、专家学者、普通百姓通过各种媒体表达各种观点,但对于房价是否合理、未来房价的走势等关键问题,至今尚未形成统一的认识。

请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据,选取我国具有代表性的几类城市对房价的合理性及房价的未来走势等问题进行定量分析;根据分析结果,进一步探讨使得房价合理的具体措施。

二、问题分析考虑评判房价的合理性,我们首先想到与房价密切相关的各种因素,认为房屋的合理定价应该由房屋所在城市的经济发达程度、环境优美度、居民归属感等生活标准来反应,而这些项目又有很多是难以量化的指标,因此我们采用了城市居民年人均收入刻画生活标准。

房屋的价格应该满足本市居民的居住需要,于是这部分我们没有引入投资等市场因素。

三、数学模型的建立及求解(一)模型假设:引起房地产市场波动的因素有很多,居民收入、供求比例、空置率、货币政策、建设成本、国家政策和人口结构及变化趋势等众多因素。

我们从中提取重要因素对次要因素作出如下假设:1、城市消费状况用人均收入来代替。

2、忽略消费成本如交通费用、物业费用、停车费用等对住房价格的影响。

3、在同一地区房价为销售均价,没有街道区域差异。

4、根据经济发展状况分别对部分城市来概括全国城市的房屋均价,排除特殊情况。

(二)城市房价合理性模型建立及分析符号说明:Mes:单位面积商品房售价Sqr:当地人均住房居住面积Te:预期使用当年全年收入归还房贷所需年数Mr:购买商品房支付的总价Se:当地人均年收入Mr=Mes*Sqr模型建立 :若以当地人均年收入Se作为人口收入正态分布模型的x=0,人均年收入的n2倍定为x=n,则x~N(0,1),函数图象如图3-1(a)所示。

房地产行业的数学建模

房地产行业的数学建模

房地产⾏业的数学建模房地产⾏业的数学建模⽬录⼀问题重述⼆模型假设三住房需求模型1.住房需求影响因素分析2.数据收集3.使⽤SPSS软件对需求模型进⾏相关性分析4.使⽤SPSS软件对需求模型进⾏回归拟合5.⽤EViews软件画出时序图6.⽤EViews软件回归拟合7.数据预测四、住房供给模型1.住房供给影响因素分析2.数据收集3.⽤SPSS软件对供给模型进⾏相关性分析4.进⾏回归拟合5.⽤EViews软件画出时序图6.⼆次曲线拟合7.数据预测五、房地产⾏业与国民经济其他⾏业关系模型1.房地产⾏业与其他⾏业关系分析2.数据收集3.使⽤SPSS软件分析各指数3.1房地产业增加值指数与国内⽣产总值指数的关系3.2 房地产⾏业增加值指数与交通运输与邮政业增加值指数的关系 3.3房地产⾏业增加值指数与批发和零售业增加值指数的关系3.4 房地产⾏业增加值指数与其他三个⾏业增加值指数的关系4.EWews画出时序图5.⼆次曲线拟合6.结果分析五、房价模型1.房价影响因素分析2.数据收集3.⽤SPSS软件进⾏回归拟合4.画出时序图5.回归拟合6、数据预测⼀问题重述房地产⾏业既是国民经济的⽀柱产业之⼀,⼜是与⼈民⽣活密切相关的⾏业之⼀,同时⾃⾝也是⼀个庞⼤的系统,该系统的状态和发展对国民经济的整个态势和全国⼈民的⽣活⽔平影响很⼤。

