基于PLC的多种液体混合控制

合集下载

基于PLC的多种液体混合控制系统设计演示

基于PLC的多种液体混合控制系统设计演示

Network 11
M0.4
Network 12
Q0.0
Network 13
T37
Network 14
Q0.0
M0.4
P
()
Q0.3
(R)
1
Q0.0
(S)
1
T37
IN
TON
+600 PT 100ms
Q0.0
(R) 1
M0.5
N
()
Network 6 I0.4 P
Network 7
M0.2
Network 8 I0.5 P
完成系统的两个工作循环:第一工作循环,主要验证
系统启动运行后各控制设备与被控设备动作之间的连
续性及关联性,同时验证系统在完成本次工作循环后
能够自动进入下一循环以及组态画面在整个过程中的
同步性;第二工作循环,主要验证在此工作循环完成
之前按下停止按钮后,系统还能够按正常工作次序及
要求完成本循环剩余工作后才停止运行,同时也验证
组态画面的同步性。
PPT学习交流
12
PPT学习交流
13
PPT学习交流
14
PPT学习交流
15
PPT学习交流
16
PPT学习交流
17
• 设计总结
经过将近两个月的时间完成设计任务,设 计结果通过多次运行调试后,已符合设计任务 要求。
设计中可能还存在一些不足,但我从中得 到了一次很好的锻炼。
PPT学习交流
Network 9
M0.3
M0.2
()
Q0.1
( R)
1
Q0.2
( S) 1
M0.3
()
Q0.2

用PLC实现多种液体自动混合控制

用PLC实现多种液体自动混合控制

用PLC实现多种液体自动混合控制近年来PLC在处理速度、控制功能、通信能力以及控制领域等方面都不断有新突破,因此当今PLC是集计算机技术、通信技术和自动控制技术为一体的新型工业控制装置,它具有可靠性高,编程方便、环境要求低、体积小、重量轻、功耗低等特点,是一种专为工业控制设计及过程控制的数字运算操作的电子系统,是实现机电一体化的理想控制设备。

PLC的应用范围很广泛,目前国内市场的PLC较常见的进口机有美国的AB 公司和通用电气(CE)公司,日本的三菱公司的立石公司,以及德国的西门子公司的产品。

日本松下电工公司的FP系列PLC进入国内市场相对较晚,但因其品种齐全、功能完善,而且在设计上有其独到之处,所以近年来推广很快。

FP1系列机属于小型机,它一般由主控单元、扩展单元、智能单元三部分组成。

该系列包括有C14, C16, C24, C40, C56, C72六种型号的主机和E8,E16,E24,E40四种型号的扩展单元。

主控单元加扩展单元的I/O点数最大可扩展至152点。

FP1系列不但硬件配置齐全,而且软件功能也很强,共有192条指令。

它具有结构紧凑、硬件配置齐全、软件功能强大等特点,而且它的某些功能甚至可与大型机相媲美,所以具有较高的性价比,特别适合于在轻工行业的中小型企业中推广应用。

本文采用日本松下公司生产的FP1系列C40---AFP12416(电源电压为AC100—240V,输入点数为24点,输出点数为16点,输入电压为DC24V,输出类型为继电器输出,AFP12416为品名)可编程控制器为主控部件,设计了一种对多种液体进行自动混合的控制系统。

一、系统简介及控制要求多种液体混合控制主要是将3种液体分别注入、搅拌、加热,最终达到自动混合的目的,L1、L2、L3为液位传感器,被液面淹没时输出高电平;Y1、Y2、Y3、Y4为电磁阀,得电时打开,失电时关闭;M为搅拌电机;H为加热器,如图1所示。

具体控制要求如下:1.初始状态容器是空的,阀门Y1、Y2、Y3、Y4均为OFF,液位传感器L1、L2、L3均为OFF,搅拌机M为OFF,加热器H为OFF。

基于PLC多种液体混合控制系统

基于PLC多种液体混合控制系统

目录摘要 (II)ABSTRACT (III)第一章概述 (1)1.1 课题内容 (1)1.1.1 选题的目的 (1)1.1.2 课题设计的意义 (1)1.1.3 课题设计方案 (1)1.2PLC的简介 (1)1.2.1PLC的特点 (2)1.2.2西门子S7-200PLC (2)第二章系统硬件设计 (3)2.1 系统控制要求 (3)2.2 硬件设计 (4)2.2.1PLC机型的选择 (4)2.2.2 混合装置的基本组成 (5)2.2.3 液体混合装置运行流程分析 (5)2.2.4 液体混合装置电气原理图 (6)2.2.5 PLC I/O点分配及外部硬件接线图 (7)第三章系统软件程序设计 (9)3.1 PLC的编程要求和编程方法 (9)3.1.1 编程要求 (9)3.1.2 编程方法 (10)3.2STEP7-Micro/WIN32编程软件介绍 (10)3.2.1STEP7-Micro/WIN32编程软件 (10)3.2.2STEP7-Micro/WIN32编程软件的主要功能 (11)3.3 液体混合系统运行流程图 (13)3.4PLC程序设计 (15)3.4.1 内部继电器说明 (15)3.4.2梯形图 (15)3.4.3指令表 (18)第四章组态软件的应用 (21)4.1 组态软件的介绍 (21)4.1.1 组态软件的发展 (21)4.1.2 组态软件的功能特点发展方向 (22)4.2 组态王软件 (25)4.2.1组态王6.53软件简介 (25)4.2.2 组态王6.53在设计中的应用 (28)第五章系统调试 (34)5.1 连接设置 (34)5.2 运行调试 (35)总结 (39)辞谢 (40)参考文献 (41)外文资料译文 (42)摘要在上世纪60年代末PLC的出现,便以其独特的优点得到迅速地发展和普及,并在冶金、机械、纺织、轻工、化工等众多行业中取代了传统的继电器控制。

掌握可编程序控制器的工作原理,具备设计、调试和维护可编程序控制器控制系统的能力,已经成为现代工业对电气技术人员和相关工科学生的基本要求。

毕业设计---基于PLC的多种液体混合控制系统设计

毕业设计---基于PLC的多种液体混合控制系统设计

毕业设计(论文)题目:基于PLC的多种液体混合控制系统设计姓名吴莹莹系(部)机电工程系2010年06月15日毕业设计(论文)任务书填表时间:2010 年3月15日(指导教师填表)学生姓名专业班级D070211 指导老师课题类型工程设计题目基于PLC的多种液体混合控制系统设计主要研究目标(或研究内容) 掌握PLC系统开发、系统设计的方法,步骤。

