必修四第一章三角函数复习与小结
最新数学必修四三角函数公式总结与归纳
sin(α+β)=sinαcosβ+cosαsinβ,
sin(α-β)=sinαcosβ-cosαsinβ
tan(α+β)= ,
tan(α-β)= ,
4、二倍角的三角函数:
sin2α=2sinαcosα,
cos2α=cos2α-sin2α
=1-2sin2α
合计50100%7、其他公式:
sinαcosβ= [sin(α+β)+sin(α-β)],
cosαsinβ= [sin(α+β)-sin(α-β)],
这里有营业员们向顾客们示范着制作各种风格炯异的饰品,许多顾客也是学得不亦乐乎。据介绍,经常光顾“碧芝”的都是些希望得到世界上“独一无二”饰品的年轻人,他们在琳琅满目的货架上挑选,然后亲手串连,他们就是偏爱这种DIY的方式,完全自助在现场,有上班族在里面精挑细选成品,有细心的小女孩在仔细盘算着用料和价钱,准备自己制作的原料。可以想见,用本来稀奇的原料,加上别具匠心的制作,每一款成品都必是独一无二的。而这也许正是自己制造所能带来最大的快乐吧。cosαcosβ= [cos(α+β)+cos(α-β)],
sin( +α)=cosα, cos( +α)=-sinα
sin( -α)=cosα, cos( -α)=sinα
2、同角三角函数基本关系:
sin2α+cos2α=1,
=tanα,
tanα×cotα=1,
1+tan2α= ,
1+cot2α=
cosα= ,
sinα=
3、两角和与差的三角函数:
cos(α+β)=cosαcosβ-sinαsinβ,
必修四:三角函数知识点
必修四:三角函数知识点在数学的学习中,三角函数是一个非常重要的部分。
它不仅在数学领域有着广泛的应用,在物理、工程等其他学科中也经常出现。
接下来,让我们一起深入了解一下必修四中的三角函数知识点。
首先,我们来认识一下什么是三角函数。
简单来说,三角函数就是以角度为自变量,以比值为函数值的函数。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
正弦函数 sin 是指在一个直角三角形中,一个锐角的对边与斜边的比值。
余弦函数 cos 则是这个锐角的邻边与斜边的比值。
正切函数 tan是这个锐角的对边与邻边的比值。
对于一个锐角α,sinα =对边/斜边,cosα =邻边/斜边,tanα =对边/邻边。
三角函数的定义域和值域需要我们特别注意。
正弦函数和余弦函数的定义域都是全体实数,值域都是-1, 1。
而正切函数的定义域是{x | x ≠ kπ +π/2,k ∈ Z},值域是全体实数。
三角函数的图像也是非常重要的知识点。
正弦函数 y = sin x 的图像是一个周期为2π,在-1, 1之间波动的曲线,它的图像关于原点对称。
余弦函数 y = cos x 的图像同样周期为2π,在-1, 1之间,图像关于 y轴对称。
正切函数 y = tan x 的图像周期为π,定义域内不连续,在每个周期内都是单调递增的。
三角函数的周期性是其一个重要特性。
正弦函数和余弦函数的周期都是2kπ(k 为整数),正切函数的周期是kπ(k 为整数)。
三角函数的诱导公式也是必须掌握的内容。
例如,sin(α) =sinα,cos(α) =cosα,sin(π α) =sinα,cos(π α) =cosα 等等。
这些诱导公式可以帮助我们将不同角度的三角函数值进行转化。
两角和与差的三角函数公式也非常实用。
sin(α +β) =sinαcosβ +cosαsinβ,sin(α β) =sinαcosβ cosαsinβ,cos(α +β) =cosαcosβsinαsinβ,cos(α β) =cosαcosβ +sinαsinβ。
4-1.7三角函数小结和复习(2)--高一上学期必修四【文教案】
4-1.7三角函数小结和复习(2)高一数学必修模块4第一章三角函数单元测试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合A={|,}2n n Z παα=∈2{|2,}3n n Z ααππ=±∈,B={2|,}3n n Z πββ=∈1{|,}2n n Z ββππ=+∈, 则A 、B 之间关系为( )A .AB ⊂B .B A ⊂C .B AA B 2.函数)42sin(log 21π+=x y 的单调减区间为)A .(,]()4k k k Z πππ-∈B .(k πC .3(,]()k k k Z ππππ-+∈D .(8k π3的值等于( )A D .-3 4α= ( )D .2π-3 5( )6.下列函数中同时具有①最小正周期是π;②图象关于点(6π,0)对称这两个性质的是( ) A. y =cos (2x +6π) B .y =sin (2x +6π) C.y =sin (2x +6π)D.y =tan (x +6π)7.已知cos (02)y x x π=≤≤的图象和直线y=1围成一个封闭的平面图形,该图形的面积是( )A .4πB .2πC .8D .48.与正弦曲线x y sin =关于直线34x π=对称的曲线是( )A .x y sin =B .x y cos =C .x y sin -=D .x y cos -=9. 若方程1cos +=ax x 恰有两个解,则实数a 的取值集合为 ( )A. 2222,,33ππππ--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B.22,00,ππ-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭}2π 10.已知函数)sin(ϕω+=x A y 在同一周期内,9π=x 小值-21,则该函数解析式为 ( ) A .)63sin(2π-=x y B .)63sin(21π+=x y C =y )63π-x11..4π,则)4(πf 的值是 ( )12],[)cos()(b a x M x g 在ϕω+=上D .可以取得最小值-M131415.设)co s()sin ()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若 (2001)1,f =则(2005)f = .16.设函数()sin()(0,)22f x x ππωϕωϕ=+>-<<,给出以下四个论断:①它的图象关于直线12x π=对称; ②它的图象关于点(,0)3π对称;③它的周期是π; ④在区间[,0)6π-上是增函数。
高中数学必修四三角函数知识点
高中数学必修四三角函数知识点高中数学必修四三角函数知识点详解角是我们在几何学中经常接触到的重要概念,而三角函数则是与角密切相关的一类函数。
在高中数学必修四中,三角函数是一个重要的知识点,对于数学学习的深入和数学建模的实践具有重要的意义。
本文将结合具体例子,详细介绍高中数学必修四三角函数的相关知识。
一、正弦函数和余弦函数正弦函数和余弦函数是最基本、最常用的两个三角函数。
我们首先从几何解释的角度来理解它们。
对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正弦值sinA和余弦值cosA。
而正弦函数sinx和余弦函数cosx则是将角x所对应的正弦值和余弦值关系式表示的函数。
举个例子来说明,假设有一角x=30°,那么根据单位圆上的坐标特点,点(x,y)的坐标值为(√3/2,1/2)。
因此,角x的正弦值sinx=1/2,余弦值cosx=√3/2。
我们可以用这样的方法,通过观察和计算,来确定正弦函数和余弦函数的函数图像和性质。
二、正切函数和余切函数正切函数和余切函数是另外两个重要的三角函数。
正切函数tanx和余切函数cotx则是将角x所对应的正切值和余切值关系式表示的函数。
我们以正切函数为例,来解释一下它的定义和性质。
对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正切值tanA。
正切函数tanx就是将角x所对应的正切值关系式表示的函数。
正切函数tanx的一个重要特点是周期性。
考虑tanx的函数图像,我们可以观察到在每个周期内,tanx呈现出规律的周期性变化。
而周期为π的函数图像在整个定义域上都是无穷区间波动的。
三、其他三角函数除了上述介绍的正弦函数、余弦函数、正切函数和余切函数之外,还有其他一些与三角函数密切相关的函数,如割函数secx和余割函数cscx等。
割函数和余割函数定义如下:割函数secx是角x对应的余弦倒数的函数,余割函数cscx是角x对应的正弦倒数的函数。
必修4第一章 《三角函数》期末复习教案
