自动化灌溉设计方案

合集下载

自动灌溉方案

自动灌溉方案

自动灌溉方案第1篇自动灌溉方案一、项目背景随着现代农业的快速发展,水资源的高效利用日益受到重视。

为提高灌溉效率,减少人工成本,降低水资源浪费,本项目旨在设计一套自动灌溉系统。

本方案结合当前先进的自动控制技术和灌溉设备,力求实现灌溉的自动化、智能化,以满足农业生产需求。

二、方案目标1. 实现灌溉的自动控制,降低人工干预。

2. 提高灌溉效率,减少水资源浪费。

3. 提高作物产量和品质,促进农业可持续发展。

4. 符合国家相关法律法规,确保系统安全可靠。

三、系统设计1. 灌溉水源: 采用地下水或地表水作为灌溉水源,确保水质符合国家相关标准。

2. 控制系统: 采用先进的自动控制技术,实现对灌溉设备的远程监控与自动控制。

- 传感器: 安装土壤湿度、温度、光照等传感器,实时监测作物生长环境。

- 控制器: 采用可编程逻辑控制器(PLC),实现灌溉系统的自动控制。

- 通信模块: 利用无线或有线通信技术,实现数据传输与远程监控。

3. 执行机构: 包括水泵、阀门、喷灌设备等,根据控制信号实现灌溉操作。

4. 电源系统: 采用太阳能发电系统,实现灌溉系统的绿色环保、节能降耗。

四、实施方案1. 前期调研: 对项目区域进行实地考察,了解土壤性质、气候条件、作物种类等,为灌溉系统设计提供依据。

2. 设备选型: 根据项目需求,选择合适的传感器、控制器、执行机构等设备。

3. 系统设计: 设计灌溉系统布局,包括传感器布置、控制设备安装、灌溉管网规划等。

4. 施工安装: 按照设计方案,进行设备安装和调试。

5. 系统调试: 对灌溉系统进行调试,确保各设备正常运行,实现自动控制。

6. 培训与验收: 对项目相关人员开展技术培训,确保系统正常运行。

完成项目验收,确保系统符合设计方案。

五、运行与维护1. 运行监控: 实时监控灌溉系统的运行状态,确保系统稳定可靠。

2. 数据管理: 建立数据库,对采集的数据进行分析处理,为灌溉决策提供支持。

3. 维护保养: 定期对设备进行维护保养,确保设备正常运行。

自动化灌溉设计方案

自动化灌溉设计方案

自动化灌溉设计方案一、引言自动化灌溉系统是一种利用先进的电子设备和控制技术,实现农田和园林的自动浇水的系统。

相比传统的人工浇水方式,自动化灌溉系统具有效率高、节水、省力等优势。

本文将提出一种基于传感器和控制器的自动化灌溉设计方案。

二、系统组成(1)传感器:系统需要使用各种传感器来感知环境参数,如土壤湿度传感器、温度传感器、光照传感器等。

(2)控制器:控制器是系统的核心部件,用于接收传感器数据、进行判断和控制操作。

可以选择微控制器或PLC作为控制器。

(3)执行器:执行器是将控制信号转化为实际操作的装置,如电磁阀、水泵等。

执行器的选型应根据实际需求和灌溉方式进行选择。

(4)通信模块:为了方便监控和远程控制,可以添加无线通信模块,如Wi-Fi、GPRS、LoRa等。

三、系统工作流程(1)感知环境参数:通过土壤湿度传感器、温度传感器、光照传感器等感知环境参数,并将数据传输给控制器。

(2)判断灌溉需求:控制器根据接收到的环境参数数据,进行判断,确定是否需要进行灌溉。

(3)控制操作:如果判断需要进行灌溉,控制器通过输出控制信号,控制执行器进行相应的操作,如开启水泵、控制电磁阀等。

(4)监测和反馈:控制器可以监测灌溉效果和系统状态,并将实时数据反馈给用户,以方便实时掌握系统运行情况。

四、系统设计需考虑的因素(1)环境要素:不同的农作物对环境要素的要求不同,例如水稻需要较高湿度,番茄则需要较高温度。

因此,在设计系统时要考虑特定农作物的生长要求。

(2)节水性能:自动化灌溉系统应具备节水性能,可以根据土壤湿度、环境温度等因素进行智能调节,避免浪费水资源。

(3)精准性:传感器的准确性和精度要求高,以便准确感知环境参数。

(4)可靠性:系统应具备稳定可靠的性能,避免故障和停机时间,保证长期运行。

(5)安全性:系统应具备安全性,防止因意外事故造成浇水量过多或过少,导致农作物损失。

五、实施步骤(1)系统设计:根据具体的应用场景,设计系统的硬件组成和工作流程。

自动灌溉系统的设计

自动灌溉系统的设计

自动灌溉系统的设计一、系统概述自动灌溉系统是一种利用现代信息技术和自动化控制技术,对农田进行智能化灌溉的系统。

该系统能够根据农田的土壤湿度、天气情况、作物需水量等因素,自动调节灌溉时间和水量,提高灌溉效率,降低水资源浪费,促进农业可持续发展。

二、系统目标1. 提高灌溉效率:通过自动化控制,实现精准灌溉,减少水资源浪费。

2. 降低人工成本:减少人工操作,降低人力成本。

3. 提高作物产量:根据作物需水规律,提供适时适量的灌溉,促进作物生长。

4. 保护环境:合理利用水资源,减少农业面源污染。

三、系统组成1. 传感器:用于监测土壤湿度、温度、光照等环境参数。

2. 控制器:根据传感器采集的数据,自动调节灌溉时间和水量。

3. 执行器:包括水泵、阀门等,用于执行灌溉操作。

4. 通信模块:实现控制器与执行器之间的数据传输和指令下达。

5. 用户界面:用于设置系统参数、查看灌溉状态和数据记录。

四、系统工作原理1. 传感器采集农田环境参数,如土壤湿度、温度、光照等。

2. 控制器根据传感器采集的数据,结合预设的灌溉策略,自动计算出灌溉时间和水量。

3. 控制器通过通信模块,向执行器发送灌溉指令。

4. 执行器接收指令,执行灌溉操作。

5. 用户界面实时显示灌溉状态和数据记录,方便用户监控和管理。

五、系统特点1. 精准灌溉:根据作物需水规律,实现适时适量的灌溉。

2. 自动化控制:减少人工操作,降低人力成本。

3. 节能环保:合理利用水资源,减少农业面源污染。

4. 可扩展性:可根据农田规模和作物种类,灵活调整系统配置。

5. 远程监控:用户可通过手机、电脑等设备远程查看灌溉状态和数据记录。

通过自动灌溉系统的设计和实施,可以有效提高农田灌溉效率,降低人工成本,促进作物生长,同时保护环境,实现农业可持续发展。

六、系统设计原则1. 用户友好:系统界面直观、易操作,减少用户的学习成本。

2. 模块化设计:系统采用模块化设计,便于维护和升级。

3. 可靠性:选用高质量、可靠的传感器和执行器,确保系统稳定运行。

智能灌溉工程施工方案范本

智能灌溉工程施工方案范本

智能灌溉工程施工方案范本一、项目背景随着农业的发展和科技的进步,智能灌溉系统已经成为现代农业生产的重要工具。

传统的人工灌溉方式存在着水资源浪费、劳动力成本高等问题,而智能灌溉系统能够通过自动化控制,根据土壤湿度、气温等因素自动调整灌溉量和灌溉时间,从而达到节水、节能的效果。

