夏比冲击试验报告

合集下载

BS EN 10045-11990 金属材料夏比冲击试验 第一部分测试方法 中文版

BS EN 10045-11990 金属材料夏比冲击试验 第一部分测试方法 中文版

BS EN 10045-11990 金属材料夏比冲击试验第一部分测试方法中文版第一部分:测试方法(V和U型缺口)实施对象和领域:本标准详细的描述了金属材料夏比冲击试验的的细节。

3、试验原理:用规定高度的摆锤对处于简支梁扎的缺口试样进行依次性打击,测量试样折断时的冲击吸取功。

4、名词:本标准所适用的名词如表1和图1、图2:表1——名词5、试样:5.1 取样数量和取样位置应该在相应的产品标准中作出详细讲明。

5.2 标准试样应该是55mm长,同时它的截面是10mm见方的正方体,在长度的中心部位开有缺口,两种型号的缺口详细讲明如下:a)V型缺口角度45度,缺口深2mm,缺口弯曲半径0.25mm,如不能制备标准试样,能够采纳宽度7.5mm或5mm等小尺寸试样,缺口应该开在狭窄的一面。

B)U型缺口或锁眼缺口试样,缺口深5mm ,缺口弯曲半径1mm。

除了铸造试样缺口所在的两平行表面达到所需要的周密度则能够不进行机加工以外,原则上试样应该机加工完成。

5.3 缺口所在平均平面应垂直于试样的纵轴线。

5.4 试样详细尺寸公差在表2中给出。

表2——试样尺寸许用公差5.5 。

如果相应的产品标准只能承诺,不管如何,只有两个试样的形状和尺寸相同,那他们的结果比较才有意义。

5.6 机加工应该尽可能的不改变试样的性能,例如,冷热加工应该把对试样的阻碍减到最小。

开缺口应该专门小心。

6.1 试验机应该被严格的制造和安装并符合欧洲标准10 045-2的要求。

试验机要紧的特点含义见表3。

表3——试验机特点6.2 当摆锤式冲击试验机的冲击能量为(300±10)J并采纳标准试样时,则试验视为在正常条件下进行。

在上述条件下确定的缺口冲击功的缩写符号为:——KU 适用于U型冲击试样——KV 适用于V型冲击试样例如:——KV=121J:——名义能量300J——标准V型缺口试样——断裂吸取功121J6.3 试验机有不同的承诺冲击能量,因此在刻度盘上指针所指的冲击能量前应增加KU或KV的标记。

夏比冲击试验报告

夏比冲击试验报告

夏比冲击试验报告夏比冲击试验报告一、实验目的1. 掌握冲击试验机的结构及工作原理2. 掌握测定试样冲击性能的方法二p实验内容测定低碳钢和铸铁两种材料的冲击韧度,观察破坏情况,并进行比较。

三p实验设备3. 冲击试验机4. 游标卡尺图1-1冲击试验机结构图四p试样的制备若冲击试样的类型和尺寸不同,则得出的实验结果不能直接比较和换算。

本次试验采用U型缺口冲击试样。

其尺寸及偏差应根据GB/T229-1994规定,见图1-2。

加工缺口试样时,应严格控制其形状p尺寸精度以及表面粗糙度。

试样缺口底部应光滑p无与缺口轴线平行的明显划痕。

图1-2 冲击试样五p实验原理冲击试验利用的是能量守恒原理,即冲击试样消耗的能量是摆锤试验前后的势能差。

试验时,把试样放在图1-2的B处,将摆锤举至高度为H的A处自由落下,冲断试样即可。

摆锤在A处所具有的势能为:E=GH=GL(1-cosα) (1-1)冲断试样后,摆锤在C处所具有的势能为:E1=Gh=GL(1-cosβ)。

(1-2)势能之差E-E1,即为冲断试样所消耗的冲击功AK:AK=E-E1=GL(cosβ-cosα) (1-3)式中,G为摆锤重力(N);L为摆长(摆轴到摆锤重心的距离)(mm);α为冲断试样前摆锤扬起的最大角度;β为冲断试样后摆锤扬起的最大角度。

图1-3冲击试验原理图六p实验步骤1. 测量试样的几何尺寸及缺口处的横截面尺寸。

2. 根据估计材料冲击韧性来选择试验机的摆锤和表盘。

3. 安装试样。

如图1-4所示。

图1-4冲击试验示意图4. 进行试验。

将摆锤举起到高度为H处并锁住,然后释放摆锤,冲断试样后,待摆锤扬起到最大高度,再回落时,立即刹车,使摆锤停住。

5. 记录表盘上所示的冲击功AKU值.取下试样,观察断口。

试验完毕,将试验机复原。

6. 冲击试验要特别注意人身的安全。

七p实验结果处理1.计算冲击韧性值αKU.AKUαKU =S02 (J/cm) (1-4)式中,AKU为U型缺口试样的冲击吸收功(J); S0为试样缺口处断面面积(cm2)。

