弹簧模型—力学问题

合集下载

弹簧问题

弹簧问题

弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。

数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。

说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。

2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。

(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。

(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。

弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。

如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。

由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。

有关弹簧的力学问题理论

有关弹簧的力学问题理论

有关弹簧的力学问题
弹簧的弹力属于接触力,弹簧两端必修都与其他物体接触才有可能有弹力。

一、有关弹簧测力计读数及弹簧形变量问题
1、弹簧测力计的示数显示的是弹力的大小,但注意它始终等于挂钩处弹力的大小。

弹簧测力计的主要部件-弹簧一端固定在外壳上,另一端与秤钩相连。

这一端在拉力作用下可以移动,使弹簧发生形变,弹簧形变量的大小可以反映弹力的大小,通过刻度即可以读出弹力的大小,所以弹簧测力计示数应等于作用在秤钩上的力的大小与作用在拉环上的力无关。

2、有关弹簧测力计读数问题,不论弹簧测力计做什么运动,不论拉环上的力多大,它的示数总与作用在秤钩一端拉力大小相同。

3、同一轻质弹簧,不论物体状态如何,只要所加力相同,形变量相同。

二、有关突变加速度的问题
1、突变:发生在弹簧和不可伸长的绳
2、当弹簧与物体分离或一端断开时,由于形变量的改变需要一定时间,弹簧的弹力大小不会突然改变。

(不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的)。

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型
以下是关于弹簧的8种模型
1. 弹性线性模型(Hooke定律模型):弹簧的拉伸或压缩与弹力成正比。