近年来,我国的房地产业发展迅速,不仅为整个国民经济的发展做出了贡献,⽽且为改善我国百姓居住条件发挥了决定性作⽤。

但同时房地产业也⾯临较为严峻的问题和挑战,引起诸多争议。

2011年国务院发布新的措施,抑制投资投机性购房,建设经济适⽤房和保障房,努⼒解决低收⼊家庭的住房困难问题。

因此,认清当前房地产⾏业的态势,从定量⾓度把握各指标之间的数量关系,依据较为准确的预见对房地产⾏业进⾏有效的调控,就显得尤为重要。

我们将对以下问题进⾏初步探讨:1.对有关数据进⾏统计分析,寻求影响房地产市场需求的经济因素,建⽴住房需求模型。

房地产数学建模

房地产数学建模

房地产问题分析摘要房地产行业与百姓的生活息息相关。

近年来,由于房地产价格的不断攀升,房地产行业已经引起了社会的广泛关注。

本文分别就影响房地产价格的因素和未来房地产价格的趋势进行了细致的分析研究和预测,并最终提出了相应的改进措施和调控房价的建议。

对于问题一,由于影响房地产价格的因素众多,我们就选取了人均消费水平,人均GDP 占有量,人口密度,土地成本,银行贷款利率五个与房地产价格有着密切关系的指标在全国范围内进行研究分析。

我们采用一元线性回归模型利用SPSS 统计软件分别对五个指标与房地产价格进行线性回归,得到线性回归方程和相关系数。

并通过分析得出:土地成本、人均GDP占有量、人口密度(市场需求)、人均消费水平这四个因素对房地产价格的影响较大,而银行贷款利率的影响相对要小一些。

因此,最后我们使用多元线性回归模型,利用SPSS 软件对四个变量进行了多元线性回归,并得出了回归方程。

问题二,虽然线性回归对房价的形成预测比较高,但它只是根据有限的几个因素来确定的,于是我们通过分析确定了可以利用华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的灰色预测模型来进行求解。

我们建立了灰色预测模型并进行了模型的求解。

通过对模型的求解,预测得了未来几年的房价,并就调控房价提出了一些政策建议,对建议可能产生的效果进行了科学的预测和评价。

关键词:房地产SPSS MATLAB 灰色预测模型线性回归模型一、问题重述虽然国家多次进行宏观调控,多次调整利率、存款准备金率等,试图对房地产市场进行调控,但自1998年实行房改以来,我国大部分城市的房价出现了普遍持续上涨情况。

一方面,房价的上涨使得新进入城市或需要购房者的生存成本大幅增加,导致许多中低收入人群买房难,其它消费也无法提升;另一方面,部分投资或投机者通过各种融资渠道买入房屋进行出租或空置,期望因房价上涨而获得超高回报,导致房价居高不下。

因此,如何分析影响房地产市场的因素,从而进行有效的抑制房地产价格的过快上涨,同时能够抑制房地产市场的投机行为,是一个需要进行全面而深入研究的问题,也是普罗大众非常关心的社会问题。

