函数零点的题型总结

合集下载

二次函数零点问题题类型方法总结

二次函数零点问题题类型方法总结

二次函数零点问题题类型方法总结二次函数是高中数学中的重要内容,求其零点是常见的题目类型之一。

本文将对二次函数零点问题的题型和解题方法进行总结。

题型总结在求解二次函数零点的过程中,常见的题型可以归纳为以下几种:1. 一元二次方程的解法:给定一个一元二次方程,要求求解方程的解。

2. 零点的个数:给定一个二次函数,要求计算其零点的个数。

3. 零点的坐标:给定一个二次函数,要求计算其零点的坐标。

4. 求参数:已知一个二次函数的零点和另外一个点的坐标,要求求解该二次函数的参数。

解题方法总结对于不同的题型,可以采用不同的解题方法来求解二次函数零点问题。

以下是常见的解题方法总结:1. 完全平方公式:对于一元二次方程,可以使用完全平方公式进行求解,即 $$x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$$。

通过代入方程中的系数,即可得到方程的解。

2. 判别式法:通过计算方程的判别式来判断二次函数的零点个数。

若判别式 $$\Delta=b^2-4ac$$ 大于0,则方程有两个不相等的实数根;若判别式等于0,则方程有两个相等的实数根;若判别式小于0,则方程没有实数根。

3. 坐标法:对于求零点坐标的问题,可以通过将二次函数表示为顶点形式,然后根据顶点坐标和其他给定的坐标求解未知参数,进而得到零点的坐标。

4. 求参数法:对于求参数的问题,可以利用已知的零点坐标和另一点的坐标,构建方程组,然后通过解方程组求解未知参数。

总结通过以上的总结,我们可以了解到二次函数零点问题的常见题型和解题方法。

在实际解题中,根据题目要求选择合适的方法,并根据具体情况灵活运用,以获得正确的解答。

希望本文对您理解和解决二次函数零点问题有所帮助。

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

函数零点的题型总结

函数零点的题型总结

函数零点的题型总结例题及解析考点一函数零点存在性定理的应用【例1】已知函数f(x)=(12)x-13x,那么在下列区间中含有函数f(x)零点的是( )(A)(0,13) (B)(13,12)(C)(12,23) (D)(23,1)解析:f(0)=1>0,f(13)=(12)13-(13)13>0,F(12)=(12)12-(12)13<0,f(13)f(12)<0,所以函数f(x)在区间(13,12)内必有零点,选B.【跟踪训练1】已知函数f(x)=2x-log3x,在下列区间中包含f(x)零点的是( )(A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4)解析:由题意,函数f(x)=2x-log3x为单调递减函数,且f(2)= 22-log32=1-log32>0,f(3)= 23-log33=-13<0,所以f(2)·f(3)<0,所以函数f(x)=2x-log3x在区间(2,3)上存在零点,故选C.【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( )(A)[0,1] (B)[-1,0](C)[0,2] (D)[-1,1]解析:f(1)=ln 2>0,当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D;当a=2时,f(12)=ln 32-12<0,所以f(x)在(12,1)上至少有一个零点,舍去C.因此选A.考点二函数零点的个数考查角度1:由函数解析式确定零点个数【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( )(A)5 (B)4 (C)3 (D)2(2)已知f(x)=2xx +x-2x,则y=f(x)的零点个数是( )(A)4 (B)3 (C)2 (D)1解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π2,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B.解析:(2)令2xx +x-2x=0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.考查角度2:根据函数零点个数确定参数范围 【例3】 (1)已知函数f(x)= 24,1,ln 1,1,x x a x x x ⎧-+⎪⎨+≥⎪⎩<若方程f(x)=2有两个解,则实数a 的取值范围是( ) (A)(-∞,2) (B)(-∞,2] (C)(-∞,5) (D)(-∞,5] (2)已知函数f(x)= 3,2,1e ,20x xa x x a x x ⎧--≤-⎪⎪+⎨⎪--⎪⎩<<恰有3个零点,则实数a 的取值范围为( )(A)(-1e ,-13) (B)(-1e ,-21e) (C)[-23,-21e ) (D)[-23,-13)解析:(1)可知x ≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x 2-4x+a=2有解,设g(x)=x 2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a 的取值范围是(-∞,5).选C. 解析:(2)-1x x +-3a=-111x x +-+-3a=1x x +-1-3a,在(-∞,-2]上单调递减.若a≥0,则e x -a x在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x ≤-2时,-1-3a>0,a<-13,且121-+-1-3a ≤0,a ≥-23,使得第一段有一个零点,故a ∈[-23,-13).对于第二段,e x -a x=e xx a x -,故需g(x)=xe x -a 在区间(-2,0)有两个零点,g ′(x)=(x+1)e x ,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以(2)0,(1)0,(0)0,g g g -⎧⎪-⎨⎪⎩><>解得-22e >a>-1e.综上所述,a ∈(-1e ,-13).故选A.【题组通关】1.若函数f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( C ) (A)(0,4) (B)(0,+∞)(C)(3,4) (D)(3,+∞)解析:如图,若f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a ∈(3,4),故选C.2.已知偶函数f(x)= 4log,04,(8),48,x x f x x ⎧≤⎪⎨-⎪⎩<<<且f(x-8)=f(x),则函数F(x)=f(x)-12x在区间[-2 018,2 018]的零点个数为( A )(A)2 020 (B)2 016 (C)1 010 (D)1 008解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8. 令F(x)=0,可得f(x)=12x,求函数F(x)=f(x)-12x的零点个数,即求偶函数f(x)与函数y=12x图象交点个数,当0<x<8时,函数f(x)与函数y=12x图象有4个交点,2 018=252×8+2由f(2)=|log 42|=12>212=14知, 当0<x<2时函数f(x)与函数y=12x图象有2个交点.故函数F(x)的零点个数为(252×4+2)×2=2 020, 故选A.3.已知函数f(x)= 31,1,,1,x xx x ⎧≥⎪⎨⎪⎩<若关于x 的方程f(x)=k 有两个不同零点,则k 的取值范围是 . 解析:作出f(x)=31,1,,1x xx x ⎧≥⎪⎨⎪⎩<的函数图象如图所示.方程f(x)=k 有两个不同零点,即y=k 和f(x)= 31,1,1x x x x ⎧≥⎪⎨⎪⎩<的图象有两个交点,由图可得k 的取值范围是(0,1). 答案:(0,1)【教师备用 巩固训练2】 已知函数f(x)=32233,2,4(56),2,x x x x x x ⎧-+⎪⎨--+≥⎪⎩<则函数f(f(x))的零点个数为( ) (A)6 (B)7 (C)8 (D)9 解析:画出函数的图象,如图所示,令f(x)=t,因为f(f(x))=0则f(t)=0,由图象可知,f(t)=0有四个解,分别为t 1=2,t 2=3,-1<t 3<0,1<t 4<2, 由图象可知,当t 1=2时,f(x)=2有两个根,即函数f(f(x))有2个零点; 由图象可知,当t 2=3时,f(x)=3有一个根,即函数f(f(x))有1个零点;由图象可知,当-1<t 3<0时,f(x)=t 有三个根,即函数f(f(x))有3个零点;由图象可知,当1<t 4<2时,f(x)=t 有两个根,即函数f(f(x))有2个零点;综上所述,函数f(f(x))有8个零点. 考点三 函数零点的性质考查角度1:求零点的代数式的取值或取值范围 【例4】 (1)已知函数f(x)=122log ,022,0,x x x x x ⎧⎪⎨⎪++≤⎩>函数F(x)=f(x)-b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则43x x -2213232x x x x +的取值范围是( )(A)(2,+∞) (B)(174,25716] (C)[2,174) (D)[2,+∞) (2)已知函数f(x)是定义域为R 的偶函数,且满足f(12+x)=f(32-x),当x ∈[-1,0]时,f(x)=-x.若函数F(x)=f(x)+412x x +-,则在区间[-9,10]上的所有零点之和为 . 解析:(1)f(x)=122log ,0,22,0x x x x x ⎧⎪⎨⎪++≤⎩>=122log ,0,(11,0x x x x ⎧⎪⎨⎪++≤⎩>), 由二次函数的对称性可得x 1+x 2=-2,由12log x 3=-12log x 4可得x 3x 4=1,函数F(x)=f(x)-b 有四个不同的零点,等价于y=f(x)的图象与y=b 的图象有四个不同的交点,画出y=f(x)的图象与y=b 的图象,由图可得1<b ≤2,所以1<12log x 3≤2⇒x 3∈[14,12),所以43x x -2123()2x x x +=43x x +23x =231x+23x , 令t=23x ∈[116,14), 所以1t +t ∈(174,25716],故选B. 解析:(2)因为满足f(12+x)=f(32-x), 所以f(x)=f(2-x), 又因函数f(x)为偶函数,所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),所以T=2,令F(x)=0,f(x)=421x x +-,即求f(x)与y=421x x +-交点横坐标之和.y=421x x +-=12+9221x -, 作出图象如图所示.由图象可知有10个交点,并且关于(12,12)中心对称, 所以其和为102=5. 答案:(1)B (2)5考查角度2:隐性零点的性质 【例5】已知函数f(x)= ln(1),0,11,0,2x x x x +⎧⎪⎨+≤⎪⎩>若m<n,且f(m)=f(n),则n-m 的取值范围为( )(A)[3-2ln 2,2) (B)[3-2ln 2,2] (C)[e-1,2) (D)[e-1,2]解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e-1, 则满足0<n ≤e-1, -2<m ≤0,则ln(n+1)=12m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1), 设h(n)=n+2-2ln(n+1),0<n ≤e-1,则h ′(n)=1-21n +=11n n -+, 当h ′(n)>0,解得1<n ≤e-1,当h ′(n)<0,解得0<n<1,当n=1时,函数h(n)取得最小值h(1)=1+2-2ln(1+1)=3-2ln 2,当n=0时,h(0)=2-2ln 1=2;当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=e-1<2,所以3-2ln 2≤h(n)<2,即n-m的取值范围是[3-2ln 2,2),故选A.【题组通关】1.已知a>1,方程12e x+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则21x+22x+2x1x2的取值范围为( A ) (A)(1,+∞) (B)(0,+∞)(C)(12,+∞) (D)(12,1)解析:方程12e x+x-a=0的根,即y=12e x与y=a-x图象交点的横坐标,方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标, 而y=12e x与y=ln 2x的图象关于直线y=x对称,如图所示.所以x1+x2=a,所以21x +22x +2x 1x 2=(x 1+x 2)2=a 2,又a>1,所以21x +22x +2x 1x 2>1,故选A2.已知函数f(x)= 42log ,04,1025,4,x x x x x ⎧≤⎪⎨-+⎪⎩<>若a,b,c,d 是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd 的取值范围是( A ) (A)(24,25) (B)(18,24) (C)(21,24) (D)(18,25)解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.考点四 函数零点的应用【例6】 (1)已知α,β分别满足α·e α=e 2,β(ln β-2)=e 4,则αβ的值为( )(A)e (B)e 2 (C)e 3 (D)e 4 (2)已知f(x)=9x-t ·3x,g(x)=2121x x -+,若存在实数a,b 同时满足g(a)+g(b)=0和f(a)+f(b)=0,则实数t 的取值范围是 . 解析:(1)因为α·e α=e 2,所以e α=2e α, 因为β(ln β-2)=e 4,所以ln β-2=4e β,所以ln β-ln e 2=4e β,所以ln 2e β=4e β=22e e β. 所以α,2e β分别是方程ex=2e x ,ln x=2e x的根,因为点(α,2e α)与点(2e β,4e β)关于直线y=x 对称, 所以α=4e β,所以αβ=e 4.故选D.解析:(2)因为g(-x)=2121x x ---+=1212xx-+=-2121x x -+=-g(x),所以函数g(x)为奇函数, 又g(a)+g(b)=0,所以a=-b. 所以f(a)+f(b)=f(a)+f(-a)=0有解, 即9a -t ·3a +9-a -t ·3-a =0有解, 即t=9933a a aa--++有解.令m=3a+3-a(m ≥2),则9933a aa a--++=22m m-=m-2m ,因为ϕ(m)=m-2m 在[2,+∞)上单调递增,所以ϕ(m)≥ϕ(2)=1.所以t ≥1.故实数t 的取值范围是[1,+∞). 答案:(1)D 答案:(2)[1,+∞)【跟踪训练2】函数f(x)的定义域为D,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊆D 使得f(x)在[a,b]上的值域为[2a ,2b ],则称函数f(x)为“成功函数”.若函数f(x)=log m (m x +2t)(其中m>0,且m ≠1)是“成功函数”,则实数t 的取值范围为( ) (A)(0,+∞) (B)(-∞,18] (C)[18,14) (D)(0,18] 解析:无论m>1还是0<m<1,f(x)=log m (m x +2t)都是R 上的单调增函数,故应有(),2(),2a f a b f b ⎧=⎪⎪⎨⎪=⎪⎩则问题可转化为求f(x)=2x ,即f(x)=log m (m x +2t)=2x,即m x+2t=12x m在R上有两个不相等的实数根的问题,令λ=12x m (λ>0),则m x+2t=12x m可化为2t=λ-λ2=-(λ-12)2+14,结合图形可得t∈(0,18].故选D.。

函数零点的题型归纳与解题技巧

函数零点的题型归纳与解题技巧

函数零点的题型归纳与解题技巧函数零点是指函数取值为零的点,即f(x)=0的解。

在高中数学、大学数学以及各类数学竞赛中,函数零点常见的题型有很多种,这里我们将从题型归纳与解题技巧两方面进行探讨。

一、题型归纳1. 求解一元函数零点:例如求解f(x) = x^3-2x^2-x+2=0的零点。

2. 求解二元函数零点:例如求解f(x,y) = x^2+y^2-1=0的零点。

3. 求解多项式方程零点:例如求解f(x) = x^3-x^2+2x-2=0的零点。

4. 求解参数方程零点:例如求解x(t) = t^2-t+2,y(t) =t^3-t^2+2t-2,求解当f(x,y)=0时对应的参数t。

5. 利用零点求解函数的性质:例如已知f(x)的零点及其性质,求解f'(x)或f''(x)的零点。

6. 证明存在或不存在零点:例如证明函数f(x)在区间(a,b)上存在唯一零点。

二、解题技巧1. 分类讨论:对于不同的函数类型,采用不同的方法求解零点。

例如线性函数、二次函数、三次函数、对数函数等,都有相应的求解方法。

2. 利用代数方法:通过代数运算,将原方程转化为容易求解的方程。

例如将原方程化为因式分解的形式,利用韦达定理等。

3. 利用几何方法:将方程与几何图形进行关联,求解图形的相交点即为零点。

例如将方程与直线、圆、椭圆、抛物线等几何图形关联起来。

4. 利用数学分析方法:利用微积分知识,如导数、二分法、牛顿法等,求解零点。

例如,求解f'(x)=0的零点,可以找到函数的拐点;二分法则多用于求解逼近零点。

5. 利用数值方法:通过计算机进行数值逼近求解零点。

例如求解非线性方程组零点时,可以采用牛顿法、拟牛顿法等。

6. 利用泰勒展开:对于非常复杂的函数,可以考虑将其在某一点附近进行泰勒展开,将高次函数近似为低次函数(如线性、二次),再求解零点。

7. 利用解析几何方法:通过解析几何知识,求解平面或空间上的几何问题。

高中函数零点问题精选题型

高中函数零点问题精选题型

零点问题与数形结合题型一、直接做图1 函数 ()1|1|f x x =--‖ 的图像与直线 y k = 有且仅有四个不同的交点, 则实数 k 的取值范围是_________2 已知函数 ()22x f x =- 与 y b = 有两个交点, 则实数 b 的取值范围是_________3 已知函数 ||()2||,x f x x =+ 若关于 x 的方程 ()f x k = 有两个不同的实根, 则实数k 的取值范围是_________.已知函数 ()|lg |,f x x = 若 0a b << 且 ()(),f a f b = 则 2a b + 的范围是_________4 设函 21,0(),1,0x x f x x x ⎧-=⎨+<⎩ 若函数 ()a f x = 有两个实根 ()1212,,x x x x < 则 12x x + 的取值范围是_________5 若关于 x 的不等式 23344a x xb -+ 的解集恰好是 [a, b],则 a b +=_________6 关于 x 的不等式 201x px q ++ 的解集为 [3,4], 则 p q +=_________7 已知函数 22,||3(),6,||3x x f x x x ⎧-⎪=⎨->⎪⎩ 若 0,m n << 且 ()(),f m f n = 则 2n m +的取值范围是_________题型二、变形后做图1 直线 1y = 与曲线 2||y x x a =-+ 有 4 个交点, 则 a 的取值范围 是_________2 若关于 x 的方程 2||2x kx x =+ 有 4 个不同的实数解, 则实数 k 的范围为_________3 已知函数 21(),()32f x x h x =+= 解关于 x 的方程 433log (1)24f x ⎡⎤--=⎢⎥⎣⎦22log ()log (4)h a x h x ---。

导数中的零点问题

导数中的零点问题

导数中的零点问题题型一:零点的基本解法1、已知函数$f(x)=2\ln x-x+mx,x\in[2e,+\infty)$,求实数$m$的取值范围。

2、已知函数$f(x)=x\mathrm e^x-a(x+1)^2/2,x\in[0,+\infty)$有两个零点,求实数$a$的取值范围。

1) 若$a=\mathrm e$,求函数$f(x)$的极值。

2) 若函数$f(x)$有两个零点,求实数$a$的取值范围。

3、已知函数$f(x)=a\mathrm e^{2x}+(a-2)\mathrm e^x-x$。

1)讨论$f(x)$的单调性。

2)若$f(x)$有两个零点,求$a$的取值范围。

4、已知函数$f(x)=-(2ax+ax+(x-2)\mathrm e^x)/2,a>0$。

1)求函数$f(x)$的单调区间。

2)若函数$f(x)$存在$3$个零点,求$a$的取值范围。

题型二:切线与零点关系1、曲线在点$(1,1)$处的切线方程为;过点$(1,1)$处的切线方程为。

2、已知函数$f(x)=\frac{1}{2}x^3+mx+n(m,n\in\mathbb{R})$。

1)若$f(x)$在$x=1$处取得极大值,求实数$m$的取值范围。

2)若$f(1)=\frac{1}{2}$,且过点$p(2,1)$有且只有两条直线与曲线$y=f(x)$相切,求实数$m$的值。

3、已知函数$f(x)=ax^2+bx-3x$在$x=\pm 1$处取得极值。

1)求函数$f(x)$的解析式。

2)若过点$A(1,m)$可作曲线$y=f(x)$的三条切线,求实数$m$的取值范围。

题型三:极值与零点关系1、已知函数$f(x)=x^3-6x^2+3x+t(t\in\mathbb{R})$。

1)求函数$f(x)$的单调区间。

2)设函数$g(x)=f(x)$有三个不同的极值点,求$t$的取值范围。

3)设函数$g(x)=\mathrm e^{f(x)}$有三个不同的极值点,求$t$的取值范围。

2014.11.18函数零点、二分法、任意角题型全总结

2014.11.18函数零点、二分法、任意角题型全总结

函数零点、二分法、任意角题型全总结题型一:求零点或零点的个数方法1、解方程:根据零点的定义,)(x f y =的零点就是方程0)(=x f 的根,所以方程0)(=x f 根的个数就是函数)(x f y =零点的个数.练:方程 f(x)=96370x x-∙-=的零点是例1、 求函数2223+--=x x x y 的零点. 例2:(2010年福建理科)函数()⎩⎨⎧>+-≤-+=0,ln 20,322x x x x x x f 的零点个数为( )A0 B1 C2 D3方法2数形结合:函数)((x g x h y -=)的零点,也就是)(x h y =图象)(x g y =图象交点横坐标,所以函数)((x g x h y -=)的零点个数就是)(x h y =图象与)(x g y =图象交点个数.例:(2012年北京文科)函数xx x f )21()(21-=的零点个数为( )A0 B1 C2 D3练:1、方程223x x -+=的实数解的个数为 _______ 。

(2)2、函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( ) 3、若函数a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围是 }1|{>a a4、(10浙江)已知0x 是函数()xx f x-+=112的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则( )A .()01<x f ,()02<x f B .()01<x f ,()02>x f C .()01>x f ,()02<x f D .()01>x f ,()02>x f5、直线y =1与曲线2y x x a =-+有四个交点,则a 的取值范围是 。

6、已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______方法3、零点存在性定理例1、求函数f(x)=lnx +2x -6的零点个数. f(x)= lnx +2x -6只有一个零点。

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题(解析版)

专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。

例4、(2017南通一调)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1) 当a =38时,求函数f (x )的最小值;(2) 若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3) 若函数f (x )有两个零点,求实数a 的取值范围.例5、(2016南通一调)已知函数f (x )=a +x ln x (a ∈R ).(1) 求f (x )的单调区间;(2) 试求f (x )的零点个数,并证明你的结论.题型三 函数零点问题的不等式的证明函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围以及证明零点方面的不等问题时,这些问题时要用到这三者的灵活转化。