2. 欧拉-伯努利悬链模型:将一条悬挂在两端支持点上的弹簧视为一个由无数小段组成的悬链,使该整体发生弹性形变。

3. 线圈弹簧模型:将弹簧看作一系列具有弹性的杆件相互连接而成的线圈。

4. 非线性弹簧模型(实验模型):弹簧长度非常短,增加弹簧的弹性,以进一步研究其弹性质量。

5. 结构弹簧模型:弹簧长度较长,由此建立的结构弹簧可以帮助研究建筑物和桥梁的耐力。

6. 重力弹簧模型:弹簧被用来模拟重力的作用。

7. 超弹性弹簧模型:这种弹簧的弹性大于普通弹簧,它被广泛应用于高精度测量、机器人学和其他高科技领域。

8. 线性簧模型:弹簧的材质、线径等是固定的,根据弹簧的特性建立模型,计算其应力、应变等力学参数。

双小球弹簧模型原理及应用

双小球弹簧模型原理及应用

双小球弹簧模型原理及应用双小球弹簧模型是一种简化的力学模型,用于研究由两个小球和弹簧相互作用而形成的系统。

该模型可以通过具体的物理实验或数学分析来研究诸如共振、自由振动等问题。

该模型的基本原理是通过假设一对小球通过弹簧连接,并在合适的约束条件下对其运动进行建模。

这里的小球可以是物理系统中的任何物体,弹簧则是连接两个小球的弹性材料。

在该模型中,弹簧既提供了小球之间的力学连接,又提供了弹性势能。

通过弹簧的拉伸或压缩,它们之间的相对位置和相对速度会发生变化,从而影响到整个系统的运动状态。

在双小球弹簧模型中,可以通过牛顿第二定律或哈密顿力学等方法对系统进行分析。

其中,牛顿第二定律以质心运动方程和相对运动方程的形式进行建模,用于描述两个小球的运动规律。

哈密顿力学则用于描述系统的能量和动量随时间的变化。

这些分析方法可以解决诸如共振频率、振幅、相位等问题,并可以提供对系统稳定性和能量传递的有效描述。

双小球弹簧模型具有广泛的应用。

在物理学中,该模型可用于解释和预测诸如声波、光学和电磁波等传播过程。

例如,可以通过模拟弹簧与小球之间的相互作用来研究声波在不同媒介中的传播特性,以及光的干涉和衍射现象。

在机械工程中,双小球弹簧模型可用于设计和分析机械结构的振动特性,以及预测柔性材料和弹性体的应力应变行为。

在电子工程中,该模型可用于分析电路中的谐振器和滤波器,并优化信号传输和能量转换效率。

此外,双小球弹簧模型也可用于涉及到多体动力学的问题。

例如,通过在每个小球上添加坐标和速度变量,可以将该模型扩展为多小球弹簧模型,用于研究多体系统的运动和相互作用。

这种扩展可以应用于研究分子动力学、天体物理学中的星系演化以及复杂网络中的信息传递和耦合行为等领域。

总之,双小球弹簧模型是一种简化而有效的物理模型,用于研究由两个小球和弹簧相互作用而形成的系统。

该模型的应用范围广泛,从传统的物理学到工程学和其他交叉学科中都具有重要的意义。

通过对该模型的深入研究和应用,可以更好地理解和预测自然界和技术领域中的现象和行为。

4力学中弹簧类问题

4力学中弹簧类问题

4、力学中弹簧类问题高一物理精英一、基本概念:力、重力、弹力、摩擦力二、类型:静力学中的弹簧问题。

2 、动力学中的弹簧问题在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防以偏概全.有关弹簧问题的动力学问题中,同学们应注意以下几个问题:一是因弹簧的弹力是变力,物体在弹簧弹力(通常还要考虑物体的重力)作用下做变加速运动,这类问题的动态情景分析是解答这类问题的关键.二是要注意弹簧是弹性体,形变的发生和恢复都需要一定的时间,即弹簧的弹力不能突变.三是要注意弹簧问题的多解性.在某一作用瞬间弹力会保持不变。

在较长过程中弹力是变力,弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度发生变化。

三、典型例析1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.2、如图所示,在光滑水平面上有两个质量分别为m1和m2的物体A、B,m1>m2,A、B间水平连接着一轻质弹簧测力计.若用大小为F的水平力向右拉B,稳定后B的加速度大小为a1,弹簧测力计示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧测力计示数为F2.则以下关系式正确的是()A.a= a2,F1> F2B.a1= a2,F1< F2C.a1< a2,F1= F2D.a1> a2,F1> F23、如图所示,a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状4、如图所示,重力为G的质点M与三根相同的轻质弹簧相连,静止时,相邻两弹簧间的夹角均为120 ,已知弹簧A、B对质点的作用力均为2G,则弹簧C对质点的作用力大小可能为()A.2GB.GC.0D.3G四、绳与弹簧产生力的区别①绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此模型处理。

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳
弹力仍为mg,小于AB整体重力2mg,所以物体AB所受合力仍然为向下, 物体仍然向下加速,做加速度减小的加速运动。当弹簧的弹力增大到正 好为2mg时,物体AB合力为0,物体继续向下运动。
第四阶段:弹簧继续被压缩,压缩量继续增加,产生的弹力继续增 加,大于2mg,使得物体AB所受合力变为向上,物体开始向下减速,直
分析:(1)当剪断细线l2瞬间,不仅l2对小球拉力瞬间消失,l1的 拉力也同时消失,此时,小球只受重力作用,所以此时小球的加速度为 重力加速度g。
(2)当把细线l1改为长度相同、质量不计的轻弹簧时,在当剪断细
线l2瞬间,只有l2对小球拉力瞬间消失,弹簧对小球的弹力和剪断l2之 前没变化,因为弹簧恢复形变需要一个过程。如图5所示,剪断l2瞬 间,小球受重力G和弹簧弹力,所以有:
A.A开始运动时 C.B的速度等于零时
B.A的速度等于v时 D.A和B的速度相等时
分析:解决这样的问题,最好的方法就是能够将两个物体作用的过 程细化,明确两个物体在相互作用的过程中,其详细的运动特点。具体 分析如下:
(1)弹簧的压缩过程:A物体向B运动,使得弹簧处于压缩状态,压 缩的弹簧分别对A、B物体产生如右中图的作用力,使A向右减速运动, 使B向右加速运动。由于在开始的时候,A的速度比B的大,故两者之间 的距离在减小,弹簧不断压缩,弹簧产生的弹力越来越大,直到某个瞬 间两个物体的速度相等,弹簧压缩到最短。
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。

