黄酮类化合物结构

合集下载

黄酮类化合物

黄酮类化合物

黄酮类化合物一概述黄酮类化合物(flavonoids)是一类存在于自然界的重要有机化合物。

黄酮类化合物不同的颜色为天然色素家族添加了更多的色彩。

这类化合物多存在与高等植物及蕨类植物中。

苔藓类植物中部分存在黄酮类化合物,而藻类,微生物(如细菌)及其他海洋生物中没有发现黄酮类化合物的存在。

黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。

绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方起着重要的作用。

它是很多中药的活性成分,具有抗氧化、抗菌消炎、抗病毒、抗癌等生物活性。

1.1黄酮类化合物的基本结构以前黄酮类化合物主要是指基本母核为2-苯基色原酮(flavone见图1)结构类的化合物。

现在泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳基团相互连接而成的一系列化合物。

图1它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。

黄酮类化合物结构中常见的取代基团有酚羟基、甲氧基、甲基、异戊烯基等。

1.2黄酮类化合物的生物合成黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生。

经同位素标记,大体合成过程如下图5所示:上述标记实验同时证明了间苯三酚不是黄酮类化合物的生物合成前体,而桂皮酸和对羟基桂皮酸是黄酮类化合物B环更适合的生物合成前体。

1.3黄酮类化合物的分类(见图2):根据中央三碳链的氧化程度、B-环连接位置(2-或3-)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类。

图2 黄酮类化合物的分类1.3.1黄酮类及黄酮醇类黄酮及黄酮醇类是数量最多、分布最广的黄酮类化合物。

木犀草素是最常见的黄酮类化合物,在植物界分布较广,具有抗菌作用。

清热解毒中药黄芩含有较多的黄酮类化合物,主要成分为黄芩苷和次黄芩苷等。

槲皮素及及其苷类则是植物界分布最广、最常见的黄酮化合物。

1.3.2二氢黄酮类及二氢黄酮醇类二氢黄酮和二氢黄酮醇类是黄酮和黄酮醇的2,3-双键饱和结构,绝大部分天然来源的二氢黄酮是2S构型,二氢黄酮醇是2R,3R构型。

天然药物化学黄酮类结构解析天然药化结构鉴定

天然药物化学黄酮类结构解析天然药化结构鉴定

黄酮类化合物在其他天然药物开发中的应用
05
CHAPTER
黄酮类化合物研究展望
01
02
黄酮类化合物药理活性的深入研究
针对黄酮类化合物在预防和治疗重大疾病方面的应用进行深入研究,为其临床转化提供科学依据。
深入探索黄酮类化合物在抗肿瘤、抗炎、抗氧化、抗衰老等方面的药理活性,揭示其作用机制和靶点。
黄酮类化合物提取分离技术的改进与创新
优化黄酮类化合物的提取工艺,提高提取效率和纯度,降低生产成本。
开发新型的分离纯化技术,如超临界流体萃取、分子印迹技术等,实现对黄酮类化合物的快速、高效分离。
黄酮类化合物结构修饰与新药研发
对黄酮类化合物进行结构修饰,改善其药理活性、代谢特性及稳定性,提高疗效和降低副作用。
基于黄酮类化合物的新药研发,发掘具有自主知识产权的创新药物,满足临床治疗需求。
提取
黄酮类化合物的分离可通过柱色谱法、薄层色谱法、高效液相色谱法等技术实现。
分离
黄酮类化合物的提取与分离方法
02
CHAPTER
黄酮类化合物结构解析
黄酮类化合物的基本母核是由2-苯基色原酮组成,通常包括A、B、C三个环。
母核结构
黄酮类化合物分子中常有羟基、甲氧基、烃基等取代基,这些取代基的种类和位置对化合物的性质和生物活性有重要影响。
天然药物化学黄酮类结构解析与天然药化结构鉴定
目录
黄酮类化合物概述 黄酮类化合物结构解析 天然药化结构鉴定技术 黄酮类化合物在天然药物开发中的应用 黄酮类化合物研究展望
01
CHAPTER
黄酮类化合物概述
黄酮类化合物是一类广泛存在于植物中的天然化合物,通常具有多个酚羟基,并具有C6-C3-C6的基本碳架结构。

