材料现代研究方法
材料现代研究方法习题加答案-考试实用
第二部分电子显微分析一、电子光学1、电子波特征,与可见光有何异同?2、电磁透镜的像差(球差;色差;像散;如何产生,如何消除和减少)球差即球面像差,是磁透镜中心区和边沿区对电子的折射能力不同引起的,其中离开透镜主轴较远的电子比主轴附近的电子折射程度过大。
用小孔径成像时可使球差明显减小。
像散是由于电磁透镜的轴向磁场非旋转对称引起。
透镜磁场不对称,可能是由于极靴被污染,或极靴的机械不对称性,或极靴材料各项磁导率差异引起。
象散可由附加磁场的电磁消象散器来校正。
色差是由入射电子的波长或能量的非单一性造成的。
稳定加速电压和透镜电流可减小色差。
3、电磁透镜的分辨率、景深和焦长(与可见光),影响因素电磁透镜的分辨率主要由衍射效应和像差来决定。
(1)已知衍射效应对分辨率的影响(2)像差对分辨的影响。
像差决定的分辨率主要是由球差决定的。
景深:当像平面固定时(像距不变),能维持物像清晰的范围内,允许物平面(样品)沿透镜主轴移动的最大距离。
焦长:固定样品的条件下(物距不变),象平面沿透镜主轴移动时仍能保持物像清晰的距离范围,用D L表示。
二、透射电子显微镜1、透射及扫描电镜成像系统组成及成像过程(关系)扫描电镜成像原理:在扫描电镜中,电子枪发射出来的电子束,一般经过三个电磁透镜聚焦后,形成直径为0.02~20μm的电子束。
末级透镜(也称物镜,但它不起放大作用,仍是一个会聚透镜)上部的扫描线圈能使电子束在试样表面上作光栅状扫描。
通常所用的扫描电镜图象有二次电子象和背散射电子象。
2、光阑(位置、作用)光栏控制透镜成像的分辨率、焦深和景深以及图像的衬度、电子能量损失谱的采集角度、电子衍射图的角分辨率等等。
防止照明系统中其它的辐照以保护样品等3、电子衍射与x衍射有何异同电子衍射与X射线衍射相比的优点:1.电子衍射能在同一试样上将形貌观察与结构分析结合起来。
2.电子波长短,单晶的电子衍射花样婉如晶体的倒易点阵的一个二维截面在底片上放大投影,从底片上的电子衍射花样可以直观地辨认出一些晶体的结构和有关取向关系,使晶体结构的研究比X射线简单。
材料与化工现代研究方法
材料与化工现代研究方法
材料与化工现代研究方法包括理论计算化学、实验物理学、实验及模拟技术、分子结构与行为计算技术、界面科学和工程、材料分析技术、测试和数据处理技术等。
其中,理论计算化学是利用计算机软件程序,结合外源物质特性、物质结构及其组合影响的原理,计算出物质的各种性质或过程变化的方法;实验物理学致力于发现、描述和推断物质性质及其在特定温度条件下的变化;实验及模拟技术则是不断改进的实验方法及计算机仿真技术;分子结构与行为计算技术包括分子动力学计算,分子结构分析等,可以帮助我们更好地理解材料分子结构与属性间的联系,并建立精确的建模;界面科学和工程则是研究固体表面和液体界面的性质以及固液界面的形成过程的技术;材料分析技术涉及初级分析、结构分析、表面分析和力学特性测试等技术,以及数据处理和测试技术,可以帮助我们更准确地了解材料的特性及其变化。
现代材料分析方法
现代材料分析方法现代材料分析方法包括物理、化学、电子、光学、表面和结构等多个方面的技术手段,具有快速、准确、非破坏性的特点。
下面将针对常用的材料分析技术进行详细介绍。
一、物理分析方法1. 微观结构分析:包括金相显微镜分析、扫描电镜、透射电镜等技术。
通过观察材料的显微结构、晶粒尺寸、相组成等参数,揭示材料的内在性质和形貌特征。
2. 热分析:如热重分析、差示扫描量热仪等。
利用材料在高温下的重量、热容变化,分析材料的热行为和热稳定性。
3. 电学性能测试:包括电导率、介电常数、介电损耗等测试,用于了解材料的电导性和电介质性能。
4. 磁性测试:如霍尔效应测试、磁滞回线测试等,用于研究材料的磁性行为和磁性特性。
二、化学分析方法1. 光谱分析:包括紫外可见光谱、红外光谱、核磁共振等。
通过检测材料对不同波长的光谱的吸收、散射等现象,分析材料的组分和结构。
2. 质谱分析:如质子质谱、电喷雾质谱等。
通过挥发、电离和分离等过程,分析材料中不同元素的存在及其相对含量。
3. 电化学分析:包括电化学阻抗谱、循环伏安法等。
通过测量材料在电场作用下的电流、电压响应,研究材料的电化学性能和反应过程。
4. 色谱分析:如气相色谱、高效液相色谱等。
利用材料在色谱柱上的分离和吸附效果,分析材料中组分的种类、含量和分布。
三、电子分析方法1. 扫描电子显微镜(SEM):通过照射电子束,利用电子和物质的相互作用,获得样品表面的详细形貌和成分信息。
2. 透射电子显微镜(TEM):通过透射电子束,观察材料的细观结构,揭示原子尺度的微观细节。
3. 能谱分析:如能量色散X射线谱(EDX)、电子能量损失谱(EELS)等。
通过分析材料与电子束相互作用时,产生的X射线和能量损失,来确定样品的元素组成和化学状态。
四、光学分析方法1. X射线衍射:通过物质对入射的X射线束的衍射现象,分析材料的晶体结构和晶格参数。