第一章《三角函数》期末复习教案一、网络构建二、要点归纳1.任意角三角函数的定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: (1)y 叫做α的正弦,记作sin α,即sin α=y . (2)x 叫做α的余弦,记作cos α,即cos α=x . (3)y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0). 2.同角三角函数的基本关系式 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . 3.诱导公式六组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.当k 为偶数时,函数名不改变;当k 为奇数时,函数名改变,然后前面加一个把α视为锐角时原函数值的符号.记忆口诀为“奇变偶不变,符号看象限”.4.正弦函数、余弦函数和正切函数的性质函数y =sin xy =cos xy =tan x图象定义域 R R ⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z值域[-1,1][-1,1]R对称性对称轴:x =k π+π2(k ∈Z );对称中心:(k π,0)(k ∈Z ) 对称轴:x =k π(k ∈Z );对称中心:⎝⎛⎭⎫k π+π2,0(k ∈Z )对称中心:⎝⎛⎭⎫k π2,0(k ∈Z ), 无对称轴奇偶性 奇函数 偶函数 奇函数 周期性最小正周期:2π 最小正周期:2π 最小正周期:π 单调性在⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z )上单调递增;在[-π+2k π,2k π] (k ∈Z )上单调递增;在[2k π,π+2k π]在开区间⎝⎛⎭⎫k π-π2,k π+π2 (k ∈Z )上单调递增在⎣⎡⎦⎤π2+2k π,3π2+2k π(k ∈Z )上单调递减(k ∈Z )上单调递减最值当x =π2+2k π(k ∈Z )时,y max =1;当x =-π2+2k π(k ∈Z )时,y min =-1当x =2k π(k ∈Z )时,y max =1;当x =π+2k π(k ∈Z )时,y min =-1无最值题型一 三角函数的化简与求值例1 已知f (α)=sin 2(π-α)·cos (2π-α)·tan (-π+α)sin (-π+α)·tan (-α+3π).(1)化简f (α);(2)若f (α)=18,且π4<α<π2,求cos α-sin α的值;(3)若α=-47π4,求f (α)的值.考点 综合运用诱导公式化简、求值 题点 综合运用诱导公式化简、求值 解 (1)f (α)=sin α·cos α·tan α(-sin α)(-tan α)=sin α·cos α.(2)由f (α)=sin α·cos α=18可知,(cos α-sin α)2=cos 2α-2sin α·cos α+sin 2α =1-2sin α·cos α=1-2×18=34.又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0,∴cos α-sin α=-32. (3)∵α=-47π4=-6×2π+π4,∴f ⎝⎛⎭⎫-47π4=cos ⎝⎛⎭⎫-47π4·sin ⎝⎛⎭⎫-47π4 =cos ⎝⎛⎭⎫-6×2π+π4·sin ⎝⎛⎭⎫-6×2π+π4 cos π4·sin π4=22×22=12.反思感悟 解决三角函数的化简与求值问题一般先化简再求值.在应用中,要注意掌握解题的技巧.比如:已知sin α±cos α的值,可求cos αsin α,注意应用(cos α±sin α)2=1±2sin αcos α. 跟踪训练1 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值; (2)把1cos 2α-sin 2α用tan α表示出来,并求其值.考点 运用基本关系式求三角函数值 题点 运用基本关系式求三角函数值 解 (1)由sin α+cos α=15,得1+2sin αcos α=125,所以sin αcos α=-1225,因为α是三角形的内角,所以sin α>0,cos α<0, 所以sin α-cos α=(sin α-cos α)2 =(sin α+cos α)2-4sin αcos α =⎝⎛⎭⎫152+4825=75, 故得sin α=45,cos α=-35,所以tan α=-43.(2)1cos 2α-sin 2α=cos 2α+sin 2αcos 2α-sin 2α=1+tan 2α1-tan 2α, 又tan α=-43,所以1cos 2α-sin 2α=1+tan 2α1-tan 2α=-257. 题型二 三角函数的图象与性质例2 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值. 考点 正弦、余弦函数的最大(小)值 题点 正弦、余弦函数的最大(小)值 解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0, 于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.反思感悟 研究y =A sin(ωx +φ)的单调性、最值问题,把ωx +φ看作一个整体来解决.跟踪训练2 已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,且A ⎝⎛⎭⎫π2,1,B (π,-1),则φ的值为 .考点 求三角函数解析式 题点 根据三角函数图象求解析式 答案 -5π6解析 根据函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象,且A ⎝⎛⎭⎫π2,1,B (π,-1),可得从点A 到点B 正好经过了半个周期,即12·2πω=π-π2,所以ω=2.再把点A ,B 的坐标代入可得2sin ⎝⎛⎭⎫2×π2+φ=-2sin φ=1,2sin(2×π+φ)=2sin φ=-1, 所以sin φ=-12,所以φ=2k π-π6,或φ=2k π-5π6,k ∈Z .又|φ|<π,所以φ=-π6或-5π6.当φ=-π6时不合题意,所以φ=-5π6.题型三 三角函数的最值或值域命题角度1 可化为y =A sin(ωx +φ)+k 型例3 求函数y =-2sin ⎝⎛⎭⎫x +π6+3,x ∈[0,π]的最大值和最小值. 考点 正弦、余弦函数的最大(小)值 题点 正弦、余弦函数的最大(小)值 解 ∵x ∈[0,π],∴x +π6∈⎣⎡⎦⎤π6,7π6, ∴-12≤sin ⎝⎛⎭⎫x +π6≤1.当sin ⎝⎛⎭⎫x +π6=1,即x =π3时,y 取得最小值1. 当sin ⎝⎛⎭⎫x +π6=-12,即x =π时,y 取得最大值4. ∴函数y =-2sin ⎝⎛⎭⎫x +π6+3,x ∈[0,π]的最大值为4,最小值为1. 反思感悟 利用y =A sin(ωx +φ)+k 求值域时要注意角的取值范围对函数式取值的影响. 跟踪训练3 (2017·全国Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35 D.15考点 正弦、余弦函数的最大(小)值 题点 正弦、余弦函数的最大(小)值 答案 A解析 ∵⎝⎛⎭⎫x +π3+⎝⎛⎭⎫π6-x =π2, ∴f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6 =15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫π6-x =15sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x +π3 =65sin ⎝⎛⎭⎫x +π3≤65. ∴f (x )max =65.故选A.命题角度2 可化为二次函数型例4 函数y =-tan 2x +4tan x +1,x ∈⎣⎡⎦⎤-π4,π4的值域为 . 考点 正切函数的定义域、值域 题点 正切函数的值域 答案 [-4,4]解析 ∵-π4≤x ≤π4,∴-1≤tan x ≤1.令tan x =t ,则t ∈[-1,1], ∴y =-t 2+4t +1=-(t -2)2+5. ∴当t =-1,即x =-π4时,y min =-4,当t =1,即x =π4时,y max =4.故所求函数的值域为[-4,4].反思感悟 在换元时要立刻写出新元的范围,否则极易出错.跟踪训练4 (2017·全国Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是 . 