精馏塔塔釜温度控制系统的设计

合集下载

精馏塔温度控制系统设计

精馏塔温度控制系统设计

精馏塔温度控制系统设计精馏塔是一种常见的化工设备,用于分离液体混合物中的成分。

精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。

下面将详细介绍精馏塔温度控制系统的设计原理和步骤。

精馏塔温度控制系统的设计原理是根据精馏塔内部的物料性质和工艺要求,通过控制介质的流量和温度来实现温度的稳定控制。

精馏塔内部通常分为多个段落,每个段落都有一个特定的温度要求。

温度的控制涉及到对塔釜的加热和冷却以及介质的流量调节。

1.确定控制目标:根据工艺要求和产品规格,确定需要控制的温度范围和偏差,以及控制精度要求。

2.确定控制方法:根据工艺特点和实际情况,选择适合的控制方法。

常见的控制方法包括比例控制、比例积分控制、比例积分微分控制等。

3.确定传感器:选择合适的温度传感器,用于测量精馏塔内部的温度。

常见的温度传感器包括热电偶、热敏电阻等。

4.确定执行器:根据控制目标和方法,选择合适的执行器。

常见的执行器包括电动调节阀、蒸汽控制阀等。

5.设计控制回路:根据控制方法和控制器的性能,设计控制回路。

控制回路包括传感器、控制器和执行器。

6.参数整定:根据实际情况和反馈调整,优化控制回路的参数。

参数整定通常包括比例增益、积分时间和微分时间等。

7.验证和优化:通过实际运行验证控制系统的性能,并根据实际情况进行反馈调整和优化。

总之,精馏塔温度控制系统的设计是确保精馏塔能够稳定运行,提高产品质量和产量的关键。

设计步骤包括确定控制目标、控制方法、传感器和执行器的选择、设计控制回路、参数整定以及验证和优化。

合理的设计能够使温度控制更加稳定和可靠。

精馏塔釜温度与泡点温度的关系

精馏塔釜温度与泡点温度的关系

一、概述精馏塔是石油化工生产中常见的一种设备,用于分离原油中的不同组分。

在精馏塔中,塔釜温度和泡点温度是两个重要的参数,它们之间的关系对于塔内的分馏效果有着重要的影响。

本文旨在探讨精馏塔釜温度与泡点温度的关系,从理论和实际操作两个方面进行分析,以期为石油化工生产提供一定的参考价值。

二、精馏塔釜温度与泡点温度的理论基础1. 理论基础在精馏塔中,塔釜温度通常是指顶部馏分的温度,而泡点温度是指液体中开始产生气泡的温度。

塔釜温度和泡点温度之间存在着一定的关系,这一关系可以通过热力学原理和气液平衡的理论来解释。

2. 热力学原理精馏塔内部发生的分馏过程是一个由热力学驱动的过程,塔内的温度分布是影响分馏效果的重要因素。

塔釜温度的高低直接影响塔内气液两相的平衡状态,进而影响各个馏分的分离效果。

3. 气液平衡塔内的气液两相通过反复地在填料层中传质和传热,最终实现各个馏分的分离。

在这一过程中,气相和液相的平衡状态对于泡点温度的形成和塔内温度分布都有着重要的影响。

塔釜温度和泡点温度之间存在着一定的关联关系。

三、塔釜温度与泡点温度的实际关系1. 实际操作中的观察在精馏塔的实际操作中,操作人员通常会根据塔釜温度来调节操作参数,以达到预期的分馏效果。

在这一过程中,观察塔釜温度和各个馏分的泡点温度之间的变化关系,可以帮助操作人员更好地控制精馏塔的分馏效果。

2. 实验数据分析通过对精馏塔在不同操作条件下的实验数据进行分析,可以发现塔釜温度与泡点温度之间存在一定的相关性。

一般来说,塔釜温度的升高会导致各个馏分的泡点温度降低,反之亦然。

这一关系在一定程度上可以用来指导实际操作中的操作参数调节。

四、影响塔釜温度与泡点温度关系的因素1. 塔设计参数精馏塔的设计参数包括塔的高度、塔板间距、填料类型等,这些参数对于塔内温度分布和气液平衡状态有着重要的影响。

不同的设计参数会导致塔釜温度与泡点温度之间的关系呈现不同的规律。

2. 原料性质原料的性质对于精馏塔的分馏效果有着直接的影响,不同的原料性质会导致塔釜温度与泡点温度之间的关系发生变化。

精馏塔的控制

精馏塔的控制

精馏塔的控制12.1 概述•精馏是石油、化工等众多生产过程中广泛应用的一种传质过程,通过精馏过程,使混合物料中的各组分分离,分别达到规定的纯度。

•分离的机理是利用混合物中各组分的挥发度不同(沸点不同),使液相中的轻组分(低沸点)和汽相中的重组分(高沸点)相互转移,从而实现分离。

•精馏装置由精馏塔、再沸器、冷凝冷却器、回流罐及回流泵等组成。

精馏塔的特点精馏塔是一个多输入多输出的多变量过程,内在机理较复杂,动态响应迟缓、变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。

而且从能耗的角度,精馏塔是三传一反典型单元操作中能耗最大的设备。

一、精馏塔的基本关系(1)物料平衡关系总物料平衡: F=D+B (12-1) 轻组分平衡:F z f =D x D +B x B (12-2) 联立(12-1)、(12-2)可得:(2)能量平衡关系 在建立能量平衡关系时,首先要了解分离度的概念。

