概率论与数理统计第四版-课后习题答案_盛骤__浙江大学

合集下载

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
2
{
2
}
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。 解 此题关键词: “与, ” “而” , “都”表示事件的“交” ; “至少”表示事件的“并” ; “不多 于”表示“交”和“并”的联合运算。 (1) ABC 。
概率论与数理统计作业习题解答(浙大第四版)
第一章 概率的基本概念 习题解析 第 1、2 题 随机试验、 随机试验、样本空间、 样本空间、随机事件 ------------------------------------------------------------------------------1.写出下列随机试验的样本空间: (1)记录一个小班一次数学考试的平均分数(设以百分制记分) 。 (2)生产产品直到有 10 件正品为止,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的记上“正品” ,不合格的记上“次品” ,如连续 查出 2 个次品就停止检查,或检查 4 个产品就停止检查,记录检查的结果。 (4)在单位圆内任意取一点,记录它的坐标。 解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n 个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 样本空间为 S=

概率论与数理统计的第四版_习地的题目答案详解_第四版_盛骤__浙江大学

概率论与数理统计的第四版_习地的题目答案详解_第四版_盛骤__浙江大学

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为: C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论和数理统计第四版-习题答案解析-第四版-盛骤--浙江大学

概率论和数理统计第四版-习题答案解析-第四版-盛骤--浙江大学

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为: C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

盛骤--浙江大学-概率论和数理统计第四版-课后习题答案解析

盛骤--浙江大学-概率论和数理统计第四版-课后习题答案解析

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。

表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:中至少有一个发生。

故表示为:(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学第七八章

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学第七八章

第七章参数估计2.[二]设X 1, X 1, , , X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

0=亠X -c3. [三]求上题中各未知参数的极大似然估计值和估计量。

L(0)=n f(X i )= 0n c n 0(X 1X 2・・・X n ) j 十i =11.[ 一]随机地取 8只活塞环,测得它们的直径为(以 mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值 及方差 T 2的矩估计,并求样本方差 S 2。

解: (T 2的矩估计是 p = X = 74.0021 Z (X i —X)2=6X10」 n y S 2= 6.86x10'。

(1) f(x)0c 0xJr,x:>c0,其它其中c>0为已知,0>1, 0为未知参数。

(5) f(x)P(X =x) 0,其它.其中0>0, 0为未知参数。

=(m b x (1 - P)m 」,x =0,1,2,…,m,0 C p <1, p 为未知参数。

解:(1) E(X) = J/f(x)dx = Jc 0c 0x0c 0c01,令誥眾,得(5) E (X) = mp 令 mp= X ,解得m解:(1 )似然函数In L(0)= n In (0) + n 0l nc+(1-0)Z In x i ,i =±d In L(0)+ nin c-送 ln X j =0 ni =14.[四(2)]设X i , X i , , , X n 是来自参数为入的泊松分布总体的一个样本,试求入的极大似然估计量及矩估计量。

?=nZ In X i -n In(解唯一故为极大似然估计量)=e n (X 1X 2…X n )r e」,In L(e ) =^ln(e )+(j e -1)送 In X iiz1d In L(e )-n 22 In X j =0, e = (n /2; In X j )2。

概率论(浙大第四版)课后答案(DOC)

概率论(浙大第四版)课后答案(DOC)

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社)第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计第四版习题答案第四版浙大-推荐下载

概率论与数理统计第四版习题答案第四版浙大-推荐下载
S={00,100,0100,0101,1010,0110,1100,0111,10 11,1101,1110,1111,}
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学

P (AB)=P (A)+P (B)-P (A∪B)
(*)
(1)从 0≤P(AB)≤P(A)知,当 AB=A,即 A∩B 时 P(AB)取到最大值,最大值为
P(AB)=P(A)=0.6,
(2)从(*)式知,当 A∪B=S 时,P(AB)取最小值,最小值为
P(AB)=0.6+0.7-1=0.3 。
7.[ 四 ] 设 A , B , C 是三事件,且 P ( A) = P( B ) = P (C ) =
⎛ 5⎞ × 24 ⎜ 4⎟ ⎝ ⎠ ∴
P( A ) =
4 C5 ⋅ 24 8 = 4 21 C10
P( A) = 1 − P( A ) = 1 −
15.[十一]
8 13 = 21 21
将三个球随机地放入 4 个杯子中去,问杯子中球的最大个数分别是 1,2,
3,的概率各为多少? 记 Ai 表“杯中球的最大个数为 i 个” i=1,2,3, 三只球放入四只杯中,放法有 43 种,每种放法等可能 对 A1:必须三球放入三杯中,每杯只放一球。放法 4×3×2 种。 (选排列:好比 3 个球在 4 个位置做排列)
从 5 双不同鞋子中任取 4 只, 4 只鞋子中至少有 2 只配成一双的概率是多少?