本项目旨在应用智能灌溉技术,为农田提供高效、节水、节能的灌溉服务,提高农田水资源利用效率,改善农业生产环境,提高农产品质量和产量。

二、工程内容本工程包括智能灌溉系统的设计、安装、调试和使用培训等一系列工作。

具体内容包括:1. 智能灌溉系统的设计:根据农田的地形、作物类型、土壤条件等因素,设计出符合实际需求的智能灌溉系统方案,包括灌溉管网的布置、灌溉设备的选择、控制系统的设计等。

2. 灌溉设备的安装:根据设计方案,对灌溉设备进行布置和安装,包括灌溉管道、喷头、阀门等设备的安装工作。

3. 控制系统的安装和调试:安装智能灌溉系统的控制设备,包括传感器、控制器、执行器等设备,并进行系统调试,确保系统能够正常运行。

4. 系统使用培训:对农民进行智能灌溉系统的使用培训,包括系统的操作方法、维护保养知识,以及如何利用系统进行灌溉管理等方面的培训。

5. 系统的后期维护和服务:在系统建成后,对智能灌溉系统进行定期的巡检和维护,确保系统的正常运行。

三、施工方案1. 设计方案根据农田的实际情况,设计一个符合灌溉需求的智能灌溉系统方案。

设计应该考虑农田的地形、土壤性质、作物类型等因素,保证系统能够实现精准的灌溉。

2. 材料采购根据设计方案,采购所需的灌溉设备、管道、控制系统等材料。

保证采购的材料符合质量标准,满足系统的要求。

3. 施工过程(1)灌溉管网的布置:根据设计方案,对灌溉管网进行布置,保证灌溉管道的连接和布置符合要求。

(2)灌溉设备的安装:对喷头、阀门等灌溉设备进行布置和安装,保证设备的位置和角度符合设计要求。

(3)控制系统的安装:安装控制系统的传感器、控制器、执行器等设备,并进行线路的连接和调试,确保系统能够正常运行。

基于自动化控制技术的智能化灌溉系统解决方案设计

基于自动化控制技术的智能化灌溉系统解决方案设计

基于自动化控制技术的智能化灌溉系统解决方案设计在当前全球水资源日益紧张的情况下,如何高效利用水资源成为了一个重要的问题。

智能化灌溉系统通过应用自动化控制技术,能够实时监测土壤水分状况,并根据植物的需求智能地控制灌溉水的供应,从而实现水的高效利用。

本文将基于自动化控制技术,设计一种智能化灌溉系统的解决方案。

首先,智能化灌溉系统需要具备实时监测土壤水分状况的能力。

为此,可以使用土壤水分传感器来感知土壤中的水分含量,并将数据传输给中央控制系统。

中央控制系统可以根据土壤水分数据判断植物的需水情况,并根据需水量智能地控制灌溉设备的开关。

其次,智能化灌溉系统需要具备远程控制的能力。

通过将中央控制系统与互联网连接,可以实现用户通过手机、电脑等终端设备远程监控和控制灌溉系统。

用户可以根据实时的土壤水分数据,自主调整灌溉设备的供水量,实现精确灌溉,提高水资源的利用效率。

另外,智能化灌溉系统还可以考虑集成气象数据,以更好地满足植物的需水需求。

通过获取气象数据,比如温度、湿度、风速等信息,中央控制系统可以根据不同的气象条件智能地调整灌溉策略,以适应植物的生长需求。

此外,为了进一步提高灌溉系统的智能化水平,可以考虑引入机器学习算法。

通过对大量的土壤水分数据进行分析和学习,系统可以逐渐建立起土壤水分与植物需水之间的关系模型,并根据模型预测未来的土壤水分状况,从而优化灌溉策略,提高系统的智能化程度。

最后,为了确保系统的可靠性和稳定性,智能化灌溉系统需要考虑安全性和备份策略。

可以通过对系统进行数据备份,以防止数据丢失或损坏,并采取合适的安全措施,如密码保护和权限管理,以防止系统被非法访问或攻击。

总之,智能化灌溉系统是基于自动化控制技术的解决方案,通过实时监测土壤水分状况、远程控制、集成气象数据和引入机器学习算法等手段,实现高效利用水资源的目标。

此外,系统还需要考虑安全性和备份策略,以确保系统的可靠性和稳定性。

通过综合运用上述技术手段和策略,可以设计一套完善的智能化灌溉系统,实现高效利用水资源的目标。

2024自动化灌溉设计方案

2024自动化灌溉设计方案

1、现场智能感知平台:
平台包括有:井房首部设备智能监控系统、田间灌溉控制系统、田间土壤 墒情信息监测系统、近地小气候环境信息监测系统、智能气象站、作物长势远 程监测系统。
1.1、井房首部设备智能监控系统
井房首部枢纽设备包括:变频器、一体式水泵智能控制器、压力传感器、 流量传感器、地下水位/温度传感器、过滤装置、安全防护装置,自动化施肥装 置和测控装置等。
系统组成: 大田灌溉自动化与信息化管理系统分为现场智能感知平台、无线网络传输 平台、云数据管理平台、应用平台(监控中心及移动管理控制端)四个层次, 其中,田间脉冲电磁阀、无线阀门控制器、远程水泵智能控制器、云服务器、 主控制中心和村级(企业)控制中心、移动控制终端等组成灌溉无线控制系统 ,能够实现现地无线遥控、远程随时随地监控、轮灌组定时自动轮灌等控制方 式,并且实时监测机井和阀门状态,灌溉流量和管网压力,保障运行安全,及 时提示报警信息。在此基础上,扩充田间土壤墒情监测、农田气象监测、作物 和泵房视频监测等内容,指导科学灌溉,提高灌溉的智能化程度。
过滤装置作用是将水中的固体大颗粒、杂质等过滤,防止这些污物进入滴 灌系统堵塞滴头或在系统中形成沉淀。施肥装置的作用是使易溶于水并施于根 系的肥料、农药、化控药品等在施肥罐内充分溶解,然后再通过滴灌系统输送 到作物根部,便于作物吸收,充分发挥肥效,同时减少肥料浪费,测控装置的 作用是方便系统的操作、运行管理、保证系统安全。本系统设有逆止阀、排气 阀、压力表、水表、流量控制阀门。
井房首部设备智能监控系统实现机井水泵的启闭、电机保护、电量的计量 、运行状态监测,同时还对水源地地下水位、出水口压力和流量进行监测。
灌溉管理;