所谓分离度s 可用下式表示:DB D f D BB f D x x x z F D x x z D Fx --=+-=)((12-3))1()1(D B B Dx x x x s --=(12-5)可见,随着s 的增大,x D 也增大,x B 而减小,说明塔系统的分离效果增大。

影响分离度s 的因素很多,如平均相对挥发度、理论塔板数、塔板效率、进料组分、进料板位置,以及塔内上升蒸汽量V 和进料F 的比值等。

对于一个既定的塔来说:式(12-6)的函数关系也可用一近似式表示: 或可表示为:式中β为塔的特性因子由上式可以看到,随着V /F 的增加,s 值提高,也就是x D 增加,x B 下降,分离效果提高了。

由于V 是由再沸器施加热量来提高的,所以该式实际是表示塔的能量对产品成分的影响,故称为能量平衡关系式。

由上分析可见,V /F 的增加,塔的分离效果提高,能耗也将增加。

典型化工单元的控制案例—精馏塔的控制(工业仪表自动化)

典型化工单元的控制案例—精馏塔的控制(工业仪表自动化)

1、精馏塔温度控制为 什么常用灵敏板上的温度作 为被控变量?
2、精馏塔精馏段温度控 制为什么改变回流量而不改 变再沸器的加热量?
精馏塔是化工生产中重 要的分离设备,它利用混合 物中各组分挥发度的不同, 将混合物组分进行分离并达 到规定的纯度要求。
CONTENTS
02
-15%
03
03
有些干扰是可控的,有些干扰 是不可控的。一般对可控的主要 干扰可采用定值控制系统加以克 服。然而对不可控的干扰,它们 最终将反映在塔顶馏出物与塔底 采出量的产品质量上。
思考题
1、精馏塔液相进Байду номын сангаас流量 增加对塔顶产品有什么影响?
2、精馏塔塔压增加对塔 顶产品和塔底产品有什么影 响?
CONTENTS
01
塔压定值控制
进料流 量控制
回流量定 值控制
塔釜液 位控制
回流罐液 位控制
质量控制系统
03
塔压定值控制
A B
02
在实际生产过程中,由 于不同的物料性质,精馏塔 的类型不同,生产产品纯度 的要求不同等情况,可根据 现场具体情况采用各种不同 的控制方法。。

基于Aspen软件的甲醇精馏热焓控制方案设计

基于Aspen软件的甲醇精馏热焓控制方案设计

15CHEMICALENGINEERING DESIGN 化工设计2626,36(3)基于Aspen 软件的甲醇精馏热焓控制方案设计徐明慧*东华工程科技股份有限公司合肥234002扌商要 本文介绍甲醇三塔精馏工艺背景,根据实际项目的工艺条件、精馏塔底部采用双换热器作为再沸器的特点进行热焓控制方案的设计并利用Apen 软件仿真,通过与甲醇精馏塔塔釜温度控制方案的对比验证本控制方案的优势:在保证精馏品质的同时,控制蒸汽用量,达到节能降耗的目的。

该方法对甲醇精馏控制的工业 应用具有一定指导意义。

关键词甲醇精馏温度控制热焓控制甲醇精馏是甲醇生产中的重要处理工序,甲醇精馏中最主要的设备一般是由精馏塔、再沸器、冷凝器、回流罐等组成,其中精馏塔是最主要的设备,在过程控制中精馏塔作为被控对象是一个多输 入、多输出的多变量对应关系的复杂过程[1,],而精馏塔的出料是最终产品或者是下一工段的原料,所以,精馏塔的控制品质的好坏直接影响到整个工艺过程生产的成败,精馏塔的控制方案的研究由此也显得极为重要。

精馏塔要求进料、回流和温度在 相对稳定的条件下进行操作,因此热量输入应该控 制在相应的恒定值⑶。

根据精馏工艺的不同,精馏塔热量输入的控制方案也有很大的差异。

温度控 制随着化工工艺日益复杂,工艺参数关联度增强,常规的pis 控制难以做到实时有效的控制,谷玉凯、王华强⑷等人将模糊神经网络分类器应用在精馏塔温度控制上实现了精馏塔的智能控制;高军礼、陈玮J .等人用串级SmitP 预估补偿控制方案解决精馏塔底温度具有的大纯滞后、大惯性时间常数且难以控制的特点。

而将热焓控制用于维持精馏塔塔釜热量恒定的研究相对较少。

1甲醇三塔精馏工艺介绍本文以粗甲醇三塔精馏流程工艺为背景,工艺主要设备包括:预塔(T-01)、加压塔(T-02)、常压塔(T-03)。

工艺流程图见图1。

徐明慧:工程师。

2012年毕业于华东理工大学控制科学与工程专业获硕士学位,从事自控设计工作联系电话:187****3419, E-mail :*********************2424,34(5)徐明慧基于Aspen软件的甲醇精馏热焓控制方案设计10精馏预塔底部出料工艺流程见图2。