黄酮类化合物概述

黄酮类化合物概述
O2
3 O 二氢异黄酮
O 查耳酮
O2
3 O 异黄酮 O
O 苯骈色酮
1 O2
3 4 O 二氢黄酮
O
黄烷类 O
花青素
二、黄酮类化合物的生物合成途径
由葡萄糖分别经莽草酸途径和乙酸-丙二 酸途径生成对羟基桂皮酸和三分子乙酸, 合成查耳酮,再经过查耳酮异构酶的作用 形成二氢黄酮。二氢黄酮再在各种酶的作 用下衍变为各类黄酮。
HO
O
Oglc
O 甘草苷(liquiritin),具有溃疡抑制作用
柚皮素(Naringenin):来源于芸香科植物柚(Citrus paradisi Macfadyen)的果实;具有抗菌, 抗炎, 抗癌,解痉 和利胆作用.
结构式:
HO
O
OH
OH O
4.二氢黄酮醇类(flavanonols)
1 O2
葛根总黄酮具有扩冠、增加冠脉流 量及降低心肌耗氧量等作用。 大豆素具有类似罂粟碱的解痉作用。 大豆苷、葛根素及大豆素均能缓解 高血压患者的头痛等症状。
HO
O
O
化合物名称 取代基
大豆素 OH 大豆苷
葛根素
7,4'-二OH
4'-OH, 7-glc 7,4'-二OH,8-C-glc
7.二氢异黄酮类
O2
新红花苷(neo-carthamin)(无色) 氧化酶
SO2
HO
O
OH
O Oglc O
醌式红花苷(红色)
红花在开花初期,花冠呈淡黄色;开花中期,花冠呈深黄色;开 花后期或采收干燥过程中由于酶的作用,氧化成红色。
6.异黄酮类 (isoflavones)
O2
3 O

黄酮

黄酮

黄酮定义:黄酮是一大类以苯色酮环为基础的酚类化合物。

植物中由苯丙氨酸产生的肉桂酰辅酶A,经碳链延长环化生成的查耳酮,再衍生成的各种α苯基衍生物。

其中有些可用于心血管病的治疗。

结构:黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物,其基本母核为2-苯基色原酮。

黄酮类化合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。

此外,它还常与糖结合成苷。

黄酮分类根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。

另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮理化性质天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄同感类。

组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。

黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。

黄酮类化合物不同的颜色为天然色素家族添加了更多色彩。

这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。

黄酮苷一般易溶于水、乙醇、甲醇等极性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。

糖链越长则水溶度越大。

黄酮类化合物因分子中多具有酚羟基,故显酸性。

酸性强弱因酚羟基数目、位置而异。

黄酮的功效黄酮的功效是多方面的,它是一种很强的抗氧剂,可有效清除体内的氧自由基,如花青素、花色素可以抑制油脂性过氧化物的全阶段溢出,这种阻止氧化的能力是维生素E 的十倍以上,这种抗氧化作用可以阻止细胞的退化、衰老,也可阻止癌症的发生。

天然药物化学-黄酮类化合物

天然药物化学-黄酮类化合物

O
Cl H2O
O
OH
在浓硫酸中生成的洋盐常表现特殊的颜色,可 用于鉴别。 黄酮、黄酮醇——黄~橙色,并有荧光
二氢黄酮——橙红〔冷〕、紫红〔热〕 查耳酮——橙红~洋红
第三十六页,共一百一十一页。
四、显色反响 (一)复原反响
1. 盐酸-镁粉〔盐酸-锌粉〕反响——鉴定 黄酮、黄酮醇及二氢黄酮、二氢黄酮醇——〔+〕
OH
H OH
O 邻羟基查耳酮
第十六页,共一百一十一页。
O
O 二氢黄酮
HO
OH
HO glc O O
OH
红花苷
HO
OH
OH
glc O O
梨根苷
第十七页,共一百一十一页。
6.异黄酮类与二氢异黄酮类
结构特点
➢母核为3-苯基色原酮的结构,即B环连接在C环的3位上
➢异黄酮的2、3位被氢化 O 2
8
7
A
6
5
1
第五页,共一百一十一页。
〔二〕结构类型
根据B环连接位置〔2位或3位〕
C环氧化程度〔包括2,3位是否存在双键;4位
有无-C=O〕
C环是否成环〔1,2位是否开环〕
将黄酮类化合物分为以下七大类。
1 黄酮和黄酮醇
2 二氢黄酮和二氢黄酮醇
3 异黄酮和二氢异黄酮醇
4 查耳酮和二氢查耳酮
5 橙酮类
8
6 花色素和黄烷醇类 7 其他
11.双苯吡酮类
根本母核由苯环与色原酮的2,3位骈合而成
O OH
8
HO 7
1 2
HO 6 5
O 4 3 OH glc
异 芒 果 素 (isomengiferin)
石韦中的异芒果素具有止咳祛痰的成效。