夏比摆锤冲击试验方法

夏比摆锤冲击试验方法

夏比摆锤冲击试验方法
夏比摆锤冲击试验方法,简称夏比试验方法,是指一种通过锤头下落时产生的冲击力来测试样品的材料性能的试验方法。

该方法主要用于评估材料在高速冲击下的性能,如冲击强度、冲击韧性、断裂模式等。

夏比试验方法由法国工程师夏比在20世纪60年代发明,是目前国际上广泛应用的一种材料性能测试方法。

其主要原理是:利用重量不同的锤头作用于材料表面,测量不同高度、不同质量锤头下落时材料产生的冲击力,从而评价材料的冲击性能。

夏比试验方法的具体步骤如下:
1. 试样制备:先根据标准要求制备符合规格的试样。

通常采用标准尺寸的矩形试样,宽度为10mm,长度为60mm。

2. 夏比摆锤装置设置:把夏比摆锤装置放在水平台面上,装置中心垂直于地面,保证试验时摆锤支架处于稳定的状态。

3. 夏比锤头选择:选择不同质量的夏比锤头,分别为0.5kg, 1.0kg, 1.25kg, 1.5kg, 2.0kg等等。

4. 夏比试验操作:将试样放置在夏比摆锤装置的中央支架上,按下按钮使夏比摆锤释放,时间记录装置开始计时。

当摆锤到达最高位置后,开始自由落下,落到试样时会对其产生冲击力,此时力值被测量和记下。

5. 数据记录和分析:根据测量得到的数据,绘制出落锤高度与冲击力关系的夏比曲线,从而计算出材料的冲击强度、韧性指数等性能参数。

夏比试验方法具有操作简单、成本低,试验结果可靠等优势,适用于各种材料的冲击性能评估,如塑料、金属、复合材料等。

在新材料的开发和材料性能评价领域有着广泛的应用前景。

金属材料夏比摆锤冲击试验研究

金属材料夏比摆锤冲击试验研究

金属材料夏比摆锤冲击试验研究摘要:通过测量金属材料的冲击吸收能量并分析测量结果得到相关质量数据,夏比冲击就是这样一种为确定金属材料受到负荷的能力而开发的一项实验,他可以将这一能力量化为数据,并以此来作为选择相对应的适用材料的指标,或是作为研发新材料的依据。

当材料被确定冶金质量、热加工质量和韧脆转变温度后,冲击的能量K会显仪器设备上。

本文通过分析其标准制定、试验设备要求和范围来研究这一传统的力学性能试验方法。

关键词:夏比冲击、金属材料引言夏比冲击是当今被应用最为广的试验方法,大多用于评定材料能够受到荷载冲击的能力或是说上限,它是一种动态试验,主要特点在于实行起来简单方便快捷。

当下的第二产业极度高速发展使得制造者和研发人员对于金属的要求也逐步提高,而以往曾有许多事故的发生是由于诸如金属疲劳这一些有关于金属本身特性受限而发生的,也是人们对此未曾注意到的点。

但是由于不同的金属材料差异过大,很难有一个统一的测量标准、测量方法,如拉伸试验无法测量出材料对缺口的敏感程度和韧脆性。

在这种情况下,夏比摆锤冲击试验作为可以测量出金属材料的受冲击极限,是十分重大的发现,必须被仔细的反复试验研究,争取尽量完整的掌握这一试验的优缺点以及不确定因素。

1 夏比摆锤冲击试验首先,夏比摆锤冲击试验可以评定的范围有:材料的韧性以及脆性、材料的冶炼质量、加工质量和材料对冲击载荷的敏感性。

材料韧性也分为多种,如冲击韧性、断裂韧性等等,差韧性材料较容易因突然发生的脆性断裂而影响整体机器,用作测试冲击韧性的多种实验中,夏比摆锤试验是最为传统的一种。

本文中的金属材料夏比摆锤冲击试验研究主要用的试验机器是名为数控式摆锤冲击试验机的检测机器,其精密度是被绝对保障的。

其原理是利用指针式金属摆锤冲击试验机,在恒定室温下打击机器背对放置的两个支座间的U或V型缺口,后冲击能量即为摆锤前后的势能差[1]。

2 冲击试样准备、过程根据GB/T229-2007《金属材料夏比摆锤冲击实验方法》,实验为在冲击试验机两支架间防止背对支架的试验金属材料,后放下规定高度的摆锤,最后读取显示的数值。

金属夏比缺口冲击试验方法

金属夏比缺口冲击试验方法
7 试验报告
试验报告应包括下列内容: a 本标准号; . b 试样标记( 如材料类别, . 炉号等) ; ‘ 试样尺寸; . d 试样的 制备情况( 如矫平方法) ; * 试验条件( 如弯曲圆弧半径 r拉紧力, . , 温度等) ; f 试验结果( 反复弯曲次数 N 或裂纹等缺陷) . b 。
7. 4
算:
A = 75 at t t .x (一 o 2 ) () 1 式中 '— 试样一半长度的膨胀量( ) A t 二 ; a 试样在试验温度的线膨胀系数(/ ) — 1` ; C t 试验温度( ; ℃) —
18 8
第一部分 主要建筑材料的 f 标准 检a方法 i 1
图2 缺口深度为2 的标准夏比u型缺口冲击试样 -
图3 缺口深度为5 m的标准夏比U型缺口冲击试样 m 注: 根据有关标准或双方协议, ① 试样可以 保留一或两个轧制面痕迹, 轴线应垂直于轧制面。 缺口 ② 对于端面定位的试样, 试样长度公差应为(5 01) m, 5 1 . m 缺口中心线至端面距离应为(75 0 2 .士
5 试样
51 冲击样坯的 . 切取应按产品标准或( 27 的 : 95 规定执行。 B 52 试样的制备应避免由于加工硬化或过热而影响金属的冲 . 击性能。 53 标准夏比缺口冲击试样的形状及尺寸在图 1图2 . 、 和图 3 中示出。
2 5" 2 +r
2 .+ 2 'Y 5
图 1 标准夏比V型缺口冲击试样
7 0- 8 0 0 0 2 5- 3 0
附 录 B
韧脆转变温度的测定
B 韧脆转变温度一般使用标准夏比V型缺口冲 1 击试样测定。 B 根据不同温度下的冲击试验结果, 2 以冲击吸收功或脆性断面率为纵坐标, 以试验温度 为横坐标绘制曲线。如图B 所示。 1