数学-精品专题----七种零点问题

数学-精品专题----七种零点问题

题型一:零点存在定理法判断函数零点所在区间 (3)一、单选题 (3)二、多选题 (6)三、填空题 (9)四、解答题 (14)题型二:方程法判断零点个数 (16)一、单选题 (16)二、多选题 (18)三、填空题 (20)四、解答题 (22)题型三:数形结合法判段函数零点个数 (24)一、单选题 (24)二、多选题 (28)三、填空题 (31)四、解答题 (34)题型四:转化法判断函数零点个数 (39)一、单选题 (39)二、多选题 (42)三、填空题 (44)四、解答题 (46)题型五:零点存在定理与函数性质结合判断零点个数 (48)一、单选题 (48)二、多选题 (50)三、解答题 (53)题型六:利用函数零点(方程有根)求参数值或参数范围 (57)一、单选题 (57)二、多选题 (59)三、填空题 (61)四、解答题 (62)题型七:利用函数的交点(交点个数)求参数 (63)一、单选题 (63)二、多选题 (66)三、填空题 (68)四、解答题 (71)1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k的不等式组,从而可求相应的参数的取值范围.4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.5.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.题型一:零点存在定理法判断函数零点所在区间一、单选题【分析】结合对数函数、函数零点存在性定理等知识求得正确答案. 【详解】1133log 4log 10a =<=,3372,12b b =<<<,对于函数()()2ln 0f x x x x=->, ()f x 在()0,∞+上递增,()()22ln 210,e 10ef f =-<=->,所以()f x 存在唯一零点x c =,()2,e c ∈,使()0f c =,所以对于2ln c c=,有()2,e c ∈,所以a b c <<.故选:AA .3,4()B .4,5()C .5,6()D .8,9()【答案】B【分析】根据零点存在定理,先判断函数的单调性,再计算函数在端点处的函数值,即可得到答案.【详解】()12ln 3f x x x=-- ,由对数函数和幂函数的性质可知,函数在,()0x ∈+∞时为单调增函数,11(3)2ln332 1.0993033f =--≈⨯--<, 11(4)4ln2340.69330.478044f =--≈⨯--=-<,11(5)2ln532 1.60930.018055f =--≈⨯--=>,11(6)2ln632(ln 2ln3)2 1.7926630.4140f =--=+≈⨯--=>,因为()f x 在,()0x ∈+∞内是递增,故(8)0,(9)0f f >> ,函数是连续函数,由零点判断定理知,()f x 的零点在区间(4,5)内,故选:B .【分析】先根据题意解方程,解出5e 910k-=,在和端点值比较大小,由函数单调性和函数连续得到结果.【详解】将200,5,20A t L ===代入()()1e kt L t A -=-,解得:5e 910k-=,其中5e x y -=单调递减,而414e e --⎛⎫= ⎪⎝⎭,4910000e 106561-⎛⎫=< ⎪⎝⎭,而4y x -=在()0,∞+上单调递减,所以115204ee910-⨯-=<,结合单调性可知1113249<<e e 10e ---<,即1115551015209<0e e e 1-⨯-⨯-⨯<<,而050e 91e 10-⨯==>,其中5e xy -=为连续函数,故记忆率k 所在区间为1(0,)20. 故选:A【分析】根据零点存在性定理进行求解.【详解】易知()f x 在R 上单调递增且连续.由于()1440163f -=-<,()122043f -=-<,()111023f -=->,当0x >时,()0f x >,所以()02,1x ∈--.故选:B【分析】求出c 的值,利用零点存在定理得出31,2b ⎛⎫∈ ⎪⎝⎭,然后比较a 、b 、c 的大小关系,结合函数()f x 的单调性可得出结论.【详解】因为()f x 的定义域为()0,∞+,()1e 0xf x x'=+>,则函数()f x 在其定义域上为增函数,3e 16>,则32e 4>,则3233e ln 4022f ⎛⎫=+-> ⎪⎝⎭,因为()1e 40f =-<,由零点存在定理可知31,2b ⎛⎫∈ ⎪⎝⎭,由()2310g x x x '=--=可得1=x 2=x .当x <或x >时,()0g x '>x <<()0g x '<.所以,1c =<.因为2223log log 3log 422a =<=<=,所以,01cb a <<<<,故()()()f a f b fc >>.故选:A.6.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为( )【分析】依据函数零点存在定理去判断2()log f x x x =+的零点所在的区间即可. 【详解】2()log f x x x =+为(0,)+∞上的递增函数, 222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B二、多选题【分析】由题可得4()e x f x a x π-'=-,由()14f π=-可知,()04f π'=,进而可求1a =,然后再证明即得;再利用数形结合可得()'f x 在,2ππ⎛⎫⎪⎝⎭上存在唯一的零点,利用零点存在定理及三角函数的性质即得.【详解】∵4()e 1x f x a x π-⎛⎫=- ⎪⎝⎭,∵4()e x f x a x π-'=-+,又函数4()e 1x f x a x π-⎛⎫=-- ⎪⎝⎭在区间0,2π⎛⎫ ⎪⎝⎭的最小值为1-,∵函数在区间0,2π⎛⎫⎪⎝⎭上不单调,又44()e 1144f a ππππ-⎛⎫=-=- ⎪⎝⎭,∵4x π=时,函数在区间0,2π⎛⎫⎪⎝⎭上取得最小值,可得原条件的一个必要条件()04f π'=,∵44()e 1044f a a ππππ-'=-=-+=,即1a =,下面证明充分性:当1a =时,4()e 1xf x x π-=-,4()e xf x x π-'=-,令()4e xg x x π-=-,则()4os exx g x π-'=>,∵函数()'f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又44(0)e 0,()e 02f f πππ-''=-<=->,∵函数()'f x 在0,2π⎛⎫⎪⎝⎭上存在唯一的零点4x π=,且在0,4π⎛⎫ ⎪⎝⎭上()0f x '<,在,42ππ⎛⎫ ⎪⎝⎭上()0f x '>,∵函数()f x 在区间0,2π⎛⎫⎪⎝⎭的最小值为()14f π=-,综上,1a =故A 正确;∵4()e xf x x π-'=-+,令4()e 0x f x x=π-'=-,得4e x x π-,由函数图象可知4e x ,y y x π-==在区间,2ππ⎛⎫⎪⎝⎭上只有一个交点,即存在唯一0,2x ππ⎛⎫∈ ⎪⎝⎭,使得040e x x π-,又3243()e 10,()e 04f >f ππππ--''=-+=-<,故03,4x ππ⎛⎫∈ ⎪⎝⎭,且当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,当()0,x x π∈时,()0f x '<,∵在区间,2ππ⎛⎫⎪⎝⎭上,()f x 唯一的极大值点0x ,040000()e 11x f x x x x π-⎛⎫=-=- ⎪⎝⎭02sin 14x π⎛⎫=-- ⎪⎝⎭,∵03,4x ππ⎛⎫∈ ⎪⎝⎭,03,424x πππ⎛⎫-∈ ⎪⎝⎭,∵00()2sin 12114f x x π⎛⎫=--<-= ⎪⎝⎭.故CD 正确.故选:ACD.8.(2022·全国·高三专题练习)设函数()y f x =的定义域为R ,如果存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,则称函数()y f x =是“类周期函数”,T 为函数()y f x =的“类周期”.现有下面四个命题,正确的是( )A .函数()x f x -=3是“类周期函数”B .函数()3f x x =是“类周期函数”C .如果函数()cos f x x ω=是“类周期函数”,那么“k ωπ=,Z k ∈”D .如果“类周期函数”()y f x =的“类周期”为1-,那么它是周期为2的周期函数 【答案】ACD【分析】根据类周期函数的定义,分别进行判断即可.【详解】解:对于A ,若函数()xf x -=3是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即33x T x T ---=⋅,即(3)30T x T ---⋅=,即30T T --=,令()3Tg T T -=-,因为()()1200110,11033g g =-=-<=-=>,且函数()g T 在0,1上连续,所以函数()3Tg T T -=-在0,1上存在零点,即方程30T T --=在0,1上有解,即存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()x f x -=3是“类周期函数”,故A 正确;对于B ,若函数()3f x x =是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即()33x T T x+=⋅,则()33x T T x+=,即1x T Tx x+=+对任意的x 恒成立,则0T =,矛盾,所以不存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()3f x x =不是“类周期函数”,故B 错误.对于C ,若函数()cos f x x ω=是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即cos()cos x T T x ωωω+=;故1T =或1T =-, 当1T =时,cos()cos x x ωωω+=,由诱导公式得2k ωπ=,k Z ∈;当1T =-时,cos()cos x x ωωω+=-,由诱导公式得()21k ωπ=+,k Z ∈;故“k ωπ=,k Z ∈”,故C 正确;对于D ,如果“类周期函数”()y f x =的“类周期”为1-, 则(1)()f x f x -=-,即(1)()((1))(1)f x f x f x f x -=-=--+=+;故它是周期为2的周期函数;故D 正确.9.(2021·江西·模拟预测)已知实数1m n <<,设方程()()()(1)()(1)0x m x n x m x x n x --+--+--=的两个实数根分别为1212,()x x x x <,则下列结论正确的是( )A .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集为12(,)x xB .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集可能为空集C .121x m x n <<<<D .121m x n x <<<< 【答案】AD【分析】构造二次函数()()()(1)()()()1x m x n x m x x n x x f --+--+--=,分析函数()f x 的图象特征即可判断作答.【详解】令()()()(1)()()()1x m x n x m x x n x x f --+--+--=,R x ∈, 因1m n <<,则函数()f x 的图象对称轴1(,1)3m n x m ++=∈,且()f x 在1(,)3m n ++-∞上递减,在1(,)3m n +++∞上递增,又()(1)()0m n f m m --=>,()(1)()0n m f n n --=<,(1)(0()1)1m f n -->=,于是得函数()f x 有两个零点1212,()x x x x <,且满足121m x n x <<<<,不等式()0f x <的解集为12(,)x x ,所以A 正确,B 不正确,C 不正确,D 正确.故选:AD三、填空题在ABC 中,函数y x =+若命题“x ∃∈若函数()f x 【答案】∵∵∵【分析】∵利用大边对大角和正弦定理可证;∵变形后利用基本不等式进行求解最大值;∵先把命题否定,得到对x R ∀∈,2(3)10ax a x +-+>恒成立,分0a =与0a ≠两种情况求出a的取值范围;∵先根据(1)2af =-得到32a b c =--,得到(2)f a c =-,接下来分0c >与0c ≤,利用零点存在性定理得到答案.【详解】在ABC 中,因为A B >,所以a b >,由正弦定理得:sin sin a bA B=,所以sin sin A B >,同理可证,当sin sin A B >时,A B >,故在ABC 中,A B >是sin sin A B >的充要条件,∵正确;因为1x <,所以10x -<,201x ,所以()221111111y x x x x ⎡⎤=-++=--++≤-⎢⎥--⎣⎦,当且仅当()211x x -=-,即1x =等号成立,所以函数2(1)1y x x x =+<-的最大值是1-∵错误;命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则对x R ∀∈,2(3)10ax a x +-+>恒成立,当0a =时,310x -+>不恒成立,当0a ≠时,只需0Δ0a >⎧⎨<⎩,解得:19a <<,综上:若命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则19a <<;∵正确;(1)2a b c a f ++==-,所以32ab c =--,因为(0)f c =,3(2)42422a f a b c a c c a c ⎛⎫=++=+--+=- ⎪⎝⎭,当0c >时,(0)0f c =>,因为0a >,所以(1)02af =-<,故()(0)10f f <,由零点存在性定理得:在区间()0,1上,至少存在一个零点,当0c ≤,(2)0f a c =->,()(2)10f f <,由零点存在性定理得:在区间()1,2上至少存在一个零点,综上:函数()f x 在区间(0,2)内必有零点,∵正确. 故答案为:∵∵∵11.(2022·全国·高三专题练习)已知函数()()2e x f x ax x =+-,且2a >-,()f x '为()f x 的导函数,下列命题:∵存在实数a ,使得导函数()f x '为增函数; ∵当0a >时,函数()f x 不单调;∵当21a -<≤-时,函数()f x 在R 上单调递减; ∵当1a =时,函数()f x 有极值.在以上命题中,正确的命题序号是______. 【答案】∵∵∵∵【分析】求()f x ',令0a =可判断∵;根据零点存性定理可判断022,0x a ⎛⎫∃∈-- ⎪⎝⎭使得()00f x '=,可判断∵;令()()g x f x '=,求()g x ',由()g x '的符号判断()g x 的单调性,可求得()0g x ≤恒成立即()0f x '<恒成立可判断∵;求()f x '的单调性,根据零点存在性定理可知()00,1x ∃∈,使得()00f x '=可判断∵,进而可得正确答案.【详解】由()()2e xf x ax x =+-可得()()2e 1x f x ax a '=++-,对于∵,若0a =时,()2e 1xf x '=-为增函数,故∵对;对于∵,若0a >时,2222e 10af a a --⎛⎫'--=--< ⎪⎝⎭,()010f a '=+>,022,0x a ⎛⎫∃∈-- ⎪⎝⎭,使得()00f x '=,所以函数()f x 不单调,故∵对;对于∵,令()()2e 1x g x ax a =++-,则()()22e xg x ax a '=++,当21a -<≤-时,由()0g x '>得22x a ⎛⎫<-+ ⎪⎝⎭,由()0g x '<得22x a ⎛⎫>-+ ⎪⎝⎭所以()g x 在2,2a ⎛⎫-∞-- ⎪⎝⎭上单调递增,在22,a ⎛⎫--+∞ ⎪⎝⎭上单调递减,从而()22max e1a g x a ⎛⎫-+ ⎪⎝⎭=--,要使220e 1a a ⎛⎫-+ ⎪⎝⎭-≤-,则令22t a ⎛⎫=-+ ⎪⎝⎭,则112t a =--,所以e 12t t ≤+,令()()e 1102t t m t t =---≤≤,()1e 2t m t '=-,则()m t 在11,ln 2⎛⎫- ⎪⎝⎭单调递减,在1ln ,02⎛⎫ ⎪⎝⎭单调递增,而()11110e 2m -=+-<,()00e 010m =--=所以()0m t ≤恒成立,从而()22max e10a g x a ⎛⎫-+ ⎪⎝⎭=--≤,即()0f x '≤恒成立,即()f x 在R 上单调减.故∵正确;对于∵,当1a =时,()()3e 1x f x x '=+-,()()4e x f x x ''=+,可知()()3e 1xf x x '=+-在(),4-∞-单调递减,在()4,-+∞单调递增,因为()020f '=>,()2110ef '-=-<,()00,1x ∃∈,使得()00f x '=,所以函数()f x 有极值,故∵对.综上所述:∵∵∵∵都正确,故答案为:∵∵∵∵. 12.(2021·福建·三明一中高三学业考试)已知函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则k =__________.【答案】-3或2【分析】对函数()f x 求导,借助导数探讨其单调性,再用零点存在性定理分析计算即得.【详解】对函数()23x f x x =--求导得:()2ln 21x f x '=-,由()0f x '=得22log xe =,解得22log (log )x e =,当22log (log )x e <时,()0f x '<,当22log (log )x e >时,()0f x '>,于是得()f x 在22(,log (log ))e -∞上递减,在22(log (log ),)e +∞上递增,显然,13(3)0,(2)084f f -=>-=-<,则函数()f x 在区间(3,2)--上存在一个零点,又(2)10,(3)20f f =-<=>,即函数()f x 在区间(2,3)上存在一个零点,因函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则3k =-或2k =,所以3k =-或2k =.故答案为:-3或2【分析】令21()()log 2x f x x =-,利用零点存在性定理可得a ∈,1(0,)2b ∈,从而可得12a b <- 【详解】令21()()log 2x f x x =-,则()f x 在(0,)+∞上单调递减,因为f (1)110022=-=>,111()log ()0222f =-=-<,21()log 2a a =,所以a ∈.122log b b =,0b >,21b ∴>,1(0,)2b ∴∈,∴12a b <- ∵:ln()a b -可能小于等于0,∴∵错误,∵:0b a -<,0221b a -∴<=,∴∵正确, ∵:0a b >>,∴11a b <,11a b∴->-,∴∵正确,∵:(1,2)a ∈,2log 0a ∴>, 1(0,)2b ∈,2log 0b ∴<,22log 0log a b ∴>>.∴∵正确,故答案为:∵∵∵.【分析】对于选项∵∵∵,直接代入求解即可判断;对于选项∵∵,先根据条件构造函数,判断函数的单调性,利用零点存在性定理判断即可.【详解】∵()224f x x x x =+-=,得240x x x +-=⇒=x =满足条件,故∵满足题意;∵()22,132,1x x f x x x ⎧≤⎪=⎨->⎪⎩,当1x ≤时,220x x x =⇒=或12x =;当1x >时,()2232321x x x x x -=⇒-=⇒=或3x =,即3x =;满足条件,故∵满足题意;∵()()21x f x e x x =+-=,令()2xg x e x =+-,易知()g x 为R 上的增函数,又()()010020,1120g e g e =+-<=+->,由零点存在性定理得()g x 在区间()0,1存在唯一的零点.故∵满足题意;∵()ln f x ax x a =--(01a <<),()ln ln 10ax x a x x a x a --=⇒+-+=, 令()()ln 1h x x a x a =+-+,又01a <<,则10a ->,易知()h x 为()0,∞+上的增函数, 又()()11131ln 12ln 20,1ln111044444h a a a h a a ⎛⎫=+-+=-++<=+-+=> ⎪⎝⎭,由零点存在性定理得()h x 在区间1,14⎛⎫⎪⎝⎭存在唯一的零点.故∵满足题意;∵()220f x x x x x=+=⇒=无实数解, 故∵满足题意;故答案为:∵∵∵∵.【点睛】本题主要考查了对布劳威尔不动点定理的理解,考查了零点存在性定理;考查学生的逻辑推理能力,运算求解能力.属于中档题.【分析】分别求出f (x )、g (x )零点所在区间,即可得到f (x +3)、g (x -4)的零点所在区间,结合题意,即可得到b -a 的最小值.【详解】∵f (x )=1+x -22x +33x ,∵'2()1f x x x =-+,∵'2213()1()024f x x x x =-+=-+>恒成立,∵f (x )=1+x -22x +33x 在R 上是单调递增函数.∵f (0)=1>0,f (-1)=506-<,∵f (x )在区间[-1,0]上存在唯一零点,∵f (x +3)在区间[-4,-3]上存在唯一零点;又∵g (x )=1-x +22x -33x ,∵'2()1g x x x =-+-,∵'2213()1()024g x x x x =-+-=---<恒成立,∵g (x )=1-x +22x -33x 在R 上是单调递减函数,∵g (2)=503-<,g (1)=106>,∵g (x )在区间[1,2]上存在唯一零点,∵g (x -4)在区间[5,6]上存在唯一零点,由F (x )=f (x +3)g (x -4)=0,得f (x +3)=0或g (x -4)=0,故函数F (x )的零点均在[-4,6]内,则b -a 的最小值为10.故答案为:10.【点睛】本题考查利用导数判断函数的单调性、函数零点与方程,考查分析理解,求值计算的能力,属中档题.四、解答题16.(2022·陕西西安·高三阶段练习(文))已知函数22()e x f x ax -=-(e 为自然对数的底数,R a ∈).(1)若1a =-,求证:()'f x 在区间()0,1内有唯一零点; (2)若()f x 在其定义域上单调递减,求a 的取值范围. 【答案】(1)证明见解析;(2)[0,2e].【分析】(1)把1a =-代入,求出()'f x 并探讨其单调性,再结合零点存在性定理判断作答. (2)利用给定单调性建立不等式,再分类分离参数,构造函数,讨论求解作答.(1)当1a =-时,()22e xf x x -=+,求导得:2()2e 2x f x x -'=-+,令2()2e 2x x x ϕ-=-+,则2()4e 20x x ϕ-'=+>,则函数()ϕx 在R 上单调递增,即函数()'f x 在R 上单调递增,而(0)20f '=-<,221(1)2e 22(1)0e f -'=-+=->,由函数零点存在性定理知,存在唯一0(0,1)x ∈,有0()0f x '=,所以()'f x 在区间()0,1内有唯一零点.(2)函数22()e x f x ax -=-的定义域是R ,依题意,R x ∀∈,2()2e 20x f x ax -'=--≤成立, 当0x =时,20-≤成立,R a ∈,当0x >时,2e x a x -≥-,令2e ()xg x x -=-,0x >,2221()0e x x g x x +'=>,即函数()g x 在(0,)+∞上单调递增,又当0x >时,()0g x <恒成立,于是得0a ≥,当0x <时,2e x a x -≤-,令2e ()xh x x -=-,0x <,2221()e x x h x x +'=,当12x <-时,()0h x '<,当102x -<<时,()0h x '>, 因此,()h x 在1(,)2-∞-上单调递减,在1(,0)2-上单调递增,当12x =-时,min 1()()2e 2h x h =-=,于是得2e a ≤,综上得:02e a ≤≤,所以a 的取值范围是[0,2e].【点睛】思路点睛:涉及函数不等式恒成立问题,可以探讨函数的最值,借助函数最值转化解决问题.f x 零点的个数;,求a 的取值范围答案见解析;(2)6a ≤【分析】(1)对()f x 求导有()()(1)e (0)xf x x x a x '=-->,再研究()e (0)xg x a x x -=>的单调性,结合()01f '=及零点存在性定理,讨论a 的范围判断f x 零点的个数.(2)讨论0a ≤、0e a <<、e a =、e a >,结合fx 的符号研究()f x 的单调性并结合(1)ef =求参数a 的范围.(1)()()()2e (1)(1)e (0)x xf x x x a x x x a x '=---=-->,令()e (0)x g x a x x -=>,则()(1)e 0x g x x '=+>,故()g x 在(0,)+∞上单调递增,而()01f '=, 当0a ≤时,e x x a =无解;当0e a <<时,由(0)0g a =-<,(1)e 0g a =->,故e x x a =有一个在(0,1)上的解;当e a =时,由(1)0g =,故e x x a =的解为1;当e a >时,由(1)e 0g a =-<,()(e 1)0a g a a -=>,故e x x a =有一个在(1,)+∞上的解; 综上,当0a ≤或e a =时,导函数f x 只有一个零点.当0e a <<或e a >时,导函数f x 有两个零点.