(精品)概率论课件:随机变量及其概率分布
合集下载
概率论课件第二章
第二章 随机变量及其分布 §2.1 随机变量
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
概率论与数理统计ch2随机变量及其概率分布精品PPT课件
P( X 3) P( A1A2 A 3) (1 p)3 ;
10
X0
1
2
3
p p p(1-p) (1-p)2p (1-p)3
11
例:若随机变量X的概率分布律为
P( X k ) c k ,k 0,1, 2,, 0
k!
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
求(1)随机观察1个单位时间,至少有3人候车 的概率; (2)随机独立观察5个单位时间,恰有4个单 位时间至少有3人候车的概率。
29
解:1 P(X 3) 1 P( X 0) P( X 1) P(X 2)
1 e 4.8 (1 4.8 4.82 ) 0.8580 2!
2 设5个单位时间内有Y个单位时间是
15
对于一个随机试验,如果它的样本空间只
包含两个元素,即 S {e1, e2} ,我们总能
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
P A 1 2
如果是不放回抽样呢?
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,,n
并称X服从参数为p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
22
推导:以n=3为例,设Ai={ 第i次A发生 }
10
X0
1
2
3
p p p(1-p) (1-p)2p (1-p)3
11
例:若随机变量X的概率分布律为
P( X k ) c k ,k 0,1, 2,, 0
k!
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
求(1)随机观察1个单位时间,至少有3人候车 的概率; (2)随机独立观察5个单位时间,恰有4个单 位时间至少有3人候车的概率。
29
解:1 P(X 3) 1 P( X 0) P( X 1) P(X 2)
1 e 4.8 (1 4.8 4.82 ) 0.8580 2!
2 设5个单位时间内有Y个单位时间是
15
对于一个随机试验,如果它的样本空间只
包含两个元素,即 S {e1, e2} ,我们总能
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
P A 1 2
如果是不放回抽样呢?
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,,n
并称X服从参数为p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
22
推导:以n=3为例,设Ai={ 第i次A发生 }
概率论与数理统计课件:随机变量及其分布
随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律
为
k
P X k p(
1 p)1k k 0,1
(0 p 1)
概率论课件:第二章随机变量及其概率分布
π 3π ⎞ ⎛ π 0 ⎟ 22.设随机变量 X 的分布律为 ⎜ 2 2 ⎟ ,求 Y 的分布律: ⎜ ⎝ 0.3 0.2 0.4 0.1 ⎠
(1) Y = ( 2 X − π ) ;
2
(2) Y = cos( 2 X − π ). ⎧2 x , 0 < x < 1 f ( x) = ⎨ ⎩0 , 其它
它意味着第 i 次( i ≥ k )成功,且 i − 1 次试验中成功 k − 1 次,设这两个事件分别为A1 ,A2,
则A = A 1 A 2 , 且P(A) = P(A 1 A 2 ) = P(A 1 )P(A 2 )(A 1与A 2 独立 ), 而 P(A 1 ) = p,
1 k −1 1 k −1 i − k P( A2 ) = Cik−− ⋅ q i −1−( k −1) = Cik−− q . 1 p 1 ⋅ p
, ( 2,6),
, (6,1),
例如(6,1) , (6,6)} .这里,
8
5 36
9
4 36
10
3 36
11
2 36
12
1 36
PK
1 36
2 36
3 36
4 36
5 36
6 36
概率 P{X = k }, k = 0,1,2,3.
2、分析: 显然 X 服从离散型概率分布,而且 X 的可能取值为 0,1,2,3.问题归结为求
∴ X 的分布律为:
P{X = 0} = P ( A1 ) = 1 / 2; P{X = 1} = P ( A1 A2 ) = 1 / 2 2 ; P{X = 2} = P ( A1 A2 A3 ) = 1 / 2 3 ;
X Pi
概率论课件:随机变量及其概率分布
P(X 3) 1 P(X 0) P(X 1) P(X 2)
0.8760;
利用泊松分布进行近似计算,取 5,
P( X 3) 1 e5 5e5 52 e5 0.8753. 0! 1! 2!
泊松分佈使用Excel表單: 在Excel的任一單元格輸入 “=POISSON.DIST(2,5,1)”,回車, 就在單元格中出現“0.124652019”.