夏比冲击试验试验不确定度评估报告

夏比冲击试验试验不确定度评估报告

金属夏比缺口冲击试验不确定度评估报告1概述1.1参考文献检测方法:GB/T 229-2007《金属夏比缺口冲击试验方法》评定依据:JJF 1059-1999 《测量不确定度评定与表示》1.2分析仪器摆锤冲击试验机(深圳市新三思材料检测有限公司),校準證書給出的最大偏差為0.34%;試樣尺寸由0~200mm的數顯卡尺測量,校準證書給出的最大偏差為0.01mm。

1.3实验过程試驗溫度為23℃,相對濕度為60%。

2建立数学模型冲击吸收功由显示屏直接读出,冲击强度的数学模型为:y=x式中:y ——被测试样冲击强度的检测结果,Jx ——被测试样冲击吸收功的读出值,J;3测量不确定度来源的分析冲击试验测量不确定度评定来源因果图如下所示:4 测量不确定度分量的评定4.1实验结果重复性所引入的不确定度分量u (a)由于试样的不同材料材质的均匀性,每批甚至每个试样的加工、不同检测人员的操作甚至统一人员各次的操作、各个试验机的重复性等因素都在不同程度上存在着差异,因此,上述因素引起的试验重复性所引入的不确定度分量必须加以评定。

这可对多个试样的操作重复测试所得到的多组观测列,通过统计得到标准差来进行评定(即采用A 类评定方法)。

A 的平均值:496.01==∑n A nA 标准偏差:0.0182J 1)(2=--=∑n A A s i测试结果平均值的不确定度为:00407.0472.4/0.0182)1(===ks u4. 2 试验机误差所引入的不确定度分量u(2)实验室用于检测工作的冲击试验机,即工作试验机必须按照GB/T 3808-2002标准进行检定。

在通过各个项目检验后,还必须使用标准试样进行间接检验,并达到标准的各项要求。

试验机(深圳市新三思材料检测有限公司),校準證書給出的最大偏差為0.34% u(2)=3/0034.0=0.00196 4.3标准试样的不确定度分量u(3)根据GB/T 18658-2002标准,标准试样的允许误差s 当A <40J 时,s ≤±2J当A ≥40J 时,E ≤±5%AJ标准中要求将25个或更多标准试样的平均值作为标准能量值,同时计算标准差,对应此要求,最小自由度v=25-1=24,p=68%,查t 分布表,t 0.68(24)=1.02本例中,0.497<40J , u(3)= t 0.68(24)×n A /05.0 = 1.02×25/7.207*05.0 =2.124.4 冲击强度结果值进行数值修约所导致的不确定度分量u(4)数值修约导致不确定度的产生,如修约间隔为δx 则不确定度分量u rou (x)=0.29δx 。

金属材料夏比缺口冲击试验测定结果不确定度评定

金属材料夏比缺口冲击试验测定结果不确定度评定

金属材料夏比缺口冲击试验测定结果不确定度评定前言:测量不确定度用于描述测量结果的可疑程度。

不确定越小,测量结果越高。

JJF1059—1999《测量不确定度评定与表示》是测量中评定与表示不确定度的一种通用规则,适用于各种准确度等级的测量领域。

为使冲击功检测结果更可靠准确,本人对金属夏比冲击试验测量结果不确定度进行了以下评定。

1.实验条件被测量对象1)测量方法GB/T 229—2007《金属夏比缺口冲击试验方法》2)评定依据:JJF 1059—1999《测量不确定度评定与表示》3)试验条件:室温28℃4)使用仪器:JB30B吴忠摆锤式冲击试验机,冲击刀刃R=2mm5)测量过程:按照GB/T 229—2007进行试验,标准试样冲击值为28.6J,80.9J,127.0J和224 J每个能量组别使用5个试样,测量试样冲击功。

2.数学模型和输入量A类不确定度评定2.1 试样重复测量引起的分量评定1)标准试样进行试验冲击值水平为28.6J ,80.9J,127 J和224 J每个能量组别使用5个试样,各得到一个测量值见表1.2)每个能量组别使用5个试样,各得到一个测量值,实验标准偏差采用A类方法进行评定,按照JJF1059—1999推荐的极差法进行计算。