研究生数学建模房地产行业的数学模型

研究生数学建模房地产行业的数学模型

研究生数学建模房地产行业的数学模型房地产行业是一个重要的经济领域,对于经济发展和社会稳定起着至关重要的作用。

数学建模可以帮助我们深入了解房地产市场的运作机制,预测未来趋势,并提出相应的政策建议。

本文将从不同角度出发,构建一个涵盖不同方面的房地产行业数学模型。

首先,我们可以从市场供求关系的角度出发,构建一个房地产市场模型。

在这个模型中,我们可以考虑以下几个因素:人口增长率、土地供应量、购房者收入水平、利率水平、政府政策等。

通过考虑这些因素,我们可以建立一个供求曲线,来描述房地产市场的平衡价格和数量。

通过该模型,政府可以根据市场的需求和供给状况来制定相应的政策,从而实现房地产市场的平稳运行。

其次,我们可以从风险管理的角度出发,构建一个房地产投资模型。

在这个模型中,我们可以考虑以下几个因素:投资者的预期收益、风险承受能力、市场波动性等。

通过建立一个投资组合模型,我们可以分析房地产投资的风险和收益的关系,并通过优化投资组合来减少风险。

这个模型可以帮助投资者更加科学地进行投资决策,以获取最大的收益。

此外,我们还可以从房地产市场波动性的角度出发,构建一个波动性模型。

在这个模型中,我们可以利用数学方法对房地产市场的波动性进行建模和预测。

通过该模型,我们可以更好地理解房地产市场的波动规律,从而提前预警市场风险,并制定相应的风险管理策略。

总之,房地产行业的数学建模可以帮助我们更好地了解房地产市场的运作机制,预测未来趋势,并提出相应的政策建议。

通过建立不同的数学模型,我们可以从不同角度研究问题,并综合考虑各种因素,以便更好地指导实际工作。

希望本文的介绍能够给读者对于这一研究方向提供一些启发和思路。

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题

住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。

本文依照题中所给出的数据,对3个问题分别建立模型并求解。

针对问题1,首先利用Excel 建立图表,绘制出历年房价走势图。

然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。

同时,求出确定性系数2R ,依据2R 是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。

计算得出的指数型及二阶多项式型拟合方程:0.12811()678.81i x i e =、22()12.5950.274716.38x i i i =++,由此预测出2010年房价分别为4080元/平米、3888元/平米。

为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。

通过比较实际值与预测值的平均偏差值ME 的大小,选择出合适的α。

预测出2010年的房价为3800元/平米。

最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量1x 、2x 、3x 的原始数据,以实际房价()P i 作为因变量,用Matlab 软件拟合出多元线性方程:1123()0.02020.1389() 1.1319()0.0084()f P i x i x i x i ∧=--⨯+⨯+⨯。

代入相关数据,求出历年的最终房价预测值为3866元/平米。

针对问题2,通过Excel 绘制出历年平均房价与人均GDP 的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数2R 。

2R 的值分别为:0.8673;0.9929;0.9982;0.9986。

由此判断,因2阶多项式型拟合方程的2R 不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:2()(706)[()]0.3236()177.06P i E G i G i ∧=--⨯+⨯-为平均房价与人均GDP 的关系方程。

最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP 的关系。

数学建模一等奖优秀论文——房地产

数学建模一等奖优秀论文——房地产

房地产业可持续发展问题摘要房地产业是我国国民经济重要的组成部分,近年来房价问题成了人们热议的话题。

本文针对房地产业可持续发展问题进行了探究,建立了合适的模型。

问题一:利用灰色预测方法建立了杭州房地产价格的预测模型,查找2003年到2011年杭州房地产价格数据用MATLAB求解对接下来两年杭州的房地产价格进行了预测。

针对土地交易价格、人均可支配收入、人均GDP、房地产投资额、房屋租赁价格这五个因素对商品房售价的影响建立了灰色关联度模型,按照各自关联度由大到小排序,最后得到五个因素影响程度由大到小为土地交易价格、人均可支配收入、人均GDP、房地产投资额、房屋租赁价格。

问题二:考虑买房者的买房压力,用按揭还款公式计算出房价作为房地产价格合理区间的上限;同时考虑房地产商的合理利润,以利润为20%时的房价作为房地产价格合理区间的下限。

用最新数据求解得到房地产价格合理区间为(5435元,8069.5元)问题三:先综合考虑保障性住房比例以及其他各个因素对房价的影响,建立多元线性回归方程。

用SPSS求解出线性回归方程后再以其他因素相同时来考虑保障性住房比例对房价影响。

最后得出保障性住房比例的增加会使得房价减少,其系数为-0.104。

.这也说明影响程度并不大。

问题四:结合前三问的研究成果和目前的房地产市场形式。

从目前房价虚高的原因,制定符合中国国情的房价合理区间,处理房价问题手段探索三个方面对房地产市场进行了分析和总结。

对处理房价问题提出了4点建议。

关键词:灰色预测 MATLAB 按揭还款公式线性回归 SPSS一、问题重述房价问题是近几年人们热议的话题,“买房贵,买房难”成为当今社会的一大问题,已经严重的影响到了社会的和谐发展。

政府在也在不断的出台政策进行宏观调控,这些举措在一定程度上防止了房地产市场的大起大落,维护了房地产市场的可持续发展。

目前,房地产市场进入观望状态,成交量大幅减少,但大多数大中城市房价环比仍上涨。

数学建模论文(房地产)