掌握基于PLC的多种液体混合控制的工作原理和控制方法。

课题要求、主要任务及数量(指图纸规格、张数,说明书页数、论文字数等)1.查阅相关资料,熟悉基于PLC的多种液体混合控制的控制方法。

2.查阅专业资料,制定控制方案和硬件电路元件选择。

3.绘制基于PLC的多种液体混合控制系统电路原理图,梯形图,编写控制程序。

4.按要求写撰写毕业论文。

进度计划第5—6周收集有关多种液体混合控制的资料;第7—8周制定控制方案;第9—12周绘制多种液体混合控制系统电路原理图,编写相应软件程序;第13—14周整理设计资料,撰写设计说明书;第 15 周准备毕业答辩。

主要参考文献《PLC应用技术》《常用编程控制器原理及其应用》《可编程控制器原理及应用实例》《PLC编程理论算法及技巧理》《可编程控制器技术及应用》指导教师签字:教研室主任签字:年月日基于PLC的多种液体混合监控系统设计摘要以三种液体的混合灌装控制为例,将三种液体按一定比例混合,在电动机搅拌后要达到控制要求才能将混合的液体输出容器,并形成循环状态。

液体混合系统的控制设计考虑到其动作的连续性以及各个被控设备动作之间的相互关联性,针对不同的工作状态,进行相应的动作控制输出,从而实现液体混合系统从第一种液体加入到混合完成输出的这样一个周期控制工作的程序实现。

设计以液体混合控制系统为中心,从控制系统的硬件系统组成、软件选用到系统的设计过程,旨在对其中的设计及制作过程做简单的介绍和说明。

设计采用西门子公司的S7系列PLC去实现设计要求。

基于PLC的多种液体混合控制系统设计_毕业设计

基于PLC的多种液体混合控制系统设计_毕业设计

毕业设计(论文)任务书基于PLC的多种液体混合控制系统设计摘要以两种种液体的混合灌装控制为例,将两种液体按一定比例混合,在电动机搅拌后要达到控制要求才能将混合的液体输出容器,并形成循环状态。

液体混合系统的控制设计考虑到其动作的连续性以及各个被控设备动作之间的相互关联性,针对不同的工作状态,进行相应的动作控制输出,从而实现液体混合系统从第一种液体加入到混合完成输出的这样一个周期控制工作的程序实现。

设计以液体混合控制系统为中心,从控制系统的硬件系统组成、软件选用到系统的设计过程(包括设计方案、设计流程、设计要求、梯形图设计、外部连接通信等),旨在对其中的设计及制作过程做简单的介绍和说明。

设计采用西门子公司的S7系列去实现设计要求。

关键词:多种液体,混合装置,自动控制目录前言 (1)第1章多种液体混合灌装机控制系统设计 (3)1.1 方案设计 (3)1.2 方案的介绍 (3)第2章硬件电路设计 (5)2.1 总体结构 (5)2.2 液位传感器的选择 (6)2.3 搅拌电机的选择 (6)2.4 电磁阀的选择 (7)2.5 接触器的选择 (8)2.6 热继电器的选择 (8)2.7 PLC的选择 (8)2.8PLC输入、输出口分配 (10)2.9液体混合装置输入/输出接线 (10)第3章软件电路设计 (13)3.1程序框图 (13)3.2 根据控制要求和I/O地址编制的控制梯形图 (13)第4章系统常见故障分析及维护 (17)4.1系统故障的概念 (17)4.2 系统故障分析及处理 (17)4.3 系统抗干扰性的分析和维护 (18)结论 (20)谢辞 (21)参考文献 (22)前言为了提高产品质量,缩短生产周期,适应产品迅速更新换代的要求,产品生产正在向缩短生产周期、降低成本、提高生产质量等方向发展。

在炼油、化工、制药等行业中,多种液体混合是必不可少的工序,而且也是其生产过程中十分重要的组成部分。

但由于这些行业中多是易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作。

基于PLC的多种液体控制系统设计

基于PLC的多种液体控制系统设计

届本科毕业论文(设计)论文题目:基于PLC的多种液体混合控制系统设计学生姓名:所在院系:机电学院所学专业:机电导师姓名:完成时间:年月日摘要本文所介绍的多种液体混合控制系统是一种适用于工业环境下的新型通用自动控制装臵。

在本设计中采用了日本松下公司FP1系列AFP可编程控制器,以三种液体的混合控制为例,将三种液体按一定比例进行混合,加热到特定温度后进行搅拌,待搅拌均匀后从容器中流出,并实现整个控制系统的自动循环控制。

在控制系统中通过程序中的液位传感器控制液体流量,温度传感器控制混合液体的温度,实现了对液体混合装臵的控制。

在设计中具体完成了PLC硬件设计和软件编程,并通过系统调试,达到自动混合液体的目的,提高了液体混合生产的自动化程度和生产效率,可以用于工业上液体混合及后期加工等,基本适合于工业生产要求,其便于维修和保养。