2. 红外光谱:通过对材料在红外辐射下的吸收和散射特性进行分析,确定材料的分子结构和化学键。
材料现代分析方法
材料现代分析方法现代分析方法是指在化学、物理、生物等科学领域中广泛应用的一种分析技术。
它通过使用先进的仪器设备和相关的算法,能够快速、准确地对物质的成分、结构以及性质进行分析和表征。
本文将介绍几种常见的材料现代分析方法。
一、质谱分析法质谱分析法是一种非常重要的现代分析方法,广泛应用于有机化学、生物化学和环境科学等领域。
它通过将物质分子离子化,并在一个磁场中进行偏转,最后将其质量进行测定,从而确定物质的分子组成和结构。
质谱分析法具有高灵敏度、高分辨率、多组分分析的能力,可以用于确定物质的组成、确认化合物的结构、鉴定杂质等。
二、红外光谱分析法红外光谱分析法是一种基于不同分子振动产生的红外吸收谱谱图,进行物质分析和表征的方法。
该方法的原理是物质在特定波长的红外光照射下,吸收特定的波长,产生特定的振动谱带。
通过对红外光谱的测定和比对,可以确定物质的功能基团、官能团以及化学键的类型和位置,从而研究物质的组成、结构和化学性质。
三、扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种基于电子束显微技术的分析仪器。
其工作原理是在真空环境中,用电子束扫描样品表面,通过检测扫描电子的反射、散射或透射等信号,来获取样品表面的形貌、成分以及晶体结构等信息。
与光学显微镜相比,SEM具有更高的放大倍数、更高的分辨率和更大的深度。
四、X射线衍射(XRD)X射线衍射(XRD)是一种非常常用的材料分析技术,主要用于分析固体材料的结晶结构和晶体学性质。
该方法的原理是通过将物质置于X射线束中,当X射线与样品中的晶体结构相互作用时,会发生衍射现象。
通过测量样品衍射的位置、强度和形状等信息,可以确定样品的晶体结构、晶格参数和晶体定向等。
五、核磁共振(NMR)核磁共振(NMR)是一种通过检测原子核在磁场中的共振信号来进行物质分析的方法。
其工作原理是利用样品中特定原子核的性质,将其置于强大的磁场中,然后通过外加的射频电磁场来激发核自旋共振。
材料现代研究方法
x射线衍射;
电子显微镜(透射、扫描); 电子探针; 俄歇电子能谱;
X射线与电子束
化学的方法
热分析技术(差热分析,差示扫描量热,热重分析); 动态力学分析技术; 红外光谱
晶体学基础
材料现代研究方法讲义
绚丽多姿的晶体
材料现代研究方法讲义
人们通过对天然矿物 外部形态的观察发现, 绝大多数天然矿物常 具有独特的规则几何 多面体的外形,即其 外表多为平整的面所 包围,同时还具有由 二个面相交的直线和 直线会聚的夹角。 人们将这种天然生成的固体称为晶体,称其平 面为晶面,称其直线为晶棱,称晶棱会聚的夹 角为角顶。
材料现代研究方法讲义
晶体并非局限于天然生成的固体。金属和合 金在一般条件下都是晶体,一些陶瓷材料是 晶体,高聚物在某些条件下也是晶体。
材料现代研究方法讲义
一切晶体的内部质点(分子、原子或离子等)都是在 空间有规则地排列着。 晶体是由原子或分子按照一定的周期性规律在空间 重复排列而成的固体物质。
石盐(NaCl)的晶体结构
材料现代研究方法
宫声凯 ,杨光
材料现代研究方法讲义
材料现代研究方法在材料科学与工程中的位置
材料科学与工程中的三大基本问题:
表征
Know what (组成、结构) Know why (组织与结构) Know how (制备、加工)
材料现代研究方法
制备 加工 组织 性能
材料现代研究方法讲义
本课程涉及的范围
材料现代研究方法
反应前后基线偏移时: ① 分别作反应开始前和反应终止后的基线延长线,它们 离开基线的点分别是Ti(反应始点)和Tf(反应终 点),连接TiTp Tf各点,便得到峰面积; ②由基线延长线和通过峰顶作垂线,与DTA或DSC曲线 形成两个近似的三角形,其面积之和表示峰面积。
(四) 差热分析的特点
差热分析不能表征变化的性质。 差热分析本质上仍是一种动态量热。测得的结 果不同于热力学平衡条件下的测量结果。 试样与程序温度(以参比物温度表示)之间的
气氛控制
S
R
炉温控制器
记录器 微伏放大器
2. 差热分析仪
由加热炉、试样容器、热电偶、温度控制系统及放大、 记录系统等部分组成。
(1)加热炉 ——炉内有均匀温度区,使试样均匀受热; ——程序控温,以一定速率均匀升(降)温,控 制精度高; ——电炉热容量小,便于调节升、降温速度; ——炉子的线圈无感应现象,避免对热电偶电流 干扰; ——炉子体积小、重量轻,便于操作和维修。 ——使用温度上限1100℃以上,最高可达1800 ℃ 。
(2)试样容器
——容纳粉末状样品。 ——在耐高温条件下选择传导性好的材料。
——耐火材料:镍(<1300K)、刚玉(>1300K) 等。 ——样品坩埚:陶瓷材料、石英质、刚玉质和钼、 铂、钨等。
(3) 热电偶
差热分析的关键元件; 产生较高温差电动势,随温度成线性关系的变化; 能测定较高的温度,测温范围宽,长期使用无物理、化 学变化,高温下耐氧化、耐腐蚀; 比电阻小、导热系数大; 电阻温度系数和热容系数较小; 足够的机械强度,价格适宜。