13.[九]
记 A 表“4 只全中至少有两支配成一对” 则 A 表“4 只人不配对” ∵
10 ⎞ 从 10 只中任取 4 只,取法有 ⎛ ⎜ ⎟ 种,每种取法等可能。 ⎝4⎠
要 4 只都不配对,可在 5 双中任取 4 双,再在 4 双中的每一双里任取一只。取法有
P( A) = 1 − P( A ) = 0.7, P( B ) = 1 − P( B) = 0.6, A = AS = A( B ∪ B ) = AB ∪ AB 注意 ( AB )( AB ) = φ . 故有

概率论与数理统计课后答案浙江大学盛骤

概率论与数理统计课后答案浙江大学盛骤

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答

P( A) + P( A) =1
首先求 P( A) ,然后求 P( A) 。第 3 种方法是直接求 P( A) 。读者还可以用更多方法求
P( A) 。
------------------------------------------------------------------------------10.在 11 张卡片上分别写上 Probability 这 11 个字母,从中任意连抽 7 张,求其排列结果为 ability 的概率。
5!
P( A) =
C52 C130
=
2!3! 10!
= 10 120
=1 12
3!7!
(2)令事件 B={最大号码为 5},最大号码为 5,其余两个号码是从 1,2,3,4 的 4 个号码
{ } 中取出的,有 C42 种取法,即 B= C42个基本事件 ,则
4!
P(B) =
C42 C130
=
2!2! 10!
(2)至少有 2 个次品的概率。
解 (1)利用组合法计数基本事件数。令事件 A={恰有 90 个次品},则
P( A)
=
C C 90 110 400 1100 C 200 1500
(2)利用概率的性质。令事件 B={至少有 2 个次品}, Aι = {恰有 i 个次品},则
所求概率为
B = A2 ∪ A3 ∪ A200 , AiAi = ∅(i ≠ j)
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
两种方法如下: ①考虑整个样本空间。随机试验:掷两颗骰子,每颗骰子可能出现的点数都是 6 个,

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学第七八章

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学第七八章

第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2的矩估计是 6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。

(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。

(5)()p p m x p px X P x m xmx ,10,,,2,1,0,)1()(<<=-==- 为未知参数。

解:(1)X θcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X ,解得mXp=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数 1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn n ni ix θθnθL x x x θx f θL 11211ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθn θL d 121)ln (ˆ,0ln 2112)(ln 。

概率论与数理统计 浙大 第四版 课后答案(盛骤 谢式千 潘承毅 著) 高等教育出版社

概率论与数理统计 浙大 第四版  课后答案(盛骤 谢式千 潘承毅 著) 高等教育出版社

k = (n +1) p时, M = 1 ,此时 P{X = k} = P{X = k −1}
k > (n +1) p时, M < 1
所以当
k
=
⎧(n +1)p −1, (n + 1) p,若(n +1) p为整数
⎨ ⎩
(n
+
1)p,若(n
+
1)p为非整数
(2)对于泊松分布 P(λ) ,由
P(k;λ) P(k −1;λ)
0
1
P{0 ≤ X ≤ 2} = F(2) − F(0) = 1− 0 = 1
⎧0 解法二: f (x) = F '(X ) = ⎪⎨2Ax
⎪⎩ 0
x<0 0≤ x <1 x ≥1
∫ ∫ 由
1=
+∞
1
f (x)dx = 2Axdx =A

A = 1 其它同解法一
−∞
0
⎧x 17、已知随机变量 X 的概率密度为: f (x) = ⎪⎨2 − x
k=0 k!
∑ 查表得 +∞ e−3 3k = 0.000292 < 1 − 0.999 = 0.001 k =11 k!
所以在月初进货时要进此种商品 10 件,才能保证此商品当月不脱销的概率 为 0.999。 10、每年袭击某地的台风次数近似服从参数为 4 的泊松分布。求一年中该地区受 台风袭击次数为 3~5 的概率。 解:设 X 表示每年袭击某地的台风次数
=
λ k
…,
k
=
2,3...
可知
当 k < λ 时, P(k − 1; λ) < P(k; λ)

概率论与数理统计第四版_部分习题答案_第四版_盛骤__浙江大学

概率论与数理统计第四版_部分习题答案_第四版_盛骤__浙江大学

第一章 概率论的基本概念2、设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

故 表示为:AB +BC +AC 3、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P , 81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- 16、据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P (A )=P {孩子得病}=,P (B |A )=P {母亲得病|孩子得病}=,P (C |AB )=P {父亲得病|母亲及孩子得病}=。

求母亲及孩子得病但父亲未得病的概率。

解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB )P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6. 从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.17、已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全版概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生 表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

故 表示为:AB +BC +AC6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

7.[四] 设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。

解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+-8.[五] 在一标准英语字典中具有55个由二个不相同的字母新组成的单词,若从26个英语字母中任取两个字母予以排列,问能排成上述单词的概率是多少?记A 表“能排成上述单词”∵ 从26个任选两个来排列,排法有226A 种。

每种排法等可能。

字典中的二个不同字母组成的单词:55个 ∴1301155)(226==A A P 9. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。