精馏塔的控制方式

精馏塔的控制方式

精馏塔的控制方式字体: 小中大| 打印发表于: 2007-7-25 21:15 作者: chjzhou 来源: 海川化工论坛精馏塔的控制方式很多,其中有:1.提留段温度控制2.精馏段温度控制3.精馏塔温差控制4.恒流控制5.双温差控制6.压差控制7.在线仪表监测控制过路的朋友一起交流一下那种控制自动化程度更高,操作人员的参与度最少,对于生产最经济,交流的朋友别忘了写下你的理由哦答案不是重要的,你的理由却是非常重要的,欢迎讨论啊,一起学习我也来说两句查看全部回复最新回复∙chping80 (2007-7-25 21:36:13)我认为精馏段温度控制更好,更能说明精馏塔的运行情况!∙chjzhou (2007-7-26 09:10:51)压差控制比较好(以下是摘抄版)蒸汽压力突然变化时,将直接影响塔釜难挥发组分的蒸发量,使当时塔内热量存在不平衡,导致气-液不平衡,为此如何将塔釜热量根据蒸汽进料量自动调节达到相对稳定,从而保证塔内热量平衡是问题的关键。

在生产过程中,各精馏塔设备已确定,塔釜蒸发量与气体流速成正比关系,而流速与塔压差也成正比关系,所以控制好塔顶、塔釜压力就能保证一定的蒸发量,而在操作中,塔顶压力可通过塔顶压力调节系统进行稳定调节或大部分为常压塔,为此,稳定塔釜压力就特别重要。

于是在蒸汽进料量不变情况下,我们对蒸汽压力变化情况与塔釜压力的变化进行对比,发现两者成正比关系,而且滞后时间极小。

于是将蒸汽进料量与塔釜压力进行串级操作,将塔釜压力信号传递给蒸汽流量调节阀,蒸汽流量调节阀根据塔釜压力进行自动调节,通过蒸汽进料量自动增大或减少,确保塔釜压力稳定,从而保证了精馏操作不受外界蒸汽波动的影响。

[本帖最后由chjzhou 于2007-7-26 17:05 编辑]∙zzna (2007-7-26 09:16:01)精馏段温度控制和温差控制结合!∙weiqj (2007-7-26 15:49:50)3#楼是从一个叫做“好男人”的博客中的《精馏塔操作及自动控制系统的改进》摘抄其中一段。

精馏塔PID控制系统简介

精馏塔PID控制系统简介

精馏塔PID控制系统简介一、PID控制系统单回路控制系统通常是指由一个检测元件及一个变送器、一个控制器、一个执行器、一个被控对象所组成的一个闭合回路的控制系统,又称简单控制系统或单参数控制系统。

单回路控制系统是所有过程控制系统中最简单、最基本、应用最广泛和最成熟的一种,约占控制回路的80%以上,适用于被控对象滞后时间较小、负荷和干扰变化不大、控制质量要求不很高的场合。

控制器在冶金、石油、化工、电力等各种工业生产中应用极为广泛。

要实现生产过程自动控制,无论是简单的控制系统,还是复杂的控制系统,控制器都是必不可少的。

控制器是工业生产过程自动控制系统中的一个重要组成部分。

它把来自检测仪表的信号进行综合,按照预定的规律去控制执行器的动作,使生产过程中的各种被控参数,如温度、压力、流量、液位、成分等符合生产工艺要求。

主要介绍在工业控制中有一定影响力的DDZ-Ⅲ型控制器的控制规律、构成原理和使用方法。

二、控制器的控制规律:在自动控制系统中,由于扰动作用的结果使被控参数偏离给定值,从而产生偏差,控制器将偏差信号按一定的数学关系,转换为控制作用,将输出作用于被控过程,以校正扰动作用所造成的影响。

被控参数能否回到给定值上,以怎样的途径、经过多长时间回到给定值上来,即控制过程的品质如何,不仅与被控过程的特性有关,而且也与控制器的特性,即控制器的规律有关。

所谓控制器的控制规律,就是指控制器的输出信号与输入信号之间随时间变化的规律。

这种规律反映了控制器本身的特性。

控制器的基本控制规律由比例(P)、积分(I)、微分(D)三种。

这三种控制规律各有其特点。

三、精馏塔主要测量控制点的测控方法、装置和设备的报警连锁简介1、塔釜上升蒸汽量的控制:塔釜上升蒸汽量是由塔釜加热电压来决定的,控制塔釜加热电压即可控制塔釜上升蒸汽量执2、回流比控制:3、塔釜液位控制液位设置有上、下限报警功能:当塔釜液位超出上限报警值时,仪表输出报警信号给塔釜常闭电磁阀,电磁阀接收到信号后开启,塔釜排液;当塔釜液位降至上限报警值以下时,仪表停止输出信号,电磁阀关闭,塔釜停止排液。

过程控制课程设计

过程控制课程设计

过程控制课程设计 Modified by JEEP on December 26th, 2020.辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔塔内压力控制系统设计院(系):专业班级:学号:学生姓名:指导教师:起止时间:课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要精馏塔是石油、化学加工工业(CPI)中使用量最大、能耗最高、应用面极广的分离单元操作设备。

本设计采用单回路控制系统对塔内压力进行实时控制,采用PID算法的DTZ—2100控制器对HK-613系列通用型压力变送器采集到的塔内压力值进行处理,并将控制信号传递给ZXS型新系列气动薄膜角形单座调节阀,令其对冷却量进行控制,从而达到对塔内压力的控制。

精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大生产设备自动化程度的提高,有利于降低工厂成本、促进生产线的柔性化和集成化,有利于提高产品的产量、质量以及产品的竞争力。