数学建模论文(房地产)

关于房地产投资盈利问题摘要:问题:为了更好地反映房地产的运作过程,本文在房价形成的基础上进一步讨论了影响房价的因素,并对演化机理作了细致深入的分析,然后建立数学模型,总结出影响房价的主要因素:市场供求关系、贷款数额。

从而就房地产投资、开发建设行为,金融监管力度、土地资源管理等方面给出相关建议。

通过模型,对其后房地产市场进行预测,相信房地产市场在政策落实的基础上形式将会一片大好----杜绝房价的泡沫问题,解除不符合市场的正常形态,使购房者,开发商,政府机构之间达到一种动态的利益平衡。

对于第一问,我们选取了房地产开发投资,商品房销售价格与全市生产总值有着密切关系的指标进行研究。

我们采用多元线性回归模型利用SPSS统计软件分别对两个指标与全市生产总值进行线性回归,得到线性回归方程和相关系数。

他们之间的互动越来越强。

对于问题二,我们运用灰色关联分析模型和相关分析方法,得出影响房地产发展的主要因素及关X1(k+1)=[X0(1)-u/a]*e-ak–u/a;X0(k+1)=X1(k+1)-X1(k)X1(k+1)=1557.4*e-0.0155*K-1557.4;X0(k+1)=1557.4*(1557.4* e-0.0155*K-1557.4* e-0.0155*(K-1));k=1,2,....nX0(k+1)表示第K年的人均住房面积。

X0(1)=19.4;对2015年该市人均住房面积进行了预测并得出,2015年该市人均住房面积达到28.85平方米。

关键词:多元先行回归 SPSS 灰色关联分析相关分析灰色预测综合评价方法一、问题重述长久以来,房地产问题都得到了国人很大的关注关于对房地产问题的分析和预测一直没有停止过。

住房问题是关系民生的大问题。

自2001 年以来中国经济进入了以住房、汽车、电子通讯、能源和基础原材料业较快发展的新一轮增长周期。

2004 年1-2 月份固定资产投资完成额增长53%,经济运行中出现了新的不平衡,能源、运输供应紧张,居民消费品价格指数(CPI)开始走高(6 月同比上涨5%),中国经济运行出现偏热的迹象。

房地产价格预测(数学建模论文)

房地产价格预测(数学建模论文)

装订线摘要房价问题事关国计民生,已经成为全民关注的焦点议题之一。

本文主要对房价的合理性进行分析,估测了房价未来走势。

同时进一步探讨使得房价合理的具体措施,根据分析结果,定量分析可能对经济发展产生的影响。

对于房价合理性的分析,选取北京,咸阳,大庆三类城市数据,以居民承受能力满意度和房地产商收益满意度作为目标函数,建立了多目标规划模型分析合理性。

此外,考虑到目前中国的房地产市场存在一定的泡沫成分,为使模型更贴近实际,利用CPI指数修正模型,分析出实际房价不合理,存在严重的泡沫成分。

针对房价的未来走势,采用灰色预测模型对未来房价进行预测。

绘制房价未来走势曲线,得到在国家政策及社会环境相对稳定的条件下,房价仍然会继续上涨的结论。

并根据所得结果,提出了调整房价的三点措施。

利用房价的财富效应以及房产投资与GDP之间协整关系分析了房价对国民经济的影响。

由分析得知:房价的不合理上涨会使房地产财富虚增,产生房地产泡沫,影响国民经济的正常发展。

考虑到所涉及的经济学变量均是非平稳的。

为了避免建立虚假回归模型,在对房价模型进行修正和分析房价对国民经济的影响时,我们利用EVIEWS软件,建立了基于单元根检验的协整性分析模型。

关键词:多目标规划灰色预测模型EVIEWS 单位根检验与协整分析一、问题重述1.1问题背景房价问题事关国计民生,对国家经济发展和社会稳定有重大影响,一直是各国政府大力关注的问题。