考点 正弦、余弦函数的最大(小)值 题点 余弦函数的最大(小)值 答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎫cos x -322+1. ∵x ∈⎣⎡⎦⎤0,π2,∴cos x ∈[0,1], ∴当cos x =32时,f (x )取得最大值,最大值为1. 题型四 数形结合思想在三角函数中的应用例5 如果关于x 的方程sin 2x -(2+a )sin x +2a =0在x ∈⎣⎡⎦⎤-π6,5π6上有两个实数根,求实数a 的取值范围.考点 三角函数中的数学思想 题点 三角函数中的数形结合思想 解 sin 2x -(2+a )sin x +2a =0, 即(sin x -2)(sin x -a )=0. ∵sin x -2≠0,∴sin x =a ,∴此题转化为求在x ∈⎣⎡⎦⎤-π6,5π6上,sin x =a 有两个实数根时a 的取值范围. 由y =sin x ,x ∈⎣⎡⎦⎤-π6,5π6与y =a 的图象(图略)知12≤a <1. 故实数a 的取值范围是⎣⎡⎭⎫12,1.反思感悟 数形结合思想贯穿了三角函数的始终,对于与方程解有关的问题以及在研究y =A sin(ωx +φ)(A >0,ω>0)的性质和由性质研究图象时,常利用数形结合思想. 跟踪训练5 方程lg|x |=sin ⎝⎛⎭⎫x +π3的实数根的个数为( ) A .4 B .5 C .6 D .7 考点 三角函数的数学思想 题点 三角函数中的数形结合思想 答案 C解析 由⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3≤1得-1≤lg|x |≤1,即110≤|x |≤10, 方程lg|x |=sin ⎝⎛⎭⎫x +π3实根的个数就是函数y =lg|x |与y =sin ⎝⎛⎭⎫x +π3图象公共点的个数, 当x >0时,两函数图象如图所示,两图象有3个公共点,同理,当x <0时,两图象也有3个公共点, 故两图象共有6个公共点,从而方程有6个实数根, 故选C.1.已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α等于( ) A.223 B .-223 C.13 D .-13答案 D解析 cos ⎝⎛⎭⎫π4+α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4-α=-sin ⎝⎛⎭⎫α-π4=-13. 2.函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3考点 求三角函数的解析式 题点 根据三角函数的图象求解析式 答案 A解析 从图象可得34T =5π12-⎝⎛⎭⎫-π3=3π4, ∴T =π=2πω,∴ω=2.又∵f ⎝⎛⎭⎫5π12=2sin ⎝⎛⎭⎫2×5π12+φ=2sin ⎝⎛⎭⎫5π6+φ=2, 且-π2<φ<π2,∴φ=-π3.3.函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位长度后,得到一个偶函数的图象,则φ的一个可能的值为( )A .-π4B .0 C.π4 D.3π4考点 三角函数图象的平移、伸缩变换 题点 三角函数图象的平移变换 答案 C解析 平移后的图象对应的函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ. 因为此函数为偶函数,中小学教育资源及组卷应用平台21世纪教育网() 所以π4+φ=π2+k π(k ∈Z ), 所以φ的一个可能值为π4. 4.y =2sin x sin x +2的最小值是( ) A .2 B .-2 C .1 D .-1考点 正弦、余弦函数的最大(小)值 题点 正弦函数的最大(小)值答案 B解析 由y =2sin x sin x +2=2-4sin x +2, 当sin x =-1时,y =2sin x sin x +2取得最小值-2. 5.已知函数f (x )=2sin ⎝⎛⎭⎫2x -π6+a ,a 为常数. (1)求函数f (x )的最小正周期;(2)求函数f (x )的单调递增区间;(3)若x ∈⎣⎡⎦⎤0,π2时,f (x )的最小值为-2,求a 的值. 考点 正弦、余弦函数性质的综合应用 题点 正弦、余弦函数性质的综合应用解 (1)f (x )=2sin ⎝⎛⎭⎫2x -π6+a , 所以f (x )的最小正周期T =2π2=π. (2)由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ), 得k π-π6≤x ≤k π+π3(k ∈Z ), 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). (3)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, 所以当x =0时,f (x )取得最小值,即2sin ⎝⎛⎭⎫-π6+a =-2,故a =-1.。
必修四-第一章-三角函数知识点及例题详解
第一章 三角函数 知识点详列一、角的概念及其推广 正角:一条射线绕着端点以逆时针方向旋转形成的角1、任意角 零角:射线不做任何旋转形成的角 负角:一条射线绕着端点以顺时针方向旋转形成的角记忆法则:第一象限全为正,二正三切四余弦.ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正例1、(1)判断下列各式的符号: ①,265cos 340sin∙ ②,423tan 4sin ⎪⎭⎫⎝⎛-∙π③)cos(sin )sin(cos θθ其中已知)0tan ,cos cos (<-=θθθ且答案:+ — —2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z3、终边相同的角:一般地,所有与α角终边相同的角连同α在内(而且只有这样的角),cot α<0tan α<0cos α>0sin α<0cot α>0tan α>0cos α<0sin α<0cot α<0tan α<0cos α<0sin α>0sin α>0tan α>0cot α>0cos α>0可以表示为.,360Z k k∈+∙α4、特殊角的集合:(1)终边在X 轴非负半轴上的角的集合为{};,2Z k k ∈=παα(2)终边在X 轴非正半轴上的角的集合为(){};,12Z k k ∈+=πα (3)终边在X 轴上的角的集合为{};,Z k k ∈=παα(4)终边在Y 轴非负半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (5)终边在Y 轴非正半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα(6)终边在Y 轴上的角的集合为;,2⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (7)终边在坐标轴上角的集合为;,2⎭⎬⎫⎩⎨⎧∈=Z k k παα(8)终边在一、三象限角平分线上的角的集合为;,4⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (9)终边在二、四象限角平分线上的角的集合为.,4⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα 二、弧度1、定义:长度等于半径长的弧所对的圆心角叫做1弧度2、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 3、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= 4、两个公式:若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、三角函数1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y 叫做α的正弦 记作: r y =αsin 比值r x 叫做α的余弦 记作: r x =αcos比值x y 叫做α的正切 记作: x y =αtan比值y x叫做α的余切 记作: yx =αcot比值x r 叫做α的正割 记作: x r =αsec 比值y r叫做α的余割 记作: yr =αcsc 以上六种函数,统称为三角函数.2.同角三角函数的基本关系式: (1)倒数关系:tan cot 1αα⋅=;(2)商数关系:sin cos tan ,cot cos sin αααααα==; (3)平方关系:22sin cos 1αα+= .3.