从某种意义上说,高效的精馏塔控制技术为我们创造了不可忽视的经济效益和社会效益。

关键词:精馏塔;分离单元;PID算法目录第1章绪论研究背景及意义精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。

而石油化工是基础性产业,它为农业、能源、交通、机械、电子、纺织、轻工、建筑、建材等工农业和人民日常生活提供配套和服务,在国民经济中占有举足轻重的地位,在现代生活中,几乎随时随地都离不开化工产品,从衣、食、住、行等物质生活到文化艺术、娱乐等精神生活,都需要化工产品为之服务。

精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。

精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。

1.精馏过程的核心在于回流,而回流必须消耗大量能量。

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制

精馏塔的安全运行分析——精馏塔的温度控制
精馏塔通过灵敏板进行温度控制的方法大致有以下几种。

(1)精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。

适用于对塔顶产品质量要求高或是气相进料的场合。

调节手段是根据灵敏板温度,适当调节回流比。

例如,灵敏板温度升高时,则反映塔顶产品组成zn下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。

(2)提馏段温控灵敏板取在提馏段的某层塔板处,称为提馏段温控。

适用于对塔底产品要求高的场合或是液相进料时,其采用的调节手段是根据灵敏板温度,适当调节再沸器加热量。

例如,当灵敏板温度下降时,则反映釜底液相组成Xw变大,釜底产品不合格,故发出信号适当增大再沸器的加热量,使釜温上升,以便保持工w的规定值。

(3)温差控制当原料液中各组成的沸点相近,而对产品的纯度要求又较高时不宜采用一般的温控方法,而应采用温差控制方法。

温差控制是根据两板的温度变化总是比单一板上的温度变化范围要相对大得多的原理来设计的,采用此法易于保证产品纯度,又利于仪表的选择和使用。

精馏操作中的工艺指标调节与控制

精馏操作中的工艺指标调节与控制

精馏操作中的工艺指标调节与控制引言精馏是化工生产中常用的传质单元操作,常用于产品的分离和提纯。

它是利用液体混合物在一定压力下各组分挥发度不同的性质,在塔内经过多次部分汽化与多次部分冷凝,使各组分得以较全分离的过程。

对精馏工艺指标进行调控对于合格产品的获得具有重要意义。

图1 工业精馏装置1.精馏中需要控制的工艺指标图2 连续精馏实验装置图2 为连续精馏实验装置,进料位置为塔中段。

以此为例对精馏操作中需要控制的指标进行论述。

实际实验或生产中由于塔设备的不同,留给操作人员可以调控的参数也有所不同。

总的来说,需要调控的工艺参数有:塔压、塔顶温度、塔釜温度、塔釜液位和回流比。

2.调控的主要手段2.1 塔压的调节影响塔压力变化的因素是多方面的,例如:塔顶温度、塔釜温度、进料组成、进料流量、进料温度、回流量、冷剂量、冷剂压力等的变化以及仪表故障,设备管线堵冻等,都可以引起塔压的变化。

例如,釜温突然升高、冷剂量减少、进料中轻组分含量增加或进料量加大、采出管线堵塞都会引起塔压升高。

另外,塔顶调节阀失灵也会引起塔压波动。

图3 塔顶压力监控在生产过程中当上述因素发生变化时,塔压发生变化,控制塔压的调节机构就会自动动作,使塔压恢复正常。

塔压发生变化时,首先要判断引起压力变化的原因,而不是简单的只从调节上使塔的压力恢复正常,要从根本上消除变化的因素,才能不破坏塔的操作。

例如,当冷剂量不足或塔顶冷凝器设备出现故障时引起塔压升高时,若不提高冷剂量,而只是加大塔顶采出量来恢复正常的塔压,就有可能使重组份带到精馏段,造成塔顶产品质量不合格;又如,釜温过低引起塔压下降,若不提釜温,而是单靠通过减少塔顶采出量来恢复正常塔压,将造成釜液中轻组分大量增加,使塔底产品不合格。

当釜温突然升高,引起塔压上升时,重要的是恢复塔釜正常的温度,而不是单靠增加冷剂量和加大塔顶采出量来降低塔压;否则将容易产生液泛,破坏塔的正常操作。

精馏操作中,要针对引起塔压变化的原因相应的进行调节,常用的方法有三种。

精馏塔精馏段温度控制设计方案

精馏塔精馏段温度控制设计方案

精馏塔精馏段温度控制设计方案1.课题研究的背景和意义石油化工生产常需将液体混合物分离以达到提纯或回收有用组分的目的。

分离互溶液体混合物有许多种方法,精馏是在炼油、化工等众多生产过程中广泛应用的一个传质过程。

精馏过程通过反复的汽化与冷凝,使混合物料中的各组分分离,分别达到规定的纯度。

精馏塔的控制直接影响到产品质量、产量和能量消耗,因此精馏塔的自动控制问题长期以来一直受到人们的高度重视[1]。

精馏过程是由精馏装置来实现的,精馏装置一般是由精馏塔、再沸器(重沸器)、冷凝冷却器、回流罐及回流泵等组成。

实际生产过程中,精馏操作可分为间歇精馏和连续精馏两种。

石油化工等大型生产过程主要采用的连续精馏。

精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸溜的原理是蒸气由塔底进入。

蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。

由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。

精馏塔是一个多输入多输出的多变量过程,其内在机理复杂,动态响应迟缓,变量之间相互关联,不同的塔工艺结构差别很大,而工艺对控制提出的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题[1]。