我国自从取消福利分房制度以来,随着房价的不断飙升,房价问题已经成为全民关注的焦点议题之一,从国家领导人、地方政府官员,到开发商、专家学者、普通百姓通过各种媒体表达各种观点,但对于房价是否合理、未来房价的走势等关键问题,至今尚未形成统一的认识。

1.2问题提出请根据中国国情,收集建筑成本、居民收入等与房价密切相关的数据分析以下问题:(1)选取我国具有代表性的几类城市对房价的合理性;(2)房价的未来走势等问题进行定量分析,(3)根据分析结果,进一步探讨使得房价合理的具体措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊数学在房地产估价问题上的应用与评估摘要:随着我国房地产市场的不断发展与壮大,房地产交易案例的急剧增加,房地产估价在人们的生活、工作中已成为不可缺少的一项专业性、技术性工作,并且国家实行了房地产估价制度。

如何运用合适模型对房地产价格的形成,演化机理,价格评估及如何有效地抑制价格上扬等已成为摆在我们面前的问题。

本文利用初等模型解释房地产价格形成及演化机制,将模糊数学运用于房地产估价中,引进了隶属函数、贴近度、择近原则的概念,研究了权重确定方法,应用了“快速递减加权”理论,将比较法评估房地产价格时选取可比案例以及权重确定的科学理论依据运用于实际项目中,很好地解决了比较法评估房地产价格时的难题。

从而避免了以往对可比案例及权重选取的主观随意性问题。

该方法对大宗房地产价格的评估具有广泛的推广应用价值。

本文注重影响房地产价格的主要因素——土地价格的,原材料,人均收入,供求关系,利率水平;大胆假设他们与房地产的关系依次为指数关系,正比,二次曲线,反比关系。

忽略了很多次要的及相对微弱因素。

建立的模型为E=f(P,B,R,Q,T,C)=V1λD*G+|V2K1B/RQ+V3aeΨ+V4K2P+r,G为综合评判后的建设成本,V1···V4为各因素对房价影响的权重,为0到1范围内的常量。

在估价出单座建筑价格后,再与其同类建筑比较,利用模糊数学理论估价出相对均稳的价格。

通过模型中的主要因数与房价的关系可采取如下措施来抑制房价的过快增长:一﹑政府通过控制建材、上调利率水平、调节供求关系等手段进行宏观调控。

二﹑加强市场监控和信息化建设。

三﹑充分发挥市场化对资源的配置作用,促使房地产市场供需平衡、价格平稳。

这些政策符合我国房地产业的现状。

对房地产管理者起到一定的政策导向作用。

一、阐述问题近几年来,我国各大城市的房价出现了普遍持续高涨、高居不下的现象。

房价的上涨使生活成本大副增加,导致许多中低收入人群买房难。

因此如何有效的抑制房地产价格上涨,是一个备受关注的社会问题。

现在请你就以下方面的问题进行讨论:问题一建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致的分析;问题二通过分析找出影响房价的主要因素;问题三给出抑制房价的政策建议;问题四对你的建议可能产生的效果进行科学预测和评价。

二、模型假设①假设房地产价格与消费需求成二次曲线关系;②房价与银行利率成反比关系;③房价与土地价格成指数关系;④房价与人均收入、建材费用成正比关系;⑤忽略外来投资者对房地产价格的影响;⑥忽略楼盘地理位置及周围交通、区域聚合度、社区成熟程度的影响;⑦不考虑房屋拆迁及家庭分裂、重组的影响;⑧国家政策及进入该地区的外来人口在所考虑的时间段内稳定;⑨在模型中不考虑商家炒作对房地产价格的影响;⑩房屋价格是在完全市场经济条件下确定的;⑪对房地产的估价是建立在公平、通明、合法的原则上的。