自动化功能多层次设计满足不同灌溉管理需要,提高了系统的适

智能节水灌溉工程设计方案

智能节水灌溉工程设计方案

智能节水灌溉工程设计方案一、项目背景随着全球气候变化和人口增长的加剧,水资源短缺问题日益严重。

为了提高农业用水效率,减少浪费,智能节水灌溉技术应运而生。

智能节水灌溉系统利用现代信息技术、自动化控制技术和物联网技术,实现对农田灌溉的精确控制,提高水资源利用效率,降低农业用水量。

二、设计目标1. 提高灌溉效率:通过精准控制灌溉时间和水量,减少无效灌溉,提高水资源利用效率。

2. 减少人力成本:实现自动化灌溉控制,降低农民劳动强度,节省人力成本。

3. 适应作物需求:根据作物生长需求和土壤水分状况,实现按需灌溉,提高作物产量和品质。

4. 节能环保:通过智能调度灌溉,减少能源消耗,降低对环境的影响。

三、系统设计1. 数据采集与监测:通过土壤水分传感器、气象站、摄像头等设备,实时监测农田土壤水分、气象状况和作物生长状况。

2. 数据处理与分析:将采集到的数据传输至云端服务器,利用大数据分析和人工智能算法,对农田灌溉需求进行预测和分析。

3. 自动控制与调度:根据数据处理与分析结果,自动控制灌溉设备,实现精准灌溉。

灌溉设备包括水泵、电磁阀、滴灌带等。

4. 移动APP与管理平台:通过移动APP和管理平台,农民和农业技术人员可以实时查看农田灌溉状况、调整灌溉计划和管理灌溉设备。

5. 远程监控与智能调度:通过远程监控系统,农业技术人员可以实时监控农田灌溉状况,根据需要进行手动调整或自动调度。

四、关键技术与设备1. 土壤水分传感器:用于实时监测土壤水分状况,为灌溉决策提供数据支持。

2. 气象站:用于实时监测气象状况,包括温度、湿度、降雨量等,为灌溉决策提供数据支持。

3. 摄像头:用于实时监测作物生长状况,为灌溉决策提供图像数据支持。

4. 自动控制设备:包括水泵、电磁阀、滴灌带等,实现灌溉设备的自动控制。

5. 云计算平台:用于数据存储、处理和分析,提供智能灌溉决策支持。

6. 移动APP和管理平台:用于实时查看灌溉状况、调整灌溉计划和管理灌溉设备。

自动化灌溉设计方案

自动化灌溉设计方案

自动化灌溉设计方案一、方案目标与范围1.1 目标我们的目标是设计一个高效又环保的自动化灌溉系统,帮助农民更好地管理水资源。

这样不仅能让灌溉更有效,还能减少水的浪费,降低人工成本。

最终,这一系统会推动农业的可持续发展,提升作物的产量和质量,真是个双赢的方案。

1.2 范围这个方案适合中小型农场、花园、温室以及城市绿化等多种场景。

我们会涵盖系统设计、设备选择、实施步骤以及后期的维护,确保每个细节都考虑周全。

二、组织现状与需求分析2.1 当前现状传统的灌溉方式依靠人工或固定设备,问题不少:- 水资源经常被浪费,灌溉效率跟不上。

- 灌溉时间不准,导致作物生长参差不齐。

- 人工管理成本高,劳动强度大,让人头疼。

2.2 需求分析从农场主的反馈来看,需求主要集中在以下几点:- 需要一个能自动监测土壤湿度的系统,根据实际情况来灌溉。

- 系统最好能远程控制,随时随地都能通过手机或电脑操作。

- 数据分析功能也很重要,这样能优化灌溉策略,做到更精准。

- 还要能应对各种天气,保证系统在不同环境下正常运作。

三、实施步骤与操作指南3.1 设备选型根据需求,我们推荐以下设备:- 土壤湿度传感器:实时监测土壤湿度,推荐型号XX-123,价格大约200元一个。

- 智能控制器:用来接收传感器数据并控制灌溉,推荐型号YY-456,价格大约800元一台。

- 喷灌设备:根据作物种类选择合适的喷头,平均价格300元一个。

- 水泵:根据灌溉规模选择,价格在1000到5000元不等。

- 水管和连接件:按需采购,平均每亩地大约需1000元。

3.2 系统设计1. 系统架构:包括传感器、控制器、水泵和喷灌设备,形成一个完整的自动化灌溉系统。

2. 数据传输:利用无线传输技术(比如LoRa或Wi-Fi),将传感器数据实时传回控制器。

3. 控制流程:- 土壤湿度传感器定期检查土壤湿度。

- 控制器根据设定的湿度范围来决定是否启动灌溉。

- 启动水泵,控制喷灌设备,直到土壤湿度达到设定值。

智能灌溉解决方案

智能灌溉解决方案

智能灌溉解决方案第1篇智能灌溉解决方案一、项目背景随着现代农业的快速发展,水资源短缺、灌溉效率低下等问题日益突出。

为实现农业可持续发展,提高灌溉效率、减少水资源浪费成为当务之急。

智能灌溉技术作为一种新型灌溉方式,具有节水、高效、智能等优点,有助于解决上述问题。

本方案旨在提供一套合法合规的智能灌溉解决方案,以促进农业现代化进程。

二、方案目标1. 提高灌溉效率,减少水资源浪费。

2. 实现灌溉系统的自动化、智能化,降低人工成本。

3. 提高农作物产量和品质,增加农民收入。

4. 合法合规,确保项目顺利实施。

三、方案内容1. 系统设计(1)数据采集:安装土壤湿度传感器、气象站等设备,实时采集土壤湿度、温度、降水量等数据。

(2)数据分析:利用物联网技术,将采集到的数据传输至云端服务器,进行数据分析和处理。

(3)控制策略:根据作物生长需求和实时气象数据,制定合理的灌溉策略。

(4)执行单元:采用电磁阀、泵站等设备,实现灌溉系统的自动控制。

2. 设备选型(1)土壤湿度传感器:选择具有高精度、稳定性好的传感器,确保数据采集的准确性。

(2)气象站:选用具备风速、风向、降水量等参数的气象站,为数据分析提供全面的数据支持。

(3)电磁阀:选择耐腐蚀、寿命长的电磁阀,确保灌溉系统的稳定运行。

(4)泵站:根据灌溉需求,选用合适功率的泵站,实现灌溉水源的合理调配。

3. 系统集成(1)将数据采集、数据分析、控制策略等环节进行集成,实现灌溉系统的自动化、智能化。

(2)通过与农业专家系统、农业电商平台等系统的对接,实现数据共享和业务协同。

4. 运维管理(1)设立运维团队,负责智能灌溉系统的日常维护和管理。

(2)建立运维管理制度,确保系统稳定运行。

(3)定期对系统进行升级和优化,提高灌溉效率。

四、合法合规性分析1. 项目实施过程中,严格遵守国家相关法律法规,确保项目合法合规。

2. 选用具备资质的设备供应商,确保设备质量和安全。

3. 加强对运维团队的管理,确保系统稳定运行,防止安全事故的发生。

自动化灌溉设计方案

自动化灌溉设计方案

自动化灌溉设计方案自动化灌溉设计方案是一个基于现代科技的方案,旨在解决传统人工灌溉的一些问题。

自动化灌溉的优点在于其能够减轻农民工作负担,提高作物的产量和质量,储水制度的改善等等。

在设计灌溉系统时,需要考虑的因素有很多。

其中最重要的是确保给植物提供足够的水分,同时还要避免浪费水资源。

为了实现这个目标,自动化灌溉系统需要考虑以下因素:1.灌溉系统的布局设计:首先要确定需要灌溉的区域。

然后需要考虑如何设置灌溉管道、水泵、喷头等等设备以及灌溉的时间和频率。

2.水泵的设计:水泵需要选择一个合适的泵型和流量,以确保灌溉能够顺利进行。

3.喷头的设计:喷头需要根据植物的需要以及灌溉区域的情况选择合适的型号和安装方式,确保喷头的喷水范围和水压合适。

4.传感器的安装与输入:为了确保自动灌溉系统能够自动控制,在系统中需要安装各种传感器,如土壤湿度传感器、气象传感器等等,以便自动控制系统能够实时检测到植物的需求并作出调整。