2.课题研究的现状随着生产过程向着大型、连续和强化方面发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,对能源消耗和环境污染也有明确的限制,采用传统的单回路PID控制往往不能达到控制要求,为此,需要在简单控制系统的基础上,采取其他设施,组成复杂控制系统,也称多回路控制系统。

精馏塔提馏段的温度控制设计

精馏塔提馏段的温度控制设计

、成绩过程控制仪表课程设计设计题目精馏塔提馏段的温度控制系统学生姓名 XX ,专业班级自动化X X X X班学号 XXXXXXXXXXX指导老师 XXX2019年XX月XX日{《过程控制仪表》课程设计评分标准表姓名:XX 学号:XXXXXXXXX课程设计的最终成绩采取“优秀”、“良好”、“中等”、“及格”和“不及格”五级记分。

100-90分(优秀)、89-80(良好)、79-70(中等)、69-60(及格)、低于60(不及格)《过程控制仪表课程设计》任务书目录1.设计任务与要求 (1)设计任务 (1)设计要求 (1)2.系统简介 (1)3.设计方案及仪表选型 (2)控制方案的确定 (2)系统原理及方框图 (3)仪表选型 (4)4.系统仿真分析 (10)5.控制系统仪表配接图及说明 (13)6.仪表型号清单 (13)7.总结 (13)参考文献 (14)1.设计任务与要求设计任务过程控制仪表课程设计,是《自动化仪表与装置》课程中的后续课程,实践教学环节,也是一次全面的专业知识的运用和实践。

⑴巩固和深化所学课程的知识:通过课程设计,要求学生初步学会运用本门课程和其它相关课程的基本知识和方法,来解决工程实际中的具体的设计问题,检验学生对本门课程及相关课程内容的掌握的程度,以进一步巩固和深化所学课程的知识。

⑵培养学生的设计、实践能力:通过课程设计,从方案选择、设计计算到绘制图纸、编写设计说明书,可以培养学生对工程设计的独立工作能力,树立正确的设计思想,掌握自动控制系统中各环节使用仪表的基本方法和步骤,为以后从事工程设计打下良好的基础。

⑶使学生能熟悉和运用设计资料,学会查阅相关文献,如有关国家标准、手册、图册等,以完成作为工程技术人员在工程设计方面所必须的基本训练。

设计要求(1)编写过程控制仪表设计说明书。

内容包括:控制系统的简单介绍,工艺流程分析;各环节仪表的选型、仪表的工作原理及性能指标;控制系统的仿真分析;仪表间的配接说明。

精馏塔分离参数制定依据

精馏塔分离参数制定依据

精馏塔控制参数制定依据一、操作温度1、一般指塔釜温度、塔顶温度及回流温度2、设置依据(1)塔釜温度:满足塔设计回流比要求;(2)塔顶温度:用于间接反映塔顶产品品质;(3)回流温度:满足塔设计回流温度要求,对塔釜热负荷有影响。

3、控制(1)塔釜温度:塔釜温度控制主要有两种方式,一是以加热调节阀直接控制釜温(适用于塔真空系统稳定及进料组分稳定的情况)。

二是通过控制塔顶塔釜压差简介控制釜温,其优点是更能保障塔回流量的稳定,但对于仪表精度及安装位置合理性要求较高,存在波动或显示失真时容易引起控制失效。

(2)塔顶温度:对于轻重组分相对挥发度较大(或简单理解沸点差较大)的分离体系,塔顶温度能较为直观反映塔顶轻组分纯度情况,因此其温度控制也主要由塔顶采出量进行控制,另外回流温度对塔顶温度也有较大的影响;(3)回流温度:塔顶蒸汽冷却介质的温度及流量进行控制(冷却温度高会导致真空系统带液,冷却温度过低会造成塔釜热负荷增加)。

4、其他说明:生产负荷降低时,塔顶采出量降低,回流比不变情况下,回流量可降低,塔釜操作温度可降低。

二、操作压力1、一般指塔顶压力2、设置依据:设计需要,设计过程提出分离量与分离效果要求,以及热源供应情况,由设计方进行核算,对比一次投资与能耗情况进行选择确定(对应关系为:压力降低(真空度增加),分离效果增加,处理能力降低,压力升高(真空度降低),分离效果降低,处理能力增大)。

3、控制:真空尾气回流调节、真空泵级数调节、真空调节阀调节等;4、其他说明:(1)当塔生产负荷较低时,可能增大塔真空度,以降低能耗,在热源足够情况下,可降低真空,提高塔生产能力。

(2)操作温度与操作压力的关系,操作压力增大,对应的操作温度也要增高(满足回流比要求)。

三、操作液位1、设置依据:(1)对于虹吸式再沸器,其塔釜液位合理范围应为再沸器气相管下平面与再沸器上管板之间。

即保障塔加热器蒸汽正常上升,又最大程度利用换热器的换热面积(对于存在腐蚀的,还能一定程度降低气体冲刷腐蚀作用);(2)对于卧式再沸器,连续生产应维持液位在釜的中部,使蒸发面达到最大,对于间歇生产的应保障液位不低于换热器列管,不高于釜容积的80%;(3)对于夹套式或盘管式加热,液位应维持在釜上封头与换热管接口之间,使蒸发面最大,换热面积也最大利用。