关键词:多种液体,混合装臵,自动控制The Design of Multi-Liquid Mixing Control System based on PLCAbstractThis text is introducing at Counts Various Liquids Automatic to mix with PLC.The control system is a kind of new in general use automatic control device that be applicable to the industry environment,which uses FP1 serise model AFP12417 PLC made by Panasoic of japan to complete the control of the device that used to mix the liquid.The design of the liquid mixture in three control as an example,is to a certain proportion by the three liquid mixture,strirring after the motor to reach a certain temperature can be mixed contains of liquid output,and form a ctcle.It through the process liquid level sensor to control liquid flux,have finished the hardware design of PLC and software programming,and debugged and tested the whole system.In conclusion,the device is capable of mixing the liquid automaticallly.The menthod improve the automation atandard of the liquid production line and productivity.It can used for the liquid on the industry mixs with and the post-process and so on,basic suitable for the industry produces the request,easy operation,repair and maintenance.Keywords: Variety Of Liquid,Mixed Devices,Automatic Control目录1绪论 (1)2总体方案设计 (6)2.1方案设计 (6)2.2 控制方案介绍 (6)3硬件电路设计 (8)3.1 总体结构 (8)3.2 液位传感器的选择 (10)3.3 温度传感器的选择 (11)3.4 搅拌电机的选择 (13)3.4.1电动机主电路 (13)3.4.2计算搅拌器的理论功率 (14)3.4.3 选用电动机 (14)3.5 电磁阀的选择 (15)3.6 接触器的选用 (16)3.7 热继电器的选择 (16)3.8 熔断器的选择 (17)3.9 PLC的选择 (17)3.10 PLC输入输出口的分配 (18)3.11 液体混合装臵输入/输出装臵接线图 (18)4 软件电路设计 (18)4.1 程序框图 (18)4.2 控制程序梯形图 (21)4.3 语句表 (21)5系统常见故障分析及维护 (22)5.1 系统故障的概念 (23)5.2 系统故障分析及处理 (23)5.2.1 PLC故障分析 (23)5.2.2 PLC控制系统故障分布和分层排除 (24)5.3 系统抗干扰性的分析与维护 (25)5.3.1 干扰源及一般分类 (25)5.3.2 PLC系统中干扰的主要来源及途径 (25)5.3.3 主要抗干扰措施 (26)6 结束语 (27)致谢 (27)参考文献 (28)1绪论多种液体混合是将多种液体按照先后顺序,按照一定比例,加热到预定的温度然后进行混合。

多种液体混合的PLC控制(共7页).doc

多种液体混合的PLC控制(共7页).doc

目录一、背景与意义 (1)二、任务导入 (1)1、装置示意图 (2)2、装置说明 (2)3、控制要求 (2)三、任务实施 (3)1、I/O分配 (3)2、P L C外部硬件接线图 (3)3、顺序功能图 (4)4、梯形图设计 (4)四、课程设计总结 (5)五、参考文献 (6)一、背景与意义随着科学技术的猛速发展,自动控制技术在人类活动的各个领域中的应用越来越广泛。

在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。

但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作。

另外,生产要求该系统要具有配料精确、控制可靠等特点,这也是人工操作和半自动化控制所难以实现的。

所以为了帮助相关行业,特别是其中的中小型企业实现多种液体自动混合,就是摆在我们眼前的一大课题。

随着计算机技术的发展,对原有液体混合装置进行技术改造后,设计出多种液体混合装置,可编程控制器在混合过程中控制精确,运行稳定、自动化程度高,适合工业生产的需要。

可编程控制器多种液体自动混合控制系统的特点:①可自动工作②控制的单周期运行方式;③由传感器送入设定的参数实现自动控制;④启动后就能自动完成一个周期的工作,并循环。

本系统采用PLC是基于以下两个原因:①PLC具有很高的可靠性,通常的平均无故障时间都在30万小时以上;②编程能力强,可以将模糊化、模糊决策和解模糊都方便地用软件来实现。

根据多种液体自动混合系统的要求与特点,我们采用的PLC具有小型化、高速度、高性能等特点,可编程控制器指令丰富,可以接各种输出、输入扩充设备,有丰富的特殊扩展设备,其中的模拟输入设备和通信设备是系统所必需的,能够方便地联网通信。

本系统就是应用可编程序控制器(PLC)对多种液体自动混合实现控制。

二、任务导入1、装置示意图如图1所示图1 装置示意图2、装置说明①L1、L2、L3分别为高水位、中水位和低水位液位传感器,被液体淹没时为ON。

基于PLC的多种液体混合控制

基于PLC的多种液体混合控制

2017年9月29日目录第1章多种液体混合灌装机控制系统设计 (2)1.1方案设计 (2)1.2方案的介绍 (2)第2章硬件电路设计 (4)2.1总体结构 (4)2.2液位传感器的选择 (5)2.3搅拌电机的选择 (5)2.4接触器的选择 (6)2.5热继电器的选择 (6)2.6电磁阀的选择 (6)2.7PLC的选择 (7)2.8PLC输入、输出口分配 (9)2.9液体混合装置输入/输出接线 (9)第3章系统常见故障分析及维护 (11)3.1系统故障的概念 (11)3.2系统故障分析及处理 (11)3.3系统抗干扰性的分析和维护 (12)第4章软件电路设计 (14)4.1程序框图 (14)4.2根据控制要求和I/O地址编制的控制梯形图 (14)第5章课程设计心得 (17)参考文献 (18)第2章硬件电路设计2.1总体结构从图2-1中可知设计的液体混合装置主要完成三种液体的自动混合搅拌。

此装置需要控制的元件有:其中SL1,SL2,SL3,SL4为液面传感器,液面淹没该点时为ON,YV1,YV2,YV3,YV4为电磁阀,M为搅拌机。

另外还有控制电磁阀和电动机的1个交流接触器KM。

所有这些元件的控制都属于数字量控制,可以通过引线与相应的控制系统连接从而达到控制效果。

图2-1液体混合灌装机要求如下:1、初始状态:当装置投入运行时,容器内为放空状态。

2、起始操作:按下启动按钮SB1,装置开始按规定工作,液体A阀门打开,液体A流入容器。

当液面到达SL2时,关闭液体A阀门,打开B阀门。

当液面到达SL3时,关闭液体B阀门,打开C阀门。

当液面到达SL4时,关闭液体C阀门,搅拌电动机开始转动。

搅拌电动机工作1min 后,停止搅动,混合液体阀门打开,开始放出混合液体。

当液面下降到SL1时,SL1有接通变为断开,在经过20s后,容器放空,混合液体阀门YV4关闭,接着开始下一个循环操作。

3、停止操作:按下停止按钮后,要处理完当前循环周期剩余任务,系统停止在初始状态。

浅析多种液体混合加热过程的PLC控制

浅析多种液体混合加热过程的PLC控制

浅析多种液体混合加热过程的PLC控制【摘要】本文从液体混合过程控制原理、PLC在液体混合加热中的应用、控制系统设计方案、参数调节与优化、安全防护措施等方面进行了深入探讨。