升温速度对硫酸钙相邻峰谷的影响
合适
过快
2、压力和气氛
——气氛会影响差热曲线形态。 ——对体积变化大试样,外界压力增大,热反应温 度向高温方向移动。
材料现代分析方法
材料现代分析方法材料现代分析方法是指利用现代科学技术手段对材料进行分析和研究的方法。
随着科学技术的不断发展,材料分析方法也在不断更新和完善。
现代材料分析方法的发展,为材料科学研究提供了更加精准、快速和全面的手段,对于材料的研究和应用具有重要的意义。
首先,光谱分析是材料现代分析方法中的重要手段之一。
光谱分析是利用物质对电磁波的吸收、发射、散射等现象进行分析的方法。
常见的光谱分析方法包括紫外可见吸收光谱、红外光谱、拉曼光谱等。
通过光谱分析,可以对材料的结构、成分、性质等进行研究和分析,为材料的研究和应用提供重要的信息。
其次,电子显微镜分析也是材料现代分析方法中的重要手段之一。
电子显微镜是利用电子束来照射样品,通过电子与样品相互作用产生的信号来获取样品的显微结构和成分信息的一种显微镜。
通过电子显微镜分析,可以对材料的微观形貌、晶体结构、成分分布等进行研究和分析,为材料的结构性能和应用提供重要的参考。
此外,质谱分析也是材料现代分析方法中的重要手段之一。
质谱分析是利用质谱仪对物质进行分析的方法,通过对物质中离子的质量和相对丰度进行检测和分析,来确定物质的分子结构和成分。
质谱分析可以对材料的组成、纯度、分子量等进行研究和分析,为材料的质量控制和应用提供重要的支持。
综上所述,材料现代分析方法是利用现代科学技术手段对材料进行分析和研究的方法。
光谱分析、电子显微镜分析、质谱分析等都是材料现代分析方法中的重要手段,通过这些方法可以对材料的结构、成分、性能等进行全面的研究和分析,为材料的研究和应用提供重要的支持。
随着科学技术的不断发展,相信材料现代分析方法将会更加完善和精准,为材料科学研究和应用带来更多的新突破。
材料现代研究方法(10倒易点阵)
b a
a
b
γ-Fe, fcc
Cu3Au, simple cubic
材料现代研究方法讲义
点阵常数
为了表示晶胞的形状和大小, 为了表示晶胞的形状和大小,可将晶胞画在 空间坐标上,坐标轴(又称晶轴) 空间坐标上,坐标轴(又称晶轴)分别与晶胞 的三个棱边重合, 的三个棱边重合,坐标的原点为晶胞的一个 顶点, 顶点,晶胞的棱边长以 a,b,c 表示,棱间夹角 表示, α,β,γ表示 表示。 以α,β,γ表示。棱边 和棱间夹角α, 长a,b,c 和棱间夹角α, β,γ共六个参数称为 β,γ共六个参数称为 点阵常数。 点阵常数。
利用厄瓦尔德图解释晶体的衍射现象 3、粉末法:试样有极多的小晶粒组成的多晶体
空间点阵中的(hkl)面在倒易点阵中用一个结点表示 面在倒易点阵中用一个结点表示 空间点阵中的
晶面与倒易结点的关系
空间点阵
倒易点阵
材料现代研究方法讲义
坐标原点到hkl倒易点的距离等于正点阵 的(hkl)面的面间距的倒数,
uu r 1 r *HKL = d HKL
简单立方的倒易点阵: 体心立方的倒易点阵: 面心立方的倒易点阵: (考虑结构因数之后的倒易点阵) 实空间:平面---倒易空间: 实空间:平面---倒易空间:线 ---倒易空间
二维问题一维化处理
材料现代研究方法讲义
正点阵和倒易点阵中基本平移矢量之间的关系 r r r 正点阵基本平移矢量: a , b , c
uur uu uu r r 倒易点阵基本平移矢量: a *, b *, c *
rr r rr r rr r 晶胞体积 V = a b × c = b c × a = c a × b r r r r uur b × c r uur r uu r uu r r b×c a*= = r r r a a* = b b* = c c* =1 V a ⋅b × c r r r r r uu r uu r uur r r uu c × a r c×a a b* = b c* = c a* = 0 b* = =r r r
材料现代研究方法汇总
18.2基本原理
18.2.3 多原子分子的振动
18.1概 述
图中E A 和E B表示不同能量的 电子能级;
在每个电子能级中,因振动 能量不同而分为若干个n= 0、 1 、2 、3……的振动能级;
在同一电子能级和同一振动 能级中,还因转动能量不同 而分为若干个J = 0 、1 、2 、 3……的转动能级。
18.1概 述
如果改变通过某一吸收物质的入射光的波长, 并记录该物质在每一波长处的吸光度( A ), 然后以波长为横坐标,以吸光度为纵坐标作图, 得到的谱图称为该物质的 吸收光谱或吸收曲线。 分子的振动能量比转动能量大,当发生振动能 级跃迁时,不可避免地伴随有转动能级的跃迁, 所以无法测量纯粹的振动光谱,而只能得到分 子的振动 - 转动光谱,这种光谱称为 红外吸收 光谱。
对同一基团,不对称伸缩振动的频率要稍高于对称伸缩 振动。