天然药物化学课件 黄酮类化合物的结构解析

天然药物化学课件 黄酮类化合物的结构解析
即: ①形成氢键的基团越多,则吸附力越强; (Ar-OH、-COOH、醌基、硝基等) ②易形成分子内氢键,则吸附力减弱; (邻二-OH、3-OH 4-酮基、5-OH 4-酮基等) ③芳香核、共轭双键多者吸附力大;
(二)分离 1.柱色谱法(4)聚酰胺柱色谱
聚酰胺柱色谱在分离黄酮类化合物时 有下述规律:
化合物的酸性强弱? 方法——pH梯度萃取
化合物的分子大小? 方法——葡聚糖凝胶
分子中具有特殊结构?
(如:邻二酚羟基)
方法——金属盐络合
三、黄酮类化合物的提取分离
(二)分离 1.柱色谱法 (硅胶、氧化铝、纤维粉、 聚酰胺、葡聚糖凝胶) 2.pH梯度萃取法 3.铅盐沉淀法
(二)分离 1.柱色谱法
(1)硅胶柱色谱 出柱先后顺序:
作用机理:
分离游离黄酮时——吸附作用
(取决于游离Ar-OH的数目, Ar-OH少则先出柱)
分离黄酮苷是——分子筛起主导作用
(分子量大的先出柱)
(二)分离 1.柱色谱法(5)葡聚糖凝胶柱色谱
常用洗脱溶剂: ①碱性水溶液(0.1mol/L NH4OH) (含盐水溶液——0.5mol/L NaCl等) ②醇及含水醇 ③其它溶剂 含水丙酮、甲醇-氯仿等。
根据分子中某些特定官能团进行分离。
黄酮类、酚类
可逆
聚酰胺 吸附
鞣质
不可逆 聚酰胺
吸附
利用此性质,可除提取物中的鞣质
(二)分离 1.柱色谱法(5)葡聚糖凝胶柱色谱
葡聚糖凝胶 (Sephadex gel) 用于黄酮类化合物的分离,主要有两种型号:
Sephadex-G型 Sephadex LH-20型 (羟丙基葡聚糖凝胶)
(二)分离 1.柱色谱法(5)葡聚糖凝胶柱色谱

黄酮类化合物

黄酮类化合物

一、性状
3. 旋光性
二氢黄酮(醇)、二氢异黄酮、黄烷醇——含手性碳 原子——具有旋光性,其它黄酮类不具有旋光。
黄酮苷—结构中引入糖基—具有旋光性—多为左旋。
二、溶解性
溶解度取决于存在状态 苷:亲水性 苷元:亲脂性
平面型分子
易溶热水、甲醇、乙醇;难溶CHCl3 易溶MeOH、EtOH、Et2O;难溶于水
+ H OO O O
4‘ H
+
O
+
7
+
O
-
O
P-∏共轭7 、4′OH 酸性强
O
-
三、酸性与碱性
(二)碱性
黄酮类化合物分子中γ-吡喃环上的一位氧原子,因 有未共用电子对,故表现出微弱的碱性。 • 与强无机酸生成盐,生成的盐不稳定,加水后即可分解。 • 黄酮类化合物溶于浓硫酸、盐酸生成的佯盐,常常表现 出特殊的颜色,可用于鉴别。

H+ O
+
O
X-
γ
O
OH
三、酸性与碱性
(二)碱性
各种黄酮类化合物溶于浓硫酸后生成的佯盐所呈 现的颜色如下: •黄酮,黄酮醇类 •二氢黄酮类 黄~橙色, 并有荧光 橙(冷时)~紫红色(加热时)
•查耳酮类
•异黄酮,二氢异黄酮类 •橙酮类
橙红~洋红色
黄色 红~洋红色
四、显色反应
(一)还原试验
1. HCl-Mg(Zn)粉反应:是检查中药中是否有黄酮类化 合物的最常用的方法。
而在木质部坚硬组织,则多为游离的苷元。
概述
生理活性
• 葛根总黄酮及葛根素、银杏叶总黄酮:具有扩张冠状 血管作用,用于治疗冠心病; • 芦丁、橙皮苷、d-儿茶素:具有降低毛细血管脆性和 异常通透性作用,用作毛细血管性出血的止血药及治 疗高血压、动脉硬化的辅助药; • 水飞蓟素、次水飞蓟素:肝保护作用 ,临床上用于治 疗急、慢性肝炎,肝硬化等; • 异甘草素、大豆素:具有类似罂粟碱的作用,解除平 滑肌痉挛。

柑橘属类黄酮

柑橘属类黄酮

一.黄酮类化合物的结构黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物。

它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。

最早黄酮类化合物主要是指母核为2-苯基色原酮的一类化合物,现在则泛指两个苯环(A环与B环)通过中央三碳相互联接而成的一系列化合物。

以C6-C3-C6结构为基本母核的天然产物,即两个苯环(A环和B环)通过3个碳原子结合而成。

其中C3部分可以是脂链,或与C6部分形成六元或五元氧杂环二黄酮的功效黄酮的功效是多方面的,它是一种很强的抗氧剂,可有效清除体内的氧自由基,如花青素、花色素可以抑制油脂性过氧化物的全阶段溢出,这种阻止氧化的能力是维生素E 的十倍以上,这种抗氧化作用可以阻止细胞的退化、衰老,也可阻止癌症的发生。

黄酮可以改善血液循环,可以降低胆固醇,向天果中的黄酮还含有一种PAF抗凝因子,这些作用大大降低了心脑血管疾病的发病率,也可改善心脑血管疾病的症状。

被称为花色苷酸的黄酮化合物在动物实验中被证明可以降低26%的血糖和39%的三元脂肪酸丙酯,这种降低血糖的功效是很神奇的,但更重要的是它对稳定胶原质的作用,因此它对糖尿病引起的视网膜病及毛细血管脆化有很好的作用。