力学练习题弹簧振子的频率与振幅

力学练习题弹簧振子的频率与振幅

力学练习题弹簧振子的频率与振幅力学练习题:弹簧振子的频率与振幅弹簧振子是力学中常见的基本模型,它的频率与振幅之间存在一定的关系。

通过练习题的形式,我们将深入探讨弹簧振子的频率与振幅之间的关系,并通过计算来验证这一关系。

一、理论基础弹簧振子是由弹簧和质点组成,当质点在弹簧的作用下发生振动时,我们考虑弹簧的力学性质。

弹簧受到的力可以表示为:F = -kx其中,F为弹簧受到的力,k为弹簧的弹性系数,x为弹簧的伸长或压缩量。

根据胡克定律,弹簧的弹性系数k可以表达为:k = (F/x)其中,F为给定的力,x为弹簧的压缩或伸长量。

二、练习题1. 弹簧振子的频率与弹性系数k之间存在何种关系?根据振动的理论,弹簧振子的频率与弹性系数k之间的关系可以用如下公式表示:f = (1/2π) * √(k/m)其中,f为弹簧振子的频率,k为弹簧的弹性系数,m为质点的质量。

2. 请计算以下情况下弹簧振子的频率:(1)弹簧的弹性系数k为10 N/m,质点的质量为0.5 kg;(2)弹簧的弹性系数k为20 N/m,质点的质量为1 kg;(3)弹簧的弹性系数k为30 N/m,质点的质量为2 kg。

根据上述公式,我们可以依次计算出这三种情况下的频率:(1)f₁ = (1/2π) * √(10/0.5) = 1.13 Hz(2)f₂ = (1/2π) * √(20/1) = 2.26 Hz(3)f₃ = (1/2π) * √(30/2) = 2.68 Hz三、结论通过计算可以发现,弹簧振子的频率与弹性系数k之间存在正相关关系,即弹性系数k增大时,频率也会增大。

这是因为弹性系数越大,弹簧对质点的恢复力越大,振动的速度也会更快,从而导致频率的增大。

在实际应用中,弹簧振子的频率与振幅、质量等因素也有关系,但本练习题仅考虑了弹性系数k和质量之间的关系。

为了更全面地了解弹簧振子的特性,可以进一步研究振幅、阻尼等因素对频率的影响。

结语:通过这个练习题,我们深入探讨了弹簧振子的频率与振幅之间的关系,通过计算验证了频率与弹性系数k之间存在正相关关系。

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

重点高中物理必修一弹簧问题

重点高中物理必修一弹簧问题

精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。

二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。

三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。

2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。

而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。

(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。

(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。

3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。

本模型它涉及到力和运动、动量和能量等问题。

本问题对过程分析尤为重要。

1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。

今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。

若是平衡时弹簧产生的弹力和外力大小相等。

主要看能使弹簧发生形变的力就能分析出弹簧的弹力。

弹簧与物块的分离问题----教师版

弹簧与物块的分离问题----教师版

“弹簧与物块的分离”模型模型建构:两个物体与弹簧组成的系统。

两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。

【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。

〖解析〗物体应在弹簧的原长处分离。

由于水平面光滑,当弹簧从压缩状态回到自然伸长位置时,一直加速运动。

当它刚刚回到平衡位置时,物块B 受的弹力为阻力,开始减速。

而物块A 不受外力做匀速直线运动。

v A ≥v B此时A 、B 分离。

【体验1】但是如果物体与地面之间是不光滑的,题目条件如模型1。

试讨论分离条件。

〖解析〗假设A 、B 在某一位置分离,此时刻两物体的相互作用力为零F AB =0同时,两物体的加速度相同。

则A A a g μ=;B B B kx a g m μ=+所以()A B g x kμμ-=讨论:(1)如果A μ等于B μ或均为零;x 等于零。

两物体在O 点分离;(2)如果A μ大于B μ,x 大于零,两物体在O 点的右侧分离;(3)如果A μ小于B μ,x 大于零,两物体的分离点在O 点的左侧。

图1 A B O〖点评〗两物体分离的条件是:相互间的弹力F N =0等于零;两物体瞬时加速度相等。

【模型2】竖直面上“弹簧与木块的分离”模型如图2所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,重物何时与木板分离〖解析〗当物体分离时,物体间的弹力F N =0物块只受重力,物块的加速度为g ,木板的加速度也为g弹簧的状态应为原长,即弹簧恢复原长时,二者分离此时物块与薄板有共同的加速度。