18.2基本原理
(2 )变形振动(又称弯曲振动或变角振动) 基团键角发生周期变化而键长不变的振动称为变形振
动,用符号?表示。 变形振动又分为面内变形和面外变形振动。
?面内变形振动又分为剪式(以?表示)和平面摇摆振动 (以? 表示)。 ?面外变形振动又分为非平面摇摆(以? 表示)和扭曲振 动(以?表示)。 ?由于变形振动的力常数比伸缩振动的小,因此,同一 基团的变形振动都在其伸缩振动的低频端出现。
原子数目增多,组成分子的键或基团和空间结构不同, 其振动光谱比双原子分子要复杂。
材料现代研究方法 PPT
2.2 X射线的本质、能量
X射线本质上和无线电波、可见光、射线一样,也是 一种电磁波,具有波粒二象性。其波长在0.01~10nm之 间,介于紫外线和射线之间,但没有明显的界限。其 短波段与射线长波段相重叠,其长波段则与紫外线的 短波段相重叠。
γ射线
X射线
UV
IR
可见光
微波
无线电波
10-15
10-10
材料现代研究方法
第1章 绪论
1.1 材料研究的意义和内容
什么是材料?
材料是指将原料通过物理或者化学的方法加工制成的金属、 无机非金属、有机高分子和复合材料的固体物质。
金属材料:导电性、塑性和韧性好。 无机非金属材料:硬度高,韧性差。
高分子材料:强度、弹性模量低。 造成这些材料不同性能的原因就是因为材料的物质组成和 结构不同。从原子结构来讲,就是化学键不同。比如金属材 料是由金属键结合的,无机非金属材料主要是由离子键和共 Hale Waihona Puke 键结合的。2.3 X射线的产生
目前,衍射实验使用的X射线,都是以阴极射线 (即高速度的电子流轰击金属靶)的方式获得的,所 以要获得X射线必须具备如下条件: 1.电子源(阴极): 产生自由电子,加热钨丝发射热电子。 2.靶材(阳极): 设置自由电子撞击的靶子,如阳极靶, 用以产生X射线。 3.高压发生器: 用以加速自由电子朝阳极靶方向加速运 动。 4.真空: 将阴阳极封闭于小于133.310-6 Pa的高真空中, 保持两极洁净,促使加速电子无阻挡地撞击到阳极靶 上。
X射线管-产生X射线的核心装置
(1)阴极 阴极的功能是发射电子。它由钨丝制成,在 通以一定的电流加热后便能释放出热辐射电子。
为使电子束集中,在阴极灯丝外加上聚焦罩,并使灯 丝与聚焦罩之间始终保持100-400V的电位差。
材料现代研究方法ModernMethodsofMaterialsAnalysis
EPMA
島津EPMA-1600
EDS应用举例
不良品 良 品
C
浸炭不 良部
不良品
齿轮疲劳失效,是由于 渗碳处理不均匀,根本 原因在于硅的偏聚。
良 品
Si
XPS
3. 4 分子结构分析
利用电磁波与分子键和原子核的作用,获 得分子结构信息。红外光谱(IR)、拉曼 光谱(Raman)、 荧光光谱(PL)等是 利用电磁波与分子键作用时的吸收或发射 效应,而核磁共振(NMR)则是利用原 子核与电磁波的作用来获得分子结构信息 的。
3.1组织形貌分析
微观结构的观察和分析对于理解材料的本 质至关重要,组织形貌分析借助各种显微 技术,认识材料的微观结构。表面形貌分 析技术经历了光学显微镜(OM)、电子显 微镜(SEM)、扫描探针显微镜(SPM)的发 展过程,现在已经可以直接观测到原子的 图像。
三种组织分析手段的比较
扫描探针显微镜 观察倍率
利用衍射分析的方法探测晶格类型和晶胞常数, 确定物质的相结构。 主要的物相分析的手段有三种:x射线衍射 (XRD)、电子衍射(ED)及中子衍射(ND)。 其共同的原理是: 利用电磁波或运动电子束、 中子束等与材料内部规则排列的原子作用产生 相干散射,获得材料内部原子排列的信息,从 而重组出物质的结构。
1.材料现代分析方法
材料现代分析方法是关于材料分析测试技术及其有关理论的 一门课程。 成分、结构、加工和性能是材料科学与工程的四个基本要素, 成分和结构从根本上决定了材料的性能,对材料的成分和结 构的进行精确表征是材料研究的基本要求,也是实现性能控 制的前提。
2.材料分析的内容
表面和内部组织形貌。包括材料的外观形貌(如纳米 线、断口、裂纹等)、晶粒大小与形态、各种相的尺 寸与形态、含量与分布、界面(表面、相界、晶界)、 位向关系(新相与母相、孪生相)、晶体缺陷(点缺 陷、位错、层错)、夹杂物、内应力。 晶体的相结构。各种相的结构,即晶体结构类型和晶 体常数,和相组成。 化学成分和价键(电子)结构。包括宏观和微区化学 成份(不同相的成份、基体与析出相的成份)、同种 元素的不同价键类型和化学环境。 有机物的分子结构和官能团。
现代材料研究方法课程设计
现代材料研究方法课程设计一、课程目标知识目标:1. 学生能理解并掌握现代材料研究的基本方法,包括材料制备、结构表征、性能测试等。
2. 学生能了解不同研究方法在材料科学领域的应用和优缺点。
3. 学生能掌握材料研究中常用的数据分析与处理技巧。
技能目标:1. 学生具备运用现代研究方法进行材料实验设计和实施的能力。