自动化灌溉系统需要先从准确实现关键传感器系统开始,例如土壤湿度传感器,作为关键因素扮演重要角色,以确保适当的水位。

传感器将丰富的数据输入到控制器,使其可以进行决策。

灌溉系统中还可以安装其他传感器,如温度传感器和相对湿度传感器等。

自动化灌溉系统通常有两种类型:基于时间的系统和基于需求的系统。

基于时间的系统设置灌溉系统的灌溉时间,而基于需求的系统则必须依靠灌溉系统的传感器数据来确定灌溉需求。

基于需要的系统将比基于时间的系统效率更高。

基于需求的系统利用了传感器数据,可以提供更准确的灌溉,更好地利用了水资源。

此外,基于需求的系统还能够消除过度灌溉和浪费,显著提高农业生产的效率和效益。

总体而言,自动化灌溉设计方案可以使农民从繁重的灌溉工作中解放出来,同时通过更好地利用水资源、提高作物产量和质量等,给农业生产带来了重要的改善。

在灌溉系统设计的过程中,应准确把握化肥和水的应用量,制定合理的施肥与灌溉措施,提高资源的利用效率,实现农业生产的可持续发展。

2024年水稻自动灌溉控制系统设计论文

2024年水稻自动灌溉控制系统设计论文

2024年水稻自动灌溉控制系统设计论文一、系统总体设计方案本设计旨在开发一种基于物联网技术的水稻自动灌溉控制系统,通过传感器采集水稻田间的环境信息,如土壤湿度、温度等,并根据这些信息智能地控制灌溉设备的开关,实现精准灌溉。

系统主要由硬件和软件两部分组成。

硬件部分包括传感器节点、控制节点和执行机构。

传感器节点负责采集环境信息,通过无线通信将数据发送至控制节点;控制节点根据接收到的数据进行分析处理,并发出相应的控制指令;执行机构根据控制指令执行灌溉操作。

软件部分包括数据处理模块、控制模块和人机交互模块,负责实现数据的处理、分析和显示,以及控制指令的生成和发送。

二、系统硬件设计传感器节点设计传感器节点是系统的感知层,负责采集水稻田间的环境信息。

本设计选用土壤湿度传感器和温度传感器作为主要的感知元件,通过模数转换电路将传感器输出的模拟信号转换为数字信号,并通过无线通信模块将数据发送至控制节点。

为了保证数据传输的可靠性和稳定性,传感器节点采用低功耗设计,采用休眠唤醒机制降低能耗。

同时,节点还具备自组织网络能力,能够自动形成稳定的通信网络,实现数据的可靠传输。

控制节点设计控制节点是系统的核心部分,负责接收传感器节点发送的数据,并进行处理和分析。

控制节点采用高性能微处理器作为核心控制器,具备强大的数据处理能力。

通过算法对接收到的数据进行处理,可以实现对水稻生长状态的实时监测和预测。

控制节点还具备无线通信功能,能够与传感器节点和执行机构进行通信。

通过发送控制指令,可以控制执行机构的动作,实现对灌溉设备的智能控制。

执行机构设计执行机构负责根据控制节点的指令执行灌溉操作。

本设计采用电磁阀作为主要的执行元件,通过控制电磁阀的开关状态来实现灌溉设备的启停。

为了保证灌溉的精准性和可靠性,执行机构还配备了流量计和压力传感器等辅助设备,用于实时监测灌溉水量和管道压力等参数。

这些数据可以反馈至控制节点,用于进一步优化灌溉策略。

PLC实验报告自动化灌溉系统设计

PLC实验报告自动化灌溉系统设计

PLC实验报告自动化灌溉系统设计一、引言自动化灌溉系统是一种利用现代技术实现农田灌溉的智能系统。

本实验旨在使用PLC(可编程逻辑控制器)设计一个自动化灌溉系统,以提高农作物灌溉的效率和准确性。

二、系统设计1. 硬件设计本系统的硬件设计包括PLC、传感器、执行器和用户界面设备。

PLC作为主控单元,通过传感器感知土壤湿度、温度和大气湿度等数据,并根据预设的灌溉逻辑,通过执行器控制灌溉设备的运行。

用户界面设备可用于设置灌溉计划、监控系统状态等操作。

2. 软件设计软件设计主要包括PLC程序设计和用户界面设计。

- PLC程序设计:根据实验要求和系统设计需求,编写PLC程序,实现对传感器和执行器的控制,包括数据采集、处理和决策等功能。

- 用户界面设计:设计一个直观易用的用户界面,供用户设置灌溉计划、监控系统状态、查看灌溉报告等操作。

三、实验步骤1. 传感器与执行器连接:将传感器和执行器与PLC相连接,确保数据的准确传递和执行器的正常操作。

2. PLC程序编写:根据实验要求和系统设计,在PLC上编写程序,实现数据采集、逻辑判断和控制执行器的功能。

3. 用户界面设计:使用合适的软件工具设计一个直观易用的用户界面,方便用户设置和监控灌溉系统。

4. 系统测试:进行系统测试,确保传感器数据的准确性和执行器的正常运行,同时测试用户界面的功能是否符合设计要求。

四、实验结果经过实验测试,本自动化灌溉系统设计实现了预期的功能,并取得了以下结果:1. 传感器数据准确:系统可准确获取土壤湿度、温度和大气湿度等参数,并根据实时数据判断是否需要进行灌溉。

2. 灌溉控制精确:系统能够根据设定的灌溉计划,准确计算灌溉时间和灌溉量,以满足不同作物的需求。

3. 用户界面友好:用户界面设计直观易用,用户能够方便地设置灌溉计划、监控系统状态和查看灌溉报告。

五、实验总结本实验利用PLC设计了一个自动化灌溉系统,通过准确感知土壤湿度等参数,并根据预设的逻辑进行灌溉控制,提高了农作物灌溉的效率和准确性。

智慧水利科学灌溉自动化滴灌系统技术方案

智慧水利科学灌溉自动化滴灌系统技术方案

智慧水利科学灌溉自动化滴灌系统技术方案清晨的阳光透过窗户,洒在键盘上,手指跳动间,关于智慧水利科学灌溉自动化滴灌系统的技术方案在我脑海中逐渐浮现。

就让我用这十年积累的方案写作经验,为大家详细阐述这一方案。

一、项目背景随着我国农业现代化的推进,传统灌溉方式已经无法满足现代农业的发展需求。

为了提高水资源利用效率,降低农业用水成本,实现农业可持续发展,智慧水利科学灌溉自动化滴灌系统应运而生。

二、系统设计原则1.先进性:采用国内外先进的自动化控制技术,确保系统稳定可靠。

2.实用性:根据不同地区、不同作物的灌溉需求,进行个性化定制。

3.经济性:在满足灌溉需求的前提下,降低系统成本,提高经济效益。

4.环保性:减少化肥、农药的使用,降低对环境的污染。

三、系统组成1.信息采集系统:通过传感器实时监测土壤湿度、作物生长状况等数据。

2.控制系统:根据采集到的数据,自动调节灌溉时间和灌溉量。

3.执行系统:包括水泵、阀门等设备,负责实施灌溉操作。

4.数据传输系统:将实时监测数据和灌溉指令传输至监控中心。

5.监控中心:对整个灌溉系统进行实时监控,确保系统正常运行。

四、系统功能1.自动灌溉:根据土壤湿度、作物生长状况等数据,自动启动或停止灌溉。

2.定时灌溉:可设置灌溉时间,实现定时定量灌溉。

3.手动灌溉:在特殊情况下,可手动控制灌溉。

4.数据查询:实时查询土壤湿度、作物生长状况等数据。

5.异常报警:当系统出现故障时,及时发出报警信息。

五、系统优势1.节水:通过精确控制灌溉时间和灌溉量,减少水资源浪费。

2.节肥:减少化肥的使用,降低农业成本。

3.节能:采用高效节能设备,降低能源消耗。

4.环保:减少农药的使用,降低对环境的污染。

5.便捷:通过手机APP、电脑端监控中心等渠道,实时了解灌溉情况。

六、实施步骤1.项目立项:明确项目目标、规模、预算等。

2.设计方案:根据实地情况,制定详细的系统设计方案。

3.设备采购:选择性能稳定、质量可靠的设备。

自动灌溉教学设计方案

自动灌溉教学设计方案

1. 知识与技能目标:(1)了解自动灌溉系统的组成及工作原理;(2)掌握自动灌溉系统的安装、调试和维护方法;(3)能够根据实际需求设计简单的自动灌溉系统。

2. 过程与方法目标:(1)通过观察、实验、分析等方法,培养学生动手实践能力;(2)通过合作学习,提高学生团队协作能力;(3)通过项目实施,培养学生的创新意识和解决问题的能力。