从动力学的角度可以得到,竖直方向的弹簧类问题两物体的分离点是在弹簧的原长处。

模型组合讲解弹簧模型动力学问题

模型组合讲解弹簧模型动力学问题

模型组合讲解一一弹簧模型(动力学问题)李涛[模型概述]弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现, 考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

[模型讲解]正确理解弹簧的弹力例1.如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。

②中弹簧的左端受大小也为F 的拉力作用。

③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。

④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以11、|2、|3、14依次表示四个弹簧的伸长量,则有()③ ④图1B. |4 |3C. |1 13D. 12 |4解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。

当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。

由于弹簧弹力F弹与施加在弹簧上的外力F是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。

在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。

二.双弹簧系统例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。

该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。

A. 12 11①用两根相同的轻弹簧夹着一个质量为 2.0kg的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。

现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N (取g 10m/s2)a i的方向向右或向前。

绳、杆、弹簧模型有关问题的归类 物理 初中 力学模型

绳、杆、弹簧模型有关问题的归类 物理 初中  力学模型

高中物理受力分析一、物体受力分析方法:把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。

对物体进行正确地受力分析,是解决好力学问题的关键。

1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力。

2、受力分析的几个步骤.①灵活选择研究对象 ②对研究对象周围环境进行分析:③审查研究对象的运动状态: ④根据上述分析,画出研究对象的受力分析图; 3、受力分析的三个判断依据: ①从力的概念判断,寻找施力物体; ②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。

二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。

在许多问题中用整体法比较方便,但整体法不能求解系统的内力。

2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分析,分别列出方程,再联立求解的方法。

3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。

有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用。

三、例题与练习:例1、分析物体A 的受力A B A 、B 都静止AA 静止A 、B 都静止(绳竖直、光滑)例2、例3、如图所示,水平传送带上的物体。

(1)随传送带匀速运动 (2)传送带由静止起动如图,倾斜传送带上的物体(1)向上匀速运输 (2)向下匀速运输例4、如图所示,各图中,物体总重力为G ,请分析砖与墙及砖与砖的各接触面间是否有摩擦力存在?如有大小是多少?例5A、B 、C 都静止 分析C 所受力 a 、b 、c 都静止 分析a 所受力 (A 静止) C (A 、B 一起匀速向右运动)B(A 静止) v绳、杆、弹簧模型有关问题的归类分析一、三种模型弹力产生的特点:细绳只能发生拉伸形变,即只能提供因收缩而沿轴向里的弹力,但弹力的产生依赖于细绳受到的外力和自身的运动状态。

高中物理弹簧模型详解

高中物理弹簧模型详解

高中物理弹簧模型详解弹簧模型是物理中常用的简化实验模型,可以应用于弹性力学、动力学、波浪等多种领域。

在高中物理课程中,弹簧模型常常用来分析物体在不同条件下的弹性变形及恢复力等问题。

下面详细介绍一下高中物理中弹簧模型的相关内容。

I. 弹簧模型的基本概念弹簧模型是用弹簧代替物体之间的接触面,以研究物体之间的弹性变形和弹性力的模型。

它可以用来模拟各种物体的弹性特性,具有简化实验和便于分析的优势。

在弹簧模型中,物体可以被看作是由若干个质点组成的系统。

质点与质点之间通过一根弹簧连接,弹簧的特性可以用弹性系数k来描述。

当弹簧被压缩或拉长时,会产生恢复力(弹力),大小与弹簧形变的大小成正比,与弹簧形变的方向成反比。

II. 弹簧模型的应用1. 弹性变形当外力作用于物体上后,物体发生形变,但形变量又不足以改变物体的结构,这种形变称为弹性变形。

在弹簧模型中,外力就是作用于质点上的力,当外力大小不超过弹簧的弹性限度时,质点会发生弹性变形,而当外力大小超过弹性限度时,弹簧会进入塑性变形区,质点将发生塑性变形。