(2)当0a ≤时,e 0x x a ->,则函数()f x 在1x =处取得最小值(1)e f =.当0a >时,由(1)知:()g x 在(0,)+∞上单调递增,则必存在正数0x 使得00e 0xx a -=.若e a >则01x >,在(0,1)上00e 0x x a -<,则()0f x '>,在0(1,)x 上00e 0x x a -<,则()0f x '>,在()0,x +∞上00e 0x x a ->,则()0f x '<,所以()f x 在(0,1)和()0,x +∞上单调递增,在()01,x 上单调递减,又(1)e f =,不合题意.若e a =则01x =,在(0,)+∞上0f x ,则()f x 在(0,)+∞上单调递增,又(1)e f =,不合题意.若0e a <<则001x <<,在0(0,)x 上00e 0x x a -<,则()0f x '>,在0(),1x 上00e 0x x a ->,则()0f x '<,在()1,+∞上00e 0x x a ->,则()0f x '>,所以()f x 在()00,x 和(1,)+∞上单调递增,在()0,1x 上单调递减,则(0)3(1)e 2a f f =-≥=,解得62e a ≤-,即062e a <≤-.综上,62e a ≤-.题型二:方程法判断零点个数一、单选题【分析】由奇偶性定义可判断出A 正确;令()0f x =可确定B 正确;根据()f x 定义域为R ,()112f =-,可知若最小值为12-,则1x =是()f x 的一个极小值点,根据()10f '≠可知C 错误;由0x =时,cos x π取得最大值,21x +取得最小值可确定D 正确. 【详解】对于A ,()f x 定义域为R ,()()()()22cos cos 11x xf x f x x x ππ--===+-+, ()f x ∴为偶函数,A 正确;对于B ,令()0f x =,即cos π0x ,()2x k k πππ∴=+∈Z ,解得:()12x k k =+∈Z , ()f x ∴有无数个零点,B 正确;对于C ,()112f =-,∴若()f x 的最小值为12-,则1x =是()f x 的一个极小值点,则()10f '=; ()()()222sin 2cos 1xx x xf x xππππ++'=-+,()2sin 2cos 11042f πππ+'∴==-≠,1x ∴=不是()f x 的极小值点,C 错误;对于D ,1cos 1x π-≤≤,211x +≥;则当cos 1x π=,211x +=,即0x =时,()f x 取得最大值1,D 正确.故选:C. 2.(2022·北京·模拟预测)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3故选:C【分析】利用()()f x a f a x +=-知()f x 关于直线x a =对称的性质验证A ;求得3102f π⎛⎫=-≠ ⎪⎝⎭可判断B ;化简()sin (1cos )f x x x =+,令()0f x =,得()x k k Z π=∈,进而判断C ;利用导数研究函数的单调性可判断D.【详解】对于A ,由已知得11()sin()sin 2()sin sin 222f x x x x x πππ-=-+-=-,即()()π-≠f x f x ,故()f x 不关于2x π=对称,故A 错误;对于B ,331sin sin 310222f πππ⎛⎫=+=-≠ ⎪⎝⎭,故B 错误; 对于C ,利用二倍角公式知()sin (1cos )f x x x =+,令()0f x =得sin 0x =或cos 1x =-,即()x k k Z π=∈,所以该函数在区间[]0,10内有4个零点,故C 错误;对于D ,求导2()cos cos22cos cos 1f x x x x x '=+=+-,令cos x t =,由57,33x ππ⎡⎤∈⎢⎥⎣⎦,知1,12t ⎡⎤∈⎢⎥⎣⎦,即2()21g t t t =+-,利用二次函数性质知()0g t ≥,即()0f x '≥,可知()f x 在区间57,33x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,故D 正确;故选:D.4.(2022·全国·高三专题练习)已知函数f(x)={|x |+2,x <1,x +2x ,x ≥1.,则函数()||y f x x =-零点个数为( ) A .0 B .1C .2D .3【答案】A【分析】当1x <时和1≥x 时,分别化简函数()||y f x x =-的解析式可直接判断零点的个数.【详解】当1x <时,22y x x =+-=,所以不存在零点;当1≥x 时,220t x x x x=+-=>,也不存在零点,所以函数()||y f x x =-的零点个数为0.故选:A.二、多选题【分析】根据函数解析式,结合函数性质,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :()f x 的定义域为{}0x x ≠,A 错误; 对B :()()11x x f x f x x x-++-==-=--,且定义域关于原点对称,故()f x 是奇函数,B 正确;对C :当0x >时,()111x f x x x+==+,单调递减,C 正确; 对D :因为0x ≠,10x +>,所以()0f x =无解,即()f x 没有零点,D 错误.故选:BC .【分析】写出()f x 的分段函数形式,A 应用正余弦函数的性质判断()f x 的周期性,B 由已知可得12cos 2cos 21x x ==,则112x k π=,222x k π=(12,k k Z ∈),即可判断正误;根据解析式,应用特殊值法判断C 、D 的正误.【详解】将函数()f x 化作分段函数,即cos 2,sin cos ()cos 2,sin cos x x x f x x x x -≥⎧=⎨<⎩,A ,(2)[sin(2)cos(2)]sin(2)cos(2)()f x x x x x f x πππππ+=+++⋅+-+=,()f x 是周期为2π的函数,对;B ,由12()()2f x f x +=得12|()||()|1f x f x ==,则12cos 2cos 21x x ==, 此时112x k π=,222x k π=(12,k k Z ∈),可得1212()2k k x x π++=,对; C ,由解析式得(0)()12f f π==,()f x 在[,]22ππ-上不单调,错;D ,由解析式知3()()12f f ππ==-,即()()1g x f x =+在[0,2]π上至少有两个零点,错.故选:AB.7.(2022·全国·高三专题练习)若()f x 和()g x 都是定义在R 上的函数,且方程()f g x x =⎡⎤⎣⎦有实数解,则下列式子中可以为()g f x ⎡⎤⎣⎦的是( ) A .22x x + B .1x + C .cos x e D .ln(||1)x +【答案】ACD【分析】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解,逐个判断选项即可得出答案.【详解】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解.对于A ,22x x x =+,即20x x +=,方程有解,故A 正确; 对于B ,1x x =+,即01=,方程无解,故B 错误;对于C ,当cos ,x e x =令cos ()x h x e x =-,因为(0)0f e =>,1022f ππ⎛⎫=-< ⎪⎝⎭,由零点的存在性定理可知,()h x 在0,2π⎛⎫⎪⎝⎭上存在零点,所以方程有解,故选项C 正确;对于D ,当ln(||1)x x +=时,0x =为方程的解,所以方程有解,故选项D 正确.故选:ACD.【分析】对A :根据偶函数的定义即可作出判断;对B :由有界性0|cos |1x ≤≤,1sin ||1x -≤≤,且32x π=时sin |||cos |1x x +=-即可作出判断;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,可得函数()f x 有两个零点,根据偶函数的对称性即可作出判断;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,利用三角函数的图象与性质即可作出判断.【详解】解:对A :因为()sin |||cos()|sin |||cos |()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,故选项A 正确;对B :因为0|cos |1x ≤≤,1sin ||1x -≤≤,所以sin |||cos |1x x +≥-,而32x π=时sin |||cos |1x x +=-,所以()f x 的最小值为1-,故选项B 正确;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,令()0f x =,可得54=x π,74π,又由A 知函数()f x 为偶函数,所以函数()f x 在区间[]2,0π-上也有两个零点54π-,74π-,所以函数()f x 在区间[]2,2ππ-上有4个零点,故选项C 正确;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,因为2x ππ<<,所以3444x πππ<-<,而sin y x =在,42ππ⎛⎫ ⎪⎝⎭上单调递增,在3,24ππ⎛⎫⎪⎝⎭上单调递减,故选项D 错误.故选:ABC.三、填空题【答案】42ω<<或22ω<≤.【分析】先求出零点的一般形式,再根据()f x 在区间(4π,23π)上恰有2个零点可得关于整数k 的不等式组,从而可求ω的取值范围.【详解】令()0f x =,则1sin 62x πω⎛⎫-= ⎪⎝⎭,故()1,66k x k k Z ππωπ-=+-∈,故()166kk x πππω+-+=,因为()f x 在区间(4π,23π)上恰有2个零点,所以存在整数k ,使得: ()()()()()()()123421116666213166663k k k k k k k k ππππππωωππππππππωω+++⎧+-+++-+⎪≤⎪⎪⎨⎪++-+++-+⎪<⎩<≤⎪,若k 为偶数,则()()()13233423k k k k πππωωπππωππω⎧+⎪+≤⎪⎪⎨⎪+++⎪<⎩<≤⎪, 整理得到:()444433733232k k k k ωω⎧+≤<+⎪⎪⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故0k ≥, 当2k ≥时,4394322k k +>+,故∵无解,当0k =时,有4437922ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩即742ω<<.若k 为奇数,则()()()42313323k k k k πππππωωπππωω⎧++⎪≤<≤⎪⎪⎨⎪+++⎪<⎪⎩,整理得到:()444333102223k k k k ωω⎧⎛⎫≤<+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故1k ≥-,当3k ≥时,3452k k >+,故∵无解,当1k =-时,有4433722ωω⎧-≤<⎪⎪⎨⎪<≤⎪⎩,无解.当1k =时,有284391322ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩,故91322ω<≤.综上,742ω<<或91322ω<≤.故答案为:742ω<<或91322ω<≤. 【点睛】思路点睛:对于正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k 的不等式组,从而可求相应的参数的取值范围.【分析】根据m 的范围分类讨论f (x )的零点即可.【详解】∵m =0时,f (x )={x 2+3x,x ≤0,x −1,x >0,令f (x )=0,则x =0或x =-3或x =1,即f (x )有三个零点,满足题意;∵m ≠0时,令f (x )=0,则x >0时,101mx x +-=+,则21x m =-(*), x≤0时,230x x m ++=(**),显然x ≤0时的方程(**)最多有两个负根,而x >0时的方程(*)最多只有一正根,为了满足题意,则x >0时必有1根,则1-m >0,且根为x ∵m <1;x ≤0时方程必然有两个负根,则Δ094090004m m m m ⎧>->⎧⇒⇒<<⎨⎨>>⎩⎩, ∵0<m <1;综上所述,m ∵[)0,1.故答案为:[)0,1.四、解答题【分析】(1)求得11e f x ax a x =+-+,分0a =、0a <、0a >三种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由()0f x =可得出20ax x a -+=,由102a <<结合判别式可判断出方程20ax x a -+=的根的个数,由此可证得结论成立.(1)解:函数()f x 的定义域为R ,()()()()2211e 11e x x f x ax a x a ax a x '⎡⎤=+-+-=+-+⎣⎦.当0a =时,则()()1e xf x x '=-+,由()0f x '<可得1x >-,由()0f x '>可得1x <-,此时函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞; 当0a ≠时,由()0f x '=可得11=-x a或1x =-. ∵当0a <时,111a-<-,由()0f x '<可得11x a <-或1x >-,由()0f x '>可得111x a -<<-,此时函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭;∵当0a >时,111a ->-,由()0f x '<可得111x a -<<-,由()0f x '>可得1x <-或11x a >-,此时函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭; 当0a =时,函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞;当0a >时,函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.(2)解:由()0f x =可得20ax x a -+=,因为102a <<,则()()21412120a a a ∆=-=-+>,即关于x 的方程20ax x a -+=有两个不等的实根, 所以,当102a <<时,()f x 在R 上有且仅有两个零点.【点睛】思路点睛:讨论含参函数的单调性,通常注意以下几个方面: (1)求导后看最高次项系数是否为0,须需分类讨论;(2)若最高次项系数不为0,通常是二次函数,若二次函数开口方向确定时,再根据判别式讨论无根或两根相等的情况;(3)再根据判别式讨论两根不等时,注意两根大小比较,或与定义域比较.【答案】(1)2个(2)存在,且a 的取值范围是0,7⎡⎤⎢⎥⎣⎦.【分析】(1)解方程()0f x =,即可得解;(2)由()00f =,分析可知当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤,分0a =、0a <、0a >三种情况分析,结合一次函数的基本性质可得出关于实数a 的不等式,综合可求得实数a 的取值范围.(1)解:当3a =时,()()3221f x x x x x =+=+,令()0f x =,可得0x =或1x =-,此时函数()f x 有2个零点.(2)解:当(),2x ∈-∞时,由()()32111032f x ax a x =+-≤.当0x =时,对任意的R a ∈,()00f =,满足题意; 当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤, 若0a =,则有30-≤,合乎题意; 若0a <,当3302ax a-<<时,()2310ax a +->, 则()2310ax a +-≤对任意的()(),00,2x ∈-∞⋃不可能恒成立,舍去; 若0a >,则有()4310a a +-≤,解得37a ≤,此时307a <≤.综上所述,当307a ≤≤时,当(),2x ∈-∞时,()0f x ≤恒成立. 题型三:数形结合法判段函数零点个数一、单选题1.(2022·安徽淮南·二模(文))已知函数,则下列关于函数的描述中,其中正确的是( ). ①当时,函数没有零点;②当时,函数有两不同零点,它们互为倒数; ③当时,函数有两个不同零点;④当时,函数有四个不同零点,且这四个零点之积为1. A .①② B .②③C .②④D .③④【答案】C【分析】画出函数图象即可判断①,令解方程即可判断③,将零点问题转化成函数图象交点的问题,利用数形结合即可判断②和④.【详解】当时,,函数图象如下图所示, ()1,0ln ,0x a x f x x x a x ⎧++<⎪=⎨⎪->⎩()f x 0a =()f x 02a <<()f x 2a =()f x 2a >()f x ()0f x =0a =()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩由此可知该函数只有一个零点,故①不正确; 当时,则函数的零点为和, ∵函数有两个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点,则函数有两不同零点时的取值范围是,设对应的两个零点为,,即或,解得,, 则,所以它们互为倒数,故②正确;当时,函数解析式为,令,解得,令,解得或,由此可知函数有三个零点,故③不正确; 当时,则函数的零点为和, ∵函数有四个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点;0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩20a -<-<02a <<0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x ()f x a 02a <<1x 2x 1ln x a =2ln x a =-1e a x =21e e aax -==121x x ⋅=2a =()12,0ln 2,0x x f x x x x ⎧++<⎪=⎨⎪->⎩()1200x x x++=<1x =-()ln 200x x -=>2e x =21e x =0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩2a -<-2a >0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x设对应的两个零点为,,,,即或,解得,, 当时,整理得,当时,, 则该方程存在两个不等的实数根和,由韦达定理得,所以,则故④正确; 故选:.2.(2022·河南安阳·模拟预测(文))已知函数,则关于的方程有个不同实数解,则实数满足( ) A .且 B .且 C .且 D .且【答案】C【分析】令,利用换元法可得,由一元二次方程的定义知该方程至多有两个实根、,作出函数的图象,结合题意和图象可得、,进而得出结果.【详解】令,作出函数的图象如下图所示:由于方程至多两个实根,设为和,由图象可知,直线与函数图象的交点个数可能为0、2、3、4,由于关于x 的方程有7个不同实数解,则关于u 的二次方程的一根为,则, 则方程的另一根为,直线与函数图象的交点个数必为4,则,解得. 所以且. 故选:C.1x 2x 3x 4x 1ln x a =2ln x a =-1e a x =21e e aax -==10x a x++=210x ax ++=2a >0∆>3x 4x 341x x ⋅=12341e 11e aax x x x =⋅⋅=C ()221xf x =--x ()()20f x mf x n ++=7,m n 0m >0n >0m <0n >01m <<0n =10m -<<0n =()u f x =20u mu n ++=1u 2u ()f x 10u =2u m =-()u f x =()u f x=20u mu n ++=1u u =2u u =1u u =()u f x =()()20f x mf x n ++=20u mu n ++=10u =0n =20u mu +=2u m =-2u u =()u f x =10m -<-<01m <<01m <<0n =3.(2022·安徽·模拟预测(文))已知函数,若有4个零点,则实数a 的取值范围是( ) A . B .C .D .【答案】A【分析】在同一坐标系中作出的图象,根据有4个零点求解. 【详解】解:令,得, 在同一坐标系中作出的图象,如图所示:由图象知:若有4个零点, 则实数a 的取值范围是, 故选:A4.(2022·河南河南·三模(理))函数的所有零点之和为( ) A .0 B .2 C .4 D .6【答案】B【分析】结合函数的对称性求得正确答案.【详解】令,得, 图象关于对称,在上递减. ,令,所以是奇函数,图象关于原点对称,所以图象关于对称,,在上递增, 所以与有两个交点,()2ln ,02,0x x f x x x x ⎧>=⎨--≤⎩()()g x f x a =-()0,1(]0,1[]0,1[)1,+∞(),y f x y a ==()()g x f x a =-()()0g x f x a =-=()f x a =(),y f x y a ==()()g x f x a =-()0,1()112e e 1x xf x x --=---()112e e 01x xf x x --=--=-112e e 1x x x ---=-()21g x x =-()1,0()(),1,1,-∞+∞()11e e ,x x h x --=-()()()()1e e ,e e x x x x H x h x H x H x --=+=--=-=-()H x ()h x ()1,0()10h =()1ee e x xh x -=-R ()h x ()g x两个交点关于对称,所以函数的所有零点之和为. 故选:B二、多选题5.(2022·广东·普宁市华侨中学二模)对于函数,下列结论中正确的是( )A .任取,都有B .,其中;C .对一切恒成立;D .函数有个零点; 【答案】ACD【分析】作出函数的图象.对于A :利用图象求出,即可判断;对于B :直接求出,即可判断;对于C :由,求得,即可判断; 对于D :作出和的图象,判断出函数有3个零点.【详解】作出函数的图象如图所示.所以.()1,0()112e e 1x xf x x --=---2sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩12,[1,)x x ∈+∞123()()2f x f x -≤11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭k ∈N ()2(2)()k f x f x k k N *=+∈[0,)x ∈+∞()ln(1)y f x x =--3sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min (),()f x f x 1511222222k f f f k ⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1()(2)2f x f x =-()2(2)k f x f x k =+()y f x =ln(1)y x =-()ln(1)y f x x =--sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min ()1,()1f x f x ==-对于A :任取,都有.故A 正确; 对于B :因为,所以.故B 错误;对于C :由,得到,即.故C 正确;对于D :函数的定义域为.作出和的图象如图所示:当时,;当时,函数与函数的图象有一个交点; 当时,因为,,所以函数与函数的图象有一个交点,所以函数有3个零点.故D 正确. 故选:ACD6.(2022·江苏·南京市宁海中学模拟预测)已知是定义在R 上的偶函数,且对任意,有,当时,,则( )A .是以2为周期的周期函数B .点是函数的一个对称中心12,[1,)x x ∈+∞()12max min 13()()()()122f x f x f x f x -≤-=--=1151111,,222222k f f f k +⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1112215112121222212kkf f f k ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-1()(2)2f x f x =-1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭()2(2)kf x f x k =+()ln(1)y f x x =--()1,+∞()y f x =ln(1)y x =-2x =sin2ln10y π=-=12x <<()y f x =()ln 1y x =-2x >2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭971ln 1ln 1224⎪->⎛⎫⎝>=⎭()y f x =()ln 1y x =-()ln(1)y f x x =--()f x x ∈R ()()11f x f x -=-+[]0,1x ∈()22f x x x =+-()f x ()3,0-()f x。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