黄酮可以抑制炎性生物酶的渗出,可以增进伤口愈合和止痛,栎素由于具有强抗组织胺性,可以用于各类敏感症。

一项由荷兰专家主持的研究发现:由4807位参与者的实验表明,每天饮375毫升绿茶的人,其心脏病的发病概率是那些不喝茶的人的一半;致命性心脏病发病率只有三分之一。

其中重要的原因就是绿茶中所含的黄酮(<<美国临床营养学>>2002.4.25)。

来自南太平洋岛国的向天果,富含33种类黄酮,可以帮助人体改善血液循环,提高免疫力,是糖尿病、高血脂、高血压患者的福音。

蜂胶是蜂蜜从植物新生枝芽或树皮上采集的树胶,混以自身分泌加工而成的芳香胶状体。

黄酮类化合物

黄酮类化合物

黄酮类化合物黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物黄酮类化合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。

此外,它还常与糖结合成苷。

多数科学家认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的。

经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A[1]。

1、分类:根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。

另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮。

2、理化性质:天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。

组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。

黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。

黄酮类化合物不同的颜色为天然色素家族添加了更多色彩。

这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。

黄酮苷一般易溶于水、乙醇、甲醇等级性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。

糖链越长则水溶度越大。

黄酮类化合物因分子中多具有酚羟基,故显酸性。

酸性强弱因酚羟基数目、位置而异。

3、显色:1.盐酸-镁粉(或锌粉)反应为鉴定黄酮类化合物最常用的颜色反应,反应机理现在认为是因为生成了阳碳离子缘故[1]。

2.四氢硼钠(NaBH4)是对二氢黄酮类化合物专属性较高的一种还原剂,产生红~紫色。

黄酮类化合物

黄酮类化合物

常用CHCl3-MeOH作为流动相。
OH HO O
HO
OH O OH
OH
O
OH
O
硅胶柱色谱,以CHCl3-MeOH作为流动相
硅胶柱上各种溶剂的洗脱能力:
石油醚 < 苯 < 氯仿 < 乙醚 < 醋酸乙酯
< 吡啶 < 丙酮 < 乙醇 < 甲醇 < 水
(2) 聚酰胺柱色谱
原理: 通过分子中的酰胺羰基与黄酮类化合物分子上的酚羟 基形成氢键缔合而产生吸附作用。
OH
O O OH
OH OH O O
2.6.2 柱色谱法
常用吸附剂或载体有硅胶、聚酰胺及纤维素粉等,
也有用氧化铝、氧化镁及硅藻土。
(1) 硅胶柱色谱:
此法应用范围最广,主要适于苷元的分离,异黄酮、
二氢黄酮、二氢黄酮醇及高度甲基化的黄酮及黄酮
醇类。少数情况下,在加水去活化后也可用于分离
极性较大的化合物,如多羟基黄酮醇及其苷类等。
O
2
名称 黄酮醇类 Flavonols 异黄酮类 Isoflavones
三碳链部分 结构
O OH O
O
3
O
O
O
OH
O
O
其他黄酮类化合物结构类型:
黄烷-3-醇类 Flavan-3,4-ols
O OH
橙酮类 Aurones
O CH
O
黄烷-3,4-二醇类 Flavan-3,4-diols
O OH OH
口山酮类 Xanthones
O
O
O
花色素类 Anthocyanidins
+ O
高异黄酮类 Homoisoflavones

中药化学-6第六章--黄酮类化合物

中药化学-6第六章--黄酮类化合物

红色(pH <7) 紫色(pH= 8.5) 蓝色(pH>8.5)
OO
++
OO

二氢黄酮 二氢黄酮
二氢查耳 黄烷醇类 异黄酮(无或微黄色)
二氢异黄酮
二.旋光性:
旋光性 取决于
不对称碳原子的有无


所有黄酮苷(糖) 游离黄酮 二氢黄酮 二氢黄酮醇 二氢异黄酮 黄烷醇类
O2*
O
(2-位)
O* *
OH O
TLC、PPC
5.与五氯化锑反应
五氯化锑 (SdCl5): 查耳酮特征性显色反应 (红或紫红色沉淀) 黄酮、二氢黄酮、黄酮醇类呈橙色。
6.其他显色反应
Gibbˊs反应:酚羟基对位活泼质子的特征(蓝 或蓝绿色)
第三节 黄酮类化合物的提取、分离 一.提取方法 —— 溶剂法
溶剂法 关键 溶剂的选择 选择依据 黄酮类成分的存在状态(游离、苷)及溶解性
五.显色反应
1.还原显色反应
反应类型
鉴别特征
鉴别意义
备注
盐酸-镁粉 黄酮、二氢黄酮、 红~紫红 黄酮类特征性 假阳性
反应
黄酮醇、二氢黄酮醇 红~紫红 鉴别反应
(花色素