2. 学生能够独立操作相关实验设备,进行材料制备和性能测试。
3. 学生能够运用数据分析软件对实验数据进行处理和分析,撰写规范的实验报告。
情感态度价值观目标:1. 学生培养对材料科学的热爱和探究精神,增强对科技创新的责任感和使命感。
2. 学生树立正确的科研态度,严谨、务实,注重团队合作与交流。
3. 学生能够关注材料研究在环保、可持续发展等方面的意义,培养社会责任感。
课程性质分析:本课程为高中年级的选修课程,旨在拓展学生对现代材料研究的认识,提高科学素养。
课程内容紧密联系实际,注重培养学生的实践操作能力和创新思维。
学生特点分析:高中年级学生具备一定的物理、化学基础知识,对现代科技充满好奇心,具有较强的求知欲和动手能力。
学生在学习过程中需要引导他们结合已有知识,探索新材料领域。
教学要求:1. 教师应注重理论与实践相结合,提高课程的趣味性和实用性。
2. 教学过程中要关注学生的个体差异,激发学生的学习兴趣和积极性。
3. 教学评价要全面,既要关注学生的知识掌握程度,也要关注学生的技能和情感态度价值观的培养。
二、教学内容1. 现代材料研究方法概述- 材料研究方法的分类与发展趋势- 常用研究方法的原理及其在材料科学中的应用2. 材料制备技术- 气相沉积法、溶胶-凝胶法、水热合成法等制备技术- 各类制备技术的优缺点及适用范围3. 结构表征技术- X射线衍射、扫描电镜、透射电镜等表征技术- 各类表征技术的原理及其在材料结构分析中的应用4. 性能测试方法- 电学、磁学、光学性能测试- 力学、热学性能测试- 各类性能测试方法的原理及其在材料研究中的应用5. 数据分析与处理- 实验数据的收集、整理和表达- 常用数据分析方法与软件应用- 实验报告的撰写规范6. 实践操作与案例分析- 设计并实施简单的材料制备与性能测试实验- 分析实际案例,了解现代材料研究方法在实际科研中的应用教学内容安排与进度:本课程共安排12个课时,具体教学内容与进度如下:1-2课时:现代材料研究方法概述3-4课时:材料制备技术5-6课时:结构表征技术7-8课时:性能测试方法9-10课时:数据分析与处理11-12课时:实践操作与案例分析教学内容与教材关联性:本教学内容与教材《新材料技术》的第三章“材料的制备与表征”和第四章“材料性能测试与分析”紧密相关,确保学生能够在掌握基础知识的同时,拓展现代材料研究方法的学习。
现代材料研究方法
现代材料研究方法一、热分析20分1、热重分析法:控制温度,测量物质重量对温度的关系,随温度的变化,物质发生各种物理化学变化,通过测量其重量随温度的改变,确定受热过程中物质发生的变化类型。
差分热重法:是热重曲线的一次微分曲线,如果失重温度很接近,在热重曲线上的台阶不易区分,做差分热重曲线可以看到明显的温度。
2、DTA与DSC区别:DTA记录的是同一热源加热标样与待测物质,待测物质因受热变化而与标样产生温度差,获得以温度(时间)为横坐标,温差为纵坐标的曲线。
DSC记录的是不同热源加热下的标样与待测物质,保持其温度相同,两者之间存在的功率差,获得以温度(时间)为横坐标,功率差为纵坐标的曲线。
3、吸热反应:熔化、汽化、升华、脱水、分解、去溶剂、还原;放热反应:吸附、结晶、氧化;吸热/放热:多形性转变。
二、光谱45分1、红外光谱原理:分子正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做分子的偶极矩μ=r×q,是分子极性大小的表征。
原子以红外频率振动(有公式),其中振动频率与折合质量,化学键力常数有关,反映物质的组成和结构。
若电磁波的交变电场与偶极矩发生变化了的分子振动相互作用,导致与分子振动频率相同的电磁波的吸收,产生红外光谱。
拉曼光谱原理:单一波长的电磁波与物质相互作用,由于原子振动,发生弹性散射与非弹性散射,弹性散射的频率与入射电磁波频率相同,称为瑞利散射,非弹性散射的频率与入射电磁波频率不相同,称为拉曼散射,显示拉曼光谱。
光致发光原理:入射光与物质相互作用,引起基态能级跃迁,若从高能级向低能级复合时能够发光,能量以光子的形式辐射出来,则可被检测到。
这种复合包括能带间的复合、激子间的复合、能带与激子的复合、施主与受主能级的复合。
以此可测出较微量的掺杂,而且显示掺杂物在能带中的位置。
2、红外活性:偶极矩发生变化的振动;拉曼活性:极化率发生变化的振动,对称分子的对称振动显示拉曼活性。
3、拉曼光谱测量应力原理:当材料中引入应变时,晶格常数变大,键长变长,相互作用力减弱,则化学键力常数变小,由原子振动频率公式,可知原子振动频率减小,拉曼光谱中峰向波数小的一侧偏移,其迁移方向显示应力方向,迁移程度显示应力大小。
现代材料研究分析方法考研复习精华
二、X射线荧光光谱仪 X-ray fluorescence spectrometer
(3)检测器
正比计数器(充气型): 工作气 Ar;抑制气 甲烷 利用X射线使气体电离的作用,辐射能转化电能; 闪烁计数器: 瞬间发光—光电倍增管; 半导体计数器:下图
背散射电子的特点
03