1 e 4.8 (1 4.8 4.82 ) 0.8580 2!
2 设5个单位时间内有Y个单位时间是
“至少有3人候车”, 则Y ~ B(5, p), 其中p P(X 3) 0.8580, 于是 P(Y 4) C54 p4(1 p) 0.7696.
1
泊松定理: 二項分佈與泊松分佈有下麵的近似結果
1
定 义 : 设 随 机 试 验 的 样 本 空 间 为 S e , 若
X X (e) 为定义在样本空间 S 上的实值单值函数, 则称 X X (e) 为随机变量。
一般采用大写英文字母 X ,Y, Z 来表示随机变量
引入随机变量的目的是用来描述随机现象
1
一般地,若I 是一個實數集合,則
(5)V服從巴斯卡分佈,
P(V
k)
C2 k 1
2k 3 3k
,k
3, 4,5,...
1
2.3 隨機變數的分佈函數
定義:隨機變數X,若對任意實數x,函數
F(x) P(X x)
稱為X 的分佈函數.
F(x)的几何意义:
X
任何隨機變 數都有相應 的分佈函數
] x
分佈函數的性質: 1) 0 F(x) 1;
P(X 3) 1 P(X 的概率分佈律為
P( X
k)
Cak
0.8760;
利用泊松分布进行近似计算,取 5,
P( X 3) 1 e5 5e5 52 e5 0.8753. 0! 1! 2!
泊松分佈使用Excel表單: 在Excel的任一單元格輸入 “=POISSON.DIST(2,5,1)”,回車, 就在單元格中出現“0.124652019”.
1 e 4.8 (1 4.8 4.82 ) 0.8580 2!
2 设5个单位时间内有Y个单位时间是
“至少有3人候车”, 则Y ~ B(5, p), 其中p P(X 3) 0.8580, 于是 P(Y 4) C54 p4(1 p) 0.7696.
1
泊松定理: 二項分佈與泊松分佈有下麵的近似結果
1
定 义 : 设 随 机 试 验 的 样 本 空 间 为 S e , 若
X X (e) 为定义在样本空间 S 上的实值单值函数, 则称 X X (e) 为随机变量。
一般采用大写英文字母 X ,Y, Z 来表示随机变量
引入随机变量的目的是用来描述随机现象
1
一般地,若I 是一個實數集合,則
(5)V服從巴斯卡分佈,
P(V
k)
C2 k 1
2k 3 3k
,k
3, 4,5,...
1
2.3 隨機變數的分佈函數
定義:隨機變數X,若對任意實數x,函數
F(x) P(X x)
稱為X 的分佈函數.
F(x)的几何意义:
X
任何隨機變 數都有相應 的分佈函數
] x
分佈函數的性質: 1) 0 F(x) 1;
P(X 3) 1 P(X 的概率分佈律為
P( X
k)
Cak
第十三单元随机变量及其分布-PPT精品
(2)X的可能取值有2,3,4,5,…,12.Y的可能取值为1,2,3,…,6.若以(i,j)表示 先后投掷的两枚骰子出现的点数,则 X=2表示(1,1), X=3表示(1,2),(2,1), X=4表示(1,3),(2,2),(3,1),
… X=12表示(6,6); Y=1表示(1,1), Y=2表示(1,2),(2,1),(2,2), Y=3表示(1,3),(2,3),(3,3),(3,1),(3,2),
4 15
易错警示
【例】某射手有5发子弹,射击一次命中概率为0.9.如果命中 就停止射击,否则一直到子弹用尽,求耗用子弹数X的分布 列.
错解 P(X=1)=0.9,P(X=2)=0.1×0.9=0.09, P(X=3)=0.1×0.1×0.9=0.009, P(X=4)= 0 .×1 30.9=0.000 9, P(X=5)= 0 .×1 40.9=0.000 09,故其分布列为
P所(X以=随5)机=变C量82CX21C的130C概81C率2…2 分…18布5…列…为………………………..8′
X=k
2
P(X=k) 1
30
3
4
5
2
……3 …………8 ..10′
15
10
15
(3)“一次取球所得分介于20分到40分之间”的事件记为C,则
P(C)=P(X=3)+P(X=4)= 2 3 .13
解 X可能取的值为0,1,2,3,
∵P(X=0)=
C
2 3
C
2
4,
C
2 4
C
2 6
1 5
P(X=1)= C31C42 C32C21C41 7
C42C62
15
又∵P(=3)=
… X=12表示(6,6); Y=1表示(1,1), Y=2表示(1,2),(2,1),(2,2), Y=3表示(1,3),(2,3),(3,3),(3,1),(3,2),
4 15
易错警示
【例】某射手有5发子弹,射击一次命中概率为0.9.如果命中 就停止射击,否则一直到子弹用尽,求耗用子弹数X的分布 列.