热点2-4 函数的图象与函数的零点10大题型(解析版)

热点2-4 函数的图象与函数的零点10大题型(解析版)

热点2-4 函数的图象与函数的零点10大题型函数图象问题依旧以考查图象识别为重点和热点,难度中档,也可能考查利用函数图象解函数不等式等。

函数的零点问题一般以选择题与填空题的形式出现,有时候也会结合导数在解答题中考查,此时难度偏大。

一、函数图象辨识的方法步骤图象辨识题的主要解题思想是“对比选项,找寻差异,排除筛选”1、求函数定义域(若各选项定义域相同,则无需求解);2、判断奇偶性(若各选项奇偶性相同,则无需判断);3、找特殊值:①对比各选项,计算横纵坐标标记的数值;②对比各选项,函数值符号的差别,自主取值(必要时可取极限判断符号);4、判断单调性:可取特殊值判断单调性.二、作函数图象的一般方法1、直接法:当函数表达式是基本函数或函数图象是解析几何中熟悉的曲线时,就可根据这些函数或曲线的特征直接作出.2、转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象.3、图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称变换得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换的顺序对变换单位及解析式的影响.4、如何制定图象变换的策略(1)在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下:①若变换发生在“括号”内部,则属于横坐标的变换;②若变换发生在“括号”外部,则属于纵坐标的变换.例如:()=+:可判断出属于横坐标的变换:有放缩与平移两个步骤.31y f x()2=-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标y f x的为平移变换.(2)多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:①横坐标的变换与纵坐标的变换互不影响,无先后要求;②横坐标的多次变换中,每次变换只有x发生相应变化.三、零点个数的判断方法1、直接法:直接求零点,令()0=f x,如果能求出解,则有几个不同的解就有几个零点.2、定理法:利用零点存在定理,函数的图象在区间[],a b上是连续不断的曲线,且()()0f a f b,⋅<结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.3、图象法:(1)单个函数图象:利用图象交点的个数,画出函数()f x的f x的图象,函数()图象与x轴交点的个数就是函数()f x的零点个数;(2)两个函数图象:将函数()g x的差,根据f x拆成两个函数()h x和()()()()f x的零点个数就是函数()y h x和=f x h xg x,则函数()=⇔=()y g x的图象的交点个数=4、性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数四、已知零点个数求参数范围的方法1、直接法:利用零点存在的判定定理构建不等式求解;2、数形结合法:将函数的解析式或者方程进行适当的变形,把函数的零点或方程的根的问题转化为两个熟悉的函数图象的交点问题,再结合图象求参数的取值范围;3、分离参数法:分离参数后转化为求函数的值域(最值)问题求解.【题型1 函数图象的画法与图象变换】【例1】(2022秋·甘肃白银·高三校考阶段练习)作出下列函数图象(1)12xy ⎛⎫= ⎪⎝⎭(2)()2log 1y x =+【答案】(1)答案见解析;(2)答案见解析【解析】(1)因为1()2xy f x ⎛⎫== ⎪⎝⎭,所以11()()22xxf x f x -⎛⎫⎛⎫-=== ⎪⎪⎝⎭⎝⎭, 所以函数为偶函数,关于y 轴对称,因此只需要画0x >时的函数图形即可,11()==22xxf x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,再利用对称性即可得解.(2)将函数 2log y x = 的图象向左平移 1个单位,再将 x 轴下方的部分沿 x 轴翻折上去, 即可得到函数()2log 1y x =+ 的图象,如图所示.【变式1-1】(2022秋·广东广州·高三广东实验中学校考阶段练习)为了得到函数()2ln e y x =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的2e 倍B .纵坐标不变,横坐标缩短为原来的21e C .向下平移两个单位长度 D .向上平移两个单位长度 【答案】BD【解析】()22ln e ln e ln ln 2y x x x ===++,可将函数ln y x =的图象向上平移两个单位长度得到ln 2y x =+, 可将函数ln y x =的图象纵坐标不变,横坐标缩短为原来的21e 得到()2ln e y x =.故选:BD【变式1-2】(2022秋·重庆·高三统考阶段练习)已知函数()f x 的图象如图1所示,则图2所表示的函数是( )A .()1f x -B .()2f x --C .()1f x --D .()1f x -- 【答案】C【解析】由图知,将()f x 的图象关于y 轴对称后再向下平移1个单位即得图2,又将()f x 的图象关于y 轴对称后可得函数()y f x =-, 再向下平移1个单位,可得()1y f x =--所以解析式为()1y f x =--,故选:C.【变式1-3】(2022秋·北京·高三首都师范大学附属中学校考阶段练习)函数12xy -=的图像可看作是把函数2xy =经过以下哪种变换得到( )A .把函数2x y =向右平移一个单位B .先把函数2x y =的图像关于x 轴对称,然后把所得函数图像向左平移一个单位C .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像向左平移一个单位D .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像上各点的纵坐标变为原来的2倍,横坐标不变 【答案】D【解析】选项A :函数2xy =向右平移一个单位得到12x y -=;选项B :先把函数2xy =的图像关于x 轴对称得到2x y =-,然后向左平移一个单位得到12x y +=-;选项C :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后向左平移一个单位得到(1)122x x y -+--==;选项D :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后把各点的纵坐标变为原来的2倍,横坐标不变得到1222x xy --=⨯=;故选:D【变式1-4】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)定义在R 上的函数()f x 满足()()22f x f x -=+,且在()2,+∞单调递增,()40f =,()4g x x =,则函数()()2y f x g x =+的图象可能是( )A .B .C .D .【答案】B【解析】()()22f x f x -=+,所以()f x 的图象关于直线2x =对称,则()2f x +的图象关于直线0x =即y 轴对称,()2f x +是偶函数,()4g x x =为偶函数,图象关于y 轴对称,所以()()2y f x g x =+是偶函数,图象关于y 轴对称,排除AD 选项.()()()()4222200f f f f =+=-==,由于()f x 在()2,+∞上递增,在(),2-∞上递减, 所以()f x 有且仅有2个零点:0和4,另外有()30f <,所以()2f x +有且仅有2个零点:2-和2,()g x 有唯一零点:0, 所以()()2y f x g x =+有且仅有3个零点:2-、0和2. 当1x =时,()110g =>,()()()()121310y f g f g =+⋅=⋅<, 从而排除C 选项,故B 选项正确.故选:B【变式1-5】(2022秋·北京海淀·高三统考期中)已知函数()f x .甲同学将()f x 的图象向上平移1个单位长度,得到图象1C ;乙同学将()f x 的图象上所有点的横坐标变为原来的12(纵坐标不变),得到图象2C .若1C 与2C 恰好重合,则下列给出的()f x 中符合题意的是( )A .()12log f x x = B .()2log f x x = C .()2x f x =D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B【解析】对于A ,()112:1log 1C f x x +=+,()211112222:2log 2log log 2log 1C f x x x x ==+=-,A 错误;对于B ,()12:1log 1C f x x +=+,()22222:2log 2log log 2log 1C f x x x x ==+=+,B 正确;对于C ,()1:121x C f x +=+,()22:224x xC f x ==,C 错误;对于D ,()11:112x C f x ⎛⎫+=+ ⎪⎝⎭,()2211:224x xC f x ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,D 错误.故选:B.【题型2 由复杂函数解析式选择图象】【例2】(2022·四川资阳·统考二模)函数()32cos e ex x x xf x -=+在区间[]2π,2π-上的图象大致为( )A .B .C .D .【答案】B【解析】∵()()()()332cos 2cos e e e ex xx x x x x xf x f x -----==-=-++, ∴()f x 为奇函数,图象关于原点对称,C 、D 错误;又∵若(]0,2πx ∈时,320,e e 0x xx ->+>,当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,cos 0x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,cos 0x <,∴当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,()0f x <,A 错误,B 正确;故选:B.【变式2-1】(2022秋·江西·高三九江一中校联考阶段练习)函数()sin 2xf x =的大致图像是( )A .B .C .D .【答案】A【解析】注意到()sin 2xf x =过点()0,1,故可排除C ,D 选项.因2xy =在R 上单调递增,sin x 在π0,2⎛⎫⎪⎝⎭上单调递增, 则由复合函数单调性相关知识点可知,()sin 2xf x =在π0,2⎛⎫⎪⎝⎭上单调递增,故排除B 选项.故选:A【变式2-2】(2022·河南·安阳一中校联考模拟预测)函数()3sin 3291x x x f x π⎛⎫+ ⎪⎝⎭=-图像大致为( )A .B .C .D .【答案】B【解析】易得函数定义域为()(),00,-∞⋃+∞,已知函数()3sin 3cos329133x xx xx x f x π-⎛⎫+ ⎪⎝⎭==--,()()()cos 3cos33333x x x x x xf x f x ----===---,∴函数()f x 为奇函数,排除A 选项;当0x +→时,0cos31x <<,31x >,31x -<,则330x x -->, 所以()0f x >,排除C 选项;当x →+∞时,1cos31x -≤≤,3x →+∞,30x -→,则33x x --→+∞, 所以()0f x →,排除D 选项;故选:B.【变式2-3】(2022秋·江苏南京·高三南京师大附中校考期中)函数()2e2xf x x=的图象大致为( )A .B .C .D .【答案】A【解析】由()2e 2xf x x=,则其定义域为()()00-∞∞,,+,因为()()()22ee22xxf x f x xx --===-,故函数为偶函数, ()222e ,0e 22e ,02xx x x x f x x x x -⎧>⎪⎪==⎨⎪<⎪⎩,()()()33e 2,02e 2,02x x x x x f x x x x -⎧->⎪⎪=⎨--<'⎪⎪⎩,令()0f x '=,解得2x =±,可得下表:x(),2-∞-2-()2,0-()0,22()2,+∞()f x ' -+-+()f x极小值极小值故选:A.【变式2-4】(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)函数()()ln 0sin ax x f x a x+=在[2π-,2π]上的大致图像可能为( )A .B .C .D .【答案】ABC【解析】①当0a =时,()ln sin x f x x=,()()ln sin x f x f x x-=-=-,函数()f x 为奇函数,由0x →时()f x →∞,1x =±时()0f x =等性质可知A 选项符合题意; ②当a<0时,令()ln ||,()g x x h x ax ==-,作出两函数的大致图象,由图象可知在(1,0)-内必有一交点,记横坐标为0x ,此时0()0f x =,故排除D 选项;当02πx x -<<时,()()0g x h x ->,00x x <<时,()()0g x h x -<, 若在(0,2π)内无交点,则()()0g x h x -<在(0,2π)恒成立, 则()f x 图象如C 选项所示,故C 选项符合题意;若在(0,2π)内有两交点,同理得B 选项符合题意.故选:ABC.【题型3 根据函数图象选择解析式】【例3】(2022秋·福建南平·高三校考期中)已知函数()y f x =的部分图象如图所示,则下列可能是()f x 的解析式的是( )A .()cos f x x x =+B .()cos f x x x =-C .()cos xf x x= D .()cos xf x x=【答案】B【解析】A. ()010f =>,故错误;B.因为()010f =-<,且()1sin 0f x x '=+≥,则()f x 在R 上递增,故正确;C.()f x 的定义域为{}|0x x ≠关于原点对称, 又 ()()()cos cos x xf x f x x x--===---,则()f x 是奇函数,图象关于原点对称,故错误;D. ()f x 的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭关于原点对称,又()()()cos cos x xf x f x x x---===--,则()f x 是奇函数,图象关于原点对称,故错误;故选:B【变式3-1】(2022秋·湖北宜昌·高三校联考期中)已知函数()f x 的图象如图所示,则该函数的解析式为( )A .2()e e x x xf x -=+ B .()3e e x x f x x -+= C .2()e ex x x f x -=-D .()2e e x xf x x -+=【答案】D【解析】由题图:()f x 的定义域为(,0)(0,)-∞+∞,排除A ;当333e e e e e e (),()()()x x x x x xf x f x f x x x x ---+++=-==-=--,故3e e ()x xf x x -+=是奇函数,排除B.当()()()()222,e e e e e e x x x x x x x x x f x f x f x ----=-==-=----,故2()e ex x x f x -=-是奇函数,排除C.故选:D【变式3-2】(2022秋·广西桂林·高三校考阶段练习)已知函数()y f x =的图象如图所示,则此函数的解析式可能是( )A .()()2211x f x x x -=- B .()2211x f x x x -=- C .()22211x f x x x -=- D .()()22211x f x x x -=-【答案】B【解析】根据图像可得:所求函数为奇函数,且当()0,1x ∈时,()0f x <;对CD :定义域关于原点对称,且都有()()f x f x =-,均为偶函数,故错误;对A :当()0,1x ∈时,()0f x >,故错误;故选:B.【变式3-3】(2022秋·江苏扬州·高三期末)已知函数()f x 的部分图像如图,则函数()f x 的解析式可能为( )A .()()e e sin x xf x x -=- B .()()e e sin x x f x x -=+C .()()e e cos x x f x x -=-D .()()e e cos x xf x x -=+【答案】B【解析】由于图像关于原点对称,所以()f x 为奇函数,对于A :由()()e e sin x xf x x -=-得:()()()()()e e sin e e sin x x x x f x x x f x ---=--=-=,()f x 为偶函数,故可排除A ;对于D :由()()e e cos x xf x x -=+得:()()()()()e e cos e e cos x x x x f x x x f x ---=+-=+=,()f x 为偶函数,故可排除D ;由图知()f x 图象不经过点π,02⎛⎫⎪⎝⎭,而对于C :ππ22ππe e cos 022f -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故可排除C ;故选:B【变式3-4】(2022秋·湖北·高三枣阳一中校联考期中)已知函数()sin f x x =,()g cos x x =,()p x x =,则图像为下图的函数可能是( )A .()()2p x y f x =+B .()()2y g f x x =+C .()()2p x y f x =+D .()()2p x y f x =+【答案】D【解析】对于A ,2sin xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故A 不符合; 对于B ,sin 2cos xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故B 不符合; 对于C ,2sin x y x=+由于[]sin 1,1x ∈-,所以02sin x y x=≥+,由于已知图象y 的值域中存在负值,故C 不符合; 对于D ,2sin xy x=+不是奇函数,[]sin 1,1x ∈-,所以R y ∈,故D 图象符合.故选:D.【题型4 根据实际问题作函数图象】【例4】(2022·北京·人大附中校考模拟预测)如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为( )A .B .C .D .【答案】C【解析】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =; 当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =; 当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =, 结合选项C 满足“速度差函数”解析式,故选:C.【变式4-1】(2022·四川泸州·统考模拟预测)如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B【解析】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B ,故选B .【变式4-2】(2022秋·安徽合肥·高三校考期中)(多选)水滴进玻璃容器,如图所示(单位时间内进水量相同),则下列选项匹配正确的是( )A .()2a -B .()3b -C .()4c -D .()1d - 【答案】AB【解析】在a 中,容器是圆柱形的,水高度的变化速度应是直线型,与(2)对应,故A 正确;在b 中,容器下粗上细,水高度的变化先慢后快,与(3)对应,故B正确;在c 中,容器为球型,水高度的变化为快—慢—快,与(1)对应,故C 错误;在d 中,容器上粗下细,水高度的变化为先快后慢,与(4)对应,故D 错误.故选:AB.【变式4-3】(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A【解析】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ;在区间ππ⎛⎫⎪⎝⎭,2上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B ,又由当12x x π+=时,有()12()f x f x =-,()f x 的图象关于点(,0)π2对称,排除D ,故选:A【变式4-4】(2022·全国·高三专题练习)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD △的面积为()f x ,则()f x 的图象大致为()A .B .C .D .【答案】A【解析】作PQ BC ⊥于点Q ,作QR BD ⊥于点R ,连接到PR ,由已知可得,PQ AB QR CD ∥∥,且AB ⊥平面BCD , 所以PQ ⊥平面BCD ,又BD ⊂平面BCD ,所以PQ BD ⊥,,,,QR BD PQ QR Q PQ QR ⊥=⊂平面PQR ,BD ∴⊥平面PQR ,PR ⊂平面PQR ,BD PR ∴⊥,设1,AB BD CD ===3AC ∴=,133PQ PQ =∴, 33133QR BQ x x QR BC --==∴222332233333x x PR x x ⎛⎫-⎛⎫∴=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭故23()22336f x x x =-+其函数图像是关于直线3x 对称的图像且开口上,故选项B,C,D 错误.故选:A .【题型5 函数零点所在区间问题】【例5】(2022秋·湖南长沙·高三长郡中学校考阶段练习)函数()()52lg 21f x x x =--+零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4 【答案】C【解析】因为函数()()52lg 21f x x x =--+在1(,)2-+∞上单调递减,所以函数()f x 最多只有一个零点, 因为(0)(1)5(52lg3)5(3lg3)0f f ⋅=--=->,(1)(2)(52lg3)(54lg5)(3lg3)(1lg5)0f f ⋅=----=-->, (2)(3)(52lg3)(56lg7)(3lg3)(1lg7)0f f ⋅=----=---<, (3)(4)(56lg7)(58lg9)(1lg7)(3lg9)0f f ⋅=----=---->,所以函数()()52lg 21f x x x =--+零点所在的区间是()2,3.故选:C【变式5-1】(2022秋·广东深圳·高三红岭中学校考阶段练习)函数81()log 3f x x x=-的一个零点所在的区间是( )A .(1,2)B .(2,3)C .(3,3.5)D .(3.5,4) 【答案】A【解析】因为函数81log ,3y x y x==-在()0,∞+上单调递增, 所以,81()log 3f x x x =-在()0,∞+上单调递增, 因为()()8811111log 1,2log 23366f f =-=-=-=,()()120f f ⋅<, 所以,函数只有一个零点,且位于()1,2区间内.故选:A .【变式5-2】(2022秋·辽宁辽阳·高三统考阶段练习)若函数()lg f x a x x =++()110x <<有零点,则a 的取值范围为( )A .()10,1--B .()1,10C .()1,11D .()11,1-- 【答案】D【解析】因为函数y x a =+与lg y x =均在()1,10上单调递增,所以()lg f x a x x =++在()1,10上单调递增.要使函数()lg f x a x x =++()110x <<有零点,则只需要()()10100f f ⎧<⎪⎨>⎪⎩即可, 即10110a a +<⎧⎨+>⎩,解得111a -<<-.故选:D.【变式5-3】(2022秋·上海浦东新·高三上海市实验学校校考阶段练习)已知()23e x f x x =-,函数()f x 的零点从小到大依次为,12i x i =、、,若[),1(i x m m m ∈+∈Z ),请写出所有的m 所组成的集合___________.【答案】{}1,0,3-【解析】()f x 的零点可以转化为函数e x y =和23y x =图象交点的横坐标,图象如右所示,由图可知共三个零点,()1130f --=->e ,()010f =-<,所以在[)1,0-上存在一个零点; ()130f =->e ,则在[)0,1上存在一个零点;()33270f =->e ,()44480f =-<e ,则在[)3,4上存在一个零点;所以{}1,0,3m ∈-.【变式5-4】(2022秋·安徽·高三合肥一六八中学校联考阶段练习)(多选)已知函数()e 1x f x a x b =-+,若()f x 在区间[]1,222a b +( )A .1eB eC .2eD .1 【答案】BCD【解析】设()f x 在区间[]1,2上零点为m ,则e 10m a m b -+=,所以点(),P a b 在直线e 10m x y m --=上,()()222200a b a b OP +-+-,其中О为坐标原点.又()2220e 10ee 11m m mmm OP ⋅-+-≥=-+,记函数()2e m m g m =,[]1,2m ∈,()2222211122e e e e m m m mg m m m'==⎛⎫ -⎪⎝⎭- 因为[]1,2m ∈,所以()g m 在[]1,2m ∈上单调递增 所以()g m 最小值为()11g e=,所以221e a b +≥,故选:BCD.