诱导公式,奇变偶不变,符号看象限.()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例2.化简(1)sin()cos()44ππαα-++;(2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. ry)(x,αP解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==,∴1134cot()cot()tan 223ππααα-=--=-=.例3 确定下列三角函数值的符号(1)cos250° (2))4sin(π-(3)tan (-672°) (4))311tan(π解:(1)∵250°是第三象限角 ∴cos250°<0(2)∵4π-是第四象限角,∴0)4sin(<-π(3)tan (-672°)=tan (48°-2×360°)=tan48°而48°是第一象限角,∴tan (-672°)>0(4) 35tan)235tan(311tanππππ=+= 而35π是第四象限角,∴0311tan<π. 例4 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°. 解:原式=sin(-4×360°+120°)·cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin120°·cos30°+cos60°·sin30°+tan135°=21212323⨯+⨯-1=0 题型一 象所在象限的判断 例5(1)如果α为第一象限角,试问2α是第几象限角?(2)如果α为第二象限角,试问:απαπα+--,,分别为第几象限角?答案:(1)第一或者第三;(2)第三,第一,第四。
高中数学必修4 第一章 三角函数的小结与复习
必修4 第一章三角函数的小结与复习
知识与技能:
理解本章知识结构体系(如下图),了解本章知识之间的内在联系。
过程与方法:
三角函数值的符号是由对应的三角函数线的方向确定的;具有相同性质的角可以用集合或区间表示,是一种对应关系;弧度制的任意角是实数,这些实数可以用三角函数线进行图形表示,因此,复习的目的就是要进一步了解符号确定方法,了解集合与对应,数与形结合的数学思想与方法。
另外,正弦函数的图象与性质的得出,要通过简谐运动引入,分析、确定三角函数图象的关键点画图象,观察得出其性质,通过类比、归纳得出余弦函数、正切函数的图象与性质,所以,复习本章时要在式子和图形的变化中,学会分析、观察、探索、类比、归纳、平移、伸缩等基本方法.
教学过程:
试题讲评,作业讲评,问题研究。
见作业纸。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学必修四知识点大全
知识点串讲必修四第一章:三角函数 1.1.1 任意角1、角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z ⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍;⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 3、写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z }.4、已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z ) 因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z ) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z ) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k =2n (n ∈Z ),则n ·360°+90°<2α<n ·360°+135°(n ∈Z ) ,当k 为奇数时,令k =2n +1 (n ∈Z ),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) ,负角:按顺时针方向旋转形成的角 始边终边顶点AO B 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角因此2α属于第二或第四象限角. 1。
(新课程)2013高中数学 第1章《三角函数》教案 苏教版必修4
本章复习与小结三角函数一、三角函数的基本概念 1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+⋅=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)(180'≈==ππ弧度弧度(3)弧长公式:r l ⋅=α 扇形面积公式:22121r lr S α== 3.任意角的三角函数yxx y x rr x y r r y ======ααααααcot tan sec cos csc sin注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一)诱导公式:απ±⋅2k )(Z k ∈与α的三角函数关系是“立变平不变,符号看象限”。
如:,27cos ⎪⎭⎫ ⎝⎛+απ ()⎪⎭⎫⎝⎛--απαπ25sin ;5tan 等。
(二)同角三角函数的基本关系式: ①平方关系1cos sin 22=+αα;αααα2222tan 11cos cos 1tan 1+=⇔=+②商式关系αααtan cos sin =;αααcot sin cos = ③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。
关于公式1cos sin 22=+αα的深化()2cos sin sin 1ααα±=±;αααcos sin sin 1±=±;2cos2sinsin 1ααα+=+如:4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=-注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。
2、主要用途:a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的X 围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 三、三角函数的性质y=sinxy=cosxy=tanxy=cotx图象定义域 x ∈R x ∈R x ≠k π+2π(k ∈Z ) x ≠k π(k ∈Z ) 值域 y ∈[-1,1] y ∈[-1,1] y ∈R y ∈R 奇偶性奇函数偶函数奇函数奇函数单调性在区间[2k π-2π,2k π+2π]上都是增函数在区间[2k π+2π,2k π+23π]上都是减函数 在区间[2k π-2k π]上都是增函数 在区间[2k π,2k π+π]上都是减函数在每一个开区间 (k π-2π, k π+2π) 内都是增函数在每一个开区间(k π,k π+π)内都是减函数周期 T=2πT=2π T=πT=π 对称轴 2ππ+=k xπk x =无无对称 中心()0,πk⎪⎭⎫ ⎝⎛+0,2ππk ⎪⎭⎫⎝⎛0,2πk ⎪⎭⎫⎝⎛0,2πk基础题型归类1.运用诱导公式化简与求值:要求:掌握2k πα+,πα+,α-,πα-,2πα-,2πα+等诱导公式. 记忆口诀:奇变偶不变,符号看象限. 例1.求值:cos600练1 (1)若cos(π+α)=12-,32π<α<2π, 则sin(2π-α)等于.(2)若(cos )cos3f x x =,那么(sin30)f ︒的值为.(3)sin (176-π)的值为.2.运用同角关系化简与求值:要求:掌握同角二式(22sin cos 1αα+=,sin tan cos ααα=),并能灵活运用. 方法:平方法、切弦互化. 例2 (1)化简sin 1sin tan tan sin cos x x x x x x +--; (2)已知51cos sin =+x x , 且π<<x 0, 求x tan 的值.练2 (1)已知81cos sin =⋅αα,且4π<α<2π,则ααsin cos -的值为. (2)已知αtan =3, 计算:(i )2212sin cos sin cos αααα+-; (ii )αααα22cos 4cos sin 3sin +-. 3.运用单位圆及三角函数线:要求:掌握三角函数线,利用它解简单的三角方程与三角不等式. 