查表n=5时,c=2.33,实验标准差按式(1)计算,结果见表1.= (1)式中,R为极差(测量结果中的最大值与最小值之差),C为极差系数。

平均值按公式(2)计算,计算结果见表1(2)表1 测量结果和标准偏差标准偏差3)试样测量重复性所引起的标准不确定度分量的评定根据GB/T 229—2007,对每个能量水平都采用了3次测量的平均值来报测量结果,按均匀分布,根据JJF 1059—1999要求,其标准不确定度按公式(3)计算,计算结果见表(2)。

表2 试样测量重复性引起的标准不确定度分项2.2 标准试样检定的平均值的标准不确定项的评定按照JJF 1059—1999推荐的方法,5个标准冲击式样检定平均值不确定度按公式(4)计算计算结果见表3表3—标准试样检定时平均值的标准不确定度分项3.数学模型和输入量B类不确定度的评定3.1 试验机误差引起的标准不确定度分项的评定模型为:k式中,k为冲击功,为标准冲击式样标准值,b为间接检定确定的冲击式样机偏差。

金属夏比冲击试验方法

金属夏比冲击试验方法

金属夏比冲击试验方法嘿,咱今儿就来说说这金属夏比冲击试验方法。

你可别小瞧了这个试验,它就像是金属材料的一场“大考”呢!想象一下,金属材料就像是一位即将上战场的勇士,而夏比冲击试验就是在检验它到底有多强的战斗力。

在这个试验里,我们要给金属材料出各种难题,看看它能不能经受得住。

首先呢,得准备好专门的试验设备,就像给勇士准备好合适的武器一样。

然后把金属样品放进去,这时候就好像是让勇士进入了战斗场景。

当试验开始,金属样品就要面临高速冲击啦!这就好比是敌人发起了猛烈的攻击。

这冲击的力量可不小,能瞬间看出金属样品的“真功夫”。

要是这金属样品在冲击下表现得很出色,没出现啥大问题,那它就是个厉害的角色呀,就像勇士在战斗中英勇杀敌,毫发无损。

可要是它一下子就被冲击得七零八落,那咱就得好好考虑考虑它的质量咯!你说这金属夏比冲击试验重要不重要?那当然重要啦!它能帮我们判断金属材料是不是够结实,能不能在各种苛刻的环境下发挥作用。

就好比我们找工作的时候,人家用人单位也要通过各种测试来看看咱是不是真有本事呀!而且,这个试验还能让我们更深入地了解金属材料的特性。

就像我们了解一个人的性格一样,知道了它的优点和缺点,才能更好地利用它嘛。

在实际操作中,可不能马虎哟!每个步骤都得认真对待,就像我们做事得细心一样。

要是稍微有点差错,那得出的结果可能就不准确啦,这可不行!所以呀,这金属夏比冲击试验可不是随随便便就能做的。

得有专业的知识,得有严谨的态度,还得有一双善于观察的眼睛。

这就像是一场精彩的表演,每个环节都得做到位,才能呈现出最完美的效果。

总之呢,金属夏比冲击试验就是金属材料的试金石,它能让我们知道金属材料到底有多厉害,能不能担得起各种重任。

咱可得重视这个试验,让它为我们的生产和生活保驾护航呀!你说是不是这个理儿呢?。

夏比冲击试验不确定度评定报告

夏比冲击试验不确定度评定报告

安徽海螺川崎装备制造有限公司检测中心夏 比 冲 击 试 验测 量 不 确 定 度 评 定 报 告编号:CKE/JC-CX-24-06编制: 卫任云 审核: 批准:日期:2016-5-29 日期: 日期:目录1 概述 (1)1.1主要仪器 (1)1.2环境条件 (1)1.3测量方法 (1)1.4评定依据 (1)1.5测量过程 (1)2 不确定度来源 (1)3 不确定度的评定 (2)3.1试样重复测量引起的不确定度分项的评定 (2)3.2标准试样检定时平均值的标准不确定度分项的评定 (2)3.3试验机误差引起的标准不确定度分项 (3)3.4标准冲击试样的标准不确定度评定 (3)4 不确定度的计算 (3)4.1合成标准不确定度的计算 (3)4.2 扩展不确定度的评定 (4)5检测结果不确定度评定报告 (4)夏比冲击试验测量不确定度评定报告1 概述1.1主要仪器JB-300B 济南时代试金仪器有限公司,冲击刃口R=2mm。

1.2环境条件环境温度23℃,最大温度变化±1℃/小时。

1.3测量方法GB/T229-2007《金属夏比缺口冲击试验方法》1.4评定依据JJF1059-1999《测量不确定度评定与表示》1.5测量过程按照GB/T229-2007进行试验,标准试样冲击值为28.6J、80.9J、127.1J和224.5J,每个能量级别使用5个试样,测量实际冲击功。

2 不确定度来源基于检测方法、检测设备工作原理和以往的工作及检测数据收集的经验,夏比冲击试验的不确定度来源主要包括:(1)试样测量重复性引起的标准不确定度;(2)冲击试验机自身存在的不确定度;(3)标准试样检定时,平均值的标准不确定度;(4)试验机误差引起的标准不确定度;(5)试验环境温度变化引起的标准不确定度。

3 不确定度的评定3.1试样重复测量引起的不确定度分项的评定:标准试样进行试验冲击值水平为28.6 J、80.9 J、127.1 J和224.5 J,每个能量级别使用5个试样,各得到一个测量值见表1。