三、符号说明B 表示该房的便利程度(购物、交通、教育、医疗等);E 表示房地产平均销售价格;M 表示所考虑地区内的住房需求P 表示其他的人均收入;T 表示土地价格;R 表示距市中心的距离;G 所考虑的房地产的面积;Q 表示所考虑时期内的银行利率; D 为建筑物每平方米的造价;X 表示房地产的需求量;Di 表示与所考虑房地产同类型建筑每平方米的价格;Ei 表示所考虑的同类型不同房地产的价格;四、模型建立问题一二:根据房地产最有效、相类比较、预测、估价时点、公平、合法原则建立房地产估价模型。

(一)先考虑房地产建设成本对房地产价格的影响,建造不同类型房地产如医院,教学楼,厂房等受许多不同因素的影响。

在估价单一种建筑时考虑其已知的同类型建筑的生产成本,利用模糊理论来估计比较均衡的建设成本费用。

1.快速估价线性加权数学模型a. 建立step 1 : 构造工程特征树形编码工程特征编码的树形结构是对拟估工程特征的详细描述。

如图2所示:特征编码建筑工程安装工程市政工程……一般建筑工程土石方工程打桩工程教学楼厂房家属楼……结构特征基础特征外墙特征……箱形基础……图2 工程特征编码树形结构工程特征编码向量t=(t1,t2,…,t30)工程特征编码分段描述:t1 :工程大类t2 :工程分类t3 :工程用途t4 :工程结构特征t5-t20 :工程详细特征t21-t30 :调整参数编码,分别代表层数,层高,进深,抗震裂度,外形,户居住面积等外部参数基本段 :t1-t3位编码置换段 :t5-t20位编码可调整段 :t21-t30位编码step 2 :建立同类工程特征矩阵根据特征向量t ,在已完工程文件中工程大类,工程分类和工程用途相同的n个工程为同类工程,要求基本段相同。

n个同类工程的特征向量构成了同类工程特征矩阵TZ n×30 。

t1,1 t1,2 ... t1,30t2,1 t2,2 ... t2,30TZ n,30= . .. .. .t n,1 t n,2 ... t n,30step 3 : 隶属度与隶属函数拟估工程与某个同类工程在某一位特征编码位上的相似程度即为隶属度。

拟估工程中,第i位编码与第j个同类工程的第i位编码的相似程度表示为u ij。

隶属度用隶属函数计算:u ij=1-|(x i-x ij×c i)/x i| 公式(1)x i :拟估工程第i位特征编码值x ij :第j个同类工程的第i位特征编码值c i :x i与x ij的相似系数step 4 : 建立隶属矩阵用隶属函数可求得拟估工程x与其同类工程的相似程度描述矩阵—隶属矩阵U30×nu1,1 u1,2 ... u1,nu2,1 u2,2 ... u2,n. .u = . .. .u30,1 u30,2 ... u30,n=T×TZ Tt1,1 t1,2 ... t1,nt2,1 t2,2 ... t2,n=(t1,t2,…,t30)× . .. .. .t30,1 t30,2 ... t30,n我们利用模糊数学中的欧氏距离公式:nd p(x,y)=( ∑|x i-y i|p)1/pi=1公式(2)x=(x1,…,x n) ,y=(y1,…,y n)∈R n ,p>0是固定的参数(当p=2 时,即为欧氏距离。

)和贴近度计算公式:(A,B)=1-c(d p(A,B)α)1/α,公式 (3)其中c, 是适当选取的参数,并保证0≤(A,B)≤1(A,B为模糊集合)来计算同类工程的贴近度。

为方便起见,我们把各位工程特征的隶属度计算简化为线性关系:令α=1, c=1/n,则拟估工程x和同类工程y特征编码的欧氏距离为nd(x,y)=∑|u x(x k)-u y(x k)|k=1(x,y)=1-1/n×d(x,y) 公式(4)step 5 : 给出特征编码线性权重向量由预算人员对每位详细特征编码,按其各项经济指标所占造价比重等因素,给出线性权重向量。

r=(r1,r2,...,r30)20而∑r i=1i=5 (公式 5)step 6 : 建立线性加权偏离度矩阵P(A,B)=r×u=(r1,r2,…,r30). U30×n=(p1,p2,…,p30)30P j=∑r i×u iji=1 公式(6)利用模糊线性加权变换,对隶属矩阵u进行模糊权重向量的偏移计算。