3. 情感态度与价值观目标:(1)培养学生对农业科技的热爱和关注;(2)提高学生节约用水、保护环境的意识;(3)培养学生的社会责任感和使命感。

二、教学内容1. 自动灌溉系统的组成及工作原理;2. 自动灌溉系统的安装、调试和维护方法;3. 简单自动灌溉系统的设计。

三、教学过程1. 导入(1)展示自动灌溉系统在实际农业中的应用案例;(2)提出问题:什么是自动灌溉系统?它有什么作用?2. 讲授(1)自动灌溉系统的组成及工作原理;(2)自动灌溉系统的安装、调试和维护方法。

3. 实践操作(1)分组进行自动灌溉系统的安装、调试;(2)引导学生分析、解决问题;(3)小组汇报,展示安装、调试过程。

4. 案例分析(1)分析不同类型自动灌溉系统的优缺点;(2)探讨自动灌溉系统在实际农业中的应用前景。

5. 设计与实施(1)学生分组,根据实际需求设计简单自动灌溉系统;(2)指导学生进行系统实施,包括选型、安装、调试等;(3)小组展示设计成果,并进行评价。

6. 总结与反思(1)总结自动灌溉系统的特点及在实际农业中的应用;(2)引导学生反思自己在学习过程中的收获和不足;(3)提出改进措施,提高教学质量。

四、教学评价1. 评价方式:形成性评价与总结性评价相结合;2. 评价内容:知识掌握程度、实践操作能力、团队协作能力、创新意识等;3. 评价方法:观察、实验、作品展示、小组评价等。

五、教学资源1. 教材:《农业工程概论》、《农业自动化技术》等;2. 教学课件;3. 自动灌溉系统实物或模型;4. 网络资源:相关网站、视频等。

智能灌溉设计方案

智能灌溉设计方案

智能灌溉设计方案1. 简介本文档旨在提供一个智能灌溉设计方案,以便帮助农民高效地管理农田的灌溉。

2. 方案概述智能灌溉方案将利用现代技术和智能控制系统,通过监测土壤湿度、气象条件和农田情况等多个指标,实现灌溉的自动化。

3. 设备与传感器为了实现智能灌溉,我们将使用以下设备和传感器:- 湿度传感器:用于监测土壤湿度,以确定灌溉的需要程度。

- 温度传感器:用于监控环境温度,以便调整灌溉量和频率。

- 太阳辐射传感器:用于测量日照强度,以确定植物的水分需求。

- 雨量计:用于检测降雨情况,以避免不必要的灌溉。

- 控制器:用于接收传感器数据,并根据预设的灌溉策略控制灌溉系统的开关。

4. 算法与策略智能灌溉方案将基于以下算法和策略来实现高效灌溉:- 基于土壤湿度的灌溉:根据土壤湿度传感器的数据,自动调整灌溉量和频率。

当土壤湿度低于预设阈值时,自动启动灌溉系统。

- 基于天气情况的灌溉:根据温度、太阳辐射和降雨情况等指标,综合判断植物的水分需求,并调整灌溉策略。

- 水资源管理:在灌溉策略中考虑水资源的可用性和可持续利用,以确保合理的水资源分配。

5. 监控与控制智能灌溉系统将具备以下监控与控制功能:- 远程监控:农民可以通过手机应用或网页界面远程监控农田的灌溉情况。

- 报警功能:当土壤湿度异常或灌溉系统故障时,系统将自动发送报警信息给农户。

- 手动控制:农户可以通过控制器手动调整灌溉系统的开关,以满足特殊情况下的需求。

6. 预期效果通过实施智能灌溉方案,预计可以达到以下效果:- 提高农田灌溉的效率和精度,减少水资源的浪费。

- 减轻农民的劳动负担,提高农业生产的自动化水平。

- 保持农田的良好生态环境,提高农作物的产量和质量。

7. 实施计划实施智能灌溉方案的计划如下:1. 购买所需设备和传感器,并进行安装和调试。

2. 开发相应的软件系统,用于传感器数据的采集、处理和控制命令的下发。

3. 进行测试和调整,确保系统的稳定性和准确性。

农田灌溉自动化系统设计

农田灌溉自动化系统设计

农田灌溉自动化系统设计农田灌溉自动化系统是一种集成了传感器、控制器和执行器的智能化系统,旨在提高农田灌溉的效率和精确度,减少人工操作的需求,降低水资源浪费。

本文将介绍农田灌溉自动化系统的设计原理、功能以及应用范围。

设计原理:农田灌溉自动化系统的设计原理基于监测土壤湿度和环境条件,通过自动控制灌溉设备来实现灌溉操作。

系统通过传感器监测土壤湿度和气温、湿度等环境条件,将这些数据传输给控制器进行分析和判断。

控制器根据预设的灌溉策略,调控执行器控制灌溉设备的工作状态,以实现自动化的灌溉操作。

功能:1. 实时监测土壤湿度:通过土壤湿度传感器,系统能够准确监测各个地点的土壤湿度情况。

通过这些数据分析和图表展示,农民可以及时了解农田的水分状况,预防干旱或过度浇水的情况发生。

2. 环境条件监测:系统还可以通过环境传感器监测气温、湿度等环境条件,根据不同的作物的需求,自动调整灌溉策略。

例如在高温、干燥季节,系统可以自动增加灌溉次数和时间,以保持适宜的土壤湿度。

3. 灌溉策略优化:系统可以根据不同的作物需求,自动优化灌溉策略。

通过数据分析和算法计算,系统能够确定最佳的灌溉时间、灌溉量和灌溉方式,从而最大程度地降低水资源浪费。

4. 远程监控与控制:农田灌溉自动化系统还可以与互联网连接,实现远程监控与控制。

农民可以通过手机或电脑远程监测农田的灌溉情况,随时调整灌溉策略,提高灌溉的效率和精确度。

应用范围:农田灌溉自动化系统已经在全球范围内广泛应用,特别是在干旱地区和大规模农田中具有重要作用。

该系统适用于各种作物的灌溉需求,包括小麦、水稻、玉米、葡萄等。

由于系统具有灵活性和可扩展性,可以根据具体情况进行定制,因此适用于不同地区和规模的农田。

总结:农田灌溉自动化系统通过将传感器、控制器和执行器集成为一体,实现了农田灌溉的智能化和自动化操作。

系统的设计原理基于土壤湿度和环境条件的监测,通过自动控制灌溉设备进行灌溉操作。

该系统具有实时监测土壤湿度、环境条件的功能,优化灌溉策略,实现远程监控与控制的特点。

智能化灌溉系统的设计与实现

智能化灌溉系统的设计与实现

智能化灌溉系统的设计与实现智能化灌溉系统是一种基于现代科技手段的灌溉方式,它可以通过传感器、计算机控制等技术手段,实时监测土壤湿度、气温等参数,根据这些数据进行智能调控,以实现自动化的灌溉管理。