方法:数形结合. 例5 (1)已知42ππθ<<,则sin θ、cos θ、tan θ的大小顺序为.(2)函数12()log (sin cos )f x x x =-的定义域为.练5 (1)若1cos 2α>-, 则角α的取值集合为____________.(2)在区间(0,2π)内,使x x cos sin <成立的x 的取值X 围 . 4.弧度制与扇形弧长、面积公式:要求:掌握扇形的弧长与面积计算公式,掌握弧度制. 方法:方程思想.例6 某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的弧度数为.练6 (1)终边在直线y =上的所有角的集合为,其中在-2π~2π间的角有. (2)若α为第三象限角,那么-α,2α、2α为第几象限的角? 5.三角函数的定义、定义域与值域:要求:掌握三角函数定义(单位圆、终边上点),能求定义域与值域. 方法:定义法、数形结合、整体.例7角α的终边过点P (-8m ,-6cos60°)且cos α=-54,则m 的值是.练7 (1)函数()tan(2)13f x x π=--+的定义域为____________.(2)把函数)32sin(π+=x y 的图像上各点的横坐标变为原来的13,再把所得图像向右平移8π,得到. 6.三角函数的图象与性质:要求:掌握五点法作图、给图求式,由图象研究性质. 方法:五点法、待定系数法、数形结合、整体.例8 (1)已知函数()tan(2)26f x x π=++.求()f x 的最小正周期、定义域、单调区间.(2)已知函数3sin(2)4y x π=+.(i )求此函数的周期,用“五点法”作出其在长度为一个周期的闭区间上的简图. (ii )求此函数的最小值及取最小值时相应的x 值的集合 练8 (1)函数sin()(0,0,)y A x A ωϕωϕπ=+>><最高点D 的坐标是(2,2),由最高点运动到相邻的最低点时,函数图象与x 轴的交点坐标是(4,0),则函数的表达式是 . (2)如图,它表示电流sin()(0,0)I A t A ωϕω=+>>在一个周期内的图象. 则其解析式为.(3)函数12log sin(2)4y x π=+的单调减区间为.(4)函数2cos ,[0,2]y x x π=∈的图象和直线y =2所围成的封闭图形的面积为. (5)画出函数3sin(2)3y x π=+,x ∈R 的简图. 并有图象研究单调区间、对称轴、对称中心.7.三角函数的应用(1)某港口水深y (米)是时间t (0≤t ≤24,单位:小时)函数,记为)(t f y =,下面是某日水深数据: t (时) 03691215182124y (米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0 经过长期观察,)(t f y =的曲线可以近似看成y=Asin ωt+b 的图象. (i )根据以上数据求出)(t f y =的近似表达式;(ii )船底离海底5米或者5米以上是安全的,某船的吃水深度为6.5米(船底离水面距离),如果此船在凌晨4点进港,希望在同一天安全出港,那么此船最多在港口停留多少时间?(忽略进出时间).(2)如图,表示电流强度I 与时间t 的关系式sin()(0,0),I A t A ωϕω=+>>在一个周期内的图象.根据图象得到sin()I A t ωϕ=+的一个解析式是 .(3)已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,经过长期的观察,该函数的图象可以近似地看成sin()y A t b ωϕ=++.下表是测得的某日各时的浪高数据:依规定,当浪高不低于1米时浴场才开放,试安排白天内开放浴场的具体时间段.t (时) 0 3 6 9 12 15 18 21 24 y (米) 1.51.00.51.01.51.00.50.991.5。
山东省高中数学《第一章 三角函数》归纳整合课件 新人教A版必修4
轴对称图形, 对 轴对称图形,对称轴方 称轴方程是 x= 中心对称图 π kπ,k∈Z;中心 形,对称中 程是 x=kπ+2,k∈Z; 对称性 kπ 对称图形, 对称 心 2 ,0(k 中心对称图形,对称中 π kπ+ ,0 中心 心(kπ,0)k∈Z 2 ∈Z) k∈Z
π 2x+ 的图象( 6
π 2x- 的图象, 3
). π B.向右平移 个长度单位 4 π D.向右平移 个长度单位 2
π A.向左平移 个长度单位 4 π C.向左平移 个长度单位 2
解析
π π y=sin2x+6=sin2x+12,
专题四
三角函数的性质
高考中三角函数的性质是必考内容之一,着重考查三角函数的 定义域、值域、单调性、奇偶性、对称性等有关性质,特别是 复合函数的单调性问题应引起重视.
【例 5】 函数 f(x)=3sin
π 2x- 的图象为 3
C.
11 ①图象 C 关于直线 x= π 对称; 12 ②函数
专题一
任意角的三角函数的定义及三角函数线
掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利 用三角函数的定义求三角函数值,利用三角函数线判断三角函 数的符号,借助三角函数线求三角函数的定义域.
【例 1】 求函数 y= sin x+ 解 由题意知
1 cos x-2的定义域.
sin x≥0, sin x≥0, 即 1 1 cos x-2≥0, cos x≥2, 如图,结合三角函数线知:
3π y=sin2x- 4 的单调递增区间是
π 5π [kπ+8,kπ+ 8 ](k∈Z).
(3)由
3π y=sin2x- 4 , 8
高中必修四三角函数知识点总结
§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k&⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈°=57°18ˊ. 1°=180π≈(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ;xy =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线—SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =/1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限” (3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-—公式组四 公式组五 公式组六 x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- [公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 2tan 12tan2tan 2ααα-=公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =1 1+cot 2x =csc 2x =1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .3、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=?()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-★★2.正、余弦定理:在ABC ∆中有: ①正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩ ⇒ sin 2sin 2sin 2a A R b B R c C R ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩注意变形应用 ②面积公式:111sin sin sin 222ABC S abs C ac B bc A ∆=== ③余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). *x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T |212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y ) &由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。
必修四第一章 三角函数解题技巧