则p(A,B)即为拟估工程A与同类工程B的贴近度。

Step 7 : 确定参照工程选p中最大值 p1(A,B1),次大值p2(A,B2),第三大值p3(A,B3),则同类工程B1,B2,B3为参照工程。

b. 方法评价与检验①利用树形工程特征编码,科学地涵盖了工程全貌;②采用简化了的欧氏距离计算法,体现了快捷的特点;③经实验室原型系统测试,确定参照工程快速准确,调整方便,非常实用有效。

2. 公式法模型(1) 公式设n个同类工程相对于拟估工程的贴近度为p i, i=1,2,…,n,满足p1≥p2≥…≥p n对应同类工程平米造价分别为D1,D2,…,D n,D1:贴近度为p1的同类工程平米造价D2:贴近度为p2的同类工程平米造价...D n:贴近度为p n的同类工程平米造价拟估工程平米造价D*=p1d1+p2(1-p1)d2+p3(1-p1)(1-p2)d3+…+1/n(1-p1)(1-p2)…(1-pn)(d1+…dn(公式 7)(2) 分析简化贴近度越大,权重也越大,调整作用就大;反之,就小。

权重呈指数级递降,衰减很大,所以取最贴近的三个同类工程作为参照工程,上式简化为D*=p1D1+p2D2(1-p1)+p3D3(1-p1)(1-p2)+(1-p1)(1-p2)(1-p3)(D1+D2+D3)/3(公式 8)(3) 系数调整参照工程与拟估工程毕竟只是相似而不是相同,所以应该对估价进行调整,乘上拟估工程的工程规模(建筑面积),并乘以调整系数:E=λ•D*•G=λ•G •[p1D1+p2D2(1-p1)+p3D3(1-p1)(1-p2)+1/3(D1+D2+D3)(1-P1)(1-P2)(1-P3)](公式 9)G :拟估工程规模(建筑面积)λ:调整系数由于工程建设地点、功能要求和设计风格有所不同,有关工程主要特征总是在变化,需要对不同特征的工程造价变化情况进行比较分析,估算出调整系数λ,比如:① 一般建筑结构不同层高每增减10cm 对平米造价的影响:② 1.3%; ③ 住宅楼不同建筑面积对平米造价的影响:以户均55m 2作为比较的基准上面所列仅是工程特征变化对工程造价影响情况的一部分。

需要指出的是,随着建筑工程新工艺和新材料的应用,上述影响系数也是动态变化的。

各种影响系数的确定,有利于对拟估工程造价进行有效的换算和修正。

(二) 分析测算模型组本模型组主要对工程技术数据进行分析和测算,用模拟仿真的方法提供用户所需的分析和预测结果。

其一,可对单位工程或对分类工程的费用比重,造价比重,工程构成比重及材料比重等经济指标加以分析;其二,可由预算人员人材机单价和主要费用进行调整,全面观察分析各项因素的变化对工程造价的影响,并根据调整结果进行预测。

1、房地产开发商所生产房屋数量对房地产价格的影响,数量的增加必然价格的下滑,在完全市场经济中价格是由市场上的供应量决定的。

一个时期,由于某种商品的上市量大于需求而销售不畅,造成价格下跌,销售者无利可图,转而经销其他商品。

经过一段时间以后,商品上市量大减,又导致价格上升。

这种供求关系决定市场经济中价格和数量的振荡关系。

这种振荡会导致两种结果:一是振荡幅度逐渐减小,最终趋于平衡;二是振荡幅度越来越大,最终导致市场混乱。

下面借助经济模型来研究数量与房价的关系,市场经济中,每种商品存在两个不同的函数。

相关文档
最新文档