通过对多种液体混合加热过程的PLC控制进行分析,揭示了其应用前景、存在的问题与挑战以及未来发展方向。

本文旨在为相关领域的研究提供理论支持和实际指导,促进该领域的发展和创新,为实现液体混合加热过程的智能化控制做出贡献。

【关键词】液体混合加热,PLC控制,控制原理,应用,系统设计,参数调节,优化,安全防护,应用前景,问题与挑战,发展方向。

1. 引言1.1 多种液体混合加热过程的PLC控制在工业生产中,液体混合加热是一种常见的工艺过程。

而采用PLC控制技术对液体混合加热过程进行精准控制,不仅可以提高生产效率,还可以提高产品质量和降低能源消耗。

液体混合过程控制原理主要包括对混合液体的温度、流量、压力等参数进行监测和控制。

PLC在液体混合加热中的应用主要体现在其可以实现对加热器、泵、阀门等设备的智能控制,通过设定合理的控制逻辑,实现精确控制混合液体的加热过程。

在控制系统设计方案方面,需要考虑到液体混合加热过程中的各种参数变化情况,设计出适合生产的控制系统。

参数调节与优化是保障加热系统稳定运行的关键,需要不断对系统进行调试和优化以达到最佳工作状态。

安全防护措施也是不可忽视的部分,对于液体混合加热过程中可能出现的安全风险要提前预防和控制,确保生产过程安全可靠。

多种液体混合加热过程的PLC控制有着广阔的应用前景,但也存在着一些问题和挑战,比如控制算法的优化、设备的更新换代等。

未来的发展方向将会更加注重智能化、自动化和节能环保,为液体混合加热过程带来更大的发展空间。

2. 正文2.1 液体混合过程控制原理液体混合过程控制原理涉及到混合槽内液体的流动、温度、压力等参数的控制。

在混合过程中,不同液体的流速、密度、粘度等性质不尽相同,因此控制原理需要考虑到这些因素。

基于PLC的多种液体混合控制系统设计PPT演示

基于PLC的多种液体混合控制系统设计PPT演示

Network 1
I0.1
Network 2
I0.2
Network 3
M0.0
Network 4
M0.1
Network 5
M0.0
M1.0
Network 6 I0.4
Network 7
M0.2
Network 8 I0.5
Network 9
M0.3
• PLC程序梯形图
M0.0
P
()
M0.1
P
()
M1.0
else 水流4=0;
四、运行调试
对于本设计,在调试时要验证系统所有功能及各 阶段运行状态都能够符合设计要求,每次调试至少应 完成系统的两个工作循环:第一工作循环,主要验证 系统启动运行后各控制设备与被控设备动作之间的连 续性及关联性,同时验证系统在完成本次工作循环后 能够自动进入下一循环以及组态画面在整个过程中的 同步性;第二工作循环,主要验证在此工作循环完成 之前按下停止按钮后,系统还能够按正常工作次序及 要求完成本循环剩余工作后才停止运行,同时也验证 组态画面的同步性。
基于PLC的多种液体混合 控制系统设计
制 作:XXX 指导老师:XXX
设计设任计务的的主基要本内要容求
设计任务的基本要求为: 系统硬件设计 系以统三软种件液设体计混合控制系统为具体设计对象 组态软件在设计中的应用 运采行用调S7试-200系列机型进行程序设计,利用
组态王软件对自动运行进行画面组态
SB2
启动按钮SB1
入SL1
SL2
I0.1
SL3
S输L4
电动机M
出 24V Q0.0
停止按钮I0.1SB2 I0.2 II00..32 I0.4 电I0磁.5阀YVI0.16 1M 2QM0.1

多种液体自动混合装置的PLC控制

多种液体自动混合装置的PLC控制

摘要随着社会的不断发展和科学技术的不断提高,各种工业自动化不断升级,尤其是在工业上PLC的应用越来越广泛。

其中在生产的第一线有着各种各样的自动加工系统,其中多种原材料混合再加工,在工业上常常可见。

本次设计课题为“基于PLC的多种液体混合控制设计”,此设计以液体混合控制系统为中心,从控制系统的硬件系统组成、软件选用到系统的设计过程。

此次设计主要内容包括:工作过程分析,I/O分配,主电路,梯形图,流程图,指令表,接线图,程序分析等, 经过多次修改和调试,最终实现题目要求。

设计采用三菱FX2N-48PLC去实现设计要求。

关键词:自动控制 PLC 多种液体自动混合装置目录第一章概述1.1课题背景随着社会科学技术的不断发展,自动控制在人类活动的各个领域中的应用越来越广泛,它的水平已成为衡量一个国家生产和科学技术先进与否的一项重要标志。

在许多行业中,多种液体自动混合装置是必不可少的,而且也是其生产过程中十分重要的组成部分。

由于在某些生产要求中,要求系统要具有配料精确、控制可靠等特点,这也是人工操作所难以实现的。

所以为了达到生产要求,特别是要实现多种液体自动混合的目的,多种液体自动混合装置势必就是摆在我们眼前的一大课题。

随着PLC控制器的不断发展和计算机技术的不断提高,对原有液体混合装置进行技术改造,提出数据采集、自动控制、运行管理等多方面的要求。

设计的多种液体混合装置利用PLC可编程控制器可实现在混合过程中精确控制,提高了液体混合比例的稳定性、自动化程度,适合相关工业生产的需要。

1.2课题的意义与发展方向在工业生产中,把多种原料在合适的时间和条件下进行需要的加工得到产品一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是现在随着时代的发展,这些方式已经不能满足工业生产的实际需要。