2. 弹性力弹性力是被压缩或拉长的弹簧恢复到原状时产生的力。

根据胡克定律,弹簧恢复力的大小与弹簧形变的大小成正比,与形变的方向成反比。

因此,在弹簧模型中,弹性力也可以用弹簧的弹性系数k来计算。

3. 振动弹簧模型还可以用来研究物体的振动。

例如,可以用一根手摇弹簧将质点与质点之间的耦合作用建立起来,通过摇动弹簧可以激发质点的振动。

这种振动可以用弹簧的弹性系数和质点的质量等参数来描述。

III. 弹簧模型的计算方法在使用弹簧模型时,需要根据具体情况建立起质点与质点之间的耦合关系。

通常,假设所有质点间连接的弹簧都相等,弹性系数为k,每个质点的质量均为m,这样就可以通过牛顿第二定律推导出弹簧模型的运动方程:F = mam(d^2)x/dt^2 = -kx其中,F表示合力,a表示加速度,x表示形变,t表示时间。

这个动力学方程描述了弹簧模型中物体的运动规律,可以用来计算物体的位移、速度和加速度等参数。

机械能守恒定律专题10 能量守恒定律(4) 弹簧模型18.5.23

机械能守恒定律专题10    能量守恒定律(4)  弹簧模型18.5.23

机械能守恒定律专题10 能量守恒定律应用(4)弹簧类问题弹簧类动力学观点和功能观点解题综合问题:弹簧初末态形变量相同,弹性势能相等,或者两个过程弹簧的形变量变化量相等,弹性势能变化两相同或者弹性势能与形变量的平方成正比例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。

若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。

)(B)A.B.C.D.试题分析:小球A下降h过程,根据动能定理,有mgh-W1=0;小球B下降h过程,根据动能定理,有,联立解得v=.选项B正确。

例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:(1):砝码A能够做匀加速运动的时间?(2):砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?小题1:小题2:(1)设初始状态弹簧压缩量为x1则kx1+mg=m×可得x1=……………(1分)当B以匀加速向下运动时,由于a<g,所以弹簧在压缩状态时A、B不会分离,分离时弹簧处于伸长状态. ……(2分)设此时弹簧伸长量为x2,则mg-kx2= m×可得x2=(1分)A匀加速运动的位移s=x1+x2=(1分)s=解得: …(2分)(2)∵x 1=x 2∴这一过程中弹簧对物体A 的弹力做功为0…………(3分)A 、B 分离时(2分)由动能定理得:…(2分)代入得: (2分)例题3、如图甲,质量为m 的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g .(1)图甲中,在线的另一端施加一竖直向下的大小为F 的恒力,木块离开初始位置O 由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P 点时,速度大小为v ,O 、P 两点间距离为s .求木块拉至P 点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M 的物块,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P 点时的速度大小.(1)用力F 拉木块至P 点时,设此时弹簧的弹性势能为E P ,根据功能关系有Fs=E P +1/2mv 2…①代入数据可解得:E P =Fs-1/2mv 2…(2)悬挂钩码M 时,当木块运动到P 点时,弹簧的弹性势能仍为E p ,设木块的速度为v′,由机械能守恒定律得:Mgs=E P +1/2(m+M)v′2…③联立②③解得v′= √(mv 2+2(Mg-F)s)/(M+m)例题4、如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+ m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g解析: 开始时,A 、B 静止,设弹簧压缩量为1x ,有11g kx m =挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 312112=m ()()E g x x m g x x ∆+-+C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得311311211211()()()()2222m m υm υm m g x x m g x x E ++=++-+-∆联立解得υ=例题5、如图,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。