精馏塔控制系统

精馏塔控制系统
3、精馏塔的控制要求
精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。
精馏过程是在一定约束条件下进行的。因此,精馏塔的控制要求可从质量指标、产品产量、能量消耗和约束条件四方面考虑设置必要的控制系统。
⑴、产品质量控制
精馏塔的产品质量是指塔顶或塔底产品的纯度。通常,满足一端的产品质量,即塔顶(或塔底)产品达到规定纯度,而另一端产品的纯度维持在规定范围内。
(3)冷凝器:它的作用是使塔顶蒸汽冷凝,以其部分冷凝液作为回流,以建立塔板间的内部回流,其作部分即为塔顶产品。
精馏塔都采取中部进料,进料板把全塔分成二段:进料板以上叫做精馏段;进料板以下称提馏段。在精馏段,上升蒸汽中的高沸点组分转变成液体,液体中的低沸点组分转变成蒸汽,完成上升蒸气低沸点组分的精制。在提馏段,下降液体中的低沸点组分转变成蒸汽,蒸汽中的高沸点组分转变成液体,完成下降液体高沸点组分的提浓。
⑤、连续精馏:多用于大批量工业生产中。
⑥、常压蒸馏:蒸馏在常压下进行。
⑦、减压蒸馏:常压下物系沸点较高或热敏性物质不能承受高温的情况
⑧、加压蒸馏:常压下为气体的物系精馏分离,加压提高混合物的沸点
⑨、多组分精馏:例如原油的分离。
⑩、双组分精馏:如乙醇-水体系,苯-甲苯体系等。
2、精馏-1所示:
⑵、物料平衡控制
进出物料平衡,即塔顶、塔底采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。物料平衡的控制是以冷凝液罐(回流罐)与塔釜液位一定(介于规定的上、下限之间)为控制目标的。
⑶、能量平衡控制
输入、输出能量应平衡,使塔内操作压力维持稳定。
⑷、约束条件
精馏过程是复杂传质传热过程。为了满足稳定和安全运行,必须使某些参数限制在约束条件之内。常用的限制条件有液泛限、漏液限、操作压力限和临界温度限等。

化工原理课程设计 精馏塔设计

化工原理课程设计 精馏塔设计

苯-氯苯板式精馏塔的工艺设计绪论1、设计方案的思考通体由不锈钢制造,塔节规格Φ25~100mm、高度0.5~1.5m,每段塔节可设置1~2个进料口/测温口,亦可结合客户具体要求进行设计制造各种非标产品。

整个精馏塔包括:塔釜、塔节、进料罐、进料预热器、塔釜液储罐、塔顶冷凝器、回流比控制器、产品储罐等。

塔压降由变送器测量,塔釜上升蒸汽量可通过采用釜液温度或灵敏板进行控制,塔压可采用稳压阀控制,并可装载自动安全阀。

为使塔身保持绝热操作,采用现代化仪表控制温度条件,并可在室温~300℃范围内任意设定。

同时,为了满足用户的科研需要,每一段塔节内的温度、塔釜液相温度、塔顶气相温度、进料温度、回流温度、塔顶压力、塔釜压力、塔釜液位、进料量等参数均可以数字显示。

2、工艺流程原料液由泵从原料储罐中引出,在预热器中预热后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。

流程示意图 :冷凝器→塔顶产品冷却器→苯的储罐→苯↑↓回流原料→原料罐→原料预热器→精馏塔↑回流↓再沸器←~ 塔底产品冷却器→氯苯的储罐→氯苯3、设计方案的确定及工艺流程的说明本设计任务为分离苯-氯苯混合物。

对于二元混合物的分离,应采用连续精馏过程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

第一章设计任务1、设计题目设计一座苯-氯苯连续精馏塔,塔顶馏出液中含苯97%。

原料液中含苯为62%,塔底产品2%,生产能力65000t/y(以上均为质量%)。

2、操作条件1.塔顶压强4kPa(表压);2.进料热状况,自选;3.回流比,自选;4.单板压降不大于0.7kPa;3、塔板类型筛板。

化工原理实验报告-精馏

化工原理实验报告-精馏

精馏实验一、实验任务和目的:1、充分利用计算机采集和控制系统具有的快速、大容量和实时处理的特点,进行精馏过程多实验方案的设计,并进行实验验证,得出实验结论。

以掌握实验研究的方法。

2、学会识别精馏塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。

3、学习精馏塔性能参数的测量方法,并掌握其影响因素。

4、测定精馏过程的动态特性,提高学生对精馏过程的认识。

二、实验原理:在板式精馏塔中,由塔釜产生的蒸汽沿塔板逐板上升与来自塔板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。

回流是精馏操作得以实现的基础。

塔顶的回流量与采出量之比,称为回流比。

回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。

回流比存在两种极限情况:最小回流比和全回流。

若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。

当然,这不符合工业实际,所以最小回流比只是一个操作限度。

若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔内中,这在生产中无实际意义。

但是,由于此时所需理论塔板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时使用。

3、实验流程(简图);4、操作步骤;4.1、设置参数设置精馏段塔板数为5,设置提馏段塔板数为3,配置浓度比为0.66的乙醇/正丙醇混合液,设置进料罐的一次性进料量为2L。