实际生产中需要更精确、更便捷的控制装置。

PLC一经出现,由于它的自动化程度高、可靠性好、设计周期短、使用和维护简便等独特优点,备受国内外工程技术人员和工业界厂商的极大关注,生产PLC的厂家云起。

浅析多种液体混合加热过程的PLC控制

浅析多种液体混合加热过程的PLC控制

浅析多种液体混合加热过程的PLC控制随着工业自动化的发展,PLC(可编程逻辑控制器)已经在各种工业领域中得到广泛应用。

本文将针对多种液体混合加热过程,对PLC控制进行分析。

液体混合加热是实现温度控制的重要过程之一,广泛应用于化工、食品、制药等工业领域。

在传统的液体混合加热过程中,通常使用温度传感器、温度控制器和电加热装置来实现对液体温度的控制。

这种传统的控制方式不仅工作量大,而且容易出现误差。

而采用PLC控制液体混合加热过程,通过对温度传感器和电加热装置的联动控制,可以实现自动化控制。

PLC控制液体混合加热过程需要对液体的温度进行实时监测。

温度传感器可以采用RTD 或者热电偶等传感器,通过测量液体的温度变化,并将信号反馈给PLC。

PLC根据接收到的信号进行实时的温度监测,判断液体的温度是否在设定的范围内,并根据需要调整加热装置的工作状态。

PLC需要根据设定的温度要求来控制加热装置。

传统的加热装置通常采用继电器进行控制,在PLC控制液体混合加热过程时,可以通过PLC的数字输出口来控制继电器的动作。

PLC可以根据设定的加热速率和温度变化来控制继电器的工作时间和停止时间,从而控制加热装置的加热功率和加热时间。

PLC可以根据液体的性质和加热过程的要求来调整加热装置的工作方式。

对于某些需要快速加热的液体,可以采用PWM(脉宽调制)方式来控制加热装置的工作,通过调整脉冲信号的占空比来控制加热器的加热功率。

对于一些对温度变化要求较高的液体,可以采用PID(比例积分微分)控制方式来控制加热装置的工作,通过根据反馈信号的动态调整,实现对温度的精确控制。

PLC控制液体混合加热过程还需要实现对整个过程的监控和数据记录。

通过在PLC中编写相应的监控程序和数据记录程序,可以实时监测液体的温度变化和加热装置的工作状态,并将记录的数据保存到PLC的存储器中。

在需要时,可以将存储的数据通过网络或者USB接口传输到上位机,进行进一步的分析和处理。

浅析多种液体混合加热过程的PLC控制

浅析多种液体混合加热过程的PLC控制

浅析多种液体混合加热过程的PLC控制PLC(可编程逻辑控制器)是一种计算机控制设备,常用于工业自动化系统中对各种生产过程进行控制。

在液体混合加热的过程中,PLC可以发挥重要作用,实现自动化的控制和监测功能。

液体混合加热过程中,常见的液体混合方式有搅拌式混合和循环式混合。

搅拌式混合将两种或多种液体放入一个容器中,通过机械搅拌来实现混合。

循环式混合则是将不同液体通过管道送入一个反应釜中,在釜内通过搅拌和循环流动来实现混合。

1. 确定加热方式和温度传感器位置:在液体混合过程中,可以选择蒸汽加热、电加热或者其他方式进行加热。

根据加热方式的选择,需要确定合适的温度传感器位置,以便实时监测液体温度。

2. 设定加热曲线和控制逻辑:根据混合液体的性质和要求,确定加热曲线,即设定在不同时间段内的加热速率和保持温度。

根据加热曲线设定控制逻辑,即根据温度传感器的反馈信号来控制加热设备的开关。

3. 编写PLC控制程序:根据设定的加热曲线和控制逻辑,编写PLC控制程序。

在程序中包括监测液体温度、控制加热设备的开关和保持合适的加热时间等功能。

4. 运行和监测:将编写好的PLC控制程序上传至PLC设备,并运行程序。

通过监测液体温度和加热设备的状态,实时反馈液体温度信息,确保加热过程的稳定和安全。

1. 精确控制:PLC设备拥有高精度的温度传感器和可编程的控制逻辑,可以根据设定的曲线和要求进行精确的温度控制,提高混合液体的质量和稳定性。

2. 自动化操作:通过编写PLC控制程序,可以实现自动化的操作,减少人工操作中的误差和劳动强度,提高生产效率和产量。

3. 可视化监测:PLC设备可以通过连接上监控器来实时监测液体温度和加热设备的状态,使操作人员可以清晰地了解加热过程的情况,及时作出调整和处理。

PLC控制在液体混合加热过程中可以实现精确、自动化和可视化控制,提高生产效率和质量。

通过合理的设定和编写控制程序,可以确保液体混合加热过程的稳定和安全。

多种液体自动混合装置的PLC控制

多种液体自动混合装置的PLC控制

摘要随着经济的发展和社会的进步,各种工业自动化的不断升级,对于工人的素质要求也逐渐提高。

各种机械的自动化控制逐渐融入了产品的制作与加工中,其中多种原材自动混合加工,是其中最为常见的一种。

在工艺加工最初,把多种原料在合适的时间和条件下进行混合和加工一直都是在人监控和操作下进行的,不但耗费人力而且浪费时间,导致不会有很高的效率和产出。

但是随着时代的发展,这种方式已经不能满足工业生产的实际需要。

实际生产中需要更精确、更简单、更快捷的控制装置。

我设计的题目是“多种液体自动混合装置的PLC控制”。

此次设计的主要内容包括:工作过程的分析,设计梯形图,I/O分配,指令表,接线图,电气原理图及工作情况说明。

由于第一次设计PLC题目设计,其中不免出现一些不足和瑕疵,但我也会尽最大努力来将自己的设计表达和阐述清晰合理。

关键词:初始化移位控制开关循环目录摘要 (1)一、课题背景 (3)1、课题背景 (3)2、研究目的和意义 (4)3、本文的主要工作 (4)二、控制要求、设计要求 (5)1、设备基本情况 (5)2、控制要求 (5)3、设计要求 (6)三、总体设计思路 (7)四、程序设计及调试 (8)1、PLC的I/0口接线图 (8)2、P L C的I/O口分配表 (8)3、梯形图 (8)4、指令表 (9)五、工作原理的叙述 (11)六、后期工作 (12)1、操作过程简要说明 (12)2、编写并提交(课程)设计说明书 (12)七、课程设计总结 (13)八、致谢 (13)九、参考文献 (14)多种液体自动混合装置的PLC控制一、课题背景(一)课题背景随着科学技术的猛速发展,自动控制技术在人类活动的各个领域中的应用越来越广泛,它的水平已成为衡量一个国家生产和科学技术先进与否的一项重要标志。

在炼油、化工、制药等行业中,多种液体混合是必不可少的程序,而且也是其生产过程中十分重要的组成部分。

但由于这些行业中多为易燃易爆、有毒有腐蚀性的介质,以致现场工作环境十分恶劣,不适合人工现场操作。

基于PLC的多种液体混合控制系统的设计专科毕业设计

基于PLC的多种液体混合控制系统的设计专科毕业设计

专科毕业设计(论文)设计题目基于PLC的多种液体混合控制系统的设计系部:电气工程系专业:船舶电气工程技术班级:船舶电气111301摘要目前,非常多的全自动操作系统出现在工业生产中,多种液体混合控制系统更是得到了快速地发展。