金属材料夏比冲击试验

金属材料夏比冲击试验

金属材料夏比冲击试验第一部分:测试方法(V和U型缺口)1、实施对象和领域:1.1本标准详细的描述了金属材料夏比冲击试验的的细节。

2、涉及标准:3、试验原理:用规定高度的摆锤对处于简支梁扎的缺口试样进行依次性打击,测量试样折断时的冲击吸收功。

4、名词:本标准所适用的名词如表1和图1、图2:表1——名词5、试样:5.1 取样数量和取样位置应该在相应的产品标准中作出详细说明。

5.2 标准试样应该是55mm长,并且它的截面是10mm见方的正方体,在长度的中心部位开有缺口,两种型号的缺口详细说明如下:a)V型缺口角度45度,缺口深2mm,缺口弯曲半径0.25mm,如不能制备标准试样,可以采用宽度7.5mm 或5mm等小尺寸试样,缺口应该开在狭窄的一面。

B)U型缺口或锁眼缺口试样,缺口深5mm ,缺口弯曲半径1mm。

除了铸造试样缺口所在的两平行表面达到所需要的精密度则可以不进行机加工以外,原则上试样应该机加工完成。

5.3 缺口所在均匀平面应垂直于试样的纵轴线。

5.4 试样详细尺寸公差在表2中给出。

5.5倘若相应的产品标准只能允许,无论如何,只有两个试样的形状和尺寸相同,那他们的结果比较才有意义。

5.6 机加工应该尽可能的不改变试样的性能,例如,冷热加工应该把对试样的影响减到最小。

开缺口应该非常小心。

6、试验机:6.1 试验机应该被严格的制造和安装并符合欧洲标准10 045-2的要求。

试验机主要的特征含义见表3。

6.2 当摆锤式冲击试验机的冲击能量为(300±10)J并采用标准试样时,则试验视为在正常条件下进行。

在上述条件下确定的缺口冲击功的缩写符号为:——KU 适用于U型冲击试样——KV 适用于V型冲击试样例如:——KV=121J:——名义能量300J——标准V型缺口试样——断裂吸收功121J6.3 试验机有不同的允许冲击能量,因此在刻度盘上指针所指的冲击能量前应增加KU或KV的标记。

例如:KV 150:允许能量150 JKU 100:允许能量100 J——KU 100=65 J——允许最大能量100J——标准U型缺口试样——冲击功65 J表2——试样尺寸许用公差表3——试验机特征6.4 对于V型缺口辅助试样,KV符号后应补上实验机允许冲击能量和试样的宽度。

金属系列冲击试验报告[教学]

金属系列冲击试验报告[教学]

金属系列冲击试验报告一、试验内容、目的与要求通过测定低碳钢、工业纯铁和T8钢在不同温度下的冲击吸收功,观察比较金属韧脆转变特性。

要求预习GB/T 229-1994 金属夏比缺口冲击试验方法,参照该文件完成试验并且编写试验报告。

同时结合夏比冲击试验归纳总结降低金属韧性的致脆因素。

二、材料、试样与试验设备及试验程序1、试验材料与试样试验材料:低碳钢Q235、工业纯铁和T8钢制成的标准U型缺口冲击试样(如图1)。

图1 标准U型缺口冲击试样2、试验测试内容与相关的测量工具、仪器、设备摆锤冲击试验机(JB-300B),规格150/300J。

打击能力符合国标要求。

工具显微镜(目镜10×,物镜2.5/0.08,160/0),最小分度为0.001mm,符合国标中不大于0.02mm的要求。

高低温温度计:最小分度为1℃,符合国标要求。

数字显示式热电偶测温器,保温瓶,液氮,沸水(约100℃)等。

3、试验步骤(1)将三种试样(低碳钢Q235,T8钢,纯铁)分别标号为1、2、3。

试验温度分别为-60℃、-40℃、-30℃、-20℃、0℃、室温、沸水温度。

(2)将试样在保温杯中保温至少5min。

高温使用沸水保温,0℃及以下使用液氮冷却;同时将温度计和夹具放入杯中。

当温度达到设定的试验温度±2℃时,用夹具迅速移取试样进行冲击试验。

(3)使用摆锤冲击试验机对试样依次进行冲击试验,记录冲击吸收功。

(4)观察冲击试样断口形貌,使用工具显微镜测量并计算试样脆性区断口面积%。

(5)妥善处理试样,试验仪器归位。

三、试验结果与分析讨论1、试验数据处理与分析讨论(1)原始数据(2)断口形貌断口脆性区呈白亮结晶状,断面平整。

断口韧性区呈灰色纤维状,断口不平整。

而脆性韧性混合断裂的试样断口可分为纤维状韧断区、边缘剪切唇区和心部结晶状脆断区。

由于试样表面为平面应力状态,因此表面较软,塑性好,韧断区分布在断口外围;而试样中部为平面应变状态,因此心部较硬,塑性差,脆断区在断口中央,不会出现在边缘。

冲击试验试验不确定度评估报告

冲击试验试验不确定度评估报告

金属夏比缺口冲击试验不确定度评估报告1概述1.1参考文献检测方法:GB/T 229-2007《金属夏比缺口冲击试验方法》评定依据:JJF 1059-1999 《测量不确定度评定与表示》1.2分析仪器摆锤冲击试验机(深圳市新三思材料检测有限公司),校準證書給出的最大偏差為0.34%;試樣尺寸由0~200mm的數顯卡尺測量,校準證書給出的最大偏差為0.01mm。