(最常用)
查耳酮、橙酮、 (-)
儿茶素类、异黄酮 (-)
四氢硼钠 还原反应
二氢黄酮、二氢黄酮醇 红~紫红 二氢黄酮类特有
其它黄酮类
23 4
HO
5'
HO
65
OH
OH
6'
glc O O
O
红花苷
二氢查耳酮(+)儿茶素
OH
HO
OH
OH

黄酮类化合物

黄酮类化合物

三 链 分 构 碳 部 结
O OH O
O OH O
O O
续表:
+ O OH
3' 2 2' OH 1' 1 6 5 3 4
花 素 色 类 (anthocyanidins)
7
查 酮 耳 类 (chalcones)
6'
O OH
O
1 2 3
橙 酮 类 (噢 弄类 ) 口 (aurones) 4 黄 烷 -3,4-二 醇 类 Flavan-3,4-diols 双苯吡酮类 口山 酮 类 Xa nt hones
黄 类 合 的 要 构 型 酮 化 物 主 结 类
名称 黄 类 酮 (flavones) 二 黄 类 氢 酮 (flavanoes) 异 酮 黄 类 (isoflavones)
三碳链部分结构
O O O O O O
名称 黄 醇 酮 类 (flavonol) 二 黄 醇 氢 酮 类 (flavanonols) 二 异 酮 氢 黄 类 (isoflavanones)
芦丁、橙皮苷、d-儿茶素等有Vit P样作用,能降低血管脆性 及异常的通透性,可用作防治高血压及动脉硬化的辅助治疗剂。
HO
O
O
OH OH
r ut inos e
OH r ut inos e O O O CH3
OH O 芦丁 rutin
OH O
橙皮苷 hesperidin
芦丁、槲皮素、葛根素、立可定等均有明显的扩冠作用。
4.镁盐:Mg(OAc)2甲醇溶液,常在纸上进行 Mg(OAc)2 二氢黄酮(醇类) 天兰色荧光 Mg(OAc)2 黄酮(醇)、异黄酮 黄~橙黄~褐色
★5. 氯化锶反应:在氨性甲醇液中反应 SrCl2 邻二酚OH黄酮 绿色~棕色乃至黑色

黄酮类化合物的结构

黄酮类化合物的结构

黄酮类化合物的结构一、利用紫外光谱测定黄酮类化合物的结构大多数黄酮类化合物在甲醇中的紫外吸收光谱由两个主要吸收带组成。

出现在300~400nm之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。

不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。

当向黄酮类化合物的甲醇(或乙醇)溶液中分别加入甲醇钠(NaOMe)、乙酸钠(NaOAc)、乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。

据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。

黄酮和黄酮醇类(一)黄酮、黄酮醇类在甲醇中的UV光谱特征黄酮或黄酮醇的带Ⅰ是由B环桂皮酰基系统的电子跃迁所引起的吸收,带Ⅱ是由A环的苯甲酰基系统的电子跃迁所引起的吸收。

黄酮和黄酮醇的UV光谱图形相似,仅带Ⅰ位置不同,黄酮带Ⅰ位于304~350nm,黄酮醇带Ⅰ位于358~385nm。

利用带Ⅰ的峰位不同,可以区别这两类化合物。

黄酮、黄酮醇的B环或A环上取代基的性质和位置不同将影响带Ⅰ或带Ⅱ的峰位和形状。

例如,7和4′位引入羟基、甲氧基等含氧取代基,可引起相应吸收带向红位移。

又如3-或5-位引入羟基,因能与C4=O形成氢键缔合,前者使带Ⅰ向红位移,后者使带Ⅰ、带Ⅱ均向红位移。

B环上的含氧取代基逐渐增加时,带Ⅰ向红位移值(nm)也逐渐增加,但不能使带Ⅱ产生位移。

有时(例如3′,4′-位有2个羟基或2个甲氧基或亚甲二氧基)仅可能影响带Ⅱ的形状,使带Ⅱ歧分为双峰或1个主峰(Ⅱb位于短波处)和1个肩峰(sh)或弯曲(Ⅱa位于长波处)。

A环上的含氧取代基增加时,使带Ⅱ向红位移,而对带Ⅰ无影响,或影响甚微(但5-羟基例外)。

黄酮或黄酮醇的3-,5-或4′-羟基被甲基化或苷化后,可使带Ⅰ向紫位移,3-OH甲基化或苷化使带Ⅰ(328~357nm)与黄酮的带Ⅰ的波长范围重叠(且光谱曲线的形状也相似),5-OH甲基化使带Ⅰ和带Ⅱ都向紫位移5~15nm,4′-OH甲基化或苷化,使带Ⅰ向紫位移3~10nm。