在最初的处理加工过程中,多种液体的原材料要在人为监控下流入混合装置,并且要满足最初设定好的时间和条件。

在自动化控制系统发展的历史过程中,继电器控制系统的弊端层出不穷,并且维修起来复杂,困难重重,所以逐步被现代化工业生产而淘汰。

多种液体混合控制装置需要设计得更可靠、更简单才能满足当下生产需求。

本文中,我要讲述的是由我设计的多种液体混合控制系统,它是基于可编程序控制器(PLC)而设计完成的。

因此,需要运用到液位传感器对液面高度进行监控。

电磁阀的应用使多种液体在流入混合控制装置的过程中起到了控制作用,搅拌电机的使用可以让多种液体达到充分的混合,混合液体经过加热器加热达到设定温度后,就会从混合装置中流出,况且此控制系统为循环控制系统。

多种液体在混合加工时,若按下了停止键,只有当整个过程加工完成后才能停止操作,这样便减少了原材料的浪费,使资源得到了完整的使用。

关键词: PLC 液体混合自动控制目录1绪论 (1)2多种液体混合装置概述 (2)2.1多种液体混合装置的组成 (2),.2.1.1液位传感器的选择 (2)2.1.2温度传感器的选择 (3)2.1.3电磁阀的选择 (4)2.1.4搅拌电机的选择 (4)2.2多种液体混合装置工作的基本原理 (4)2.2.1多种液体混合装置的液位控制 (5)2.2.2多种液体混合装置的温度控制 (5)3基于PLC的多种液体混合的控制系统 (5)3.1PLC的概述 (5)3.2 PLC的工作原理 (6)3.3基于PLC控制系统的控制要求与设计要求 (7)3.3.1控制要求 (7)3.3.2设计要求 (8)3.4液体混合控制系统的PLC选型 (8)4程序设计及调试 (9)4.1I/O分配 (9)4.2设计外围接线图 (10)4.3绘制顺序功能图 (11)4.4设计梯形图程序 (13)5.系统常见故障与维护 (16)5.1系统故障的概念 (16)5.2系统故障分析及处理 (16)5.2.1PLC主机系统 (16)5.2.2PLC的I/O端口 (17)5.2.3现场控制设备 (17)5.3系统抗干扰性的分析和维护 (17)结论 ........................................................ 错误!未定义书签。

基于PLC的多种液体混合控制系统设计

基于PLC的多种液体混合控制系统设计
(1)初始状态:在初始运行时,对系统 进行复位。
(2) 通 过 外 部 的 按 钮 SB1 进 行 系 统 启 动。当系统启动后,首先将电磁阀 YV1 打开, 液体 A 进行输入,当容器中的液位达到 SL2 处,将关闭电磁阀 YV1,停止液体 A 输入, 并且打开电磁阀 YV2。这时液体 B 进行输入, 当容器中的液位达到 SL3 处,将关闭电磁阀 YV2,停止液体 B 输入,与此同时打开电磁阀 YV3,这时液体 C 进行输入,当容器中的液位 达到 SL4 处,将关闭电磁阀 YV3。
(4)按下停止按钮,设备将处于停止状 态,在容器内,当前的循环周期与余下的循环 工作完成时,整个系统又开始回到初始状态。
根 据 以 上 的 工 艺 介 绍 和 研 究, 本 系 统 采 用 可 编 程 控 制 器( 西 门 子 品 牌 的 S7-200 CPU226)进行多种液体混合控制系统的设计。
(3)当电磁阀 YV1、YV2、YV3 都关闭时, 液体已经在 SL4 处,这时启动容器内的搅拌机, 进行液体搅拌,搅拌机工作 60 秒后,停止液 体搅拌。这时打开液体排出阀 YV4,液体开
图 1:上位机设计仿真图
始排出容器,这时容器内的液位正在下降,当 液位下降到 SL1 限位开关处,表示液体基本 排空,将液体阀 YV4 关闭后 20 秒后,然后开 始操作的下一个周期。
统采用西门子 S7-200 可编程控制
器 进 行 硬 件 设 计, 采 用 顺 序 控 制
的 方 法 进 行 软 件 程 序 的 编 写, 同
时采用组态王软件对上位机进行
设 计, 仿 真 模 拟 了 系 统 运 行, 达
到设计的控制要求。
【关键词】液体混合 S7-200 上位机
由于计算机技术以及自动控制理论的发 展,在现场通讯技术日趋成熟的条件下,可编 程控制器作为微型处理器得到了广泛应用。该 控制器设计小巧,使用方便,性能较好,可靠 性能也比较高并且维护比较方便。在工业现场, 在目前工业现场能很好的解决现场各种各样复 杂的工艺控制问题。

plc课程设计(多种液体自动混合装置的PLC控制)

plc课程设计(多种液体自动混合装置的PLC控制)

摘要随着社会的不断发展和科学技术的不断提高,各种工业自动化不断升级,尤其是在工业上PLC的应用越来越广泛。

其中在生产的第一线有着各种各样的自动加工系统,其中多种原材料混合再加工,在工业上常常可见。

本次设计课题为“基于PLC的多种液体混合控制设计”,此设计以液体混合控制系统为中心,从控制系统的硬件系统组成、软件选用到系统的设计过程。

此次设计主要内容包括:工作过程分析,I/O分配,主电路,梯形图,流程图,指令表,接线图,程序分析等, 经过多次修改和调试,最终实现题目要求。

设计采用三菱FX2N-48PLC去实现设计要求。

关键词:自动控制 PLC 多种液体自动混合装置目录第一章概述1.1课题背景随着社会科学技术的不断发展,自动控制在人类活动的各个领域中的应用越来越广泛,它的水平已成为衡量一个国家生产和科学技术先进与否的一项重要标志。