1.3实验过程試驗溫度為23℃,相對濕度為60%。

2建立数学模型冲击吸收功由显示屏直接读出,冲击强度的数学模型为:y=x式中:y ——被测试样冲击强度的检测结果,Jx ——被测试样冲击吸收功的读出值,J;3测量不确定度来源的分析冲击试验测量不确定度评定来源因果图如下所示:4 测量不确定度分量的评定4.1实验结果重复性所引入的不确定度分量u (a)由于试样的不同材料材质的均匀性,每批甚至每个试样的加工、不同检测人员的操作甚至统一人员各次的操作、各个试验机的重复性等因素都在不同程度上存在着差异,因此,上述因素引起的试验重复性所引入的不确定度分量必须加以评定。

这可对多个试样的操作重复测试所得到的多组观测列,通过统计得到标准差来进行评定(即采用A 类评定方法)。

A 的平均值:496.01==∑n A nA 标准偏差:0.0182J 1)(2=--=∑n A A s i测试结果平均值的不确定度为:00407.0472.4/0.0182)1(===ks u4. 2 试验机误差所引入的不确定度分量u(2)实验室用于检测工作的冲击试验机,即工作试验机必须按照GB/T 3808-2002标准进行检定。

在通过各个项目检验后,还必须使用标准试样进行间接检验,并达到标准的各项要求。

试验机(深圳市新三思材料检测有限公司),校準證書給出的最大偏差為0.34% u(2)=3/0034.0=0.00196 4.3标准试样的不确定度分量u(3)根据GB/T 18658-2002标准,标准试样的允许误差s 当A <40J 时,s ≤±2J当A ≥40J 时,E ≤±5%AJ标准中要求将25个或更多标准试样的平均值作为标准能量值,同时计算标准差,对应此要求,最小自由度v=25-1=24,p=68%,查t 分布表,t 0.68(24)=1.02本例中,0.497<40J , u(3)= t 0.68(24)×n A /05.0 = 1.02×25/7.207*05.0 =2.124.4 冲击强度结果值进行数值修约所导致的不确定度分量u(4)数值修约导致不确定度的产生,如修约间隔为δx 则不确定度分量u rou (x)=0.29δx 。

夏比冲击试验

夏比冲击试验

冲击试验一、金属夏比冲击试验金属材料在使用过程中除要求有足够的强度和塑性外,还要求有足够的韧性。

所谓韧性,就是材料在弹性变形、塑性变形和断裂过程中吸收能量的能力。

韧性好的材料在服役条件下不至于突然发生脆性断裂,从而使安全得到保证。

韧性可分为静力韧性、冲击韧性和断裂韧性,其中评价冲击韧性(即在冲击载荷下材料塑性变形和断裂过程中吸收能量的能力)的实验方法,按其服役工况有简直梁下的冲击弯曲试验(更比冲击试验)、悬臂梁下的冲击弯曲试验(艾尔冲击试验)以及冲击拉伸试验。

夏比冲击试验是由法国工程师夏比(Charpy)建立起来的,虽然试验中测定的冲击吸收功Ak值缺乏明确的物理意义,不能作为表征金属制作实际抵抗冲击载荷能力的韧性判据,但因其试样加工简便、试验时间短,试验数据对材料组织结构、冶金缺陷等敏感而成为评价金属材料冲击韧性应用最广泛的一种传统力学性能试验。

更比冲击试验的主要用途如下:(1)评价材料对大能量一次冲击载荷下破坏的缺口敏感性。

零部件截面的急剧变化从广义上都可视作缺口,缺口造成应力应变集中,使材料的应力状态变硬,承受冲击能量的能力变差。

由于不同材料对缺口的敏感程度不同,用拉伸试验中测定的强度和塑性指标往往不能评定材料对缺口是否敏感,因此,设计选材或研制新材料时,往往提出冲击韧性指标。

(2)检查和控制材料的冶金质量和热加工质量。

通过测量冲击吸收功和对冲击试样进行断口分析,可揭示材料的夹渣、偏析、白点、裂纹以及非金属夹杂物超标等冶金缺陷;检查过热、过烧、回火脆性等锻造、焊接、热处理等热加工缺陷。

(3)评定材料在高、低温条件下的韧脆转变特性。

用系列冲击试验可测定材料的韧脆转变温度,供选材时参考,使材料不在冷脆状态下工作,保证安全。

而高温冲击试验是用来评定材料在某些温度范围如蓝脆、重结晶等条件下的韧性特性。

按试验温度可分为高温、低温和常温冲击试验,按试样的缺口类型可分为V型和U型两种冲击试验。

现行国家标准GB/T229-1994《金属夏比缺口冲击试验方法》将以上所涉及的试验方法统一合并在意个标准内,更加便于执行。

夏比摆锤冲击试验-报告

夏比摆锤冲击试验-报告

报告编号:CW1100393H000 测试报告样品名称: 30CrNiMo8试样委托单位:上海汽车齿轮三厂发布日期:2011.06.30上海机动车检测中心声明(1)报告无检测机构“报告专用章”或公章无效。