4.2、精馏塔进料(1)连续点击"进料"按钮,进料罐开始进料,直到罐内液位达到70%以上。

(2)启动进料泵。

(3)设定进料泵功率,将进料流量控制器的 OP 值设为50%。

(4)设定预热器功率,将进料温度控制器的 OP 值设为60%,开始加热。

(5)打开塔釜液位控制器,控制液位在70%-80%之间。

4.3、启动再沸器(1)将塔顶冷凝器内通入冷却水。

(2)设定塔釜加热功率,将塔釜温度控制器的 OP 值设为 50%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔塔釜温度控制系统的设计院(系):指导教师:(签字)起止时间:课程设计(论文)任务及评语院(系):电气工程学院教研室:自动化注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要本系统利用工业生产过程控制采用串级控制系统实现精馏塔塔釜温度控制系统。

通过选用铂铑10-铂热电偶传感器、ZMAP-16P DN15气动调节阀、DT2031数字调节器、热电偶温度变送器来实现。

系统设计主要包括控制方案的设计和系统各仪表选型,软件设计,系统仿真四大部分。

软件设计采用DCS组态来完成,并完成了系统监控画面。

系统仿真采用MATLAB进行仿真,并得出仿真图。

本系统便是基于工业生产过程控制采用串级控制系统实现精馏塔塔釜温度控制系统,通过对工业生产过程控制,来实现对精馏塔塔釜温度的控制。

此次设计就是要设计一个精馏塔塔釜温度的串级控制系统。

要求当物料进入精馏塔时,塔釜的温度可控并且温度恒定,保证生产的连续性。

关键词:精馏;温度控制;PID目录第1章绪论 (1)第2章控制方案的设计 (3)2.1设计要求 (3)2.2方案设计 (3)2.2.1 塔釜温度的前馈控制 (4)2.2.2 塔釜温度的串级控制 (5)2.2.3 塔釜温度的反馈控制 (6)第3章系统各仪表选型 (8)3.1温度传感器的选择 (8)3.2执行器的选择 (8)3.3调节器的选择 (9)3.4压力变送器的选择 (9)3.5温度变送器的选择 (10)3.6控制器的正反作用选择 (10)第4章软件设计 (11)4.1系统控制流程图 (11)4.2DCS组态 (11)第5章系统仿真 (14)5.1PID控制器的参数整定 (14)5.2凑试法确定PID参数 (14)5.3切线法确定被控对象的传函 (15)5.4系统MATLAB仿真分析 (17)第6章课程设计总结 (19)参考文献 (20)第1章绪论精馏塔是进行精馏的一种塔式汽液接触装置。

有板式塔与填料塔两种主要类型。

根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入。

蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。

由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。

塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。

蒸馏的基本原理是将液体混合物多次部分气化和部分冷凝,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。

蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。

近年来出现的超重力精馏技术,利用高速旋转产生的数百至千倍重力的超重力场代替常规的重力场,极大地强化气液传质过程,将传质单元高度降低1个数量级。

从而使巨大的塔设备变为高度不到2米的超重力精馏机,达到增加效率、缩小体积的目的。

超重力精馏改变了传统的塔设备精馏模式,只要在室内厂房里就可以实现连续精馏过程。

对社会的发展而言可节省钢材资源,延长地球资源的使用年限;对企业的发展而言,可以节约场地与空间资源,减少污染排放,提高产品质量,改善经营管理模式,降低生产劳动强度,增加生产的安全性。

精馏塔是化工生产中分离互溶液体混合物的典型分离设备。

它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。

经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,也就是说在提馏段上升的轻组分的易挥发组分逐渐增多,难挥发组分逐渐减少,而下降液相中易挥发组分逐渐减少,难挥发组分逐渐增多,从而实现分离的目的,满足化工连续化生产的需要。

精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。

维持正常的塔釜温度,可以避免轻约分流失,提高物料的回收率;也可减少残余物料的污染作用。

影响精馏塔温度不稳定的因素主要是来自外界来的干扰(如进料流量,温度及成分等的变化对温度的影响)。

一般情况下精馏塔塔釜的温度,我们是通过控制精馏塔釜内灵敏板的温度来控制的。

灵敏板是当外界条件或负荷改变时精馏塔内温度变化最灵敏的一块塔板。

以往调节只是采用灵敏板温度调节器单一回路调节,调节反应慢,时间滞后,对精馏操作而言,产品的纯度很难保证。

从上述干扰分析来看,有些干扰是可控的,有些干扰是不可控的。

从而选择一种可靠并且稳定的控制系统来控制精馏塔塔釜的温度是非常重要的。

第2章控制方案的设计2.1设计要求精馏塔塔釜温度控制系统的设计要求如下:1.塔釜温度控制在800±0.5℃;2.生产过程中蒸汽压力变化剧烈,而且幅度大,要保证精馏塔正常工作;3.塔釜及相关期间要经济实用。