黄酮类化合物的结构

黄酮类化合物的结构

黄酮类化合物的结构黄酮类化合物的结构一、利用紫外光谱测定黄酮类化合物的结构大多数黄酮类化合物在甲醇中的紫外吸收光谱由两个主要吸收带组成。

出现在300~400nm之间的吸收带称为带Ⅰ,出现在240~280nm之间的吸收带称为带Ⅱ。

不同类型的黄酮化合物的带Ⅰ或带Ⅱ的峰位、峰形和吸收强度不同,因此从紫外光谱可以推测黄酮类化合物的结构类型。

当向黄酮类化合物的甲醇(或乙醇)溶液中分别加入甲醇钠(NaOMe)、乙酸钠(NaOAc)、乙酸钠-硼酸(NaOAc-H3BO3)、三氯化铝或三氯化铝-盐酸(AlCl3/HCl)试剂能使黄酮的酚羟基离解或形成络合物等,导致光谱发生变化。

据此变化可以判断各类化合物的结构,这些试剂对结构具有诊断意义,称为诊断试剂。

黄酮和黄酮醇类(一)黄酮、黄酮醇类在甲醇中的UV光谱特征黄酮或黄酮醇的带Ⅰ是由B环桂皮酰基系统的电子跃迁所引起的吸收,带Ⅱ是由A环的苯甲酰基系统的电子跃迁所引起的吸收。

黄酮和黄酮醇的UV光谱图形相似,仅带Ⅰ位置不同,黄酮带Ⅰ位于304~350nm,黄酮醇带Ⅰ位于358~385nm。

利用带Ⅰ的峰位不同,可以区别这两类化合物。

黄酮、黄酮醇的B环或A环上取代基的性质和位置不同将影响带Ⅰ或带Ⅱ的峰位和形状。

例如,7和4′位引入羟基、甲氧基等含氧取代基,可引起相应吸收带向红位移。

又如3-或5-位引入羟基,因能与C4=O形成氢键缔合,前者使带Ⅰ向红位移,后者使带Ⅰ、带Ⅱ均向红位移。

B环上的含氧取代基逐渐增加时,带Ⅰ向红位移值(nm)也逐渐增加,但不能使带Ⅱ产生位移。

有时(例如3′,4′-位有2个羟基或2个甲氧基或亚甲二氧基)仅可能影响带Ⅱ的形状,使带Ⅱ歧分为双峰或1个主峰(Ⅱb位于短波处)和1个肩峰(sh)或弯曲(Ⅱa位于长波处)。

A环上的含氧取代基增加时,使带Ⅱ向红位移,而对带Ⅰ无影响,或影响甚微(但5-羟基例外)。

黄酮或黄酮醇的3-,5-或4′-羟基被甲基化或苷化后,可使带Ⅰ向紫位移,3-OH甲基化或苷化使带Ⅰ(328~357nm)与黄酮的带Ⅰ的波长范围重叠(且光谱曲线的形状也相似),5-OH甲基化使带Ⅰ和带Ⅱ都向紫位移5~15nm,4′-OH甲基化或苷化,使带Ⅰ向紫位移3~10nm。

黄酮类化合物

黄酮类化合物
第五章 黄酮类化合物
本章内容
概述 结构与分类 理化性质 显色反应
第一节 黄酮类化合物的概述
一、概述
经典定义,黄酮类化合物主要是指基本母核为 2-苯基色原酮类化合物。
8
7
1
O2
6 5
3 4
O
色原酮
8
7
1
2'
O2
1'
3' 4'
6 5
3
6'
5'
4
O
2-苯基色原酮
8
7
1
2'
O2
1'
3' 4'
一、概述
现在定义:黄酮类化合物泛指两个苯环通过
中央三碳链连结而成的一系列化合物。
8 7
A
6
5
1
2` 3`

O 2 1` B
4`
C
3 6` 5`
4
基本母核:C6-C3-C6
一、概述
黄酮类化合物主要分布于被子植物中, 如芸香科,豆科,伞形科,唇形科,菊科, 银杏科等。数量大,截止到1993年,总数超 过4000个,1/4植物中含有黄酮。
小结2 ——理化性质
一、性状: 颜色:多黄色
影响颜色深浅的主要因素:交叉共轭体系 助色团及其位置。
物态:多结晶、无定型粉末 二、溶解性:苷与苷元的区别
影响苷元水溶性的因素: 三、酸性:来源
影响因素及规律:7,4' > 7/4'> 一般 > 5 四、碱性:1-O孤对电子
小结3 ——显色反应
HO
O
OH O
空气
呈黄色
棕色

黄酮类化合物的结构解析(课堂PPT)

黄酮类化合物的结构解析(课堂PPT)