下面将详细介绍智能化灌溉系统的设计与实现。

一、系统设计1.传感器选择:智能化灌溉系统需要使用各种传感器对土壤湿度、气温、光照强度等参数进行实时监测。

传感器选择时需要考虑其精准度、稳定性、响应速度等因素,并确保能够与系统的控制器进行良好的通信。

2.控制器设计:控制器是智能化灌溉系统的核心部件,它可以根据传感器所提供的数据,进行智能调控。

控制器的设计需要包括数据采集、数据处理、控制执行等功能。

此外,还需要考虑系统的扩展性,以便能够灵活应对不同的环境要求。

3.供水设计:智能化灌溉系统的供水方式可以选择自动取水和集中供水两种方式。

自动取水方式通过控制水泵、阀门等设备,直接从水源中取水进行灌溉。

集中供水方式则通过水管、喷头等设备,将集中供水系统中的水分配到各个灌溉区域。

4.灌溉区域划分:根据植物的需水量和生长环境等因素,将灌溉区域进行划分。

每个灌溉区域都需要安装相应的传感器,以便实时监测土壤湿度等参数,并进行相应的灌溉控制。

5.灌溉策略制定:根据植物的需水量和环境因素,制定合理的灌溉策略。

通过控制器系统,实时调控供水量和灌溉时间,以实现植物生长需要的水分供给。

二、系统实现1.传感器安装与调试:根据灌溉区域的划分,将传感器安装在合适的位置,确保能够准确监测土壤湿度和其他参数。

对传感器进行调试,校准灵敏度和响应速度等参数,以确保数据的准确性。

2.控制器开发与调试:根据系统设计,开发相应的控制器程序。

控制器需要与传感器进行数据通信,对传感器所提供的数据进行实时处理,并根据设定的灌溉策略,控制水泵、阀门等设备进行灌溉操作。

对控制器进行调试,确保其稳定可靠。

3.供水系统建设:根据所选择的供水方式,进行相应的供水系统建设。

自动取水方式需要安装水泵、阀门等设备,并确保其工作正常。

智能灌溉工程施工方案设计

智能灌溉工程施工方案设计

智能灌溉工程施工方案设计一、基础工程设计1. 灌溉系统介绍智能灌溉系统是一种集计算机技术、自动控制技术和传感器技术于一体的灌溉系统,可以根据作物需水情况和土壤湿度自动调节灌溉水量和灌溉时间,提高水资源利用效率和农作物产量。

智能灌溉系统由中央控制器、传感器、执行器和通讯模块等组成,可以实现远程监控和自动控制,方便管理和操作。

2. 灌溉系统组成(1)中央控制器:负责接收传感器采集的土壤湿度和气象信息,根据设定的灌溉方案和需水量来控制灌溉设备的工作。

(2)传感器:包括土壤湿度传感器、气象传感器等,用来实时监测土壤水分含量和环境气象情况,为灌溉系统提供实时数据支持。

(3)执行器:如电磁阀、喷灌器等,根据中央控制器的指令来控制灌溉水量和灌溉时间。

(4)通讯模块:用来与中央控制器进行通讯,传输数据和指令,实现远程监控和控制。

3. 灌溉系统优势(1)节约水资源:根据作物需水情况和土壤湿度自动调节灌溉水量和灌溉时间,避免过量灌溉,提高水资源利用效率。

(2)提高农作物产量和质量:根据作物生长需水情况来灌溉,保证农作物生长环境稳定,提高产量和品质。

(3)降低劳动成本:通过自动化控制和远程监控,减少人工操作,降低劳动强度和成本。

二、智能灌溉系统施工方案设计1.工程规划与布局:(1)确定灌溉系统总体规划,包括灌区划分和水源位置确定等。

(2)确定灌溉管道的布局和排水系统设计,保证灌溉系统正常运行。

(3)确定传感器和执行器的安装位置,保证传感器数据准确采集和执行器正常工作。

2. 设备采购与安装:(1)采购合适的中央控制器、传感器和执行器等设备,保证设备质量和稳定性。

(2)安装传感器和执行器,根据实际情况选择合适的安装方式,保证设备安全和稳定运行。

3. 系统调试与运行:(1)对灌溉系统进行调试,包括设备连接、程序设置等,保证系统正常运行。

(2)对系统进行试运行和检测,调整灌溉方案和设备参数,保证系统稳定性和灌溉效果。

4. 数据采集与分析:(1)对传感器采集的数据进行分析和处理,包括土壤湿度、气象信息等,为灌溉系统提供数据支持。

农业科技行业智能灌溉系统设计方案

农业科技行业智能灌溉系统设计方案

农业科技行业智能灌溉系统设计方案第1章项目背景与概述 (3)1.1 农业灌溉现状分析 (3)1.2 智能灌溉系统的必要性 (4)1.3 项目目标与意义 (4)第2章智能灌溉系统技术原理 (4)2.1 灌溉基本原理 (4)2.2 智能控制技术 (5)2.3 传感器技术 (5)2.4 数据分析与处理 (5)第3章系统需求分析 (6)3.1 功能需求 (6)3.1.1 灌溉控制需求 (6)3.1.2 数据采集与处理需求 (6)3.1.3 系统管理需求 (6)3.2 功能需求 (6)3.2.1 实时性 (6)3.2.2 可靠性 (6)3.2.3 可扩展性 (7)3.2.4 易用性 (7)3.3 系统架构设计 (7)3.3.1 硬件架构 (7)3.3.2 软件架构 (7)3.3.3 网络架构 (7)第4章灌溉设备选型与设计 (7)4.1 灌溉设备类型与特点 (7)4.1.1 滴灌系统 (7)4.1.2 喷灌系统 (8)4.1.3 微灌系统 (8)4.2 灌溉设备选型依据 (8)4.2.1 作物类型及生长周期 (8)4.2.2 地形及水源条件 (8)4.2.3 投资预算及运行成本 (8)4.2.4 智能化管理需求 (9)4.3 灌溉设备配置方案 (9)4.3.1 滴灌系统配置 (9)4.3.2 喷灌系统配置 (9)4.3.3 微灌系统配置 (9)第5章传感器及其安装设计 (9)5.1 传感器类型与功能 (9)5.1.1 土壤湿度传感器 (9)5.1.2 土壤温度传感器 (10)5.1.4 气象传感器 (10)5.2 传感器选型依据 (10)5.2.1 测量范围 (10)5.2.2 精度 (10)5.2.3 防护等级 (10)5.2.4 通信方式 (10)5.2.5 成本 (10)5.3 传感器安装与调试 (10)5.3.1 安装 (10)5.3.2 调试 (11)第6章智能控制系统设计 (11)6.1 控制系统架构 (11)6.1.1 系统概述 (11)6.1.2 数据采集层 (11)6.1.3 控制执行层 (11)6.1.4 通信网络层 (11)6.1.5 应用管理层 (11)6.2 控制算法与策略 (11)6.2.1 灌溉决策算法 (11)6.2.2 智能优化算法 (12)6.2.3 预测控制策略 (12)6.3 控制模块设计 (12)6.3.1 土壤湿度控制模块 (12)6.3.2 气象数据控制模块 (12)6.3.3 作物生长状态控制模块 (12)6.3.4 灌溉设备控制模块 (12)6.3.5 通信模块 (12)第7章数据采集与处理 (12)7.1 数据采集方案 (12)7.1.1 传感器选型 (12)7.1.2 传感器布局 (13)7.1.3 数据采集频率 (13)7.2 数据传输与存储 (13)7.2.1 数据传输 (13)7.2.2 数据存储 (13)7.3 数据分析与决策 (14)7.3.1 数据分析 (14)7.3.2 决策支持 (14)第8章系统集成与测试 (14)8.1 系统集成方法 (14)8.1.1 硬件集成 (14)8.1.2 软件集成 (14)8.2 系统调试与优化 (15)8.2.2 软件调试 (15)8.3 系统功能评估 (15)8.3.1 评估方法 (15)8.3.2 评估指标 (15)8.3.3 评估结果 (15)第9章智能灌溉系统应用案例 (15)9.1 案例一:农田灌溉应用 (15)9.1.1 项目背景 (16)9.1.2 系统设计 (16)9.1.3 应用效果 (16)9.2 案例二:温室灌溉应用 (16)9.2.1 项目背景 (16)9.2.2 系统设计 (16)9.2.3 应用效果 (16)9.3 案例三:园林灌溉应用 (17)9.3.1 项目背景 (17)9.3.2 系统设计 (17)9.3.3 应用效果 (17)第10章经济效益与推广前景 (17)10.1 投资成本分析 (17)10.1.1 设备购置成本 (17)10.1.2 安装成本 (18)10.1.3 维护及运行成本 (18)10.2 经济效益评估 (18)10.2.1 节水效果 (18)10.2.2 提高产量和品质 (18)10.2.3 节省人工成本 (18)10.2.4 经济效益综合评估 (18)10.3 推广前景与政策建议 (18)10.3.1 推广前景 (18)10.3.2 政策建议 (19)第1章项目背景与概述1.1 农业灌溉现状分析人口增长和城镇化进程的加快,我国农业用水需求不断上升。