在许多行业中,多种液体自动混合装置是必不可少的,而且也是其生产过程中十分重要的组成部分。

由于在某些生产要求中,要求系统要具有配料精确、控制可靠等特点,这也是人工操作所难以实现的。

所以为了达到生产要求,特别是要实现多种液体自动混合的目的,多种液体自动混合装置势必就是摆在我们眼前的一大课题。

随着PLC控制器的不断发展和计算机技术的不断提高,对原有液体混合装置进行技术改造,提出数据采集、自动控制、运行管理等多方面的要求。

设计的多种液体混合装置利用PLC可编程控制器可实现在混合过程中精确控制,提高了液体混合比例的稳定性、自动化程度,适合相关工业生产的需要。

1.2课题的意义与发展方向在工业生产中,把多种原料在合适的时间和条件下进行需要的加工得到产品一直都是在人监控或操作下进行的,在后来多用继电器系统对顺序或逻辑的操作过程进行自动化操作,但是现在随着时代的发展,这些方式已经不能满足工业生产的实际需要。

实际生产中需要更精确、更便捷的控制装置。

PLC一经出现,由于它的自动化程度高、可靠性好、设计周期短、使用和维护简便等独特优点,备受国内外工程技术人员和工业界厂商的极大关注,生产PLC的厂家云起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东北石油大学课程设计2017年10月20日东北石油大学课程设计任务书课程PLC控制系统课程设计题目基于PLC的多种液体混合控制专业自动化王福鹏学号 9控制要求:本系统由软PLC控制器、自动化控制软件平台等组成,设计出三种液体混合加热,四种液体混合自动计数自动清零、手动清零的控制程序。

主要容包括:1. 设计出硬件系统的结构图、接线图、时序图等;2. 系统有启动、停止功能;3. 运用功能指令设计出PLC控制程序,并有主程序、子程序和中断程序;4. 设计出上位监控系统;5. 程序结构与控制功能自行创新设计;6. 进行系统调试,实现多种液体混合控制功能。

参考文献:[1] 王祥群,高精度灌装生产线中的自动化技术应用[J],包装与食品机械2004[2] 让,PLC在纯净水灌装设备中的应用[J],给水排水,2000[3] 王事成、玉成等,PLC在啤酒灌装压盖机上的应用[J],包装工程,2000[4] 成,全自动液体灌装机.,机电一体化,2003[5] 吴东海,电器控制与PLC应用,化学工业,2005完成期限2017.10.9~2017.10.20指导教师专业负责人2017年9月29日目录第1章多种液体混合灌装机控制系统设计 (1)1.1 方案设计 (1)1.2 方案的介绍 (1)第2章硬件电路设计 (3)2.1 总体结构 (3)2.2 液位传感器的选择 (4)2.3 搅拌电机的选择 (4)2.4 接触器的选择 (5)2.5 热继电器的选择 (5)2.6 电磁阀的选择 (5)2.7 PLC的选择 (6)2.8 PLC输入、输出口分配 (8)2.9 液体混合装置输入/输出接线 (8)第3章系统常见故障分析及维护 (10)3.1系统故障的概念 (10)3.2 系统故障分析及处理 (10)3.3 系统抗干扰性的分析和维护 (11)第4章软件电路设计 (13)4.1程序框图 (13)4.2 根据控制要求和I/O地址编制的控制梯形图 (13)第5章课程设计心得 (16)参考文献 (17)第1章多种液体混合灌装机控制系统设计1.1 方案设计对于本课题来说,如果液体混合系统部分是一个较大规模工业控制系统的改造升级,新控制装置需要根据企业设备和工艺现状来构成并需尽可能的利用旧系统中的元器件。

对于人机交互方式改造后系统的操作模式应尽量和改造前的相类似,以便于操作人员迅速掌握。

从企业的改造要求可以看出在新控制系统中既需要处理模拟量也需要处理大量的开关量,系统的可靠性要高,人机交互界面友好,应具备数据储存和分析汇总的能力。

在炼油、化工、制药等行业中, 多种液体混合是必不可少的工序, 而且也是其生产过程中十分重要的组成部分。

以往常采用传统的继电器接触器控制, 使用硬连接电器多, 可靠性差, 自动化程度不高。

当前国许多地方的此类控制系统主要是采用DCS, 这是由于液位控制系统的仪表信号较多, 采用此系统性价比相对较好, 但随着电子技术的不断发展, PLC 在仪表控制方面的功能已经不断强化。

用于回路调节和组态画面的功能不断完善, 而且PLC 的抗干扰的能力也非常强, 对电源的质量要求比较低。

目前已有许多企业采用先进控制器对传统接触控制进行改造, 大大提高了控制系统的可靠性和自控程度, 为企业提供了更可靠的生产保障, 所以PLC 在工业控制系统中得到了良好的应用。

采用PLC 对容器中的液位进行监控控制, 其电路结构简单, 设备投资少, 监控系统不仅自动化程度高, 还具有在线修改功能, 灵活性强等优点, 适用于多段液位控制的监控场合。

为此, 我们设计了以德国西门子公司生产的S7-200 CPU 226CN 型PLC 为主控制器, PPI 通信协议下的多种液体混合监控系统。

整个设计过程是按思想工艺流程设计,为设备安装、运行和保护检修服务。

设计的编写按照国家关于电气自动化工程设计中的电气设备常用基本图形符号(GB4728)及其他相关标准和规编写。

设计原则主要包括:工作条件;工程对电气控制线路提供的具体资料。

系统在保证安全、可靠、稳定、快速的前提下,尽量做到经济、合理、合用、减小设备成本。

在方案的选择、元器件的选型时更多的考虑新技术、新产品。

控制由人工控制到自动控制,由模拟控制到微机控制,使功能的实现由一到多而且更加趋于完善。

要实现整个液体混合控制系统的设计,需要从怎样实现电磁阀的开关以及电动机启动的控制这个角度去考虑,现状就这个问题的如何实现以及选择怎样的方法来确定系统方案。

1.2 方案的介绍(1)单片机控制单片机作为一个超大规模的集成电路,结构上包括CPU、存储器、定时器和多种输入/输出接口电路。

其低功耗、低电压和很强的控制功能,成为功控领域、尖端武器、日常生活中最广泛的计算机之一。

但是,单片机是一个集成电路,不能直接将它与外部I/O信号连接,要将它用于工业控制还要附加一些配套的集成电路和I/O接口电路,硬件设计、控制和程序设计的工作量相当大。