【题型6 函数的零点与零点个数问题】【例6】(2022秋·上海杨浦·高三同济大学第一附属中学校考阶段练习)若函数(),R y f x x =∈,满足()()2f x f x +=,且(]1,1x ∈-时,()f x x =,则函数()f x 的图像与函数4log y x =的图像的交点的个数为( ) A .3 B .4 C .6 D .8 【答案】C【解析】由题意得()f x 的周期为2,作出()y f x =与4log y x =的函数图象,数形结合得共有6个交点,故选:C【变式6-1】(2022·天津河西·统考二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为( )A .3B .4C .5D .6 【答案】B【解析】由(2)()0f x f x -+=知()f x 的图象关于(1,0)对称,由(2)()0f x f x ---=知()f x 的图象关于=1x -对称,作出()f x 与||1()()2x g x =在[3-,3]上的图象:由图可知函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为4.故选:B .【变式6-2】(2022秋·上海闵行·高三上海市七宝中学校考期中)定义域为R 的函数()f x 的图象关于直线1x =对称,当[]0,1x ∈时,()f x x =,且对任意x ∈R 只有()()2f x f x +=-,()()()2025,0log ,0f x x g x x x ⎧≥⎪=⎨--<⎪⎩,则方程()()0g x g x --=实数根的个数为( )A .2024B .2025C .2026D .2027 【答案】D【解析】由于函数()f x 的图象关于直线1x =对称,当[0x ∈,1]时,()f x x =,对任意x ∈R 都有(2)()f x f x +=-,得()()()(4)(2)=f x f x f x f x +=-+--=, 所以函数()f x 在[0,)∞+上以4为周期,()()2f x f x +=-, 做出函数()f x 一个周期[0,4]的图象:当0x >时,0x -< ,由()()g x g x =-得:()2025=log f x x - 令2025log 1x -=-,则2025x =,因为202545061=⨯+,而在第一个周期有3个交点,后面每个周期有2个交点,所以共有505231013⨯+=个交点,当0x <时,0x -> ,由()()g x g x =-得:()()2025=log f x x ---,令x t -=,得()2025=log f t t -,由上述可知,()2025=log f t t -有505231013⨯+=个交点,故()()2025=log f x x ---有505231013⨯+=个交点,又0x =时,(0)(0)g g =,所以方程()()0g x g x --=实数根的个数为210131=2027⨯+.故选:D .【变式6-3】(2022秋·河北·高三期中)函数21()cos sin 14f x x x x x =+--零点的个数为( )A .0B .1C .2D .3 【答案】D 【解析】()()()()()2211()cos sin 1cos sin 144f x x x x x x x x x f x -=-+-----=+--=, ()f x ∴是R 上的偶函数,1()cos 2f x x x ⎛⎫'=- ⎪⎝⎭,①当[]0,2πx ∈时,令()0f x '>,得π03x <<或5π2π3x <≤, 令()0f x '<,得π5π33x <<.()f x ∴在π0,3⎛⎫⎪⎝⎭和5π,2π3⎛⎤ ⎥⎝⎦上单调递增,在π5π,33⎛⎫ ⎪⎝⎭上单调递减.()()22π5π5π315π100,0,2ππ0333432f f f f ⎛⎛⎫⎛⎫⎛⎫>==⨯-⨯-<=-< ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭ 0π5π,33x ⎛⎫∴∃∈ ⎪⎝⎭,使得()00,()f x f x =∴在[]0,2π上有两个零点.②当(2,)x π∈+∞时,2211()cos sin 1044f x x x x x x x =+--<-<,()f x ∴在()2π,+∞上没有零点,由①②及()f x 是偶函数可得()f x 在R 上有三个零点.故选:D.【变式6-4】(2022秋·江苏南京·高三期末)若函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+- ,(1)0(0)(2)1f f f -===, ,则曲线|()|y f x =与2log y x =的交点个数为( )A .2B .3C .4D .5 【答案】B【解析】由题意函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,令1y =,则[]()(1)(1)()(1)1(1())f x f x f x f f x f f ++-==+-,令1x =,则2(2)(0)(1)f f f +=,即2(1)2f =,令2x =,则(3)(1)(2)(1)f f f f +=,即(3)0f =, 令3x =,则(4)(2)(3)(1)f f f f +=,即(4)1f =-, 令4x =,则(5)(3)(4)(1)f f f f +=,即(5)(1)f f =-,令5x =,则(6)(4)(5)(1)f f f f +=,即2(6)1(1),(6)1f f f -=-∴=-,令6x =,则(7)(5)(6)(1)f f f f +=,即(7)(1)(1),(7)0f f f f -=-∴=, 令7x =,则(8)(6)(7)(1)f f f f +=,即(8)10,(8)1f f -=∴=, 依次类推,可发现此时当Z x ∈,且x 依次取0,1,2,3,时,函数|()|y f x =的值依次为, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(2,1); 令=1x -,则(0)(2)(1)(1)0,(2)1f f f f f +-=-=∴-=-, 令2x =-,则(1)(3)(2)(1)(1),(3)(1)f f f f f f f -+-=-=-∴-=-,令3x =-,则2(2)(4)(3)(1)(1),(4)1f f f f f f -+-=-=-∴-=-,令4x =-,则(3)(5)(4)(1)(1),(5)0f f f f f f -+-=-=-∴-=, 令5x =-,则(4)(6)(5)(1)0,(6)1f f f f f -+-=-=∴-=, 令6x =-,则(5)(7)(6)(1)(1),(7)(1)f f f f f f f -+-=-=∴-=,令7x =-,则2(6)(8)(7)(1)(1),(8)1f f f f f f -+-=-=∴-=,依次类推,可发现此时当Z x ∈,且x 依次取1,2,3---,时,函数|()|y f x =的值依次为0,121,0121,0,,,,,, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(1,0),(2,1)--;故综合上述,曲线|()|y f x =与2log y x =的交点个数为3,故选:B【题型7 根据函数零点个数求参数范围】【例7】(2022秋·广东中山·高三小榄中学校考阶段练习)已知函数()2ln ,045,0x x f x x x x ⎧>⎪=⎨-+≤⎪⎩,若方程()0f x a -=有4个不同的实数解,则实数a 的取值范围为_________. 【答案】(1,5]【解析】由题知:方程()0f x a -=有4个不同的实数解,即()f x a =有4个不同的实数解.作出()f x 图像(如图所示),即直线y a =与曲线()y f x =有4个公共点. 易知:15a <≤.【变式7-1】(2022秋·新疆喀什·高三新疆维吾尔自治区喀什第二中学校考阶段练习)已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a的取值范围是( )A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞ 【答案】B【解析】令()()0g x f x x a =+-=,即()f x x a +=,令()()x f x x ϕ=+,当0x ≤时,()33x x x ϕ=-,()233x x ϕ'=-,令()0x ϕ'>得:1x >或1x <-,结合0x ≤,所以1x <-,令()0x ϕ'<得:11x -<<,结合0x ≤得:10-<≤x ,所以()x ϕ在=1x -处取得极大值,也是最大值,()()max 12x ϕϕ=-=,当x →-∞时,()x ϕ→-∞,且()00ϕ=,当0x >时,()ln x x x ϕ=+,则()110x xϕ'=+>恒成立,()ln x x x ϕ=+单调递增,且当0x →时,()x ϕ→-∞,当x →+∞时,()x ϕ→+∞,画出()x ϕ的图象,如下图:要想()()g x f x x a =+-有3个零点,则[)0,2a ∈故选:B【变式7-2】(2022·江西南昌·南昌市八一中学校考三模)定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1x f x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫ ⎪⎝⎭ C .e 1e 1,86--⎛⎫ ⎪⎝⎭D .()0,e 1- 【答案】B【解析】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数,故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解, 则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<.故选:B.【变式7-3】(2022秋·北京顺义·高三牛栏山一中校考期中)若函数()2,,,.x x a f x x x a ≤⎧=⎨>⎩满足存在t R ∈使()f x t =有两个不同的零点,则a 的取值范围是______. 【答案】()(),00,1-∞⋃【解析】如图所示,画出函数()2,,x x af x x x a ≤⎧=⎨>⎩的图象.结合图象可知,()(),00,1a ∈-∞⋃【变式7-4】(2023·全国·高三专题练习)已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦【解析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点, 即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦.【题型8 复合函数的零点问题】【例8】(2022秋·贵州黔东南·高三校考阶段练习)已知函数()()1ln 1,121,1x x x f x x -⎧->⎪=⎨+≤⎪⎩,则函数()()1y f f x =+的零点个数为______. 【答案】2【解析】先由函数画出草图如图,∴函数()f x 的零点为=2x ,令()1=2f x +,得()=1f x ,∴函数()()1y f f x =+的零点个数就是方程()=1f x 解的个数,也就是函数()f x 的图像与直线=1y 交点的个数,由图可知函数()f x 的图像与直线=1y 有两个不同的交点A ,B ,∴()()1y f f x =+的零点个数为2,【变式8-1】(2022秋·上海普陀·高三曹杨二中校考期中)已知函数()||1f x x =-,关于x 的方程2()|()|0f x f x k -+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有3个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为( )A .①②③B .①②④C .①③④D .②③④ 【答案】C【解析】设||1t x =-,则1t-,当1t =-时,0x =,当1t >-时,x 有两解.则原方程等价为2||0t t k -+=,即2211||(||)24k t t t =-+=--+.画出||1t x =-以及211(||)24k t =--+的图象, 由图象可知,(1)当0k <时,1t >,此时方程恰有2个不同的实根; (2)当0k =时,1t =或0=t 或1t =-, 当1t =时,x 有两个不同的解, 当0=t 时,x 有两个不同的解,当1t =-时,x 只有一个解,所以此时共有5个不同的解.(3)当104k <<时,112t -<<-或102t -<<或102t <<或112t <<,此时对应着8个解.(4)当14k =时,12t =-或12t =.此时每个t 对应着两个x ,所以此时共有4个解.综上正确的是①③④.故选:C【变式8-2】(2022秋·湖北·高三校联考阶段练习)已知函数()π4sin sin 3f x x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)若2,63ππx ⎡⎤∈⎢⎥⎣⎦,讨论函数()()()()21g x f x m f x m =-++⎡⎤⎣⎦的零点个数. 【答案】(1)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈;(2)答案详见解析 【解析】(1)()134sin sin cos 22x f x x x ⎛⎫=+⎪ ⎪⎝⎭1cos 23sin 2x x =-+π2sin 216x ⎛⎫=-+ ⎪⎝⎭, 由πππ2π22π262k x k -+≤-≤+,Z k ∈, 解得ππππ63k x k -+≤≤+,Z k ∈,故()f x 递增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈. (2)π2,π63x ⎡⎤∈⎢⎥⎣⎦,则ππ72,π666x ⎡⎤-∈⎢⎥⎣⎦,则π1sin 2,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()π2sin 21[0,3]6f x x ⎛⎫=-+∈ ⎪⎝⎭,画出()f x 在区间π2,π63⎡⎤⎢⎥⎣⎦上的图象如下图所示,令()f x t =,则()()()()211g x t m t m t t m =-++=--,[]0,3t ∈,由()()10t t m --=,结合()f x 图象得:①当1m =时,()0g t ≥,1t =,即()1f x =,此时零点唯一; ②当23m ≤<时,1t =或()1t m f x =⇔=或()f x m =,此时三个零点; ③当3m =时,1t =或t m =⇔()1f x =或()3f x =,此时两个零点; ④当3m >时,1t =或t m =⇔()1f x =或()f x m =(无解),此时只有一个零点;⑤当0m =时,1t =或t m =⇔()1f x =或()0f x =,此时两个零点; ⑥当01m <<,12m <<时,1t =或t m =⇔()1f x =或()f x m =,此时有两个零点;⑦当0m <时,1t =或t m =⇔()1f x =或()f x m =(无解),此时有一个零点;综上所述:当()(){},03,1m ∈-∞⋃+∞⋃时,只有一个零点;[)(){}0,11,23m ∈⋃⋃时,只有两个零点;[]2,3m ∈,有三个零点.【变式8-3】(2022秋·河南焦作·高三统考期中)已知函数()()12,024,24x x f x x f x x ⎧+-<≤⎪=⎨⎪-<<⎩,方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=(其中0θπ<<)有6个不同的实根,则θ的取值范围是( )A .π0,6⎛⎫ ⎪⎝⎭B .π2π0,,π33⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .50ππ,,66π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .π0,3⎛⎫⎪⎝⎭ 【答案】C【解析】因为当24x <<时,有()()4f x f x =-,故()f x 在()0,2上图象与在()2,4上的图象关于2x =对称,故()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 下面仅在()0,2上讨论()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=的解.因为()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=,故()1f x =或()sin f x θ=, 当()1f x =时,则有:12102x x x ⎧+-=⎪⎨⎪<<⎩,解得x . 因为方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 故()sin f x θ=在()0,2上有2个不同的实数根且与x 相异,故12sin 02π2x x x θθ⎧+-=⎪⎪<<⎨⎪⎪≠⎩有两个不同的解,整理得到()22sin 1002π2x x x θθ⎧⎪-++=⎪<<⎨⎪⎪≠⎩有两个不同的解.设()2(2sin )10g x x x θ=-++=,则2(0)0(2)02sin 022(2sin )40g g θθ>⎧⎪>⎪⎪⎨+<<⎪⎪+->⎪⎩,解得10sin 2θ<<,故π5π0,,π66θ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式8-4】(2022秋·江西抚州·高三金溪一中校考阶段练习)已知函数()()()2,0,2ln ,0,x x f x g x x x x x ⎧==-⎨>⎩,若方程()()()0f g x g x m +-=的所有实根之和为4,则实数m 的取值范围是( )A .1m >B .1mC .1m <D .1m 【答案】C【解析】令(),0t g x t =≥,当1m =时,方程为()10f t t +-=,即1f t t ,作出函数()y f t =及1y t =-的图象, 由图象可知方程的根为0=t 或1t =, 即()20x x -=或()21x x -=, 作出函数()()2g x x x =-的图象,结合图象可得所有根的和为5,不合题意,故BD 错误; 当0m =时,方程为()0f t t +=,即()f t t =-, 由图象可知方程的根01t <<,即()()20,1x x t -=∈, 结合函数()()2g x x x =-的图象,可得方程有四个根, 所有根的和为4,满足题意,故A 错误.故选:C.【题型9 函数零点的大小与范围】【例9】(2022秋·河北保定·高三校联考阶段练习)已知0x >,函数()25xf x x =+-,()24g x x x =+-,()2log 3h x x x =+-的零点分别为a ,b ,c ,则( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】C【解析】因为()25xf x x =+-单调递增,且()()551.6 1.65555(1.6)2 3.42 3.4256454.354240,f =-=-=-<()24250,f =+->由零点的存在性定理可知()f x 有唯一零点a 且1.62a <<;因为()24g x x x =+-在()0+∞,单调递增, 且()211140,(1.6) 1.6 2.4 2.56 2.40g g =+-<=-=->,由零点的存在性定理可知()g x 有唯一零点b 且1 1.6b <<;因为()2log 3h x x x =+-在()0+∞,单调递增,且()21230h =+-=, 由零点的存在性定理可知()h x 有唯一零点2c =,所以b a c <<.故选:C.【变式9-1】(2022·全国·高三专题练习)已知函数()()()222,log 2,32x x f x x g x x x h x x =+=+=+的零点分别为,,a b c ,则,,a b c 的( )A .b c a >>B .b a c >>C .c a b >>D .a b c >> 【答案】A【解析】由题可得,,a b c 即为2y x =-的图象分别与2xy =,2log y x =,3x y =的交点的横坐标,如图,画出函数图象,由图可得,b c a >>.故选:A.【变式9-2】(2022·全国·模拟预测)已知函数()g x 的定义域为R ,()1g x +为奇函数,()g x 为偶函数,当01x ≤≤时,()()221g x x =--,则方程()11g x x =-,在区间[-5,7]上所有解的和为( )A .10B .8C .6D .4 【答案】B【解析】第一步:判断函数()g x 与11y x =-的图象的特征并作出图象 ∵()1g x +为奇函数,∴()()11g x g x -=-+,即()()2g x g x -=-, ∴()g x 的图象关于点(1,0)对称. 又()()()42222g x g x g x +=++=--=⎡⎤⎡⎤⎣⎦⎣⎦()()()222g x g x g x ---=-+=---=⎡⎤⎣⎦()()()g x g x g x ---=-=⎡⎤⎣⎦,∴()g x 是周期为4的周期函数,显然,函数11y x =-的图象关于点(1,0)对称,在同一直角坐标系中,分别作出函数()g x 与函数11y x =-的图象如图所示.(画出函数图象,注意“草图不草”)第二步:确定交点个数,进而求解 由可知,函数()g x 与11y x =-的图象在[-5,7]上共有8个交点,且两两关于点(1,0)对称,∴方程()11g x x =-在[-5,7]上所有解的和为428⨯=.故选:B【变式9-3】(2022秋·全国·高三校联考阶段练习)已知函数ln ,0<2,()=ln(4),2<<4,x x f x x x ≤-⎧⎪⎨⎪⎩若直线=y m 与()f x 的图像有四个交点,且从左到右四个交点的横坐标依次为1234,,,x x x x ,则()123412++4+=x x x x x x ( )A .12B .16C .18D .32 【答案】C【解析】作出函数()f x 的图像如图所示:()f x 的图像关于直线=2x 对称.由图可知:1423+=+=4x x x x ,且12340<<1<<2<<3<<4x x x x .所以341<4<2,0<4<1x x --.由12ln ln x x =可得:12ln ln x x -=,所以121x x =. 同理可得()()34441x x --=,所以()3434=4+15x x x x -.于是()()()1234123412++4+=1+4+15+4+x x x x x x x x x x -()()1423=4++4+14x x x x -=18.故选:C【变式9-4】(2022·全国·高三专题练习)(多选)已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x < D .122322+≥+x x 【答案】ABD【解析】令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=,令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标, 作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=,所以12(1)(1)1x x --=,即()12120x x x x -+=,所以12111x x +=,故B 正确;因为12122x x x x +≥,所以()121212122x x x x x x x x -+≤-,即121220x x x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误;()2112121212211223322x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=,当且仅当21122x x x x =,即212x x =时,取等号,故D 正确.故选:ABD.【变式9-5】(2022秋·天津武清·高三校考阶段练习)已知函数()2log ,02{12,22x x f x x x <<=-+≥,如果互不相等的实数,,a b c ,满足()()()f a f b f c ==,则实数abc 的取值范围_____. 【答案】(2,4)【解析】()2log ,0212,22x x f x x x ⎧<<⎪=⎨-+≥⎪⎩,画出函数图象,如图所示:不妨设a b c <<,其中22log log a b -=,故1ab =,且()2,4c ∈,所以abc 的取值范围是(2,4).【题型10 二分法及其应用】【例10】(2022·陕西西安·西安中学校考模拟预测)某同学用二分法求函数()237x f x x =+-的零点时,计算出如下结果:()()1.50.33, 1.250.87f f ==-,()()()()1.3750.26, 1.43750.02, 1.40650.13, 1.4220.05f f f f =-==-=-,下列说法正确的有( )A .1.4065是满足精度为0.01的近似值.B .1.375是满足精度为0.1的近似值C .1.4375是满足精度为0.01的近似值D .1.25是满足精度为0.1的近似值 【答案】B【解析】()()1.43750.020, 1.40650.130f f =>=-<,又1.4375 1.40650.0310.01-=>,A 错误;()()1.3750.260, 1.43750.020f f =-<=<,又1.4375 1.3750.0620.1-=<, ∴满足精度为0.1的近似值在()1.375,1.4375内,则B 正确,D 错误;()()1.4220.050, 1.43750.020,1.4375 1.4220.01550.01f f =-<=>-=>,C 错误.故选:B.【变式10-1】(2022·全国·高三专题练习)在用二分法求方程32100x x +-=在(1,2)上的近似解时,构造函数()3210x f x x =+-,依次计算得()150f =-<,()230f =>,()1.50f <,()1.750f >,()1.6250f <,则该近似解所在的区间是( )A .()11.5, B .()1.51.625, C .()1.6251.75, D .()1.752, 【答案】C【解析】根据已知()150f =-<,()1.50f <,()1.6250f <,()1.750f >,()230f =>,根据二分法可知该近似解所在的区间是()1.625,1.75.故选:C.【变式10-2】(2022·全国·高三专题练习)用二分法求如图所示的函数()f x 的零。