弹簧模型中平衡和动力学问题

弹簧模型中平衡和动力学问题

6.如图所示,一轻质弹簧一端系在墙上的 O 点,自由伸长到 B 点.今用一小物体
m 把弹簧压缩
到 A 点,然后释放,小物体能运动到 C 点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正
确的是 ( )
A.物体从 A 到 B 速度越来越大,从 B 到 C 速度越来越小
B.物体从 A 到 B 速度越来越小,从 B 到 C 加速度不变
对于盘和物体 P 整体应用牛顿第二定律可得:
F k (m 1 k m 2 )g x (m 1 m 2 )g (m 1 m 2 )a
xm2gm1a x 1 at 2
令 N=0,并由述二式求得
k
,而
2 ,所以求得 a=6m/s2.
当 P 开始运动时拉力最小,此时对盘和物体 P 整体有 Fmin=(m1+m2)a=72N. 当 P 与盘分离时拉力 F 最大,Fmax=m2(a+g)=168N. 8 解:因为在 t=0.2s 内 F 是变力,在 t=0.2s 以后 F 是恒力,所以在 t=0.2s 时,P 离开秤盘。此时 P 受 到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在 0_____0.2s 这段时间内 P 向 上运动的距离:
1
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此, 在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.
巩固练习 1 如图 6-4(A)所示,一质量为 m 的物体系于长度分别为 l1、l2 的两根细线上,l1 的一端悬挂在天花 板上,与竖直方向夹角为 θ,l2 水平拉直,物体处于平衡状态.现将 l2 线剪断,求剪断瞬时物体的加速度.
(2)结果正确,因为 l2 被剪断的瞬间、弹簧 l1 的长度不能发生突变、T1 的大小和方向都不变.