错解 P(X=1)=0.9,P(X=2)=0.1×0.9=0.09, P(X=3)=0.1×0.1×0.9=0.009, P(X=4)= 0 .×1 30.9=0.000 9, P(X=5)= 0 .×1 40.9=0.000 09,故其分布列为
P所(X以=随5)机=变C量82CX21C的130C概81C率2…2 分…18布5…列…为………………………..8′
X=k
2
P(X=k) 1
30
3
4
5
2
……3 …………8 ..10′
15
10
15
(3)“一次取球所得分介于20分到40分之间”的事件记为C,则
P(C)=P(X=3)+P(X=4)= 2 3 .13
解 X可能取的值为0,1,2,3,
∵P(X=0)=
C
2 3
C
2
4,
C
2 4
C
2 6
1 5
P(X=1)= C31C42 C32C21C41 7
C42C62
15
又∵P(=3)=
概率论随机变量及分布共59页PPT资料
P{X0,Y0}1,P{X0,Y2}1
4
8
P{X1,Y0}3,P{X1,Y2}1
8
4
求 (X,Y) 的分布函数、(X,Y) 关于 X
和 (X,Y) 关于Y 的边缘分布函数。
解 (X,Y) 的分布函数
F(x, y) = P{Xx,Yy}
若 x 0 or y 0 ,则 F(x, y) =0; 若 0 x 1 ,0 y 2 ,则F(x, y) =1 / 4; 若 0 x 1 , 2 y ,则 F(x, y) = 3 / 8; 若 1 x , 0 y 2 ,则 F(x, y) = 5 / 8; 若 1 x , 2 y ,则 F(x, y) = 1,
一次和第二次取到的白球数,求( X ,Y ) 的分布律、 (X,Y) 的分布函数、
(X,Y) 关于 X 、关于 Y 的边缘分布
律和边缘分布函数。
解 X 的可能取值是0,1,2;Y 的可能
取值是 0,1 。
∵
P{X 0,Y 0}0,
P{X 0,Y 1} 1 10
P{X 1,Y 0} 1, P{X 1,Y 1} 2
称
P { X x ,Y } F (x ,) 为 (X,Y) 关于 X的边缘分布函数,
记作 FX (x) ;类似地,(X,Y) 关于Y
的边缘分布函数
F Y ( y ) P { X ,Y y } F ( ,y )
例1 已知随机变量(X,Y)的取值是 (0,0)、 (0,2)、(1,0)、(1,2) ,且有
函数,若存在非负函数 f (x, y) ,对任
意实数 x、y 有
xy
F(x,y) [ f(u,v)d]v du
则(X,Y) 为连续型二维随机变量,称 f (x, y)为(X,Y)的概率分布密度函数, 或 X与 Y的联合分布密度函数。
随机变量及其概率分布全概率.pptx
z
10:(即2 :z)dx
2z
z
2
1
1
fZ (z) z1 f ( x, y)dx z1 f ( x, z x)dx
1 (2 x z x)dx 1 (2 z)dx (2 z)2
z 1
z1
2z z2 0 z 1
即:fZ (z) (2 z)2 1 z 2
0,
其它
(3)求 导 数: 对y求Y的 分 布 导 数 得y的 密 度 ; (4)配 断 点 : 将 断 点 分 配 到0或1对 应 的 区 间 。
第10页/共37页
例题(95研6分)
第十六讲 内容总结
设
随
机
变
量X的
概
率
密
度f
X
(
x)
e 0
x
x 0, x 0.