背散射电子能量很高,其中相当部分接近入射电子能量,在试样中产生的范围大,像的分辨率低;
背散射电子发射系数随试样原子序数增加而增大;
虽然作用体积虽入射束能量增加而增大,但背散射电子的发射系数受入射束能量影响不大;
当试样表面倾角增加时,作用体积改变,将显著增加被散射电子的发射系数;
DTA仪的基本结构
差热分析仪通常由加热炉、温度控制系统、信号放大系统、差热系统及记录系统组成。
影响曲线形状的因素
影响差热分析的主要因素有三个方面:仪器因素,实验条件和试样。 实验条件 升温速率;稀释剂的影响;
差热曲线分析
差热曲线分析就是解释曲线上每个峰谷产生的原因,从而分析被测物质是有那些物相组成的。峰谷产生的原因有: 矿物质脱水 相变 物质的化合或分解 氧化还原 差热分析的峰只表示试样的热效应,本身不反应更多的物理化学本质。为此,单靠差热曲线很难做正确的解释。现在普遍采用的联用技术。
定性物相分析原理
X射线衍射线的位置决定于晶胞的形状和大小,也即决定于各晶面的面间距,而衍射线的相对强度则决定于晶胞内原子的种类、数目及排列方式。每种晶态物质都有其特定的结构,不是前者有异,就是后者有别,因而就有其独特的衍射花样。 当试样中包含两种或两种以上的结晶物质时,它们的衍射花样同时出现,而不会相互干涉。 混合物中某相的衍射线强度取决于它在试样中的相对含量,因此根据各相衍射线的强度比,可以推算出它们的相对含量。
现代材料分析方法
现代材料分析方法现代材料分析方法(XPS)是一种非常重要的材料表征技术。
它是通过电子能量的分析来研究材料表面化学组成和电子结构的方法。
XPS技术基于X射线的发射和吸收原理,能够提供有关材料的化学组成、表面态、元素价态等详细信息。
下面将从原理、仪器、应用等方面介绍现代材料分析方法(XPS)。
XPS技术是通过照射材料表面的X射线,使材料表面的原子和分子发生电离,进而产生电子。
这些电子具有不同的能量,并与材料表面原子的化学状态和电子结构有关。
通过测量这些电子的能量和数目,可以获得材料表面的化学组成和电子结构信息。
XPS仪器主要由以下几个部分组成:X射线源、样品台、电子能谱仪和数据系统。
X射线源主要通过产生X射线照射样品表面,激发电子发生电离。
样品台用于支撑和定位样品,通常可旋转和倾斜以改变入射角度。
电子能谱仪用于测量样品发射的电子能量和数目,通常由电子能谱仪和能量分辨仪组成。
数据系统则用于处理和分析测量到的电子能谱数据。
XPS技术在材料科学领域有广泛的应用。
首先,它可以用于表面分析,可以非常详细地了解材料表面的化学组成和电子结构。
这对于材料的表面改性和催化活性等研究具有重要意义。
其次,XPS还可以用于界面分析,如材料与环境中气体或液体接触时的界面反应研究。
此外,XPS还可以用于研究材料的电子结构和能带结构,以及了解材料的导电性和光电性能等。
总结起来,现代材料分析方法(XPS)是一种非常重要的材料表征技术。
它能够提供材料表面的化学组成和电子结构等详细信息。
XPS技术在表面分析、界面分析、材料电子结构研究等方面具有广泛的应用。
随着科技的发展,XPS技术也在不断进步,为材料科学的发展和应用提供了强大的支持。
现代材料分析技术及应用
现代材料分析技术及应用现代材料分析技术是指利用现代科学技术手段对材料进行全面、准确、细致的研究和分析的方法。
它是材料科学领域研究的基础和支撑,广泛应用于材料的研发、生产和质量控制等方面。
现代材料分析技术包括物理性质测试、化学分析、显微成像、表面分析、光谱分析、电子显微镜等多个方面。
下面将介绍几种常见的现代材料分析技术及其应用。
一、物理性质测试技术物理性质测试技术是对材料的物理性能进行测试和分析的方法。
常见的测试技术有强度测试、硬度测试、韧性测试、热膨胀系数测量等。
这些测试技术可以用于评估材料的强度、硬度、韧性、热稳定性等性能。
例如,在金属材料的研发过程中,可以通过硬度测试来评估其抗拉强度和延展性,进而确定最佳的工艺参数。
二、化学分析技术化学分析技术是对材料中化学成分进行定性和定量分析的方法。
常见的化学分析技术包括光谱分析、质谱分析、原子吸收光谱分析等。
这些技术可以确定材料中元素的种类、含量以及化学结构。
化学分析技术在材料研发过程中起到了重要作用,可以选择最佳的原材料组合,提高材料的性能。
三、显微成像技术显微成像技术是观察和研究材料的微观形貌和结构的方法。
常见的显微成像技术有光学显微镜、电子显微镜和原子力显微镜等。
这些技术可以提供高分辨率的图像,揭示材料的表面形貌、内部结构和缺陷等信息。
显微成像技术广泛应用于材料的质量检测、缺陷分析和外观评估等方面。
四、表面分析技术表面分析技术是研究材料表面性质和表面结构的方法。
常见的表面分析技术有扫描电子显微镜、表面拉曼光谱、X射线光电子能谱等。
这些技术可以提供材料表面的化学组成、成分分布、晶体结构等信息。
表面分析技术对于材料的表面改性、涂层质量控制等有重要意义。
五、光谱分析技术光谱分析技术是研究物质的光学特性和结构的方法。
常见的光谱分析技术有红外光谱、紫外-可见吸收光谱、核磁共振光谱等。