工程力学中的弹簧力学模型

工程力学中的弹簧力学模型

工程力学中的弹簧力学模型弹簧力学模型是工程力学中常用的一种力学模型,广泛应用于机械工程、土木工程、航空航天工程等领域。

弹簧是一种能够储存和释放弹性势能的装置,通过对弹簧力学模型的研究,我们可以更好地理解和应用弹簧的特性。

本文将介绍弹簧力学模型的基本原理、常见的弹簧类型以及相关应用。

一、弹簧力学模型的基本原理弹簧力学模型的基本原理是胡克定律,即弹簧的变形与所受外力成正比。

胡克定律可以用公式表示为F = kx,其中F表示作用在弹簧上的力,k表示弹簧的劲度系数,x表示弹簧的变形量。

根据胡克定律,弹簧力学模型可以用线性模型描述,即弹簧的变形与受力之间是线性关系。

除了线性模型,还存在其他的非线性弹簧力学模型,如阻尼弹簧模型和非线性弹簧模型。

阻尼弹簧模型考虑了弹簧系统中的阻尼效应,非线性弹簧模型考虑了弹簧本身的非线性特性。

这些模型在具体应用中可以更好地描述实际情况,进一步提高工程设计的准确性。

二、常见的弹簧类型根据应用场景的不同,弹簧可以分为多种类型。

以下是常见的几种弹簧类型:1. 螺旋弹簧:螺旋弹簧是一种以螺旋形状为基础的弹簧,广泛用于机械工程和汽车制造中。

螺旋弹簧的特点是结构简单、承载能力大,适用于承受较大变形和载荷的情况。

2. 压缩弹簧:压缩弹簧是一种可以压缩变形的弹簧,常见于各种机械和电子设备中。

压缩弹簧的特点是体积小、变形范围大,适用于限制空间的场合。

3. 张力弹簧:张力弹簧是一种通过拉伸变形储存弹性势能的弹簧,常见于门把手、悬挂装置等物品中。

张力弹簧的特点是结构简单、使用方便。

4. 扭转弹簧:扭转弹簧是一种通过扭转变形储存弹性势能的弹簧,常见于各种机械传动系统中。

扭转弹簧的特点是对扭转力有良好的响应,适用于需要传递扭矩的情况。

三、弹簧力学模型的应用弹簧力学模型在工程领域有广泛的应用。

以下是几个常见的应用案例:1. 悬挂系统:汽车、自行车等交通工具的悬挂系统中采用弹簧力学模型来实现对路面不平度的缓冲和悬挂系统的稳定性。

力学中的弹簧类问题课件

力学中的弹簧类问题课件

控制与执行机构
弹簧在航空航天器的控制与执行机构 中起到关键作用,如起落架的缓冲和 收放系统。
减震装置
卫星姿态调整
弹簧在卫星姿态调整机构中发挥重要 作用,通过弹簧的伸缩实现卫星姿态 的微调。
为了减轻着陆时对航空器的冲击,弹 簧被用于减震装置的设计。
CHAPTER
05
弹簧类问题04
弹簧在工程问题中的应用
弹簧在车辆工程中的应用
01
02
03
悬挂系统
弹簧用于车辆悬挂系统中 ,以吸收和缓冲路面不平 整引起的振动,提高乘坐 舒适性。
减震器
弹簧在减震器中起到关键 作用,控制车辆在行驶过 程中产生的冲击和振动。
弹性支撑
弹簧用于支撑车辆重要部 件,如发动机和变速器, 起到减震和保护作用。
总结词
弹簧的振动频率与阻尼系数有关,影响 振动的持续时间。
VS
详细描述
当一个振动物体连接到一个弹簧上时,弹 簧的劲度系数和阻尼系数将影响振动的频 率和持续时间。根据振动理论,弹簧的振 动周期与劲度系数和阻尼系数有关。因此 ,通过调整弹簧的劲度系数和阻尼系数, 可以改变振动的频率和持续时间。
弹簧的振动频率与阻尼
CHAPTER
02
弹簧动力学问题
弹簧与力的平衡
总结词
弹簧在力的作用下会产生形变,从而影响力的平 衡。
总结词
弹簧的弹力与形变量的关系是线性关系,可以用 胡克定律表示。
详细描述
当弹簧受到外力作用时,会发生形变,形变的大 小与外力的大小成正比,同时弹簧的弹力与形变 量的大小成正比。因此,弹簧可以用于平衡外力 ,维持系统的稳定。
将采集到的数据整理成表格,绘制形变量与作用力之间的关系图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理专题训练--------弹簧模型(动力学问题) 弹簧是高中物理中的一种常见的物理模型,几乎每年高考对这种模型有所涉及和作为压轴题加以考查。

它涉及的物理问题较广,有:平衡类问题、运动的合成与分解、圆周运动、简谐运动、做功、冲量、动量和能量、带电粒子在复合场中的运动以及临界和突变等问题。

为了将本问题有进一步了解和深入,现归纳整理如下
弹簧类题的受力分析和运动分析
(一)弹力的特点
1.弹力的瞬时性:弹簧可伸长可压缩,两端同时受力,大小相等,方向相反,弹力随形变量变化而变化。

2.弹力的连续性:约束弹簧的弹力不能突变(自由弹簧可突变)
3.弹力的对称性:弹簧的弹力以原长位置为对称,即相等的弹力对应两个状态。

(二)在弹力作用下物体的受力分析和运动分析
①考虑压缩和伸长两种可能性 1.在弹力作用下物体处于平衡态—— ②作示意图 ③受力平衡列方程
2.在弹力作用下物体处于变速运动状态
形变 F m F a i ∑=,a 变化 v 变化 位置变化 (a = 0时v max ) (v=0时形变量最大)
(1)变量分析:(a )过程——抓住振动的对称性 (b )瞬时
(2)运动计算: (a)匀变速运动 (b)一般运动
①通过分析弹簧的形变而确定弹力大小、方向的改变,从而研究联系物的运动 ②弹簧处于原长状态不一定是平衡态
③当作匀变速直线运动时,必有变化的外力作用,变化的外力常存在极值问题
④充分利用振动特征(振幅、平衡位置、对称性、周期性、F 回与弹力的区别)
⑤临界态——脱离与不脱离:必共速、共加速且N=0
⑥善用系统牛顿第二定律
针对性练习:
1、如图所示,竖直放置在水平面上的轻质弹簧上端叠放着两个
物块A 、B ,它们的质量均为2.0kg ,并处于静止状态。

某时刻
突然将一个大小为10N 的竖直向上的拉力加在A 上,则此时刻
A 对
B 的压力大小为(g 取10m/s 2)( )
A .25N B. 20N C. 15N D. 10N
2.如图所示,质量为m 的物体A 放置在质量为M 的物体B 上,
B 与弹簧相连,它们一起在光滑水平面上作简谐振动,振动过程
中A 、B 之间无相对运动,设:弹簧的劲度系数为k .当物体离
开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于:( )
A.0
B.kx
C.kx M m
D.kx m
M m 3.质量分别为m A =2kg 和m B =3kg 的A 、B 两物块,用劲度系数为k 的轻弹簧相连后竖直放在水平面上。

今用大小为F =45N 的力把物块A 向下压而使之处于静止,突然撤去压力,则( )
A .物块
B 有可能离开水平面
B .物块B 不可能离开水平面
C .只要k 足够小,物块B 就可能离开水平面
D .只要k 足够大,物块B 就可能离开水平面
4.如图中所示,x 、y 、z 为三个物块,k 为轻质弹簧,L 为轻线。