求随机变量
Y eX的概率密度。
分 析 : 先 求Y的 分 布 函 数 , 然 后 利 用分 布 函 数 的 导 数 求 概 率密 度
x 1 1 x 1
1 x3
1
x3
试 求X的 概 率 分 布 列 。
解:这是一个有断点(断点为 1,1,3)的离散分布,应用
P( X ai ) F(ai ) F(ai 0)来求 P( X 1) F (1) F(1 0) 0.4
P( X 1) F(1) F(1 0) 0.8 0.4 0.4
第19页/共37页
第十六讲 内容总结
三、常用分布:1.几何分布的意义与形式需要记住
2.二
项
分
布
:p(
x
)
C
x n
p
x
q
n
x
,
x 0,1, 2,n,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
定 义 : 设 随 机 试 验 的 样 本 空 间 为 S e , 若
X X (e) 为定义在样本空间 S 上的实值单值函数, 则称 X X (e) 为随机变量。
一般采用大写英文字母 X ,Y , Z 来表示随机变量
引入随机变量的目的是用来描述随机现象
4
一般地,若I 是一个实数集合,则
2) F(x)单调不减,且F() 0,F() 1
0 P(x1 X x2 ) F (x2 ) F (x1) 3) F(x)右连续,即F(x 0) F(x);
4) F(x) F(x 0) P(X x).
45
例3.1设 X ~ B(1, p),0 p 1, q 1 p,
X01 p qp
{X I} 为事件 {e : X (e) I}
常见的两类随机变量
离散型的 连续型的
例1.1 掷硬币3次,出现正面的次数记为X.
样本点 X的值
TTT TTH THT HTT HHT HTH THH HHH 0 1 1 12 2 2 3
P{X 0} P{TTT} 1/ 8
P{X 1} P{TTH,THT, HTT} 3 / 8
37
五、几何分布 若随机变量X的概率分布律为
P( X k) p(1 p)k1, k 1, 2,3,..., 0 p 1.
称X服从参数p的几何分布.
例2.8 从生产线上随机抽产品进行检 测,设产品的次品率为p,0<p<1,若 查到一只次品就得停机检修,设停机 时已检测到X只产品,则X服从参数p的 几何分布。
30
泊松定理: 二项分布与泊松分布有下面的近似结果
当n 10, p 0.1时,
Cnk
pk
1
p nk
e k
k!
,
其中
np.
事
实
上
,
C
k n
p
k
1 p
nk
n! k !(n
k)!
n
k
1
n
nk
k
k!
n(n
1)...(n nk
k
1)
1
n
n
1 k
n
e k
k!
因 为 当 n充 分 大 和 适 当 的 时 ,n ( n
P( X 0) P( A1) p ; P( X 1) P( A1A2 ) (1 p) p ;
P( X 2) P( A1A2 A3) (1 p)2 p ;
P( X 3) P( A1A2 A 3) (1 p)3 ;
10
X0
1
2
3
p
p p(1-p) (1-p)2p (1-p)3
11
三、泊松分布(Poisson分布)
若随机变量X的概率分布律为
P( X k) ke ,k 0,1, 2,, 0
k! 称X服从参数为λ的泊松分布,记
X ~ P()
例2.5 某公交站单位时间内候车人数
X ~ P(4.8),
求(1)随机观察1个单位时间,至少有3 人候车的概率; (2)随机独立观察5个单位时间,恰 有4个单位时间至少有3人候车的概率.
39
六、巴斯卡分布
若随机变量X的概率分布律为
P( X
k)
C r1 k 1
pr
(1
p)kr ,
k
r, r
1, r
2,...,
其中r为正整数,0 p 1.
称X服从参数为(r,p)的巴斯卡分布.
例2.9 独立重复地进行试验,每次试验 的结果为成功或失败,每次试验中成功 的概率均为p,0<p<1,试验进行到出现r 次成功为止,以X表示试验次数,则X服 从参数为(r,p)的巴斯卡分布。
22
推导:以n=3为例,设Ai={ 第i次A发生 }
P( X 0) P( A1A 2 A3) (1 p)3
P( X 1) P( A1A 2 A3 A1A 2 A3 A1A 2 A3 ) C31 p1(1 p)31
P( X 2) P( A1A 2 A3 A1A 2 A3 A1A 2 A3 ) C32 p 2 (1 p)32
P(A)=p,(0<p<1).若仅考虑事件A发生与否,
定义一个服从参数为p的0-1分布的随机变
量:
X
1,
0,
若A发生, 若A不发生(即A发生).