庭院智慧灌溉工程设计方案

庭院智慧灌溉工程设计方案

庭院智慧灌溉工程设计方案一、项目背景随着我国城市化进程的加快,庭院绿化越来越受到人们的重视。

然而,传统的庭院灌溉方式存在诸多问题,如水资源的浪费、灌溉效果不佳等。

为了解决这些问题,提高庭院灌溉的智能化水平,本文提出了一种庭院智慧灌溉工程设计方案。

二、设计目标1. 实现庭院灌溉的自动化和智能化,降低人工管理成本。

2. 提高灌溉效率,减少水资源浪费。

3. 灵活调节灌溉时间、灌溉水量,满足不同植物的生长需求。

4. 提高灌溉系统的可靠性和稳定性,确保庭院绿化效果。

三、设计内容1. 系统架构庭院智慧灌溉系统主要包括以下几个部分:(1)首部装置:包括水源、水泵、过滤器等,负责水源的引入和初步处理。

(2)控制装置:包括智能控制器、传感器、阀门等,负责灌溉过程的自动控制。

(3)执行装置:包括灌溉设备、管道、阀门等,负责实际的灌溉操作。

(4)监测与管理系统:包括数据采集、传输、处理和展示,实现灌溉系统的远程监控和管理。

2. 关键技术(1)智能控制器:采用先进的灌溉控制算法,实现灌溉过程的自动调节。

(2)传感器技术:采用土壤湿度、光照强度等传感器,实时监测植物的生长环境。

(3)数据通信技术:采用无线或有线通信方式,实现灌溉系统的远程数据传输。

(4)数据分析与处理:对采集到的数据进行分析处理,为灌溉决策提供依据。

3. 系统功能(1)自动灌溉:根据土壤湿度、光照强度等参数,自动调节灌溉时间和水量。

(2)定时灌溉:设置固定的灌溉时间,满足植物的生理需求。

(3)手动灌溉:可通过手机APP或远程控制器,手动控制灌溉系统。

(4)数据监测与展示:实时监测灌溉系统的工作状态,并通过手机APP或网页展示给用户。

(5)故障报警:系统出现故障时,及时发出报警通知,便于及时处理。

四、实施方案1. 首部装置:根据庭院大小和灌溉需求,选择合适的水泵和过滤器。

2. 控制装置:选用可靠的智能控制器,安装适量的传感器和阀门。

3. 执行装置:选择合适的灌溉设备,布置管道和阀门。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
自动化灌溉与信息化管理系统方案 (2)
1、现场智能感知平台: (4)
1.1、井房首部设备智能监控系统 (5)
1.2、田间无线灌溉控制系统 (7)
1.3.无线土壤墒情监测系统 (9)
1.4.综合智能气象监测系统 (12)
2、无线网络传输平台 (15)
3、数据管理平台 (16)
4、应用平台(监控中心及移动管理控制端) (18)
5、主要技术参数 (20)
自动化灌溉与信息化管理系统方案
自动化灌溉与信息化管理系统是针对农业大田种植分布广、监测点多、布线和供电困难等特点,融合最新的物联网和云计算技术,采用高精度土壤温湿度传感器和智能气象站,远程在线采集土壤墒情、气象信息,实现墒情自动预报、灌溉用水量智能决策、远程/自动控制灌溉等功能。

该系统根据不同地域的土壤类型、灌溉水源、灌溉方式、种植作物等划分不同类型区,在不同类型区内选择代表性的地块,建设具有土壤含水量,地下水位,降雨量等信息自动采集、传输功能的监测点;通过灌溉预报软件结合信息实时监测系统,获得作物最佳灌溉时间、灌溉水量及需采取的节水措施为主要内容的灌溉预报结果,定期向群众发布,科学指导农民实时实量灌溉,达到节水目的。

系统组成:
大田灌溉自动化与信息化管理系统分为现场智能感知平台、无线网络传输平台、云数据管理平台、应用平台(监控中心及移动管理控制端)四个层次,其中,田间脉冲电磁阀、无线阀门控制器、远程水泵智能控制器、云服务器、主控制中心和村级(企业)控制中心、移动控制终端等组成灌溉无线控制系统,能够实现现地无线遥控、远程随时随地监控、轮灌组定时自动轮灌等控制方式,并且实时监测机井和阀门状态,灌溉流量和管网压力,保障运行安全,及时提示报警信息。

在此基础上,扩充田间土壤墒情监测、农田气象监测、作物和泵
房视频监测等内容,指导科学灌溉,提高灌溉的智能化程度。

灌溉自动化系统总体层次分布图
系统特点:
➢全无线传输,自组网协议,电池供电、不需要任何布线,系统安装维护方便;
➢无线采用全球免费的公共频段(2.4GHz),省去传统无线的运营费用;
➢公网无线和现场无线融合,且具有冗余备份能力,提高了系统可靠性和安全性,突破了系统现地访问限制;
➢无线阀控和采集节点超低能耗设计、内置电池保证使用3年;系统定时采集网络节点电压、工作温度与通讯链路状态,实现网络自诊断功能;
➢所支持的电磁阀产品线广泛,不仅支持Netafim、Rain Bird和Hunter等灌溉公司的电磁阀,同时也支持国外著名的阀制造企业Bermad、Dorot和TECHNIDRO的产品;
➢移动管理终端创新开发,突破了只能固定地点操作的限制,方便灌溉管理;
➢自动化功能多层次设计满足不同灌溉管理需要,提高了系统的适应性;
➢系统采用组件化和模块化设计,无线阀控节点、无线采集节点和机井控制站可以按照项目需要自由扩展,方便项目设计,方便后续升级维护。