②供试后的样品用含水甲醇处理可回收;
③三甲基硅醚衍生物可很方便的转变成乙酰 衍生物或甲醚衍生物。
22
(一)A环质子
1.5, 7-二OH黄酮
HO
8O
6 OH O
H-6, H-8, 5.7-6.9, J=2.5Hz H-6较H-8高场
23
24
25
2.7-OH黄酮
HO
8O
6
5 O
H-5 7.7-8.2 (d, J=9Hz) H-6 6.4-7.1(dd, J=9, 2.5Hz) H-8 6.8-7.0 (d, J=2.5Hz)
46
2) 葡萄糖苷与鼠李糖苷的区别 黄 酮 醇 3-O- 葡 萄 糖 苷 5.8, d, J=7Hz (二直立键偶合系统) 黄 酮 醇 3-O- 鼠 李 糖 苷 5.0-5.1, d, J=2Hz (二平伏键偶合系统) 另外鼠李糖上的C-CH3 0.8-1.2, d, J=6.5Hz
47
H HO
O CH
O
s, 6.5-6.7 6.37-6.94 (DMSO-d6)
44
(四) 糖上的质子
1. 单糖苷类 糖与苷元相连时,糖上1?-H与其它 H比较,一般位于较低磁场区。因OR (R=苷元) 不表现供电子,仅表 现吸电子的诱导作用,端基H受两个 O的诱导,处于低场(4.0-6.0)
45
1)葡萄糖位于不同位置时端基H化学 位移的区别: C3-OR 1?-H的 值约为5.8 C-5, C-6, C-7, C-4’-OR 1?-H的 值约为4.8-5.2
295nm。
7
用途:据峰形判断黄酮的骨架类型(3类);据峰 位进一步区分(各2类)。
8
2.加入诊断试剂后引起的位移及结构测定

黄酮类化合物

黄酮类化合物

.
35
第三节 黄酮类化合物的提取分 离
一、提取
黄酮类化合物在花、液、果等组织中,多以 苷的形式存在;
在木部坚硬组织中,多以游离苷元形式存在;
根据化合物极性不同,溶解性不同,采用不 同溶剂提取。
.
36
1. 苷元
多用CHCl3、Et2O、EtOAc等极性较小溶 剂提取; 对于多OCH3化的成分,用苯、石油醚提 取; 对于极性大的成分,如查耳酮、橙酮、双 黄 酮 、 羟 基 黄 酮 等 , 用 EtOAc 、 EtOH 、 Me2CO、MeOH:H2O(1:1)等溶剂提取。
溶性物质
.
39
2. 碱提酸沉法
▪ 适用于含酚羟基的化合物,如槐米中芦丁的提 取。
▪ 注意事项: ①酸碱度不宜过大 ②邻二酚羟基的保护:碱性条件下,邻二酚羟 基易被氧化,加硼砂保护。 ③石灰乳的加入可除去果胶、粘液等水溶性酸 性杂质。
.
40
3. 活性炭吸附法
▪ 适用于苷类的精制工作。
▪ 植物的甲醇提取液加活性炭至吸附完全, 过滤得吸附苷的活性炭粉末。
.
29
2. 黄酮类化合物的羟基苷化后,水溶 性相应增大,而在有机溶剂中的溶 解度相应减小。
黄 酮 苷 一 般 易 溶 于 H2O, MeOH, EtOH等,难溶或不溶于苯,氯仿等。
.
30
三、酸碱性
1. 酸性 黄酮类化合物多具有酚羟基而呈酸性,可 溶于碱性水液,吡啶,甲酰胺及二甲基甲 酰胺。 酸性强弱顺序:7, 4’-二羟基 > 7, 或4’羟基 > 一般酚羟基>5-羟基 此性质可用于提取、分离及鉴定工作。
.
22
在NIH大规模抗癌物筛选中,Flavopiridol 脱颖而出,成为一种新的低毒性的研究药 物。它的治癌机理被认为是作用于激酶, 从而阻断细胞循环。这一解释间接地为 CDK2-Flavopiridol的复合晶体结构所证实。 跨学科外向的合作以及现代技术的应用是 加速Flavopiridol和其他后续药物的研究与 开发所不可缺少的。

黄酮类

黄酮类

6、三氯化铁反应
三氯化铁水溶液或醇溶液为常用的酚类显色 剂。 多数黄酮类化合物因分子中含有酚羟基,故 可产生阳性反应,但一般仅在含有氢键缔合的酚 羟基时,才呈现明显的颜色。