来描述这个随机试验的结果。
只有两个可能结果的试验,称为贝努利试验。
二、二项分布
n重贝努利试验:设试验E只有两个可
能的结果:A与A ,P(A)=p,0<p<1,将
牌},则每次只有两个结果: A, A,
P A 1 2.
如果是不放回抽样呢? 不是独立试验!
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,, n
并称X服从参数为n,p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
17
一个随机试验,设A是一随机事件,且
42
解答:(1)X服从0-1分布,P(X=1)=1/3,P(X=0)=2/3;
(2)Y服从超几何分布,
P(Y
k)
C2k
C 3 k 4
C63
,k
0,1, 2;
(3)Z服从二项分布B(3, 1/3),
(4)PU(Z服从k)几 C何3k 2分333k布, k, 0,1, 2,3;
P(U
k)
2k 1பைடு நூலகம்3k
P(X 3) 1 P(X 2) 0.875347981.
35
四、超几何分布 若随机变量X的概率分布律为
P( X
k)
Cak
C nk b
CNn
,k
l1, l1
1, ..., l2 ,
其中,l1 max(0, n b), l2 min(a, n).
称X服从超几何分布.
例2.7 一袋中有a个白球,b个红球, a+b=N,从中不放回地取n个球,设每 次取到各球的概率相等,以X表示取到 的白球数,则X服从超几何分布。
P( X 3) 1 P( X 0) P( X 1) P( X 2)
0.8760;
利用泊松分布进行近似计算,取 5,
P( X 3) 1 e5 5e5 52 e5 0.8753. 0! 1! 2!
泊松分布使用Excel表单: 在Excel的任一单元格输入 “=POISSON.DIST(2,5,1)”,回车, 就在单元格中出现“0.124652019”.
,k
1, 2,3,...
(5)V服从巴斯卡分布,
P(V
k)
C2 k 1
2k 3 3k
,k
3, 4,5,...
43
2.3 随机变量的分布函数
定义:随机变量X,若对任意实数x,函数
F(x) P(X x)
称为X 的分布函数.
F ( x)的几何意义:
X
任何随机变 量都有相应 的分布函数
]
x
分布函数的性质: 1) 0 F(x) 1;
P( X 3) P( A1A 2 A3 ) p3
一般 P( X k) Cnk pk (1 p)nk , k 0,1, 2, , n
例2.3 有一大批产品,其验收方案如下: 先作第一次检验,从中任取10件,经检 验无次品接受这批产品,次品数大于2 拒收;否则作第二次检验,从中任取5 件,仅当5件中无次品便接受这批产品, 设产品的次品率为p.求这批产品能被 接受的概率.
Ck 100
0.05k
0.95100k
k 0
k 0
26
使用Excel表单: 在任一单元格中输入 “=BINOM.DIST(10,100,0.05,TRUE)”, 点“确定”后,在单元格中出现“0.988528”. 这里“TRUE” 可用“1”代替.
计算P(X=10), 在任一单元格中输入 “=BINOM.DIST(10,100,0.05, FALSE)”, 点“确定”后,在单元格中出现“0.016715884”. 这里“FALSE” 可用“0”代替.
例2.2 若随机变量X的概率分布律为
P( X k ) c k ,k 0,1, 2, , 0
k!
求常数c.
12
解: 1 P{X k} k 0
k
c
ce
k0 k !
c e
几个重要的离散型随机变量分布
一、0-1分布 若X的分布律为:
X 01 p qp
随机变量只可能 取0、1 两个值
(1 p)10 [10 p(1 p)9 45 p2 (1 p)8] (1 p)5
25
例2.4 设随机变量 X ~ B(100, 0.05), 求P(X 10)和P(X 10)
10
10
解:P(X 10)
P(X k)
Ck 100
0.05k
0.9
k 0
k 0
10
10
10)
P(X k)
41
思考题:一盒中有2个红球4个白球, (1)从中取一球,X表示取到的红球数; (2)采用不放回抽样取3球,Y表示取到的 红球数; (3)采用放回抽样取3球,Z表示取到的红 球数; (4)采用放回抽样取球,直到取到红球为 止,U表示取球次数; (5)采用放回抽样取球,直到取到3个红球 为止,V表示取球次数。 上述随机变量X,Y,Z,U,V的分布律是什么呢?