这些技术可以通过分析物质与光的相互作用来判断其分子结构、化学键信息等。
光谱分析技术广泛应用于材料的组分分析、质量控制和性能评估等方面。
材料的现代研究方法
材料的现代研究方法
现代材料研究方法包括以下几个方面:
1. 材料表征方法:包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)、原子力显微镜(AFM)等表征手段,用于分析材料的形貌、结构、晶体学等特征。
2. 热分析方法:包括差示扫描量热法(DSC)、热重分析法(TGA)、热导率测量、热膨胀测量等,用于研究材料的热性质和相变过程。
3. 光谱学方法:包括红外光谱(IR)、拉曼光谱、紫外可见光谱(UV-Vis)、核磁共振(NMR)等方法,用于分析材料的化学组成和分子结构。
4. 表面分析方法:包括X射线光电子能谱(XPS)、扫描隧道显微镜(STM)、原子力显微镜(AFM)等技术,用于表征材料表面的化学组成和形貌。
5. 电化学方法:包括循环伏安法(CV)、电化学阻抗谱(EIS)等,用于研究材料的电化学性质和电化学反应过程。
6. 计算模拟方法:包括分子动力学模拟(MD)、密度泛函理论(DFT)等计算方法,用于预测材料的性质、模拟材料的结构和动力学过程。
这些现代研究方法互相结合,可以全面了解材料的结构、性质和功能,为材料科学的发展提供重要的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料现代研究方法》课程教学大纲
一、课程基本信息
课程编号:13106105
课程类别:专业必修课程
适应专业:材料科学与工程
总学时:54学时
总学分:3
课程简介:
本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。
包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。
授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,2005年。
参考书目:
[1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,2003年。
[2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出版社,2003年。
[3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,2001年。
[4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,2001年。
[5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。
[6]《材料结构表征及应用》,吴刚编,化学工业出版社,2001年。
[7]《材料结构分析基础》,余鲲编,科学出版社,2001年。
二、课程教育目标
通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。
学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。
三、教学内容与要求
第一章 X射线的物理基础
教学重点:X射线的产生及其与物质作用原理
教学难点:X射线的吸收和衰减、激发限
教学时数:2学时
教学内容:X射线的性质,X射线的产生,X射线谱,X射线与物质的相互作用,X射线的衰减规律,吸收限的应用
教学方式:课堂讲授
教学要求:
(1)了解X射线的性质和产生机制,了解X射线管的结构。
(2)深刻认识X射线谱的两种不同的波谱,即连续X射线谱和特征X射线谱。
(3)深刻理解X射线与物质的相互作用过程,掌握X射线的散射、吸收过程。
(4)掌握X射线的衰减规律。
(5)了解吸收限的应用。
第二章 X射线衍射原理
教学重点:布拉格方程、衍射矢量方程及劳埃方程的推导
教学难点:产生X射线衍射的充要条件和多晶衍射积分强度的计算
教学时数:3学时
教学内容:倒易点阵,X射线衍射方向,X射线衍射强度
教学方式:课堂讲授
教学要求:
(1)了解倒易点阵的构建和倒易矢量。
(2)掌握布拉格方程、衍射矢量方程、厄瓦尔德图解、X射线衍射强度。
(3)了解倒易球、等同晶面、多重性因子、半高宽、厄瓦尔德图解等基本概念。
(4)掌握产生衍射的充要条件和多晶衍射积分强度的计算。
(5)掌握影响衍射强度影响的五大因素。
第三章多晶体X射线衍射分析方法
教学重点:X射线衍射仪的构成、工作原理及测量方法
教学难点:德拜法
教学时数:4学时
教学内容:德拜照相法,X射线衍射仪法
教学方式:课堂讲授
教学要求:
(1)了解德拜相机德基本结构。
(2)了解德拜法试样德制备和实验参数选择。
(3)熟练掌握德拜相的指数标定。
(4)了解X射线衍射仪法的仪器结构,了解测角仪的结构。