2.2方案设计精馏塔的干扰因素:1.进料量波动的影响;2.进料成分波动的影响;3.进料温度波动的影响;4.蒸汽压力波动的影响;5.回流量和冷剂量波动的影响。

精馏塔的扰动如图2-1:图2-1系统扰动根据扰动的分析,系统设计方案主要考虑前馈,反馈和串级三种控制方案。

首先介绍什么叫静态前馈控制,即静态前馈控制的原理。

所谓静态前馈控制原理就是指前馈控制器的输出信号仅仅随着输入信号(干扰信号)d 大小的函数,而与时间因子t 无关。

因此,前馈控制作用可以简化为:(2-1)通常将上式的关系近似的表示为线性关系,则前馈控制器就仅仅参考器静态放大系数作为矫正的依据,即:0/)(K K K s W d f t -== (2-2)式中,d K ,0K 分别为干扰通道和控制通道的放大系数,一般来说f K 可以用实验方法来获得,如果有条件列写对象有关参数的静态方程,则可以通过计算来确定。

在精馏塔塔釜的温度控制中,扰动可以测量但是不好控制,并且干扰幅度较大。

蒸汽压力的变化是塔釜温度的主要干扰量,控制对象则是塔釜的温度。

塔釜温度前馈控制的系统框图和塔釜温度前馈控制工节结点图如2-2、2-3所示:图2-2塔釜温度前馈控制的系统框图)(d f M f =串级控制系统就是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。

整个系统包括两个控制回路,主回路和副回路。

副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。

一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。

二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。

为了提高精馏效率和保证产品纯度,我们采用灵敏板温度调节器与再沸器加热蒸汽流量调节器串级控制系统来对灵敏板温度进行控制。

其中灵敏板温度调节器是主调节器,再沸器加热蒸汽流量调节器是副调节器。

塔釜温度串级控制工艺结点图如2-4所示:塔釜温度串级控制示意图如图2-5所示:图2-4塔釜温度串级控制工艺节点图图2-5塔釜温度串级控制的系统框图通过实际改造和使用,串级调节与单回路控制相比较,串级控制有许多优点:1、抗干扰性强。

由于主回路的存在,进入副回路的干扰影响大为减小。

同时,由于串级控制系统增加了一个副回路,具有主、副两个调节器,大大提高了调节器的放大倍数,从而也就提高了对干扰的克服能力,尤其对于进入副回路的干扰。

表现更为突出。

2、及时性好。

串级控制对克服容量滞后大的对象特别有效。

3、适应能力强。

串级控制系统就其主回路来看,它是一个定值控制系统,但其副回路对主调节器来说,却是一个随动控制系统,主调节器能够根据对象操作条件和负荷的变化情况不断纠正副调节器的给定值,以适应操作条件和负荷的变化。

通过采用串级控制系统,塔釜温度控制更加平稳,产品纯度很高,随着控制系统软件和硬件的不断发展和完善,计算机集散型控制系统的应用和普及,精馏塔的分离质量将会越来越好,分离精度也将会越来越高。

2.2.3塔釜温度的反馈控制在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。

反馈控制系统由控制器、控制对象和反馈通路组成如图2-3所示。

图中带叉号的圆圈为比较环节,用来将输入与输出相减,给出偏差信号。

这一环节在具体系统中可能与控制器一起统称为调节器。

以炉温控制为例,受控对象为炉子;输出变量为实际的炉子温度;输入变量为给定常值温度,一般用电压表示。

炉温用热电偶测量,代表炉温的热电动势与给定电压相比较,两者的差值电压经过功率放大后用来驱动相应的执行机构进行控制。

塔釜温度反馈控制的系统框图和塔釜温度反馈控制的工艺节点图如图2-6、2-7所示:图2-6 塔釜温度反馈控制的系统框由于前馈控制因不含时间因子,比较简单,在一般情况下,不需要专用的补偿器,单元组合仪表便可以满足使用要求。

由于本设计主要考虑物料、压力等物理量对精馏塔釜温度的影响,并且干扰变化剧烈,幅度大,有时从0.5Mpa突然下降到0.3Mpa,压力变化40%。

干扰幅度较大,所以应用串级控制系统。

第3章系统各仪表选型3.1温度传感器的选择热电偶作为温度传感元件,能将温度信号转换成电动势(mV)信号,配以测量毫伏的指示仪表或变送器可以实现温度的测量指示或温度信号的转换。

具有稳定、复现性好、体积小、响应时间较小等优点、热电偶一般用于500°C以上的高温,可以在1600°C高温下长期使用。

热电阻也可以作为温度传感元件。

大多数电阻的阻值随温度变化而变化,如果某材料具备电阻温度系数大、电阻率大、化学及物理性能稳定、电阻与温度的关系接近线性等条件,就可以作为温度传感元件用来测温,称为热电阻。

热电阻分为金属热电阻和半导体热敏电阻两类。

大多数金属热电阻的阻值随其温度升高而增加,而大多数半导体热敏电阻的阻值随温度升高而减少。

铂铑10-铂热电偶传感器测温范围在0~1600℃,WRP型铂铑10-铂热电偶性能可靠、耐高温、抗氧化,可长期工作在0~1600℃环境下。

3.2执行器的选择执行器在控制系统中夜起着重要的作用,它直接实施控制系统的动作就好像人体的五官和手脚一样,大脑是调节器,而手就是执行器。

执行器是一种现场类仪表因此它的精度、使用寿命、抗干扰和环境的适应能力等就是人们所关注的指标。

控制器的动作是由调节器的输出信号通过各种执行机构来实现的,在由电信号作为控制信号的控制系统中,目前广泛使用的是以下三种控制方式:1.按动力来源分,有气动和电动两大类;2.按动作极性分,有正作用和反作用两大类;3.按动作特性分,有比例和积分两大类。

相关文档
最新文档