(设后面4个数中的每一个数都是等可能性地取自0,1,2……9)记A 表“后四个数全不同”∵ 后四个数的排法有104种,每种排法等可能。

后四个数全不同的排法有410A∴504.010)(4410==A A P10.[六] 在房间里有10人。

分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。

(1)求最小的号码为5的概率。

记“三人纪念章的最小号码为5”为事件A∵ 10人中任选3人为一组:选法有⎪⎭⎫ ⎝⎛310种,且每种选法等可能。

又事件A 相当于:有一人号码为5,其余2人号码大于5。

这种组合的种数有⎪⎭⎫ ⎝⎛⨯251 ∴121310251)(=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⨯=A P (2)求最大的号码为5的概率。

记“三人中最大的号码为5”为事件B ,同上10人中任选3人,选法有⎪⎭⎫ ⎝⎛310种,且每种选法等可能,又事件B 相当于:有一人号码为5,其余2人号码小于5,选法有⎪⎭⎫ ⎝⎛⨯241种201310241)(=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⨯=B P 11.[七] 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。

在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?记所求事件为A 。

在17桶中任取9桶的取法有917C 种,且每种取法等可能。

取得4白3黑2红的取法有2334410C C C ⨯⨯故2431252)(6172334410=⨯⨯=C C C C A P 12.[八] 在1500个产品中有400个次品,1100个正品,任意取200个。

(1)求恰有90个次品的概率。

记“恰有90个次品”为事件A∵ 在1500个产品中任取200个,取法有⎪⎭⎫ ⎝⎛2001500种,每种取法等可能。

200个产品恰有90个次品,取法有⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛110110090400种 ∴⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=2001500110110090400)(A P (2)至少有2个次品的概率。

记:A 表“至少有2个次品”B 0表“不含有次品”,B 1表“只含有一个次品”,同上,200个产品不含次品,取法有⎪⎭⎫ ⎝⎛2001100种,200个产品含一个次品,取法有⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛199********种 ∵10B B A +=且B 0,B 1互不相容。

∴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=+-=-=200150019911001400200150020011001)]()([1)(1)(10B P B P A P A P13.[九] 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对”∵ 从10只中任取4只,取法有⎪⎭⎫ ⎝⎛410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。

取法有4245⨯⎪⎭⎫ ⎝⎛ 21132181)(1)(2182)(410445=-=-==⋅=∴A P A P C C A P15.[十一] 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少?记A i 表“杯中球的最大个数为i 个” i=1,2,3, 三只球放入四只杯中,放法有43种,每种放法等可能对A 1:必须三球放入三杯中,每杯只放一球。

放法4×3×2种。

(选排列:好比3个球在4个位置做排列)1664234)(31=⨯⨯=A P对A 2:必须三球放入两杯,一杯装一球,一杯装两球。

放法有3423⨯⨯C 种。

(从3个球中选2个球,选法有23C ,再将此两个球放入一个杯中,选法有4种,最后将剩余的1球放入其余的一个杯中,选法有3种。

169434)(3232=⨯⨯=C A P 对A 3:必须三球都放入一杯中。

放法有4种。

(只需从4个杯中选1个杯子,放入此3个球,选法有4种)16144)(33==A P 16.[十二] 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个部件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?记A 表“10个部件中有一个部件强度太弱”。

法一:用古典概率作:把随机试验E 看作是用三个钉一组,三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序。

但10组钉铆完10个部件要分先后次序)对E :铆法有323344347350C C C C ⨯⨯⨯ 种,每种装法等可能对A :三个次钉必须铆在一个部件上。

这种铆法有〔32334434733C C C C ⨯⨯〕×10种00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P 法二:用古典概率作把试验E 看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。

(铆钉要计先后次序)对E :铆法有350A 种,每种铆法等可能对A :三支次钉必须铆在“1,2,3”位置上或“4,5,6”位置上,…或“28,29,30”位置上。

这种铆法有27473327473327473327473310A A A A A A A A ⨯⨯=+++⨯+⨯ 种00051.01960110)(3050274733==⨯⨯=A A A A P 17.[十三] 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ⋃===求。

解一:BA AB B B A AS A B P B P A P A P ⋃=⋃===-==-=)(,6.0)(1)(,7.0)(1)(注意φ=))((B A AB . 故有P (AB )=P (A )-P (A B )=0.7-0.5=0.2。

再由加法定理,P (A ∪B )= P (A )+ P (B )-P (A B )=0.7+0.6-0.5=0.8 于是25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A B P25.05.06.07.051)()()()()()()|(51)|()()(72)|(757.05.0)|()|(0705)|()()(:=-+=-+=⋃⋃⋃===⇒==∴⋅=−−→−=B A P B P A P BA P B A P B B BA P B A B P A B P A P AB P A B P A B P A B P A B P A P B A P 定义 故 解二由已知18.[十四] )(,21)|(,31)|(,41)(B A P B A P A B P A P ⋃===求。

相关文档
最新文档