四、显色反应
概述 概述
黄酮类化合物的颜色反应多与分子中的酚羟基及 γ-吡喃酮环有关。
原理: (一)还原试验 (二)金属盐类试剂的络合反应 (三)硼酸显色反应
三、酸性与碱性: (一)酸性 黄酮类化合物因分子中多具有酚羟基,故显酸性, 可溶于碱性水溶液。 以黄酮为例,其酚羟基酸性强弱顺序依次为: 7,4′一二OH >7或4'-OH > 一般酚OH > 5-OH 5%NaHCO3 5%Na2CO3 0.2%NaOH 2NNaOH
此性质可用于提取、分离及鉴定工作。例如C7-OH,酸 性较强,可溶于碳酸钠水溶液中,据此可用以鉴定。
黄酮类化合物
黄酮类化合物是广泛存在于自然界的一大类化 合物。现已确认其化学结构的生物黄酮类物质至少 有4000-5000种,其中包括广为人知的老产品芦丁、 茶多酚(以“儿茶素”为代表)、大豆异黄酮(以黄豆 苷、染料木素为代表)、橙皮苷和槲皮素、银杏黄酮 等,预防冠心病、动脉硬化 、抗癌.
生物黄酮与多糖、生物碱同为植物来源的三大 天然产品。
分子结构特征对溶解度的影响
取代基对溶解度的影响
存在状态对溶解度的影响
存在状态对溶解度的影响(状态:苷或苷元两种) 在水中: ⑴苷溶解性大于苷元 ⑵苷元相同,糖多,溶解度大
⑶苷元相同,糖极性大,溶解度大
⑷3-糖苷大于7-糖苷(因3OH游离时成氢键, 对溶解度贡献很小;而7OH游离对溶解度贡献很大, 成苷后,溶解度明显降低)。
(二)金属盐类试剂的络合反应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
6 5 4
3
OH
6'
5'
O
OH
结构分类
2、B-环连接位置(2-或3-位);
1
2' 3'
3' 4'
8 7
O
2
1'
2' 1'
6 5 4
3
6'
6'
5'
5'
4'
O
结构分类
3、三碳链是否构成环状。
5' 4' 6' 1' 3' 2' 2 3 4 1
β α
6 5
O
结构分类
(一) (二) (三) (四) (五) (六) (七) (八) 黄酮和黄酮醇类 二氢黄酮和二氢黄酮醇类 异黄酮和二氢异黄酮类 查耳酮和二氢查耳酮类 橙酮类 花色素类 黄烷醇类 其他黄酮类
O
O
O
O
O
O
交叉共轭体系
结构特点
③常见取代基:-OH、-OCH3 、-CH3、异戊烯基和亚 甲二氧基等;
8 7 1
O
2' 2 1'
3' 4'
6 5 4
3
6'
5'
④常与糖结合成苷。大多数呈氧苷,少数碳苷。
g lc
g lc -O
O
O
O
O
gl c HO O OH
OH
O
牡荆素
山楂叶 :活血化瘀,理气通脉
O
2
7
8
O
6 5 4
3
6 5 4
3
6'
5'
O
O
色原酮
2-苯基色原酮
基本结构
☆ 现在则泛指两个苯环(A与B环)通过中央三
碳链相互连接而成的一类化合物。
1 2' 2 1' 3' 4'
8 7
O
6 5 4
3
6'
5'
C6-C3-C6
结构特点
①具有C6-C3-C6双苯环联结形式;
②大多数黄酮具有2-苯基色原酮的基本母核;
ⅲ.三糖类:龙胆三糖(glc 1→6 glc 1→2 fru)、槐
三糖(glc 1→2 glc 1→2 glc)等。
ⅳ. 酰 化 糖 类 : 2- 乙 酰 葡 萄 糖 、 咖 啡 酰 基 葡 萄 糖
(caffeoylglucose)等。
生物合成基本途径
研究表明A环来自于三个丙二酰辅酶A,B环来自于桂
第五章 黄酮类化合物
Flavonoids
目的要求
掌握黄酮类化合物定义、基本结构、分类
和代表化合物;
掌握黄酮类化合物的显色反应及与结构之
间的关系和应用;
掌握黄酮类化合物的提取与分离方法;
掌握利用波谱法鉴定简单黄酮类化合物的
结构。


【分布】多分布于高等植物和蕨类植物中,苔藓
类植物中少数,藻类、微生物和海洋生物中没有
皮酰辅酶A。
醋酸-丙二酸途径 糖 R CH来自2 CO Co A x 3 O O OH 莽草酸途径

OH O Co A O O C O
OH OH
O
查耳酮
本章内容
一、结构类型 二、理化性质
三、提取分离
四、结构鉴定 五、生物活性
结构分类
分类依据:
1、中央三碳链的氧化程度;
8 7 1 2' 2 1' 3' 4'
发现。

【研究概况】
HO

O
白杨素 1814年
OH
O
☆《黄酮类化合物研究进展》、《黄酮体化合物
鉴定手册》、《黄酮类化合物的合成方法》等。
☆ 据统计,目前已发现黄酮类化合物近万个。
基本结构
☆ 1952年以前,黄酮类化合物主要是指基本母核为
2-苯基色原酮的一系列化合物。
8 7 1
1 2' 2 1' 3' 4'
组成黄酮苷的糖类:
ⅰ.单糖类: D-葡萄糖、D-半乳糖、D-木糖、L-鼠李
糖、L-阿拉伯糖及D-葡萄糖醛酸等。
ⅱ.双糖类: 槐糖(glc 1→2 glc)、龙胆二糖(glc
1→6 glc)、芸香糖(rh 1→6 glc)、新橙皮糖(rh 1→2 glc)、刺槐二糖(rh 1→6 gal)等。
相关文档
最新文档