必修四第一章 三角函数解题技巧1 例说弧度制中的扇形问题与扇形有关的问题是弧度制中的难点,我们可以应用弧长公式l =|α|r 和扇形面积公式S =12|α|r 2解决一些实际问题,这类问题既充分体现了弧度制在运算上的优越性,又能帮助我们加深对弧度制概念的理解.下面通过几例帮助同学们分析、归纳弧度制下的扇形问题. 例1 已知扇形的圆心为60°,所在圆的半径为10,求扇形的弧长及扇形中该弧所在的弓形面积.例2 扇形的半径为R ,其圆心角α(0<α≤π)为多大时,扇形内切圆面积最大,其最大值是多少?例3 已知扇形的周长为30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?针对练习:1.扇形的周长C 一定时,它的圆心角θ取何值才能使扇形面积S 最大?最大值是多少?2.在扇形AOB 中,∠AOB =90°,弧AB 的长为l ,求此扇形内切圆的面积.3.已知扇形AOB 的周长是6 cm ,该扇形的中心角是1弧度,求该扇形的面积.2 任意角三角函数问题错解辨析任意角三角函数是三角函数的基础,在学习这部分内容时,有的同学经常因为概念不清、考虑不周、观察代替推理等原因而错解题目,下面就解题中容易出现的错误进行分类讲解,供同学们参考.一、概念不清例1 已知角α的终边在直线y =2x 上,求sin α+cos α的值.二、观察代替推理例2 当α∈(0,π2)时,求证:sin α<tan α.三、估算能力差例3 若θ∈⎝⎛⎭⎫0,π2,则sin θ+cos θ的一个可能的值是( ) A.23B.27πC.4-22 D .13 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系巧应用.一、知一求二型例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、妙用“1”例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式型求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.4 单调不“单调”,应用很“奇妙”三角函数的单调性是三角函数的重要性质之一,也是高考常考的内容.利用其可以方便地进行比较值的大小、求单调区间、求解最值和解不等式等.下面举例归纳该性质在解题中的具体应用,希望能对同学们的学习有所帮助.一、信心体验——比较大小例1 比较cos5π14,sin 2π7,-cos 8π7的大小.二、重拳出击——求解最值例2 已知f (x )=2sin(2x -π4),x ∈R .求函数f (x )在区间[π8,3π4]上的最小值和最大值.三、触类旁通——解不等式例3 若0≤α<2π,sin α>33cos α,求α的取值范围.5 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列每组数的大小.(1)tan 1,tan 2,tan 3;(2)tan(-13 π4)与tan(-17 π5).6 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y = cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求:(1)函数f (x )的单调递减区间;(2)函数f (x )在[-π,0]上的单调递减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =5π12D .x =π3五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ等于( ) A.π2 B.2π3 C.3π2 D.5π37 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b 为a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为( )A .[-1,1]B.⎣⎡⎦⎤-22,1C.⎣⎡⎦⎤-1,22D.⎣⎡⎦⎤-1,-22二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________________________________________________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )( ) A .在区间⎣⎡⎦⎤2π3,4π3上是增函数 B .在区间⎣⎡⎦⎤3π4,13π12上是增函数 C .在区间⎣⎡⎦⎤-π8,π4上是减函数 D .在区间⎣⎡⎦⎤π3,5π6上是减函数五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________.六、研究方程的实根例6 已知方程2sin(2x +π3)-1=a ,x ∈[-π6,13π12]有两解,求a 的取值范围.8 三角函数学习中的“小技巧、大突破”从近几年高考数学试卷统计情况看,三角函数是高考的六大板块之一,每年考一道大题和一道小题,而一道大题里面往往又隐含了若干个小问题.所以,高中生应该注意三角函数知识里面的容易被忽略的一些小问题、小技巧.一、“已知三角函数值求角”问题在学习过程中学生们通常存在这么几个困惑:1、给出一个三角函数值可能对应着多个或无数个角,不知道该先求哪个角?2、不能准确的写出已知要求的那个范围的角.下面以四个例题说明:例1 已知sin x =22且x ∈[-π2,π2],求x 的取值集合. 例2 已知sin x =-22且x ∈[-π2,π2],求x 的取值集合. 例3 已知sin x =-22且x ∈[0,2π],求x 的取值集合. 例4 已知sin x =-22,求x 的取值集合.二、“利用三角函数的单调性比较大小”问题在教学中通常要求学生把三角函数化成同名且自变量落在一个单调区间内即可,但是学生在实际操作过程中容易混淆单调区间,不如我们把此问题中的自变量利用诱导公式负角化为正角,正角统一都化为锐角,这样就更简洁、明朗了,因为正弦、余弦、正切函数都在区间(0,π2)内的单调性依次为:单调递增、单调递减、单调递增。
必修四三角函数知识点
必修四三角函数知识点三角函数是数学中一个重要的分支,在必修四的课程中,我们对三角函数进行了较为深入的学习。
下面就让我们一起来梳理一下这部分的重要知识点。
一、角的概念的推广1、正角、负角和零角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,如果一条射线没有作任何旋转,我们称它形成了一个零角。
2、象限角使角的顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边在第几象限,就说这个角是第几象限角。
如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。
3、终边相同的角所有与角α终边相同的角(包括角α在内),均可表示为:k·360°+α,k∈Z。
二、弧度制1、弧度制的定义长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。
2、弧度与角度的换算180°=π rad , 1°=π/180 rad , 1 rad =(180/π)°3、扇形的弧长公式和面积公式弧长公式:l =|α|r (α为圆心角的弧度数,r 为半径)面积公式:S = 1/2 lr 或 S = 1/2 |α|r²三、任意角的三角函数1、定义设α是一个任意角,它的终边上任意一点 P(x,y),r =√(x²+y²) ,那么:正弦函数:sinα = y/r余弦函数:cosα = x/r正切函数:tanα = y/x (x ≠ 0)2、三角函数值在各象限的符号正弦函数在一、二象限为正,在三、四象限为负;余弦函数在一、四象限为正,在二、三象限为负;正切函数在一、三象限为正,在二、四象限为负。
3、同角三角函数的基本关系平方关系:sin²α +cos²α = 1商数关系:tanα =sinα/cosα (cosα ≠ 0)四、诱导公式1、公式一sin(2kπ +α) =sinα ,cos(2kπ +α) =cosα ,tan(2kπ +α) =tanα (k∈Z)2、公式二sin(π +α) =sinα ,cos(π +α)=cosα ,tan(π +α) =tanα3、公式三sin(α) =sinα ,cos(α) =cosα ,tan(α) =tanα4、公式四sin(π α) =sinα ,cos(π α) =cosα ,tan(π α) =tanα5、公式五sin(π/2 α) =cosα ,cos(π/2 α) =sinα6、公式六sin(π/2 +α) =cosα ,cos(π/2 +α) =sinα诱导公式可以将任意角的三角函数转化为锐角的三角函数,从而进行求值和化简。