(2)报告无主检、审核、批准人签名无效。

(3)报告涂改无效。

(4)复制报告未重新加盖检测机构“报告专用章”或公章无效。

(5)送样委托检测报告结果仅对来样负责。

(6)对报告若有异议,请收到报告后15日之内向检测机构提出。

测试单位联络信息地址:中国上海市嘉定区安亭镇于田南路68号电话:86-021-********传真:86-021-********邮编:201805E-mail:yewu@网址:/委托单位联络信息名称:上海汽车齿轮三厂地址:嘉新公路99号电话:59903179传真:/邮编:201818共 2 页第 1 页样品名称30CrNiMo8试样样品编号J2011060913-01~03型号规格/ 样品数量共3件委托单位上海汽车齿轮三厂委托单编号J2011060913生产单位/ 样品状况无异常测试项目冲击强度送样日期2011.06.28测试日期2011.06.30 测试地点本中心测试依据根据GB/T229-2007(夏比摆锤冲击试验方法)标准及委托要求结果:试验结果见附表1________________________________________________________________________签发日期:2011年06月30日(报告专用章)备注:10×10mmV2缺口试样。

批准:审核:主检:共 2 页 第 2 页附表1样品编号及名称 试验条件试验结果冲击强度(KV 2)J2011060913-0175(J )J2011060913-0277(J )J2011060913-03室温冲击78(J )_______________________________________________________________________________。

金属材料 夏比摆锤冲击试验方法

金属材料 夏比摆锤冲击试验方法

金属材料夏比摆锤冲击试验方法夏比摆锤冲击试验方法是一种常用的金属材料力学性能测试方法,广泛应用于材料科学与工程领域。

本文将详细介绍夏比摆锤冲击试验方法的原理、设备和试验步骤。

一、夏比摆锤冲击试验方法的原理夏比摆锤冲击试验方法是通过用摆锤撞击试样,测定试样在冲击载荷作用下的断裂特性和韧性。

其原理基于能量守恒定律,即摆锤的势能转化为试样的变形能和破坏能。

二、夏比摆锤冲击试验方法的设备夏比摆锤冲击试验所需的主要设备包括夏比摆锤冲击试验机、试样夹具和测量系统。

夏比摆锤冲击试验机由摆锤、支撑杆和基座组成,能够提供一定的冲击能量和冲击速度。

三、夏比摆锤冲击试验方法的步骤1. 样品制备:根据试验要求,制备符合规格要求的金属样品。

2. 样品夹持:将试样夹在试样夹具上,确保试样夹持牢固且不会滑动。

3. 调整试验参数:根据试验要求,设置合适的摆锤质量、摆锤高度和摆锤释放角度等试验参数。

4. 试验操作:将摆锤提升到一定高度,然后释放摆锤使其撞击试样。

试验过程中要保持稳定和准确的操作。

5. 记录测试数据:使用测量系统记录试样断裂的能量吸收能力和断裂模式等数据。

6. 数据分析:根据测试数据进行数据分析,得出试样的冲击韧性和断裂特性等结果。

夏比摆锤冲击试验方法的优点在于简单易行、试验过程可控制,能够提供关于金属材料在冲击载荷下的力学性能信息。

它可以用来评估材料的韧性、耐冲击性和断裂特性等,为材料的选择和设计提供重要依据。

然而,夏比摆锤冲击试验方法也存在一些限制和注意事项。

首先,试样的准备和夹持对试验结果有着重要影响,因此需要严格控制试样的制备和夹持过程。

其次,试验结果受到试验参数的影响,因此需要根据具体要求选择合适的试验参数。

此外,夏比摆锤冲击试验方法仅能提供样品在冲击载荷下的力学性能信息,不能完全代表材料的整体性能。

夏比摆锤冲击试验方法是一种简便有效的金属材料力学性能测试方法。

通过准确控制试验参数和精确记录测试数据,可以得到金属材料在冲击载荷下的韧性、断裂特性等重要信息,为材料的选择和设计提供依据。

北京科技大学材料力学性能金属系列冲击试验报告材科09级

北京科技大学材料力学性能金属系列冲击试验报告材科09级

金属系列冲击试验报告一、试验内容、目的与要求通过测定低碳钢、工业纯铁和T8钢在不同温度下的冲击吸收功,观察比较金属韧脆转变特性。

并结合夏比冲击试验归纳总结降低金属韧性的致脆因素。

二、试验材料与试样试验材料:低碳钢1、工业纯铁和T8钢;试样:本次试验采用GB/T229-1994金属夏比缺口冲击试验方法,试样为缺口深度为2mm 的标准夏比U型缺口冲击试样,试样的具体尺寸及公差如图1所示:图1 缺口深度为2mm的标准夏比U型缺口冲击试样试样的制备应避免由于加工硬化或过热而影响金属的冲击性能;试样缺口底部应光滑,对于仲裁试验,缺口底部表面粗糙参数RR aa应不大于1.6μμμμ;试样标记的位置不应影响试样的支承和定位,并且应尽量远离缺口。