系统处于平衡状
态。

现若将L 突然剪断,用a x 、a y 分别表示刚剪断时x 、y 的加速度,则有( )
A .a x =0、a y =0
B .a x =0、a y ≠0
C .a x ≠0、a y ≠0
D .a x ≠0、a y =0
5.如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的
力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( )
A 、加速度为0,作用力为mg 。

B 、加速度为F/2m ,作用力为mg+F/2
C 、速度为F/m ,作用力为mg+F
D 、加速度为F/2m ,作用力为(mg+F )/2
6.如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,
箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再
伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( )
A.g m L L 2
12)1(+ B.g m m L L ))(1(211
2++ C.g m L L 212 D.g m m L L )(211
2+ 7.如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态,设拔去销钉M 瞬间,小球加速度的大小为12m/s 2,若不拔去销钉丁M 而拔去销钉N 瞬间,小球的加速度可能是(取g =10m/s 2) ( )
A .22m/s 2,方向竖直向上
B .22m/s 2,方向竖直向下
C .2m/s 2,方向竖直向上
D .2m/s 2,方向竖直向下
8如图15所示,质量为m 的物体被劲度系数为k 2的弹簧2悬挂天花板上,
下面还拴着劲度系数为k 1的轻弹簧1,托住下面弹簧的端点A 用力向上压,当弹簧2的弹力大小为mg/2时,弹簧1的下端点A 上移的高度是多少?
9如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B .它们的质量分别为m A 、m B ,弹簧的劲度系数为k , C 为一固定挡板。

系统处于静止状态。

现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d 。

重力加速度为g 。

10.如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的θ
A
B
拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。

(cos53°=0.6) 求:(1)弹簧的劲度系数为多少?
(2)若突然撤去拉力F ,在撤去拉力F 的瞬间,A 的加速度为a /,a /与a 之间比为多少?
1C 2.D 3B 4B 5B 6A 7 BC 8、解:A 点上升的高度等于弹簧2和弹簧1缩短的长度之和.A 点上升,使弹簧2仍处于伸长状态时,弹力减小了mg/2,弹簧2比原来缩短△x 2=mg/(2k 2),弹簧1的弹力为
mg/2,压缩量为△x 1=mg/(2k 1),
所以△x=△x 1+△x 2=mg(1/k 1+1/k 2)/2.
A 点上升,使弹簧2处于压缩状态时,向下的弹力mg/2,压缩量△x 2=mg/(2k 2),所以弹簧2总的压缩量△x ′2=mg/k 2+mg/(2k 2)=3mg/(2k 2).弹簧l 上的弹力为mg +mg/2,
△x ′1=3mg/(2k 1)
△x=△x ′1+△x ′2=3mg(1/k 1+1/k 2)/2.
所以弹簧1的下端点A 上移的高度是
△x=mg(1/k 1+1/k 2)/2,或3mg(1/k 1l +1/k 2)/2.
9令x 1表示未加F 时弹簧的压缩量,由胡克定律和牛顿定律可知
m A gsin θ=kx 1 ①
令x 2表示B 刚要离开C 时弹簧的伸长量,a 表示此时A 的加速度,由胡克定律和牛顿定律可知
kx 2=m B gsin θ ②
F -m A gsin θ-kx 2=m A a ③
由② ⑧ 式可得a=
F -(m A +m B )gsin θm A
④ 由题意 d=x 1+x 2 ⑤

由①②⑤式可得d=(m A +m B )gsin θk
⑥ 10.解:(1)先取A +B 和弹簧整体为研究对象,弹簧弹力为内力,杆对A 、B 支持力与加速
度方向垂直,在沿F 方向应用牛顿第二定律F =(m A +m B )a ①
再取B 为研究对象F 弹cos53°=m B a ②
①②联立求解得,F 弹=25N
由几何关系得,弹簧的伸长量⊿x =l (1/sin53°-1)=0.25m
所以弹簧的劲度系数k =100N/m
(2)撤去F 力瞬间,弹簧弹力不变,A 的加速度a /= F 弹cos53°/m A
所以a /:a =3∶1。

相关文档
最新文档