(2)继电器控制系统控制功能是用硬件继电器实现的。

继电器串接在控制电路中根据主电路中的电压、电流、转速、时间及温度等参数变化而动作,以实现电力拖动装置的自动控制及保护。

系统复杂,在控制过程中,如果某个继电器损坏,都会影响整个系统的正常工作,查找和排除故障往往非常困难,虽然继电器本身价格不太贵,但是控制柜的安装接线工作量大,因此整个控制系统价格非常高,灵活性差,响应速度慢。

(4)可编程序控制器控制可编程控制器(PLC)从上世纪70年代发展起来的一种新型工业控制系统,起初它主要是针对开关量进行逻辑控制的一种装置,可以取代中间继电器、时间继电器等构成开关量控制系统,随着30多年来微电子技术的不断发展,PLC也通过不断的升级换代大大增强了其功能。

现状PLC已经发展成不但具有逻辑控制功能、还具有过程控制功能、运动控制功能和数据处理功能、连网通讯功能等多种功能,是名副其实的多功能控制器。

由PLC为主构成的控制系统具有可靠性高、控制功能强大、性价比高等优点,是目前工业自动化的首选控制装置。

(3)工业控制计算机控制工控机采用总线结构,各厂家产品兼容性比较强,有实时操作系统的支持,在要求快速、实时性强、功能复杂的领域中占优势。

但工控机价格较高,将它用于开关量控制有些大才效用。

且其外部I/O接线一般都用于多芯扁平电缆和插头、插座,直接从印刷电路板上引出,不如接线端子可靠。

第2章硬件电路设计2.1 总体结构从图2-1中可知设计的液体混合装置主要完成三种液体的自动混合搅拌。

此装置需要控制的元件有:其中SL1,SL2,SL3,SL4为液面传感器,液面淹没该点时为ON,YV1,YV2,YV3,YV4为电磁阀,M为搅拌机。

另外还有控制电磁阀和电动机的1个交流接触器KM。

所有这些元件的控制都属于数字量控制,可以通过引线与相应的控制系统连接从而达到控制效果。

图2-1 液体混合灌装机要求如下:1、初始状态:当装置投入运行时,容器为放空状态。

2、起始操作:按下启动按钮SB1,装置开始按规定工作,液体A阀门打开,液体A流入容器。

当液面到达SL2时,关闭液体A阀门,打开B阀门。

当液面到达SL3时,关闭液体B阀门,打开C阀门。

当液面到达SL4时,关闭液体C阀门,搅拌电动机开始转动。

搅拌电动机工作1min后,停止搅动,混合液体阀门打开,开始放出混合液体。

当液面下降到SL1时,SL1有接通变为断开,在经过20s后,容器放空,混合液体阀门YV4关闭,接着开始下一个循环操作。

3、停止操作:按下停止按钮后,要处理完当前循环周期剩余任务,系统停止在初始状态。

2.2 液位传感器的选择选用LSF-2.5型液位传感器。

其中“L”表示光电的,“S”表示传感器,“F”表示防腐蚀的,2.5为最大工作压力。

LSF系列液位开关可提供非常准确、可靠的液位检测。

其原理是依据光的反射折射原理,当没有液面时,光被前端的棱镜面或球面反射回来;有液体覆盖光电探头球面时,光被折射出去,这使得输出发生变化,相应的晶体管或继电器动作并输出一个开关量。

应用此原理可制成单点或多点液位开关。

LSF光电液位开关具有较高的适应环境的能力,在耐腐蚀方面有较好的抵抗能力。

相关元件主要技术参数及原理如下:1)工作压力可达2.5Mpa;2)工作温度上限为125;3)触点寿命为100万次℃;4)触点容量为70W;5)开关电压为24V DC;6)切换电流为0.5A。

2.3 搅拌电机的选择选用EJ15-3型电动机。

其中“E”表示电动机,“J”表示交流的,15为设计序号,3为最大工作电流。

相关元件主要技术参数及原理如下:EJ15系列电动机是一般用途的全封闭自扇冷式鼠笼型三相异步电动机。

1)额定电压为220V,额定频率为50Hz,功率为2.5KW,采用三角形接法;2)电动机运行地点的海拔不超过1000m。

工作温度-15~40℃/湿度≤90%;3)EJ15系列电动机效率高、节能、堵转转矩高、噪音低、振动小、运行安全可靠。

其硬件接线如图2-2图2-2 硬件接线2.4 接触器的选择选用CJ20-10/CJ20-16型接触器。

其中“C”表示接触器,“J”表示交流,20为设计编号,10/16为主触头额定电流。

相关元件主要技术参数及原理如下:1)操作频率为1200/h;2)机电寿命为1000万次;3)主触头额定电流为10/16(A);4)额定电压为380/220(A);5)功率为2.5KW。

2.5 热继电器的选择选用JR16B-60/3D型热继电器。

其中“J”表示继电器,“D”表示带断相保护。

相关元件主要技术参数及原理如下:1)额定电流为20(A);2)热元件额定电流为32/45(A)。

2.6 电磁阀的选择(1)入罐液体选用VF4-25型电磁阀。

其中“V”表示电磁阀,“F”表示防腐蚀,4表示设计序号,25表示口径(mm)宽度。

1)材质:聚四氟乙烯;使用介质:硫酸、盐酸、有机溶剂、化学试剂等酸碱性的液体;2)介质温度≤150℃/环境温度-20~60℃;3)使用电压:AC:220V50Hz/60Hz DC: 24V;4)功率:AC:2.5KW;5)操作方式:常闭:通电打开、断电关闭,动作响应迅速,高频率。

( 2 ) 出罐液体选用AVF-40型电磁阀。

其中“A”表示可调节流量,“V”表示电磁阀,“F”表示防腐蚀,40为口径(mm)相关元件主要技术参数及原理如下:1)其最大特点就是能通过设备上的按键设置来控制流量,达到定时排空的效果;2)其阀体材料为:聚四氟乙烯,有比较强的抗腐蚀能力;3)使用电压:AC:220V50Hz/60HZ DC:24V;4)功率:AC:5KW。

2.7 PLC的选择传统的控制方法是采用继电器-接触器控制。

这种控制系统较复杂,并且大量的硬件接线使系统可靠性降低,也间接的降低了设备的工作效率。

相关文档
最新文档