三、试验设备、器具与其他用品1本次试验中,低碳钢使用Q235钢1. 冲击试验机JB-300B,主要性能指标如下2:●最大冲击能量:300J●摆锤预扬角:150°●摆轴中心至打击中心的距离:750mm●冲击速度:5.2m/s●试样支座跨距:40mm●试样支座端圆弧半径:R1-1.5mm●冲击刀圆弧半径:R2-2.5mm●冲击圆弧半径:30°●冲击刀厚度:16mm2. 工具显微镜3. 杜瓦瓶(保温用)4. 温度计测温用的玻璃温度计最小分度值应不大于1℃;测温热电偶应符合II级热电偶要求;测温仪器(数字指示装置或电位差计)的误差应不超过±0.1%。

5. 介质本试验采用的介质有热水、液氮、乙醇。

6. 夹具四、试验原理与步骤本试验的原理为:韧性是材料承受载荷作用导致发生断裂的过程中吸收能量的特性。

冲击试验是在高速载荷的作用下材料韧性的通用试验方法,试验测量结果为冲击吸收功。

采用系列冲击试验,即测定材料在不同温度下的冲击吸收功,可以确定其韧脆转变温度。

试验步骤为:1.检查冲击试验机是否工作正常,本步骤由实验室教师完成;2.小组成员分工,每人领取一个试样,并确定自己试样的冲击温度3;3.根据试样冲击温度对试样进行降温、升温或保持室温:●若是水温样品,则在杜瓦瓶中加入足够的热水,用夹具将样品放入杜瓦瓶中浸没,连同夹具一起保温,保温时间不少于5min4;●若是低温样品,则向杜瓦瓶中加入液氮,用夹具将样品放入杜瓦瓶中浸没,连同夹具一起保温,在降温时要看是否低于测试温度,若没有,则再加入液氮来降温(此时温度计要拿出,否则会损坏温度计)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

夏比冲击试验报告
一、 实验目的
1. 掌握冲击试验机的结构及工作原理
2. 掌握测定试样冲击性能的方法
二﹑实验内容
测定低碳钢和铸铁两种材料的冲击韧度,观察破坏情况,并进行比较。

三﹑实验设备
3. 冲击试验机
4. 游标卡尺
图1-1冲击试验机结构图
四﹑试样的制备
若冲击试样的类型和尺寸不同,则得出的实验结果不能直接比较和换算。

本次试验采用U 型缺口冲击试样。

其尺寸及偏差应根据GB/T229-1994规定,见图1-2。

加工缺口试样时,应严格控制其形状﹑尺寸精度以及表面粗糙度。

试样缺口底部应光滑﹑无与缺口轴线平行的明显划痕。

图1-2 冲击试样
五﹑实验原理
冲击试验利用的是能量守恒原理,即冲击试样消耗的能量是摆锤试验前后的势能差。

试验时,把试样放在图1-2的B 处,将摆锤举至高度为H 的A 处自由落下,
冲断试样即可。

摆锤在A 处所具有的势能为:
E=GH=GL(1-cos α) (1-1)
冲断试样后,摆锤在C 处所具有的势能为:
E 1=Gh=GL(1-cos β)。

(1-2)
势能之差E-E 1,即为冲断试样所消耗的冲击功A K :
A K =E-E 1=GL(cos β-cos α) (1-3)
式中,G 为摆锤重力(N );L 为摆长(摆轴到摆锤重心的距离)(mm );α为冲断试样前摆锤扬起的最大角度;β为冲断试样后摆锤扬起的最大角度。

h L G H
图1-3冲击试验原理图
六﹑实验步骤
1. 测量试样的几何尺寸及缺口处的横截面尺寸。

2. 根据估计材料冲击韧性来选择试验机的摆锤和表盘。

3. 安装试样。

如图1-4所示。

图1-4冲击试验示意图
4. 进行试验。

将摆锤举起到高度为H 处并锁住,然后释放摆锤,冲断试样后,待摆锤扬起
到最大高度,再回落时,立即刹车,使摆锤停住。

5. 记录表盘上所示的冲击功A KU 值.取下试样,观察断口。

试验完毕,将试验机复原。

6. 冲击试验要特别注意人身的安全。

七﹑实验结果处理
1.计算冲击韧性值αKU . αKU =0S A KU
(J/cm 2) (1-4)
式中,A KU为U型缺口试样的冲击吸收功(J); S0为试样缺口处断面面积(cm2)。

冲击韧性值αKU是反映材料抵抗冲击载荷的综合性能指标,它随着试样的绝对尺寸﹑缺口形状﹑试验温度等的变化而不同。

2.比较分析两种材料的抵抗冲击时所吸收的功。

观察破坏断口形貌特征。

八﹑思考题
1.冲击韧性值αKU为什么不能用于定量换算,只能用于相对比较?
答:αKU值取决于材料及其状态,同时与试样的形状、尺寸有很大关系。

αKU值对材料的内部结构缺陷、显微组织的变化很敏感,如夹杂物、偏析、气泡、内部裂纹、钢的回火脆性、晶粒粗化等都会使其明显下降。

条件很难达到统一,所以冲击韧性不能用于定量计算,只能用于相对比较。

2.冲击试样为什么要开缺口?
答:在试样上制作切口的目的是为了使试样承受冲击载荷时在切口附近造成应力集中,使塑性变形局限在切口附近不大的体积范围内,并保证试样一次冲断且使断裂发生在切口处。

相关文档
最新文档