高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案
21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3
高一必修4第一章三角函数(预习)讲解
§1.1.1 任意角※ 学习探究1.角的定义:一条射线绕着______,从__位置OA 旋转到__位置OB ,形成一个角α,点O 是角的顶点,射线,OA OB 分别是角α的______。
说明:在不引起混淆的前提下,“角α”或“α∠”可以简记为α. 2.角的分类:正角:按___方向旋转形成的角叫做正角; 负角:按____方向旋转形成的角叫做负角;零角:如果一条射线_____旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:在直角坐标系中,使角的___与坐标原点重合,角的___与x 轴的非负轴重合,则 ;(1)象限角:若角的___(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:30,390,330-都是第__象限角;300,60-是第__象限角。
(2)非象限角(也称象限间角、轴线角):如果角的终边在___上,就认为这个角不属于任何象限。
例如:90,180,270等等。
4.终边相同的角所有与30角终边相同的角,连同30角自身在内,都可以写成______的形式;反之,所有形如30360k +⋅()k Z ∈的角都与30角的__相同。
从而得出一般规律:。
新知:终边相同的角的集合:所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅∈, 小结:1、任一与角α终边相同的角,都可以表示成角α与整数个周角的和。
2、终边相同的角不一定相等,相等的角终边一定相同。
※ 典型例题例1.在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角? (1)120- (2)640 (3)95012'-变式:写出与下列终边相同的角的集合,并写出-720°~360°间角. (1)120°;(2)-270°;(3)1020°. 例 2. 写出终边在下列位置上的角的集合: (1)y 轴; (2)直线y=x.变式:(1)终边落在x 轴正半轴上的角的集合如何表示?如终边落在x 轴上呢?(2)终边落在坐标轴上的角的集合如何表示?小结:0°~360°是指 ;注意区分终边相同的角、象限角、区间角的表示.例3.若3601575,k k Z α=⋅-∈,试判断角α所在象限。
必修四三角函数和三角恒等变换知识点及题型分类总结
必修四三角函数和三角恒等变换知识点及题型分类总结三角函数知识点总结1、任意角: 正角:;负角:;零角:; 2、角得顶点与重合,角得始边与重合,终边落在第几象限,则称为第几象限角、第一象限角得集合为第二象限角得集合为第三象限角得集合为第四象限角得集合为终边在轴上得角得集合为终边在轴上得角得集合为终边在坐标轴上得角得集合为3、与角终边相同得角得集合为4 4 、已知就就是第几象限角,确定所在象限得方法: : 先把各象限均分等份, , 再从轴得正半轴得上方起, , 依次将各区域标上一、二、三、四, , 则原来就就是第几象限对应得标号即为终边所落在得区域、5、叫做弧度、6、半径为得圆得圆心角所对弧得长为,则角得弧度数得绝对值就就是、7、弧度制与角度制得换算公式:8 、若扇形得圆心角为, 半径为,弧长为, 周长为,面积为, 则l=、S=9、设就就是一个任意大小得角,得终边上任意一点得坐标就就是,它与原点得距离就就是,则,,、10、三角函数在各象限得符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正、11、三角函数线:、12 、同角三角函数得基本关系:(1);(2); ; (3) )13、三角函数得诱导公式: ,,、,,、,,、,,、,、,、口诀: : 奇变偶不变, , 符号瞧象限、重要公式⑴;⑵;⑶;⑷; ⑸(); ⑹()、二倍角得正弦、余弦与正切公式: ⑴、(2)(,)、⑶、公式得变形: :, 辅助角公式,其中、14、函数得图象平移变换变成函数得图象、15、函数得性质:① 振幅:; ② 周期:; ③ 频率:; ④ 相位:; ⑤ 初相:、16、图像正弦函数、余弦函数与正切函数得图象与性质:三角函数题型分类总结一.求值1、===2、(1)7 (07 全国Ⅰ) ) 就就是第四象限角,,则(2)(09 北京文)若,则、(3)(09 全国卷Ⅱ文)已知△ABC 中,,则、(4) 就就是第三象限角,,则==3 3 、(1))((7 07 陕西) ) 已知则=、(2)(04全国文)设,若,则=、(3)(06 福建)已知则=4 4 (0 0 7重庆) )下列各式中,值为得就就是()(A) (B)(C)(D) 5、(1 )(0 7福建) ) =(2)(06陕西)=。
高中数学必修四第一章三角函数公式总结
高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
高一数学必修四三角函数诱导公式总结
高一数学必修四三角函数诱导公式总结学习是一个坚持不懈的过程,走走停停便难有成就。
比如烧开水,在烧到80度是停下来,等水冷了又烧,没烧开又停,如此周而复始,又费精力又费电,很难喝到水。
学习也是一样,学任何一门功课,都不能只有三分钟热度,而要一鼓作气,天天坚持,久而久之,不论是状元还是伊人,都会向你招手。
小编高一频道为正在努力学习的你整理了《高一数学必修四三角函数诱导公式总结》,希望对你有帮助!【公式一:】设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)【公式二:】设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα【公式三:】任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα【公式四:】利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα【公式五:】利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα【公式六:】π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)【函数复习资料】一、定义与定义式:自变量_和因变量y有如下关系:y=k_+b则此时称y是_的一次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级高一学科数学版本苏教版课程标题必修四第一章三角函数复习与小结编稿老师王东一校林卉二校黄楠审核王百玲一、考点突破1. 三角函数的概念三角函数的概念多在选择题或填空题中出现,主要考查三角函数的意义、三角函数值符号的选取和终边相同的角的集合的运用。
2. 同角三角函数的基本关系式及诱导公式此处主要考查公式在求三角函数值时的应用,考查利用公式进行恒等变形的技能,以及基本运算能力,特别突出算理、算法的考查。
3. 三角函数的图象与性质三角函数的图象是三角函数概念和性质的直观形象的反映,要熟练掌握三角函数图象的变换和解析式的确定及通过图象的描绘、观察,讨论函数的有关性质。
4. 三角函数的应用主要考查由解析式作出图象并研究性质,由图象探求三角函数模型的解析式,利用三角函数模型解决最值问题。
三角函数来源于测量学和天文学。
在现代科学中,三角函数在物理学、天文学、测量学以及其他各种技术学科中有着广泛的应用。
三角函数是进一步学习其他相关知识和高等数学的基础。
本章主要利用数形结合的思想。
在研究一些复杂的三角函数时要应用换元法的思想,还要注意化归的思想在三角函数式化简求值中的应用,主化归的思想要包括以下三个方面:化未知为已知;化特殊为一般;等价化归。
二、重难点提示重点:角的概念的扩展及任意角的概念、弧度制、正弦、余弦和正切函数的图象与性质、“五点法”作图、诱导公式、函数y=Asin(ωx+φ)的图象与正弦函数y=sinx的图象间的关系、同角三角函数的基本关系。
难点:三角函数的概念、弧度制与角度制的互化、三角函数性质的应用、由正弦函数到y=Asin(ωx+φ)的图象变换、综合运用三角函数的公式进行求值、化简和证明等。
一、知识脉络图:二、知识点拨:1. x y sin =与x y cos =的周期是π。
2. )sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期为ωπ2=T 。