高考函数题型总结:零点问题总结

高考函数题型总结:零点问题总结

高考函数题型总结:零点问题总结高中函数专题——零点(看图像交点)2018新课标1理】已知函数f(x),的取值范围是()。

若存在2个零点,则答案为C。

解析】令y=f(x),则y=a(x-1)e^(x-1)+1.当y=0时,即a(x-1)e^(x-1)+1=0.当a=0时,有两个零点,矛盾。

当a0时,在(-∞,1)上递增,在(1,+∞)上递减,此时y=a(x-1)e^(x-1)+1的图象只能有一个零点,即在(1,+∞)上有一个零点。

综上,当a>0时,f(x)的零点个数为1,故答案为C。

2018•新课标Ⅲ】函数的零点个数为3.解析】由题意得f(x)=x^3-3x^2+2x,令f(x)=0,则x^3-3x^2+2x=0,整理得x(x-2)(x-1)=0,即f(x)的零点为0,1,2,故零点个数为3.2018•浙江理】已知λ∈R,函数f(x)=λ(e^(x-1)-1)/(x-1)。

当λ=2时,不等式f(x)<0的解集是(1,2)。

若函数f(x)恰有2个零点,则λ的取值范围是(1,4)。

解析】当λ=2时,f(x)=(e^(x-1)-1)/(x-1),不等式f(x)<0的解集是(1,2)。

当f(x)有2个零点时,即f(x)的图象在(1,2)上有两个交点,所以f(x)在(1,2)上单调性变化,即f'(x)在(1,2)上存在一个零点。

由f'(x)=(e^(x-1)(x-2)+1)/(x-1)^2=0,解得x=2,所以λ的取值范围为1<λ≤3.2018•天津理】已知a>0,函数f(x)=x^2+ax+1/x^2.若关于x的方程f(x)=ax恰有2个异的实数解,则a的取值范围是(4,8)。

解析】由f(x)=x^2+ax+1/x^2=ax,整理得x^4+ax^3+x^2-a=0.由于f(x)恰有2个异的实数解,即x^2≠1,所以x^4+ax^3+x^2-a=0要么无根,要么有同号根,同号根时a>0,所以x^4+ax^3+x^2-a=0在a>0时有两个异的实数解。

数学 函数零点的求法及零点的个数

数学 函数零点的求法及零点的个数

函数零点的求法及零点的个数题型1:求函数的零点。

[例1]求函数2223+--=x x x y 的零点.[解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根[解析]令32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。

[反思归纳]函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2]求函数f(x)=lnx+2x -6的零点个数.[解题思路]求函数f(x)=lnx+2x -6的零点个数就是求方程lnx+2x -6=0的解的个数[解析]方法一:易证f(x)=lnx+2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)=lnx+2x -6只有一个零点。

方法二:求函数f(x)=lnx+2x -6的零点个数即是求方程lnx+2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。

画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。

题型3:由函数的零点特征确定参数的取值范围[例3](2007·广东)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论[解析]若0a =,()23f x x =-,显然在[]1,1-上没有零点,所以0a ≠.令()248382440a a a a ∆=++=++=,解得372a -±=①当372a --=时,()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。

高考复习专题:函数零点的求法及零点的个数

高考复习专题:函数零点的求法及零点的个数

函数零点的求法及零点的个数题型1:求函数的零点。

[例1] 求函数2223+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根[解析]令32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。

[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)= lnx +2x -6只有一个零点。

方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。

画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。

题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,假如函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点找寻关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行探讨[解析] 若0a = , ()23f x x =- ,明显在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=, 解得32a -=①当a =时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。

导数与函数的零点问题考点与题型归纳

导数与函数的零点问题考点与题型归纳

导数与函数的零点问题考点与题型归纳且f(1)=0,所以当x≥1时,f(x)≥XXX成立。

2)解:由题可知,x--f(x)=x3-2ex2+tx,即f(x)=x--x3+2ex2-tx。

设g(x)=f'(x)=1-2x+2ex-t,求g(x)的零点。

当x1时,g(x)>0.所以f(x)在[0,1)上是单调减函数,在(1,+∞)上是单调增函数。

又因为f(0)=0,当x→+∞时,f(x)→+∞,所以方程x--f(x)=x3-2ex2+tx的根有且只有一个。

给定函数$f(x)=e^x-ax^2$,其中$a>0$。

1) 当$a=1$时,证明对于$x\geq 0$,有$f(x)\geq 1$。

证明:当$a=1$时,$f(x)\geq 1$等价于$(x^2+1)e^{-x}-1\leq 0$。

设$g(x)=(x^2+1)e^{-x}-1$,则$g'(x)=-e^{-x}(x^2-2x+1)=-e^{-x}(x-1)^2$。

当$x\neq 1$时,$g'(x)<0$,因此$g(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减。

而$g(0)=0$,因此对于$x\geq 0$,有$g(x)\leq 0$,即$f(x)\geq 1$。

2) 若$f(x)$在$(0,+\infty)$只有一个零点,求$a$。

设$h(x)=1-ax^2e^{-x}$。

由于$f(x)$在$(0,+\infty)$只有一个零点,因此$h(x)$在$(0,+\infty)$只有一个零点。

i) 当$a\leq \frac{1}{e}$时,$h(x)>0$,因此$h(x)$没有零点。

ii) 当$a>\frac{1}{e}$时,$h'(x)=a(x-2)e^{-x}$。

当$x\in(0,2)$时,$h'(x)0$。

因此$h(x)$在$(0,2)$上单调递减,在$(2,+\infty)$上单调递增。

函数零点问题的题型归类及解题策略

函数零点问题的题型归类及解题策略

函数零点问题的题型归类及解题策略一、函数零点问题的题型归类在数学中,函数零点问题是一个常见的题型,通常是要求求出一个函数的零点或根。

根据不同的函数形式和解法,可以将这些题型分为以下几类:1. 多项式函数的零点问题:多项式函数是指由一系列单项式相加或相减而成的函数,例如f(x) = 2x^3 - 3x^2 + 4x - 5就是一个三次多项式函数。

对于多项式函数而言,求解它的零点通常使用因式分解、配方法、牛顿迭代法等方法。

2. 三角函数的零点问题:三角函数包括正弦、余弦、正切等等,例如f(x) = sin(x) - x就是一个三角函数。

对于三角函数而言,求解它的零点通常使用周期性、奇偶性等特征来进行简化。

3. 指数和对数函数的零点问题:指数和对数函数包括指数、自然对数等等,例如f(x) = e^x - x就是一个指数和对数函数。

对于指数和对数函数而言,求解它们的零点通常需要使用到特殊技巧如换底公式、取对数等方法。

4. 分段定义的复合函数的零点问题:分段定义的复合函数是指一个函数在不同的区间内采用不同的定义方式,例如f(x) = {x^2 + 1, x < 0; x - 1, x >= 0}就是一个分段定义的复合函数。

对于这类函数,求解它们的零点通常需要将其分成不同的部分进行讨论。

二、解题策略针对以上不同类型的函数零点问题,我们可以采用以下几种解题策略:1. 因式分解法因式分解法是一种常见的求多项式函数零点的方法。

对于一个多项式函数f(x),我们可以先将其进行因式分解,然后再求出每个因子的零点。

例如f(x) = x^3 - 3x^2 + 2x可以写成f(x) = x(x-1)(x-2),然后再求出每个因子的零点即可得到f(x)在实数范围内所有的零点。

2. 配方法配方法也是一种常见的求多项式函数零点的方法。

对于一个二次或三次多项式函数,我们可以通过配方将其转化为完全平方或完全立方形式,然后再根据完全平方或完全立方公式来求解它们的零点。

考点14函数的零点与方程的解(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型新高考版

考点14函数的零点与方程的解(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型新高考版

考点14函数的零点与方程的解(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.【知识点】1.函数的零点与方程的解(1)函数零点的概念对于一般函数y =f (x ),我们把使 的实数x 叫做函数y =f (x )的零点.(2)函数零点与方程实数解的关系方程f (x )=0有实数解⇔函数y =f (x )有 ⇔函数y =f (x )的图象与有公共点.(3)函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有 ,那么,函数y =f (x )在区间 内至少有一个零点,即存在c ∈(a ,b ),使得,这个c也就是方程f (x )=0的解.2.二分法对于在区间[a ,b ]上图象连续不断且 的函数y =f (x ),通过不断地把它的零点所在区间 ,使所得区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f (x )是定义域上的单调函数,则f (x )至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号【核心题型】题型一 函数零点所在区间的判定确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.【例题1】(2024·贵州贵阳·模拟预测)设方程33log 1xx ×=的两根为1x ,()212x x x <,则A .101x <<,23x >B .121x x >C .1201x x <<D .124x x +>【变式1】(2023·河北·模拟预测)已知函数()36xf x x =+-有一个零点0x x =,则0x 属于下列哪个区间( )A .1,12æöç÷èøB .31,2æöç÷èøC .3,22æöç÷èøD .52,2æöç÷èø【变式2】(2023·海南·模拟预测)函数()123x f x x -=+-的零点所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,3【变式3】(2023·辽宁葫芦岛·一模)请估计函数()26log f x x x=-零点所在的一个区间 .题型二 函数零点个数的判定求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.【例题2】(2024·天津·二模)已知函数()22sin 2sin cos cos f x x x x x =+-,关于()f x 有下面四个说法:①()f x 的图象可由函数()2g x x =的图象向右平行移动π8个单位长度得到;②()f x 在区间ππ,44éù-êúëû上单调递增;③当ππ,62x éùÎêúëû时,()f x的取值范围为;④()f x 在区间[]0,2π上有3个零点.以上四个说法中,正确的个数为( )A .1B .2C .3D .4【变式1】(2024·湖南·模拟预测)已知函数()f x 满足()()8f x f x +=,()()80f x f x +-=,当[)0,4x Î时,()πln 1sin 4f x x æö=+ç÷èø,则函数()()()3F x f x f x =-在()0,8内的零点个数为A .3B .4C .5D .6【变式2】.(2024·青海西宁·二模)记()x t 是不小于x 的最小整数,例如()()()1.22,22, 1.31t t t ==-=-,则函数()()128x f x x x t -=--+的零点个数为.【变式3】(2024·北京西城·一模)关于函数()sin cos2f x x x =+,给出下列三个命题:①()f x 是周期函数;②曲线()y f x =关于直线π2x =对称;③()f x 在区间[)0,2π上恰有3个零点.其中真命题的个数为( )A .0B .1C .2D .3题型三 函数零点的应用根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.命题点1 根据零点个数求参数【例题3】(多选)(2024·全国·模拟预测)已知函数()()()22e 21e 2x xf x a x a a x =-+++(其中e 为自然对数的底数),则下列结论正确的是( )A .a $ÎR ,使函数()f x 恰有1个零点B .a $ÎR ,使函数()f x 恰有3个零点C .a "ÎR ,函数()f x 都有零点D .若函数()f x 有2个零点,则实数a 的取值范围为()e 2,e -【变式1】(2024·安徽黄山·二模)若函数()()14f x k x =--有两个零点,则实数k 的取值范围是.【变式2】(2024·陕西西安·模拟预测)若方程2ln 0ax x -=在()1,+¥上有两个不同的根,则a 的取值范围为( )A .10,2e æöç÷èøB .1,e æö-¥ç÷èøC .()1,e D .(),2-¥【变式3】(2024·上海徐汇·二模)已知函数()y f x =,其中122()log 2xf x x +=-.(1)求证:()y f x =是奇函数;(2)若关于x 的方程()12()log f x x k =+在区间[3,4]上有解,求实数k 的取值范围.命题点2 根据函数零点的范围求参数【例题4】(2024·陕西安康·模拟预测)已知函数()()πcos 04f x x w w æö=+>ç÷èø在区间π,π3æöç÷èø上单调递减,且()f x 在区间()0,π上只有1个零点,则w 的取值范围是( )A .10,4æùçúèûB .13,24æùçúèûC .13,44æùçúèûD .15,44æùçúèû【变式1】(2024·四川巴中·一模)若函数()2231f x ax x =+-在区间()1,1-内恰有一个零点,则实数a 的取值集合为( )A .{}|12a a -<<B .9{|8a a =-或12}a -<<.C .{|12}a a -££D .9{|8a a =-或12}a -££.【变式2】(2023·河南·模拟预测)已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为 .【变式3】(2023·全国·模拟预测)将函数()(0)f x x w w =>的图像向右平移3w p 个单位长度得到函数()g x 的图像.若()g x 在区间π5π,36æöç÷èø内有零点,无极值,则w 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·浙江宁波·一模)已知函数32221()2log ,()log ,()log 2xxf x xg x xh x x x æö=+=-=+ç÷èø的零点分别为,,a b c ,则( )A .a b c >>B .b a c >>C .c a b>>D .b c a>>2.(2023·贵州毕节·模拟预测)若函数()()224424e e x x f x x x a --=-++有唯一零点,则实数=a ( )A .2B .12C .4D .13.(23-24高三下·四川雅安·开学考试)已知函数()24xf x =,若存在12x x <,使得()()120f x f x <,则下列结论不正确的是( )A .11<x B .21x >C .()f x 在()12,x x 内有零点D .若()f x 在121,2x x x +æöç÷èø内有零点,则1202x x f +æö>ç÷èø4.(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ì£ï=í+>ïî,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( )A .1,1B .1,2C .2,1D .2,25.(2024·全国·模拟预测)已知函数()()ππ2sin 222f x x j j æö=+-<<ç÷èø的图像关于点π,03æöç÷èø中心对称,将函数()f x 的图像向右平移π3个单位长度得到函数()g x 的图像,则下列说法正确的是( )A .()f x 在区间ππ36æö-ç÷èø,上的值域是(]12-,B .()2sin2g x x=-C .函数()g x 在π5π1212éù-êúëû,上单调递增D .函数()g x 在区间[]ππ-,内有3个零点二、多选题6.(2024·甘肃定西·一模)已知函数()()221,42x f x a g x x x a =--=-+-,则( )A .当()g x 有2个零点时,()f x 只有1个零点B .当()g x 有3个零点时,()f x 只有1个零点C .当()f x 有2个零点时,()g x 有2个零点D .当()f x 有2个零点时,()g x 有4个零点7.(2023·安徽马鞍山·三模)已知函数2()()e ln x f x x x x =++的零点为0x ,下列判断正确的是( )A .012x <B .01ex >C .00e ln 0x x +<D .00ln 0x x +<三、填空题8.(2024·重庆·模拟预测)若12πw <£,则关于x 的方程sin x x w =的解的个数是 .9.(2023·河北·模拟预测)已知1e ln ()2x x xxf x +-=,0x 是该函数的极值点,定义x 表示超过实数x 的最小整数,则()0f x 的值为.四、解答题10.(2023·四川成都·一模)已知函数()2cos sin 1f x ax x x x =-+-.(1)若1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若1a =时,求函数()f x 的零点个数;(3)若对于任意π0,2x éùÎêúëû,()12³-f x a 恒成立,求a 的取值范围.11.(2024·福建福州·模拟预测)已知函数()πsin (03)4f x x w w æö=-<<ç÷èø,π8x =是()f x 的零点.(1)求w 的值;(2)求函数π1π828y f x f x æöæö=-++ç÷ç÷èøèø的值域.12.(2023·四川绵阳·模拟预测)函数()()()222f x x m x m =+-+.(1)若()f x 为奇函数,求实数m 的值;(2)已知()f x 仅有两个零点,证明:函数()3y f x =-仅有一个零点.综合提升练一、单选题1.(2023·吉林长春·一模)方程3log 2x x +=的根所在区间是( )A .()0,1B .()1,2C .()2,3D .()3,42.(2023·全国·模拟预测)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ÎR ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如[]2.12=,[]33=,[]1.52-=-,设0x为函数()33log 1f x x x =-+的零点,则[]0x =( )A .2B .3C .4D .53.(2023·宁夏银川·三模)函数()22log f x x x m =++在区间()2,4上存在零点,则实数m 的取值范围是( )A .(),18-¥-B .(5,)+¥C .(5,18)D .()18,5--4.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x w j w j æö=+<-<<ç÷èø,的最小正周期为π,在区间ππ,66æö-ç÷èø上单调递减,且在区间π0,6æöç÷èø上存在零点,则j 的取值范围是( )A .ππ,62æöç÷èøB .3π,2πæù--çúèûC .ππ,32éö÷êëøD .π0,3æùçúèû5.(2023·内蒙古赤峰·二模)记函数()()sin 0,02f x x p w j w j æö=+><<ç÷èø的最小正周期为T .若()f T =,6x p =为()f x 的零点,则w 的最小值为( )A .2B .3C .4D .66.(2024·安徽芜湖·二模)在数列{}n a 中,n S 为其前n 项和,首项11a =,且函数()()31sin 211n n f x x a x a x +=-+++的导函数有唯一零点,则5S =( )A .26B .63C .57D .257.(2023·四川南充·模拟预测)函数()ln 1f x x x =-的零点为1x ,函数()()e 1e xg x x =--的零点为2x ,则下列结论正确的是( )A .221e ln ex x ×=B .2111e2x x -+>C .12ln 1x x -=D .21121ln x x +£+8.(2024·山西吕梁·模拟预测)用[a ]表示不大于实数a 的最大整数,如[1.68]=1,设12,x x 分别是方程24x x +=及ln(1)4x x +-=的根,则12[]x x += ( )A .2B .3C .4D .5二、多选题9.(2024·甘肃陇南·一模)已知函数()324f x x x ax =++-有3个不同的零点123,,x x x ,且23122x x x =,则( )A .4a =-B .()0f x <的解集为()1,2-C .7y x =-是曲线()y f x =的切线D .点()1,0-是曲线()y f x =的对称中心10.(2023·河北唐山·模拟预测)已知函数()()()0f x x w +j w >的最小正周期πT <,1π5f æö=ç÷èø,且()f x 在π10x =处取得最大值.下列结论正确的有( )A .sin j =B .w 的最小值为152C .若函数()f x 在ππ,204æöç÷èø上存在零点,则w 的最小值为352D .函数()f x 在13π11π,2015æöç÷èø上一定存在零点11.(2023·江西·模拟预测)已知函数2(e 21)xax x f x -+=,则下列结论正确的是( )A .对于任意的a ÎR ,存在偶函数()g x ,使得e ()()x y f x g x =+为奇函数B .若()f x 只有一个零点,则1a =C .当1a =时,关于x 的方程()f x m =有3个不同的实数根的充要条件为340e m <<D .对于任意的a ÎR ,()f x 一定存在极值三、填空题12.(2023·广东深圳·一模)定义开区间(),a b 的长度为b a -.经过估算,函数()1312x f x x =-的零点属于开区间 (只要求写出一个符合条件,且长度不超过16的开区间).13.(2024·河南南阳·一模)已知函数()()232ln 13f x x x a x =-+-+在区间()1,2上有最小值,则整数a 的一个取值可以是.14.(2023·山西阳泉·模拟预测)已知函数()e 2x f x x =+-的零点为1x ,函数()2ln g x x x =--的零点为2x ,给出以下三个结论:①12e e 2e x x +>;②1234x x >;③2112ln ln 0x x x x +<.其中所有正确结论的序号为 .四、解答题15.(2023·全国·模拟预测)已知函数()||f x x a =-.(1)若不等式()()1f x f x m -+£恒成立,求实数m 的最大值;(2)若函数1()()g x f x a=+有零点,求实数a 的取值范围.16.(2024·全国·模拟预测)已知函数()()ln R f x x x ax a =+Î.(1)求函数()f x 的单调区间;(2)当1a =-时,方程()f x m =有两个解,求参数m 的取值范围.17.(2023·江苏·三模)将函数()sin f x x =的图象先向右平移π4个单位长度,再将所得函图象上所有点的横坐标变为原来的1w(ω>0)倍(纵坐标不变),得到函数()y g x =的图象.(1)若2w =,求函数()y g x =在区间ππ,44éù-êúëû上的最大值;(2)若函数()y g x =在区间ππ,42æöç÷èø上没有零点,求ω的取值范围.18.(2024·全国·模拟预测)已知函数()()()21321e 2316x af x x x x x -=-+-++.(1)当2a =时,求曲线()y f x =在点()()1,1f 处的切线方程.(2)设函数()()2131e 3x g x f x x ax -=-+,若()g x 有两个零点,求实数a 的取值范围.19.(2023·福建福州·模拟预测)设1a >-,函数()()()1ln 11f x x x a x =++-+.(1)判断()f x 的零点个数,并证明你的结论;(2)若0a ³,记()f x 的一个零点为0x ,若11sin x a x +=,求证:10ln 0x x -£.拓展冲刺练一、单选题1.(2024·山西晋城·二模)将函数π()2sin 34f x x æö=+ç÷èø的图象向右平移j (0j >)个单位长度,得到函数()g x 的图象,若函数()g x 在区间(0,)j 上恰有两个零点,则j 的取值范围是( )A .5π3π,124éö÷êëøB .3π13π,412éö÷êëøC .5π3π,124æùçúèûD .3π13π,412æùçúèû2.(2024·全国·模拟预测)设函数()πcos 4f x x w æö=+ç÷èø在区间π0,2æöç÷èø上恰有3个零点、2个极值点,则w 的取值范围是( )A .79,22æùçúèûB .911,22æùçúèûC .913,22æùçúèûD .713,22æùçúèû3.(2023·北京·模拟预测)已知函数()e e x xf x -=-,下列命题正确的是( )①()f x 是奇函数;②方程()22f x x x =+有且仅有1个实数根;③()f x 在R 上是增函数;④如果对任意()0,x Î+¥,都有()f x kx >,那么k 的最大值为2.A .①②④B .①③④C .①②③D .②③④4.(2023·四川南充·一模)已知函数2()ln 2f x x m x=-+-(03m <<)有两个不同的零点1x ,2x (12x x <),下列关于1x ,2x 的说法正确的有( )个①221e m x x < ②122x m >+ ③121x x >A .0B .1C .2D .35.(23-24高三下·湖南·阶段练习)设方程22log 1x x ×=的两根为1x ,()212x x x <,则( )A .101x <<,22x >B .121x x >C .1201x x <<D .123x x +>二、多选题6.(2024·江苏扬州·模拟预测)设函数()1cos cos2,02f x x x x w w w w =->,则下列结论正确的是( )A .()()0,1,f x w "Î在ππ,64éù-êúëû上单调递增B .若1w =且()()122f x f x -=,则12min πx x -=C .若()1f x =在[]0,π上有且仅有2个不同的解,则w 的取值范围为54,63éö÷êëøD .存在()0,1w Î,使得()f x 的图象向左平移π6个单位长度后得到的函数为奇函数7.(2024·全国·模拟预测)已知函数()()24,0,log 2,0x x x f x x x ì+>ï=íï--<î的图象与直线y a =的交点的横坐标分别为()12341234,,,x x x x x x x x <<<,则( )A .4a >B .124x x =C .344x x =D .341x a x æö+ç÷èø8.(2023·河南焦作·模拟预测)已知函数()(),0e ln ,0424,4x xx xf x x x f x x ì£ïïï=<£íï->ïïî,则下列说法正确的是( )A .函数()f x 在()*(44e)k k k +ÎN ,上单调递增B .函数()f x 在()*(4e 44)k k k ++ÎN ,上单调递减C .若方程()(1)f x a x =<有两个实数根1x ,2x ,则12x a x =D .当方程()(08)f x bx x =££的实数根最多时,b 的最小值为ln 28三、填空题9.(2024·全国·模拟预测)已知()()4sin sin 1f x x x x =+相邻的两个零点分别为12,x x ,则12cos x x -=.10.(2024·四川成都·三模)若函数()2e x f x kx =-大于0的零点有且只有一个,则实数k 的值为 .四、解答题11.(2024·全国·模拟预测)已知函数()x f x e =,()a g x x =.(1)当1a =时,求()()f x g x -的最小值;(2)讨论函数()y f x =和()y g x =的图象在(0,)+¥上的交点个数.12.(2024·重庆·模拟预测)已知函数()()()23e ln R ,x f x x a x a x æö=-++Îç÷èø(1)若过点()2,0的直线与曲线()y f x =切于点()()1,1f ,求a 的值;(2)若()f x 有唯一零点,求a 的取值范围.。