(5)掌握X射线衍射仪的构成、工作原理及测量方法。
第四章 X射线衍射方法的应用
教学重点:物相分析基本原理
教学难点:宏观应力测定
教学时数:4学时
教学内容:点阵常数的精确测定,X射线物相分析,宏观应力测定
教学方式:课堂讲授
教学要求:
(1)掌握点阵常数的测定方法,了解误差来源及其消除方法。
(2)掌握X射线物相分析的方法和步骤,熟练掌握物相定性分析方法。
(3)了解X射线残余应力测定原理、单轴应力测定原理、平面应力测定原理。
(4)掌握X射线在应力测量中的具体应用。
第五章透射电子显微镜结构
教学重点:电磁透镜的景深与焦长,透射电子显微镜的结构
教学难点:电磁透镜的像差及其对分辨率的影响
教学时数:6学时
教学内容:光学显微镜的分辨率,电子波波长,电磁透镜,电磁透镜的像差及其对分辨率的影响,电磁透镜的景深与焦长,透射电子显微镜的结构,透射电镜的主要部
件,透射电镜的功能及发展
教学方式:课堂讲授
教学要求:
(1)了解光学显微镜的分辨率,认识光学显微镜分辨率的局限性。
(2)了解电子波波长,了解电磁透镜。
(3)掌握球差、色差、像散、景深、焦长的基本概念。
(4)掌握电磁透镜的像差及其对分辨率的影响。
(5)掌握透射电子显微镜的结构,能熟练绘出5级成像系统光路图。
(6)了解透射电镜的主要部件及其功能。
(7)了解透射电镜的功能及发展。
第六章电子衍射
教学重点:电子衍射原理,单晶电子衍射花样的标定
教学难点:单晶电子衍射花样的标定,复杂电子衍射花样
教学时数:6学时
教学内容:电子衍射原理,单晶电子衍射花样的标定,多晶电子衍射图的标定,复杂电子衍射花样
教学方式:课堂讲授
教学要求:
(1)掌握布喇格定律和电子衍射基本公式。
(2)熟练掌握单晶电子衍射花样的标定方法,学会查表标定法、d值比较法、标准花样对照法在具体实例中的应用。
(3)了解多晶电子衍射图的标定。
(4)对复杂电子衍射花样,只做一般介绍。
第七章电子显微图像
教学重点:质厚衬度原理,衍衬衬度,相位衬度
教学难点:衍衬衬度,相位衬度
教学时数:6学时
教学内容:质厚衬度原理,衍衬衬度,相位衬度,透射电子显微镜样品制备
教学要求:
(1)掌握质厚衬度原理。
(2)掌握衍衬运动学理论和衍衬图像的基本特征。
(3)掌握相位衬度基本原理,了解高分辨电子显微镜的结构特征。
(4)了解透射电子显微镜样品制备方法。
第八章扫描电子显微镜与电子探针显微分析
教学重点:电子显微镜的工作原理,电子探针X射线显微分析,表面形貌衬度原理及其应用
教学难点:表面形貌衬度原理及其应用
教学时数:7学时
教学内容:电子束与固体样品相互作用时产生的物理信号,扫描电子显微镜的结构和工作原理,表面形貌衬度原理及其应用,原子序数衬度原理及其应用,电子探针X
射线显微分析,扫描电子显微镜的发展
教学方式:课堂讲授
教学要求:
(1)了解电子束与固体样品相互作用时产生的背散射电子、二次电子、吸收电子、透射电子、特征X射线、俄歇电子等物理信号。
(2)了解扫描电子显微镜的结构,掌握其工作原理。
(3)掌握表面形貌衬度原理及其应用,了解原子序数衬度原理及其应用。
(4)掌握电子探针X射线显微分析,特别是能谱仪的结构和工作原理。
(5)了解扫描电子显微镜的发展。
第九章光谱分析简介
教学重点:光谱分析基本原理,紫外、可见光吸收光谱
教学难点:光谱分析基本原理
教学时数:6学时
教学内容:光谱分析基本原理,原子光谱,分子光谱
教学方式:课堂讲授
教学要求:
(1)要求学生充分理解光谱分析基本原理。
(2)了解分子光谱分析的基本原理。
(3)初步了解原子发射光谱、吸收光谱、原子荧光光谱的原理与应用。
(4)了解分子光谱分析原理。
(5)掌握紫外、可见光吸收光谱的原理与应用。
(6)了解红外吸收光谱和分子荧光光谱的原理与应用。
第十章其他显微分析方法简介
教学重点:扫描探针显微镜,软X射线显微术
教学难点:扫描隧道电子显微镜和原子力显微镜的原理及应用
教学内容:扫描隧道电子显微镜和原子力显微镜
教学方式:课堂讲授
教学要求:
(1)掌握扫描隧道电子显微镜和原子力显微镜的工作原理。
(2)了解扫描隧道电子显微镜和原子力显微镜的特点与应用。
(3)了解软X射线显微术基本概念及软X射线全息显微成象技术简介
第十一章电子能谱分析方法简介
教学重点:X射线光电子能谱
教学难点:X射线光电子能谱的分析与应用
教学时数:6学时
教学内容:俄歇电子能谱法,X射线光电子能谱和紫外光电子能谱
教学方式:课堂讲授
教学要求:
(1)了解俄歇电子能谱的基本原理、俄歇电子能谱仪及应用。
(2)了解紫外光电子能谱的原理
(3)了解X射线光电子能谱仪的结构,掌握X射线光电子能谱的基本原理。
(4)熟练掌握X射线光电子能谱的分析与应用。
四、作业
该课程原则上每次课都布置作业,除了教材中的习题,也可以补充一些典型习题。
五、考核方式与成绩评定
考核方式:考试。
成绩评定:总评成绩=平时成绩(30%)+期末考试(70%),其中平时成绩是平时作业与出勤情况,视具体情况而定。
执笔人:
责任人:
2013年8月。