3. 2tanxy =的周期为2π。
4. )sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心为(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心为(0,21ππ+k );)tan(ϕω+=x y 的对称中心为(0,2πk )。
5. 当αtan ·1tan =β时,)(2Z k k ∈+=+ππβα;当1tan tan -=⋅βα时,()2k k Z παβπ-=+∈6. 函数x y tan =在R 上为增函数。
(×)[只能在某个单调区间上单调递增。
若在整个定义域上,则x y tan =为增函数的说法同样也是错误的。
]7. x y sin =不是周期函数;x y sin =为周期函数(π=T );Y=cos|x|x y cos =是周期函数(如图);y=|cosx|x y cos =为周期函数(π=T );随堂练习:函数f (x )=sinx•(cosx-sinx )的最小正周期是( ) A.4π B. 2πC. πD. 2π 解:∵f (x )=sinx•(cosx-sinx )=sinxcosx-sin 2x =21(sin2x+cos2x )-21=22sin (2x+4π)-21∴T=π 故选C .知识点一:三角函数的概念例题1 设角α属于第二象限,|cos2α|=-cos 2α,试判断角2α属于第几象限? 思路导航:首先应根据α所属象限确定出2α所属的象限,然后再由-cos 2α≥0,cos 2α≤0确定最终答案,要点就是分类讨论。
答案:因为α属于第二象限,所以2kπ+2π<α<2kπ+π(k ∈Z ),∴kπ+4π<2α<kπ+2π(k ∈Z )。
当k =2n (n ∈Z )时, 2nπ+4π<2α<2nπ+2π(n ∈Z )。
∴2α是第一象限角; 当k =2n +1(n ∈Z )时, 2nπ+π45<2α<2nπ+π23(n ∈Z )。
∴2α是第三象限角。
又由|cos 2α|=-cos 2α≥0⇒cos 2α≤0。
所以2α应为第二、三象限角或终边落在x 轴的负半轴上。
综上所述,2α是第三象限的角。
点评:由α所在象限,判断诸如2α,3α,4α等角所在的象限时,一般有两种办法:一种是利用终边相同的角的集合的几何意义,采用数形结合的办法确定2α,3α,4α所属的象限;另一种办法就是将k 进行分类讨论。
一般来说,分母是几就应分几类去讨论。
知识点二:同角三角函数基本关系式及诱导公式例题2 (1)已知π<α<2π,cos (α-7π)=53-,求sin (3π+α)与tan (α-27π)的值; (2)已知2+sinAcosA =5cos 2A ,求tanA 的值;(3)已知sinα+cosα=51,且α∈(0,π),求sin 3α-cos 3α的值。
答案:(1)∵cos (α-7π)=-cosα=53-,∴cosα=53。
又π<α<2π, ∴23π<α<2π,sinα=-54, sin (3π+α)=-sinα=54,tan (α-27π)=.435453sin cos )27cos()27sin(==-=--ααπαπα (2)将已知式化为2sin 2A +2cos 2A +sinA·cosA =5cos 2A ,∵cosA≠0,∴2tan 2A +tanA -3=0,tanA =1或tanA =-23。
(3)sinαcosα=21)cos (sin 2-+αα=2512-,∵α∈(0,π),∴sinα>0,cosα<0, ∴sinα-cosα>0,∴sinα-cosα=57cos sin 21=-αα, ∴sin 3α-cos 3α=57×(12512-)=12581。
点评:形如asinα+bcosα和asin 2α+bsinαcosα+ccos 2α的式子分别称为关于sinα、cosα的一次齐次式和二次齐次式,对它们涉及的三角式的变换常有如上的整体代入方法可供使用。
知识点三:三角函数的图象与性质例题3 对于函数f (x )=2sin (2x +3π),给出下列结论: ①图象关于原点成中心对称;②图象关于直线x =12π成轴对称;③图象可由函数y =2sin2x 的图象向左平移3π个单位得到;④图象向左平移12π个单位,即得到函数y =2cos2x的图象。
其中正确结论的个数为( )个A. 0B. 1C. 2D. 3思路导航:∵f (x )是非奇非偶函数,∴①错误。
∵f (x )是由y =2sin2x 向左平移6π个单位得到的, ∴③错误。
把x =12π代入f (x )中使函数取得最值, ∴②正确。
f (x )=2sin (2x +3π)−−−−→−个单位左移12πf (x )=2sin [2(x +12π)+3π]=2cos2x , ∴④正确。
答案:C点评:利用排除法求解选择题,是一个简单、易行的办法。
在用排除法时,要注意函数性质的应用。
例题4 设函数f (x )=sin3x +|sin3x|,则f (x )为( ) A. 周期函数,最小正周期为3π B. 周期函数,最小正周期为32π C. 周期函数,最小正周期为2π D. 非周期函数思路导航:本身可以直接把选项代入)()(x f T x f =+检验,也可化简=)(x f x x 3sin 3sin +。
答案:f (x )=sin3x +|sin3x|=⎪⎪⎩⎪⎪⎨⎧+<<++≤≤.3232332,0,33232,3sin 2πππππππk x k k x k x∴B 正确。
答案:B点评:遇到绝对值问题可进行分类讨论,将原函数写成分段函数。
本题也可以数形结合运用图象的叠加来考虑。
后者更简捷。
知识点四:三角函数的应用例题5 在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形。
若直角三角形中较小的锐角是θ,大正方形的面积是1,小正方形的面积是251,则sin2θ-cos2θ的值等于()A. 1B.2524- C.257D. -257思路导航:由题意,设大正方形边长AB=1,小正方形的边长是51,则BE=sinθ,AE=cosθ,∴cosθ-sinθ=51。
平方得2cosθsinθ=2524。
∴(cosθ+sinθ)2=1+2cosθsinθ=2549。
∴cosθ+sinθ=57。
∴sin2θ-cos2θ=(sinθ-cosθ)(sinθ+cosθ)=2575751-=⨯-。
答案:D点评:三角函数的应用非常广泛。
将实际问题转化成数学中的同角三角函数问题,再利用三角函数的性质是解此题的关键。
例题6 函数y=21cossin-+xx的定义域是_______________。
思路导航:由题意知,⎪⎩⎪⎨⎧≥≥⇒⎪⎩⎪⎨⎧≥-≥.21cossin21cossinxxxx作单位圆如图所示,图中双阴影部分即为函数的定义域{x|2kπ≤x≤2kπ+3π,k∈Z }。
答案:{x|2kπ≤x≤2kπ+3π,k∈Z }点评:解三角不等式基本上有两种方法:①利用三角函数线。
②利用三角函数图象。
例题7 求函数f(x)=xxxxcossin1cossin++的最大、最小值。
思路导航:利用三角函数中1cossin22=+αα和ααcossin+与ααcossin⋅的关系,转化成同一个量的关系式。
答案:设sinx+cosx=t,则sinxcosx=212-t,t∈[-2,2],且t≠-1,则y=2122112122-=+-=+-ttttt,t∈[-2,2]。
∴当t=2,即x=2kπ+4π(k∈Z)时,f(x)的最大值为212-;当t=-2,即x=2kπ-43π(k∈Z)时,f(x)的最小值为212+-。
点评:利用三角函数的特殊性,将问题转化成求一元函数的最值问题。
例题(全国大纲理5)设函数()cos(0)f x xωω=>,将()y f x=的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于()A.13B. 3C. 6D. 9思路分析:本题主要考查三角函数的周期性与三角函数图象变换的关系。
此题理解好三角函数周期的概念至关重要,将()y f x=的图象向右平移3π个单位长度后,所得的图象与原图象重合,说明了3π是此函数周期的整数倍。
解答过程:由题意将()y f x=的图象向右平移3π个单位长度后,所得的图象与原图象重合,说明了3π是此函数周期的整数倍,得2()3k k Zππω⨯=∈,解得6kω=,又0ω>,令1k=,得min6ω=。
答案:C规律总结:三角函数的图象只有平移周期的整数倍,平移之后的图象才可能与原图象重合。
在应用过程中,熟练掌握一些基本技能,要重视运算、作图、推理以及科学计算器的使用等基本技能训练,但要避免过于繁杂的运算。