考点21利用导数研究函数的零点(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

考点21利用导数研究函数的零点(3种核心题型)(学生版) 2025年高考数学大一轮复习(新高考版)

考点21利用导数研究函数的零点(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现【核心题型】题型一 利用函数性质研究函数的零点利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.【例题1】(2024·全国·模拟预测)若函数()e 2xf x x a =-+-有两个零点,则实数a 的取值范围是( )A .(],1-¥B .(],0-¥C .(),0¥-D .(),1-¥【变式1】(2024·陕西西安·一模)若不等式e ln 2x x x a x -+³-恒成立,则实数a 的取值范围为.【变式2】(2024·全国·模拟预测)已知函数2()(2)ln f x x a x a x =-++,a ÎR .(1)讨论()f x 的单调性;(2)设2e ()()(1)2(1)ln xg x f x x a x a a x x =-+-+-+-,若()g x 存在两个不同的零点1x ,2x ,且12x x <.(i )证明:2e 1a >+;(ii )证明:22142121a a x x a ---<-.【变式3】(2024·辽宁·三模)已知()()211e 2xf x x ax =-+.(1)讨论函数()f x 的单调性;(2)当0a >时,证明:函数()f x 有且仅有两个零点12,x x ,且120x x +<.题型二 数形结合法研究函数的零点含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.【例题2】(2024·北京房山·一模)若函数(]()ln ln(1),,0()1,0,exx x f x x ¥¥ì-Î-ï=íÎ+ïî,则函数()()g x f x x c =++零点的个数为( )A .1B .2C .1或2D .1或3【变式1】(2024·全国·模拟预测)已知函数3e ,111(),()11,12xx x f x g x x a x x x ì>-ïï+==++íï+£-ïî.若(())0g f x =有三个不同的根,则a 的取值范围为 .【变式2】(2024·陕西西安·模拟预测)已知函数()()e 1xf x ax a =--ÎR .(1)若函数()f x 在点()()1,1f 处的切线与直线2e 10x y ++=垂直,求a 的值;(2)当(]0,2x Î时,讨论函数()()ln F x f x x x =-零点的个数.【变式3】(2024·河北邯郸·二模)已知函数()()e ,ln xf x mxg x x m x =-=-.(1)是否存在实数m ,使得()f x 和()g x 在()0,¥+上的单调区间相同?若存在,求出m 的取值范围;若不存在,请说明理由.(2)已知12,x x 是()f x 的零点,23,x x 是()g x 的零点.①证明:e m >,②证明:31231e x x x <<.题型三 构造函数法研究函数的零点涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围【例题3】(2023·吉林通化·模拟预测)已知函数()()232()23f x x x ax b =+-+满足:①定义域为R ;②142b <<;③有且仅有两个不同的零点1x ,2x ,则1211+x x 的取值范围是( )A .(2,1)--B .11,2æö--ç÷èøC .1,12æöç÷èøD .(1,2)【变式1】(2024·河北沧州·模拟预测)已知函数2()e 2ln x f x ax x x a =---,则( )A .当1a =时,()f x 有极小值B .当1a =时,()f x 有极大值C .若()0f x ³,则1a =D .函数()f x 的零点最多有1个【变式2】(2024·全国·模拟预测)设函数()()2ln f x x ax x a =-++ÎR .(1)若1a =,求函数()f x 的单调区间;(2)设函数()f x 在1,e e éùêúëû上有两个零点,求实数a 的取值范围.(其中e 是自然对数的底数)【变式3】(2024·广东·二模)已知()()21122ln ,02f x ax a x x a =+-->.(1)求()f x 的单调区间;(2)函数()f x 的图象上是否存在两点()()1122,,,A x y B x y (其中12x x ¹),使得直线AB 与函数()f x 的图象在1202x x x +=处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【课后强化】基础保分练一、单选题1.(2023·四川资阳·模拟预测)将函数()1cos e xf x x =-在()0,¥+上的所有极值点按照由小到大的顺序排列,得到数列{}n x (其中*n ÎN ),则( )A .11ππ22n n x n æöæö-<<+ç÷ç÷èøèøB .1πn n x x +-<C .()121πn n x x n ++>-D .(){}1πn x n --为递减数列2.(23-24高三上·湖北荆门·阶段练习)()22e 5x f x x =-的零点的个数为( )A .0B .1C .2D .33.(2023·四川成都·二模)若指数函数x y a =(0a >且1a ¹)与幂函数5y x =的图象恰好有两个不同的交点,则实数a 的取值范围是( )A .e5e ,¥æö+ç÷èøB .e51,e æöç÷èøC .e 51,e æöæöç÷ç÷ç÷èøèøD .e 51,e æöç÷èø4.(2023·全国·模拟预测)已知函数1522ln 4()e 4ln(4)e 2x a a xx f x x x -+-=++-++存在零点,则实数a 的值为( )A .2-B .15ln24-C .3-D .15ln34-二、多选题5.(2024·全国·模拟预测)已知函数()31f x x ax =-+,a ÎR ,则( )A .若()f x 有极值点,则0a £B .当1a =时,()f x 有一个零点C .()()2f x f x =--D .当1a =时,曲线()y f x =上斜率为2的切线是直线21y x =-6.(2024·辽宁抚顺·三模)已知定义在R 上的奇函数()f x 连续,函数()f x 的导函数为()f x ¢.当0x >时,()()()cos sin e f x x f x x f x ¢>+×¢,其中e 为自然对数的底数,则( )A .()f x 在R 上为减函数B .当0x >时,()0f x <C .π3π22f f æöæö>ç÷ç÷èøèøD .()f x 在R 上有且只有1个零点三、填空题7.(2024·内蒙古包头·一模)已知函数()()32340f x kx x k k =-+>,若()f x 存在唯一的零点,则k 的取值范围是 .8.(2024·四川成都·模拟预测)若函数()2e 2x m f x x x =--在()1,2x Î-上有2个极值点,则实数m 的取值范围是 .四、解答题9.(2024·浙江绍兴·模拟预测)已知()e xf x a x =-,()cosg x x =.(1)讨论()f x 的单调性.(2)若0x ∃使得()()00f x g x =,求参数a 的取值范围.10.(2024·宁夏固原·一模)已知函数()()ln 11(0)f x ax x a =++>.(1)求()f x 的最小值;(2)若()f x 有两个零点,求a 的取值范围.11.(2024·全国·模拟预测)已知函数1()e (0)x f x x a x =->,且()f x 有两个相异零点12,x x .(1)求实数a 的取值范围.(2)证明:122eax x +>.12.(2024·湖北黄石·三模)已知函数()ln f x x x m =-+有两个零点1x ,2x .(1)求实数m 的取值范围;(2)如果1212x x x <£,求此时m 的取值范围.综合提升练一、单选题1.(2023·湖南·模拟预测)有甲、乙两个物体同时从A 地沿着一条固定路线运动,甲物体的运动路程1s (千米)与时间t (时)的关系为()121ts t =-,乙物体运动的路程2s (千米)与时间t (时)的关系为()23s t t =,当甲、乙再次相遇时,所用的时间t (时)属于区间( )A .()2,3B .()3,4C .()4,5D .()5,62.(23-24高三上·海南省直辖县级单位·阶段练习)函数()sin 2f x x x =+-的零点所在的大致区间为( )A .()0,1B .()1,2C .()2,3D .()3,43.(2024·全国·模拟预测)若函数()e ln 2x f x x x x a =--+-有两个零点,则实数a 的取值范围是( )A .(],1-¥B .(],0-¥C .(),0¥-D .(),1-¥4.(23-24高三下·江西·阶段练习)函数()|2||ln |f x x m x =--有且只有一个零点,则m 的取值可以是( )A .2B .1C .3D .e5.(2024·陕西汉中·二模)已知函数3232,0()ln ,0x x x x f x x x ì---£=í>î,()()g x f x mx =-有4个零点,则m 的取值范围为( )A .11(,4eB .1(2,0]{}e -U C .1(2,0]{}4-U D .11(,0](,)4e-¥U 6.(2024·全国·模拟预测)已知函数()2xf x kx b =--恰有一个零点0x ,且0b k >>,则0x 的取值范围为( )A .1ln2,ln2-æö-¥ç÷èøB .ln2,1ln2æö-¥ç÷-èøC .1ln2,ln2-æö+¥ç÷èøD .ln2,1ln2æö+¥ç÷-èø7.(2024·贵州贵阳·一模)已知函数()e ,0e ,0x a xf x x x -ì+>ï=íï<î,若方程()e 0f x x +=存在三个不相等的实根,则实数a 的取值范围是( )A .(),e -¥B .(),e -¥-C .(),2e -¥-D .(),2e -¥8.(2024·陕西·二模)已知()0f x ³,且0x >时,()()22cos f x x f x =×,则下列选项正确的是( )A .()2x f x f æö>ç÷èøB .当()ππ2x k k ¹+ÎZ 时,()()2tan 2f x xf x £C .若2π42πf æö=ç÷èø,()()22sin x f x g x x=为常函数,则()1f x =在区间()0,1内仅有1个根D .若()11f =,则()2827f <二、多选题9.(2024·辽宁·三模)已知函数()()1ln ,ln ,f x ax x g x a x a x=-=+为实数,下列说法正确的是( )A .当1a =时,则()f x 与()g x 有相同的极值点和极值B .存在R a Î,使()f x 与()g x 的零点同时为2个C .当()0,1a Î时,()()1f x g x -£对[]1,e x Î恒成立D .若函数()()f x g x -在[]1,e 上单调递减,则a 的取值范围为2,e æù-¥çúèû10.(2024·河北唐山·一模)已知函数()331f x x x =-+,则( )A .直线32y x =-是曲线()y f x =的切线B .()f x 有两个极值点C .()f x 有三个零点D .存在等差数列{}n a ,满足()155k k f a ==å11.(2024·全国·模拟预测)已知函数()(1)ln f x x x =-,2()g x x =,下列命题正确的是( )A .若()()()H x f x g x =-,则()H x 有且只有一个零点B .若()()()f x H xg x =,则()H x 在定义域上单调,且最小值为0C .若()()()H x f x g x ¢=-,则()H x 有且只有两个零点D .若()()(||)g x H x f x ¢=,则()H x 为奇函数三、填空题12.(2023·四川内江·模拟预测)若函数()e x f x kx =-有两个零点,则k 的取值范围为 .13.(2024·四川泸州·二模)若函数1()ln ef x x x a =-+有零点,则实数a 的取值范围是 .14.(2024·广东佛山·二模)若函数()ln e ln e x xa xf x x x a x=+--(R a Î)有2个不同的零点,则实数a 的取值范围是 .四、解答题15.(23-24高三上·河南·期末)已知函数()ln(1)sin f x a x x x =+-.(1)若0a =,求曲线()y f x =在点ππ,22f æöæöç÷ç÷èøèø处的切线方程;(2)若1a =,研究函数()f x 在(]1,0x Î-上的单调性和零点个数.16.(2024·四川泸州·三模)已知函数1(e )x ax f x =-(0a >),(1)讨论函数()f x 的零点个数;(2)若|()ln |x x x f x >+恒成立,求函数()f x 的零点0x 的取值范围.17.(2024·四川·模拟预测)已知函数()2211e ,2exf x ax x x a =--³.(1)讨论函数()f x 的单调性;(2)当0x >时,求证:()21ln 12f x x x ³--.18.(2024·北京朝阳·一模)已知函数()()()1e R xf x ax a =-Î.(1)讨论()f x 的单调性;(2)若关于x 的不等式()()1f x a x >-无整数解,求a 的取值范围.19.(2024·全国·模拟预测)已知函数()(0,1)x f x a a a =>¹,函数()log (0,1)a g x x a a =>¹.(1)当e a =时,讨论函数()()()h x f x g x =的单调性;(2)当01a <<时,求函数()()()S x f x g x =-的零点个数.拓展冲刺练一、单选题1.(2024·云南·模拟预测)已知函数()e ln x f x x x x a =---,若()0f x =在()0,e x Î有实数解,则实数a 的取值范围是( )A .[)0,¥+B .1,e ¥éö+÷êëøC .[)1,+¥D .[)e,+¥2.(2024·浙江杭州·模拟预测)若函数()ln f x x x x x a =-+-有且仅有两个零点,则a 的取值范围是( )A .()1,00,e e æö-Èç÷èøB .()2,00,e e æö-Èç÷èøC .()2,00,3e æö-Èç÷èøD .()1,00,3e æö-Èç÷èø3.(2024·四川成都·二模)函数()()e sin ,π,x f x a x x =+Î-+¥,下列说法不正确的是( )A .当1a =-时,()0f x >恒成立B .当1a =时,()f x 存在唯一极小值点0xC .对任意()0,a f x >在()π,x Î-+¥上均存在零点D .存在()0,a f x <在()π,x Î-+¥上有且只有一个零点4.(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x æö=--+ç÷èø有3个零点,则实数a 的取值范围是( )A .()1,+¥B .()2,+¥C .(),1-¥-D .(),2-¥-二、多选题5.(2024·重庆·一模)已知函数()32e 2x f x x x ax =+--,则()f x 在()0,¥+有两个不同零点的充分不必要条件可以是( )A .e 2e 1a -<<-B .e 1e a -<<C .e e 1a <<+D .e 1e 2a +<<+6.(2024·黑龙江哈尔滨·二模)已知函数()(1)ln 1f x m x x x =+-+,下列说法正确的有( )A .当12m =时,则()y f x =在(0,)+¥上单调递增B .当1m =时,函数()y f x =有唯一极值点C .若函数()y f x =只有两个不等于1的零点12,x x ,则必有121x x ×=D .若函数()y f x =有三个零点,则102m <<三、填空题7.(2023·湖北·一模)若函数21ln(21),2()12,2x x f x x x a x ì->ïï=íï--+£ïî在1x =处的切线与()f x 的图像有三个公共点,则a 的取值范围 .8.(2023·河南·模拟预测)已知函数()32f x x bx cx c =+++有三个零点,且它们的和为0,则b c -的取值范围是 .四、解答题9.(2024·北京丰台·二模)已知函数()()222ln 0f x a x x a =+¹.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 有两个零点,求a 的取值范围.10.(2024·全国·模拟预测)已知函数()cos ln(1)f x x x =++.(1)求证:()f x 在π1,2æö-ç÷èø上有唯一的极大值点;(2)若()1f x ax £+恒成立,求a 的值;(3)求证:函数()()g x f x x =-有两个零点.。