➢支持土壤墒情、作物长势信息和农田小气候信息的采集,强大的UniLog管理软件能根据所采集的气象信息推算最适宜的农田灌溉时间和灌溉量,并做出智能的管理决策;
➢管理软件集成GPRS/GSM技术,支持基于短信的智能报警,支持基于Internet的远程管理。

➢依托云数据中心,灌溉自动化系统实现统一专家运维服务,现场维护人员只需要根据系统和专业运维人员建议,安装拆卸设备和排除故障等。

让高科技傻瓜化,让自动化的使用维护和基础滴灌工程一样简单。

1、现场智能感知平台:
平台包括有:井房首部设备智能监控系统、田间灌溉控制系统、田间土壤墒情信息监测系统、近地小气候环境信息监测系统、智能气象站、作物长势远程监测系统。

1.1、井房首部设备智能监控系统
井房首部枢纽设备包括:变频器、一体式水泵智能控制器、压力传感器、流量传感器、地下水位/温度传感器、过滤装置、安全防护装置,自动化施肥装置和测控装置等。

过滤装置作用是将水中的固体大颗粒、杂质等过滤,防止这些污物进入滴灌系统堵塞滴头或在系统中形成沉淀。

施肥装置的作用是使易溶于水并施于根系的肥料、农药、化控药品等在施肥罐内充分溶解,然后再通过滴灌系统输送到作物根部,便于作物吸收,充分发挥肥效,同时减少肥料浪费,测控装置的作用是方便系统的操作、运行管理、保证系统安全。

本系统设有逆止阀、排气阀、压力表、水表、流量控制阀门。

井房首部设备智能监控系统实现机井水泵的启闭、电机保护、电量的计量、运行状态监测,同时还对水源地地下水位、出水口压力和流量进行监测。

井房智能监控站示意图
井房智能监控站功能及原理如下:
远程的测控:智能井房控制终端通过GPRS无线,接收控制中心发送的命令,对水泵变频器进行采集和控制,实现远程的水泵启停、电量采集的首部控制管理;
变频恒压管理:变频器根据灌溉所设定的压力,对灌溉主管道进行恒压调变频调控,以保证足够的灌溉压力。

根据水泵功率大小可选;
管网监测管理:智能井房终端通过监测安装在过滤器的前后的两个压力传感器的压差值,来判断是否需要对过滤器进行清理,以保证管网的高效稳定;
灌溉用水统计:智能井房连接地下水位传感器、流量传感器,实时监测水源井地下水位动态情况以及灌溉水的使用情况,当地下水位值低于设定值是,发出预警信息。

表井房智能监控站设备组成清单表
1.2、田间无线灌溉控制系统
田间无线灌溉控制系统通过无线控制器与井房智能监控站连接,通过对泵站、可控灌溉阀门等状态信息、控制信息、田间水位、墒情、流量等测量信息及雨情、风情、温度等气象信息的实时采集,经过可编程控制器的逻辑判断和处理,实现基于预定控制模型的自动灌溉、自动控制,并自动形成数据报表及相应的统计信息报表等功能,同时可选择实现远程登陆访问功能。

田间无线灌溉控制节点由无线阀门控制器、脉冲电磁阀、状态反馈、田间信息传感器(土壤温度、土壤水分传感器、流量和压力传感器)组成。

无线阀门控制器通过线缆连接电磁阀和状态反馈,实现电磁阀启闭控制和状态监测。

图无线阀控节点设备安装图
田间无线阀控器采用高性能蓄电池供电,具有无线通讯组网功能,能够支持控制两路脉冲电池阀、接收两路状态反馈,同时可根据需要接入土壤水分、温度、流量和压力传感器。

是无线通讯的终端节点。

电磁阀是实现田间灌溉阀门自动控制的枢纽设备,它通过电缆直接连接到核心可编程控制器或就近的田间控制器,根据可编程控制器上设置的灌溉施肥程序自动执行来自控制器的运行指令,实现灌溉阀门的自动启动和关闭。

传感器是系统用于监控灌溉系统运行状况的传感设备,可以采集灌溉系统本身的设备运行信息、土壤和气象等环境信息,以及作物的生理反馈信息,传感器可以作为灌溉控制条件实现智能灌溉控制。

灌溉自动控制系统的传感器主要包括液位计、压力传感器、温度湿度传感器、电磁流量计、土壤水分以及作物生长精密传感器等。

无线通讯系统采用全无线漫游组网,田间不铺设线路,通过分区管理,级联通讯,实现数据的远程传输。

每一个电磁阀都有1个专用地址,根据轮灌制度确定开启的电磁阀,控制中心给开启的电磁阀的专用地址下命令,电磁阀开启灌水。

无线阀门控制器与脉冲电磁阀和状态反馈形成无线灌溉控制节点,实现阀门的无线启闭,不再需要管理人员下地手动启闭阀门。

无线阀门控制器内置高能电池,正常使用寿命不低于3年。

表无线阀控组成清单表
1.3.无线土壤墒情监测系统
土壤墒情监测系统能够实现对土壤墒情的长时间连续监测。

用户可以根据监测需要,灵活布置土壤温度和土壤水分传感器;也可将传感器布置在不同的深度,测量剖面土壤水分情况。

系统采用GPRS 网络采集传输模式,传感器没有数量上的限制,监测点之间没有距离
限制。

系统还提供了额外的扩展能力,可根据监测需求增加对应传感器,监测土壤温度、土壤电导率、土壤PH值、以及空气温度、空气湿度、光照强度、风速风向、雨量等信息,从而满足系统功能升级的需要。

土壤墒情监测系统能够全面、科学、真实地反映被监测区的土壤变化,可及时、准确地提供各监测点的土壤墒情状况,为减灾抗旱提供了重要的基础信息。

土壤水分传感器的安装位置,要求离滴管带10cm,安装深度分三层10cm、20cm、40cm, 安装位置的选择每个灌溉单元中的2个代表处,每个喷灌单元12个分区点。

表。

无线土壤墒情监测组成清单
序号设备名称规格型号1 GPRS数据传输模块太阳能自供电定制
1.4.综合智能气象监测系统
综合智能气象监测系统由9要素气象监测站、6层土壤墒情监测站以及作物长势远程监测系统组成;
气象监测站,监测因子(风速、风向、雨量、太阳辐射、空气温度、空气湿度、大气压强传感器、CO2浓度传感器、叶面湿度传感器),自动记录农田环境信息,并通过GPRS/GSM网远程上报至数据中心。

基于对农田气象信息的监测,中心软件可以计算出每天每小时的ET 值(土壤蒸发和植物蒸腾之和),以便进行高效的、科学的灌溉管理。

作物长势远程监测系统具有视频监控、无线覆盖等功能,主要用于获取农田环境气象信息,远程查看农田作物生长情况。

综合智能气象监测系统由气象传感器、GPRS无线采集器、太阳能供电系统、铝合金安装支架、作物长势远程监测系统等组成。

气象传感器:包括风速传感器、风向传感器、雨量传感器、太阳辐射传感器、空气温湿度传感器、大气压强传感器、CO2浓度传感器、叶面湿度传感器;
GPRS无线采集器:采集气象数据,并通过GPRS/GSM网发送数据中心;。

相关文档
最新文档