2020届高三一轮复习专题:函数的零点问题及相关题型

2020届高三一轮复习专题:函数的零点问题及相关题型

函数的零点问题 (1)函数的零点的概念对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)函数的零点与方程的根的关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)零点存在性定理如果函数y =f (x )满足:⇔在区间[a ,b ]上的图象是连续不断的一条曲线;⇔f (a )·f (b )<0;则函数y =f (x )在(a ,b )上存在零点,即存在c ⇔(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根. 零点区间的判断题型结构特征:判别零点区间1.函数f (x )=e x + x - 2 的零点所在的一个区间是( ) A. (-2,-1) B. (-1,0) C.(0,1) D.(1,2) 【答案】C2.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--两个零点分别位于区间A.(,)a b 和(,)b c 内B.(,)a -∞和(,)a b 内C.(,)b c 和(,)c +∞内D.(,)a -∞和(,)c +∞内 【答案】A零点个数的判断题型结构特征:判别零点在区间上的个数问题 3.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【答案】B4.函数0.5()2|log |1x f x x =-的零点个数为( )A. 1B. 2C.3D.4 【答案】A5.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1 【答案】B6.已知函数f (x )是R 上的偶函数,且满足f (5+x )=f (5-x ),在[0,5]上有且只有f (1)=0,则f (x )在[-2 015,2 015]上的零点个数为( )A .808B .806C .805D .804【答案】C零点存在性确定的参数范围问题题型结构特征:已知零点的个数存在性确定参数范围 7.函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2) 【答案】C8.[2015湖南文14]若函数f (x )=| 2x -2 | - b 有两个零点,则实数b 的取值范围是___ 【答案】0<b<29.已知函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0x 2-3ax +a ,x >0有三个不同的零点,则实数a 的取值范围是____【答案】194≤<a 10已知函数满足,且是偶函数,当时,,若在区间内,函数有三个零点,则实数k 的取值范围是( )A. B .C . D. 【答案】C)(x f )()1(x f x f -=+)(x f ]1,0[∈x 2)(x x f =]3,1[-k kx x f x g --=)()()41,0(]21,0()21,41(]31,41[11.已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,求m 的取值范围.解析:作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,⇔要使方程f (x )=b 有三个不同的根,则4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.12.已知函数.若g (x )存在2个零点,则a 的取值范围是( )A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)【答案】:C解答:⇔存在个零点,即与有两个交点,的图象如下:要使得与有两个交点,则有即,⇔选C.零点分布问题题型结构特征:根据零点的分布区域进行零点相关运算或不等关系的判断13.已知定义域为R 的函数⎪⎩⎪⎨⎧=≠-=)2(,1)2(21)(x x x x f .若关于x 的方程0)()(2=++b x af x f 有三个不同的实根321,,x x x ,求232221x x x ++的值为( )e 0()ln 0x xf x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++()()g x f x x a =++2()y f x =y x a =--)(x f y x a =--)(x f 1a -≤1a ≥-A. 10 B .12 C. 14 D.16 【答案】C二次函数零点区间讨论法题型结构特征:已知二次函数的零点存在区间求参数范围14已知a 是实数,函数,如果函数在区间上有零点,求a 的取值范围【答案】a>1或253--≤a 15已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围; (2)若方程两根均在区间(0,1)内,求m 的取值范围 【答案】(1)(2165--,)(2)),(2121-- 16已知函数22||,2()(2)x 2x x f x x ≤⎧=⎨->⎩,,函数()3(2)g x f x ,则函数y ()()f x g x 的零点的个数为A. 2B. 3C.4D.5 【答案】A17. 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解析:法一:设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,⇔x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0, ⇔-2<a <1.18已知二次函数f (x )=x 2+2bx +c (b ,c ⇔R)满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,则实数b 的取值范围为____()a x ax x f --+=3222()x f y =[]1,1-【答案】⎪⎭⎫⎝⎛75,51 19.已知函数f (x )=x 2+ax +b (a ,b ⇔R)的值域为[0,+∞),若关于x 的不等式f (x )-c <0的解集为(m ,m +6),则实数c 的值为____ 【答案】920.已知二次函数f(x)=x 2-ax +3 - a 的两零点均为正数的实数,则实数a 的取值范围是_____ 【答案】2<a<321.已知函数f (x )=⎩⎪⎨⎪⎧x +3,x >a ,x 2+6x +3,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,3)B .[-3,-1]C .[-3,3)D .[-1,1)【答案】A22.已知函数y =f (x )是定义域为R 的偶函数.当x ≥0时,f (x )=⎩⎨⎧54sin ⎝⎛⎭⎫π2x 0≤x ≤1⎝⎛⎭⎫14x+1x >1,若关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ⇔R )有且仅有6个不同的实数根,则实数a 的取值范围是( )A .(0,1)⇔⎩⎨⎧⎭⎬⎫54B .[0,1]⇔⎩⎨⎧⎭⎬⎫54C .(0,1]⇔⎩⎨⎧⎭⎬⎫54D.⎝⎛⎦⎤1,54⇔{0} 解析:作出f (x )=⎩⎨⎧54sin ⎝⎛⎭⎫π2x 0≤x ≤1⎝⎛⎭⎫14x+1x >1的大致图象如图所示,又函数y =f (x )是定义域为R 的偶函数,且关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ⇔R )有且仅有6个不同的实数根,等价于f (x )=65和f (x )=a (a ⇔R )有且仅有6个不同的实数根.由图可知方程f (x )=65有4个不同的实数根,所以必须且只需方程f (x )=a (a ⇔R )有且仅有2个不同的实数根,由图可知0<a ≤1或a =54.故选C.【答案】:C23.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 解析:若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12.【答案】:-1224.函数f (x )=⎝⎛⎭⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:问题可转化为y =⎝⎛⎭⎫12|x -1|与y =-2cos πx 在-4≤x ≤6的交点的横坐标的和,因为两个函数图象均关于x =1对称,所以x =1两侧的交点对称,那么两对应交点的横坐标的和为2,分别画出两个函数的图象(图略),易知x =1两侧分别有5个交点,所以所求和为5×2=10. 【答案】:1025.已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为________.解析:由g (x )=2|x |f (x )-2=0得,f (x )=⎝⎛⎭⎫12|x |-1,作出y =f (x ),y =⎝⎛⎭⎫12|x |-1的图象,由图象可知共有2个交点,故函数的零点个数为2.【答案】:226.已知函数f (x )=⎩⎨⎧2x -1x ≥221≤x <2,若方程f (x )=ax +1恰有一个解,则实数a 的取值范围是________.解析:如图,当直线y =ax +1过点B (2,2)时,a =12,满足方程有两个解;当直线y =ax +1与f (x )=2x -1(x ≥2)的图象相切时,a =-1+52,满足方程有两个解;当直线y =ax +1过点A (1,2)时,a =1,满足方程恰有一个解.故实数a 的取值范围为⎝⎛⎭⎫0,12⇔⎝ ⎛⎦⎥⎤-1+52,1.【答案】:⎝⎛⎭⎫0,12⇔⎝ ⎛⎦⎥⎤-1+52,127.对于函数f (x )和g (x ),设α⇔{x |f (x )=0},β⇔{x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( )A .[2,4]B .⎣⎡⎦⎤2,73 C.⎣⎡⎦⎤73,3D .[2,3]解析:函数f (x )=e x -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,⇔0≤b ≤2.由于g (x )=x 2-ax -a +3的图象过点(-1,4),⇔要使其零点在区间[0,2]上,则g ⎝⎛⎭⎫a 2≤0,即⎝⎛⎭⎫a 22-a ·a 2-a +3≤0,解得a ≥2或a ≤-6(舍去),易知g (0)≥0,即a ≤3,此时2≤a ≤3,满足题意. 【答案】D28.设x 0为函数f (x )=sin πx 的零点,且满足|x 0|+f ⎝⎛⎭⎫x 0+12<33,则这样的零点有( ) A .61个 B .63个 C .65个D .67个解析:依题意,由f (x 0)=sin πx 0=0得,πx 0=k π,k ⇔Z ,即x 0=k ,k ⇔Z .当k 是奇数时,f ⎝⎛⎭⎫x 0+12=sin π⎝⎛⎭⎫k +12=sin ⎝⎛⎭⎫k π+π2=-1,|x 0|+f ⎝⎛⎭⎫x 0+12=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f ⎝⎛⎭⎫x 0+12=sin π⎝⎛⎭⎫k +12=sin ⎝⎛⎭⎫k π+π2=1,|x 0|+f ⎝⎛⎭⎫x 0+12=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65(个),选C. 【答案】C29.设函数f (x )=⎩⎪⎨⎪⎧x ,0≤x <11x +1-1,-1<x <0,设函数g (x )=f (x )-4mx -m ,其中m ≠0.若函数g (x )在区间(-1,1)上有且仅有一个零点,则实数m 的取值范围是( )A .m ≥14或m =-1B .m ≥14C .m ≥15或m =-1D .m ≥15【答案】C30.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( )A .0B .1C.2 D.3解析:当x>0时,f(x)=ln x-x+1,f′(x)=1x-1=1-xx,所以x⇔(0,1)时,f′(x)>0,此时f(x)单调递增;x⇔(1,+∞)时,f′(x)<0,此时f(x)单调递减.因此,当x>0时,f(x)max=f(1)=ln 1-1+1=0.根据函数f(x)是定义在R上的奇函数作出函数y=f(x)与y=e x的大致图象,如图,观察到函数y=f(x)与y=e x的图象有两个交点,所以函数g(x)=f(x)-e x(e为自然对数的底数)有2个零点.故选C.【答案】C31.已知函数f(x)=ln x-ax2+x有两个零点,则实数a的取值范围是()A.(-∞,1) B.(0,1)C.⎝⎛⎭⎫-∞,1+ee2 D.⎝⎛⎭⎫0,1+ee2解析:依题意,关于x的方程ax-1=ln xx有两个不等的正根.记g(x)=ln xx,则g′(x)=1-ln xx2,当0<x<e时,g′(x)>0,g(x)在区间(0,e)上单调递增;当x>e时,g′(x)<0,g(x)在区间(e,+∞)上单调递减,且g(e)=1e,当0<x<1时,g(x)<0.设直线y=a1x-1与函数g(x)的图象相切于点(x0,y0),则有⎩⎨⎧a1=1-ln x0x20a1x0-1=ln x0x0,由此解得x0=1,a1=1.在坐标平面内画出直线y=ax-1(该直线过点(0,-1)、斜率为a)与函数g(x)的大致图象,结合图象可知,要使直线y=ax-1与函数g(x)的图象有两个不同的交点,则a的取值范围是(0,1),选B.【答案】B32.已知f′(x)为函数f(x)的导函数,且f(x)=12x2-f(0)x+f′(1)ex-1,g(x)=f(x)-12x2+x,若方程g⎝⎛⎭⎫x2a-x-x=0在(0,+∞)上有且仅有一个根,则实数a 的取值范围是( )A .(-∞,0)⇔{1}B .(-∞,-1]C .(0,1]D .[1,+∞)解析:⇔f (x )=12x 2-f (0)x +f ′(1)e x -1,⇔f (0)=f ′(1)e -1,f ′(x )=x -f (0)+f ′(1)e x -1,⇔f ′(1)=1-f ′(1)e -1+f ′(1)e 1-1,⇔f ′(1)=e ,⇔f (0)=f ′(1)e -1=1,⇔f (x )=12x 2-x +e x ,⇔g (x )=f (x )-12x 2+x =12x 2-x +e x -12x 2+x =e x,⇔g ⎝⎛⎭⎫x 2a -x -x =0,⇔g ⎝⎛⎭⎫x 2a -x =x =g (ln x ),⇔x 2a -x =ln x ,⇔x 2a =x +ln x .当a >0时,只有y =x2a(x >0)和y =x +ln x 的图象相切时,满足题意,作出图象如图所示,由图象可知,a =1,当a <0时,显然满足题意,⇔a =1或a <0,故选A. 【答案】A33.已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( )A.1e<x 1x 2<1 B .1<x 1x 2<e C .1<x 1x 2<10D .e <x 1x 2<10解析:在同一直角坐标系中画出函数y =e -x 与y =|ln x |的图象(图略),结合图象不难看出,在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1⇔(0,1),x 2⇔(1,+∞),则有e -x 1=|ln x 1|=-ln x 1⇔(e-1,1),e -x 2=|ln x 2|=ln x 2⇔(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln(x 1x 2)⇔(-1,0),于是有e -1<x 1x 2<e 0,即1e <x 1x 2<1,故选A. 【答案】A34.已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设函数f (x )=sgn 1-x +12·f 1(x )+sgn x -1+12·f 2(x ),其中f 1(x )=x 2+1,f 2(x )=-2x +4.若关于x 的方程[f (x )]2-3f (x )+m =0恒好有6个根,则实数m 的取值范围是( )A .(-∞,94)B .(-∞,94]C .[2,94]D .(2,94)解析:⇔若x >1,则f (x )=-1+12·f 1(x )+1+12·f 2(x )=-2x +4.⇔若x =1,则f (x )=0+12·f 1(x )+0+12·f 2(x )=x 2-2x +52=2.⇔若x <1,则f (x )=1+12·f 1(x )+-1+12·f 2(x )=x 2+1.综上,f (x )=⎩⎪⎨⎪⎧x 2+1,x <1,2,x =1,-2x +4,x >1,作出其图象如图所示.若要使方程[f (x )]2-3f (x )+m =0恒好有6个根,令t =f (x ),则关于t 的方程t 2-3t +m =0需有两个不相等的实数根,故Δ=9-4m >0,得m <94.数形结合知1<f (x )<2,所以函数g (t )=t 2-3t +m 在(1,2)上有两个不同的零点,又函数g (t )图象的对称轴为t =32⇔(1,2),所以需⎩⎪⎨⎪⎧g 1>0,g 2>0,即⎩⎪⎨⎪⎧1-3+m >0,22-3×2+m >0,得2<m <94,故选D.【答案】D35.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <0|12x 2-2x +1|,x ≥0.方程[f (x )]2-af (x )+b =0(b ≠0)有6个不同的实数解,则3a +b 的取值范围是( )A .[6,11]B .[3,11]C .(6,11)D .(3,11)解析:首先作出函数f (x )的图象(如图),对于方程[f (x )]2-af (x )+b =0,可令f (x )=t ,那么方程根的个数就是f (x )=t 1与f (x )=t 2的根的个数之和,结合图象可知,要使总共有6个根,需要一个方程有4个根,另一个方程有2个根,从而可知关于t 的方程t 2-at +b =0有2个根,分别位于区间(0,1)与(1,2)内,进一步由根的分布得出约束条件⎩⎪⎨⎪⎧b >01-a +b <04-2a +b >0,画出可行域(图略),计算出目标函数z =3a +b 的取值范围为(3,11).【答案】D36.已知函数f (x )=若关于x 的方程f (x )=k 有两个不等的实数根,则实数k的取值范围是________.解析:作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ⇔(0,1]. 【答案】(0,1]37.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.解析:当x >0时,令ln x -x 2+2x =0,得ln x =x 2-2x ,作y =ln x 和y =x 2-2x 图象,显然有两个交点. 当x ≤0时,令4x +1=0, ⇔x =-14.综上共有3个零点. 【答案】338.已知函数f (x )=|x -a |-2x +a ,a ⇔R ,若方程f (x )=1有且只有三个不同的实数根,则实数a 的取值范围是________.解析:令g (x )=|x -a |+a ,h (x )=2x +1,作出函数h (x )=2x +1的图象,易知直线y =x 与函数h (x )=2x +1的图象的两交点坐标为(-1,-1)和(2,2),又函数g (x )=|x -a |+a 的图象是由函数y =|x |的图象的顶点在直线y =x 上移动得到的,且当函数h (x )=2x +1的图象和g (x )=|x -a |+a 的图象相切时,切点为(2,1+2),(-2,1-2),切线方程为y =-x +22+1或y =-x -22+1,又两切线与y =x 的交点分别为(1+222,1+222),(1-222,1-222),故a =1±222,结合图象可知a 的取值范围是(-∞,1-222)⇔(1+222,2). 【答案】(-∞,1-222)⇔(1+222,2)39.若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是__________.解析:令f (x )=x 2+ax +2b ,⇔方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,⇔⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0,⇔⎩⎪⎨⎪⎧b >0,a +2b <-1,a +b >-2.根据约束条件作出可行域(图略),可知14<b -2a -1<1.【答案】⎝⎛⎭⎫14,140.已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14 B .18C .-78D .-38解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个根,即2x 2-x +1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-78.故选C.【答案】:C41.已知函数f (x )=e |x |+|x |.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析:易知函数f (x )=e |x |+|x |为偶函数,故只需求函数f (x )在(0,+∞)上的图象与直线y =k 有唯一交点时k 的取值范围.当x ⇔(0,+∞)时,f (x )=e x +x ,此时f ′(x )=e x +1>0,所以函数f (x )在(0,+∞)上单调递增,从而当x >0时,f (x )=e x +x >f (0)=1,所以要使函数f (x )在(0,+∞)上的图象与直线y =k 有唯一交点,只需k >1,故所求实数k 的取值范围是(1,+∞). 【答案】(1,+∞)42.已知函数f (x )=-13x 3+ax 2+bx +c 有两个极值点x 1,x 2,若x 1<f (x 1)<x 2,则关于x 方程[f (x )]2-2af (x )-b=0的实数根的个数不可能为( )A .2B .3C .4D .5解析:由题意,得f ′(x )=-x 2+2ax +b .因为x 1,x 2是函数f (x )的两个极值点,所以x 1,x 2是方程-x 2+2ax +b =0的两个实数根,所以由[f (x )]2-2af (x )-b =0,可得f (x )=x 1或f (x )=x 2.由题意,知函数f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增,又x 1<f (x 1)<x 2,依题意作出简图,如图所示,结合图形可知,方程[f (x )]2-2af (x )-b =0的实根个数不可能为5,故选D.【答案】D43.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0【答案】A44.已知λ⇔R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎪⎨-+<⎪⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是_________.【答案】13λ<≤或4λ>.45.已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 .【答案】46.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A.3B.2C.1D.0 【答案】B()4,8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据函数零点个数确定参数范围的方法:(1)直接解方程f(x)=0,根据该方程的解,得出符合零点个数要求的参数值满足的不等式解得参数范围;(2)数形结合,把f(x)=0分拆为g(x)=h(x),已知的零点个数即为函数y=g(x)的图象与函数y=h(x)的图象交点的个数,据此得出参数值满足的不等式解得参数范围;(3)研究函数的单调性和极值点等,利用函数零点的存在性定理得出参数满足的不等式解得参数范围.
【题组通关】
1.已知a>1,方程 ex+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则 + +2x1x2的取值范围为( A )
(A)(1,+∞)(B)(0,+∞)
(C)( ,+∞)(D)( ,1)
解析:方程 ex+x-a=0的根,即y= ex与y=a-x图象交点的横坐标,
方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标,
(A)(24,25)(B)(18,24)
(C)(21,24)(D)(18,25)
解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.
考点四 函数零点的应用
【例6】 (1)已知α,β分别满足α·eα=e2,β(ln β-2)=e4,则αβ的值为( )
所以函数f(x)在区间( , )内必有零点,选B.
利用方程根的存在性定理判断函数零点所在区间的步骤:①先移项使方程右边为零,再令方程左边为函数 f(x);②求区间(a,b)两端点的函数值f(a),f(b);③若函数在该区间上连续且f(a)·f(b)<0,则方程在该区间内必有根.
【跟踪训练1】 已知函数f(x)= -log3x,在下列区间中包含f(x)零点的是( )
【题组通关】
1.若函数f(x)=|2x-4|-a存在两个零点,且一个为正数,另一个为负数,则a的取值范围为( C )
(A)(0,4)(B)(0,+∞)
(C)(3,4)(D)(3,+∞)
解析:如图,若f(x)=|2x-4|-a存在两个零点,且一个为正数,另一个为负数,则a∈(3,4),故选C.
2.已知偶函数f(x)= 且f(x-8)=f(x),则函数F(x)=f(x)- 在区间[-2 018,2 018]的零点个数为( A )
【 巩固训练1】 设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( )
(A)[0,1](B)[-1,0]
(C)[0,2](D)[-1,1]
解析:f(1)=ln 2>0,
当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D;
(A)(0,1)(B)(1,2)(C)(2,3)(D)(3,4)
解析:由题意,函数f(x)= -log3x为单调递减函数,
且f(2)= -log32=1-log32>0,f(3)= -log33=- <0,
所以f(2)·f(3)<0,
所以函数f(x)= -log3x在区间(2,3)上存在零点,故选C.
(C)[- ,- )(D)[- ,- )
解析:(1)可知x≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x2-4x+a=2有解,设g(x)=x2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a的取值范围是(-∞,5).选C.
当0<x<8时,函数f(x)与函数y= 图象有4个交点,2 018=252×8+2
由f(2)=|log42|= > = 知,
当0<x<2时函数f(x)与函数y= 图象有2个交点.
故函数F(x)的零点个数为(252×4+2)×2=2 020,
故选A.
3.已知函数f(x)= 若关于x的方程f(x)=k有两个不同零点,则k的取值范围是.
由 x3=- x4可得x3x4=1,
函数F(x)=f(x)-b有四个不同的零点,
等价于y=f(x)的图象与y=b的图象有四个不同的交点,
画出y=f(x)的图象与y=b的图象,由图可得1<b≤2,所以1< x3≤2⇒x3∈[ , ),
所以 - = + = + ,
令t= ∈[ , ),
所以 +t∈( , ],故选B.
解析:(2)- -3a=- -3a= -1-3a,在(-∞,-2]上单调递减.若a≥0,则ex- 在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x≤-2时,-1-3a>0,a<- ,且 -1-3a≤0,a≥- ,使得第一段有一个零点,故a∈[- ,- ).对于第二段,ex- = ,故需g(x)=xex-a在区间(-2,0)有两个零点,g′(x)=(x+1)ex,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以 解得- >a>- .综上所述,a∈(- ,- ).故选A.
解析:(2)因为满足f( +x)=f( -x),
所以f(x)=f(2-x),
又因函数f(x)为偶函数,
所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),
所以T=2,令F(x)=0,f(x)= ,即求f(x)与y= 交点横坐标之和.
y= = + ,
作出图象如图所示.
由图象可知有10个交点,并且关于( , )中心对称,
对于函数f(x),如果存在a,b,c使得f(a)=f(b)=f(c),这里a,b,c是函数y=f(x)的图象与直线y=t的交点横坐标,不妨把这样的a,b,c称为函数f(x)的隐性零点,解决该类问题的关键是:存在直线y=t,使得函数y=f(x)的图象有满足要求的交点个数,从而可以从数形结合的角度得出a,b,c的取值范围或者某种关系,再利用f(a)=f(b)=f(c),建立其求解的问题与a,b,c的关系后解决问题.
当a=2时,f( )=ln - <0,所以f(x)在( ,1)上至少有一个零点,舍去C.因此选A.
考点二 函数零点的个数
考查角度1:由函数解析式确定零点个数
【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( )
(A)5(B)4(C)Байду номын сангаас(D)2
(2)(2018·广西桂林、贺州、崇左三市二联)已知f(x)= +x- ,则y=f(x)的零点个数是( )
解析:(2)令 +x- =0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.
根据函数解析式求函数零点个数,方法有三:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.
所以其和为 =5.
答案:(1)B (2)5
解题关键:建立不同零点之间的关系,把多元代数式化为单元代数式或者常数,解题中要充分考虑函数图象的对称性,若轴对称(如偶函数、二次函数)和中心对称(如奇函数、三次函数等)等建立对称零点间的关系.
考查角度2:隐性零点的性质
【例5】已知函数f(x)= 若m<n,且f(m)=f(n),则n-m的取值范围为( )
(A)2 020(B)2 016
(C)1 010(D)1 008
解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8.
令F(x)=0,可得f(x)= ,
求函数F(x)=f(x)- 的零点个数,即求偶函数f(x)与函数y= 图象交点个数,
由图象可知,当-1<t3<0时,f(x)=t有三个根,即函数f(f(x))有3个零点;
由图象可知,当1<t4<2时,f(x)=t有两个根,即函数f(f(x))有2个零点;
综上所述,函数f(f(x))有8个零点.
考点三 函数零点的性质
考查角度1:求零点的代数式的取值或取值范围
【例4】 (1)已知函数f(x)= 函数F(x)=f(x)-b有四个不同的零点x1,x2,x3,x4,且满足:x1<x2<x3<x4,则 - 的取值范围是( )
令f(x)=t,因为f(f(x))=0则f(t)=0,
由图象可知,f(t)=0有四个解,分别为t1=2,t2=3,-1<t3<0,1<t4<2,
由图象可知,当t1=2时,f(x)=2有两个根,即函数f(f(x))有2个零点;
由图象可知,当t2=3时,f(x)=3有一个根,即函数f(f(x))有1个零点;
(A)[3-2ln 2,2)(B)[3-2ln 2,2]
(C)[e-1,2)(D)[e-1,2]
解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),
则当ln(x+1)=1时,得x+1=e,即x=e-1,
则满足0<n≤e-1,
-2<m≤0,
则ln(n+1)= m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1),
考查角度2:根据函数零点个数确定参数范围
相关文档
最新文档