高中数学练习:随机抽样
2022_2023学年新教材高中数学课时作业五十二简单随机抽样分层抽样湘教版必修第一册
课时作业(五十二) 简单随机抽样 分层抽样[练基础]1.要完成下列两项调查:(1)江山社区有100户高收入家庭,2100户中等收入家庭,90户低收入家庭,从中抽取100户调查有关消费购买力的某项指标;(2)从光明中学高一年级的28名日语学生中抽取3人调查学习情况.应采用的抽样方法分别是( ) A.(1)用简单随机抽样,(2)用分层抽样B.(1)用分层抽样,(2)用其他抽样方法C.(1)用分层抽样,(2)用简单随机抽样D.(1)(2)都用分层抽样2.“双色球”彩票中红色球的号码由编号为01,02,…,33的33个个体组成,一位彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第5个红色球的编号为( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 2634 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 9212 06 76A.23 B.09C.02 D.173.我国新冠疫苗接种重点人群是年龄在18~59岁的健康人员.某单位300名职工的年龄分布情况如图所示,现要从中抽取30名职工作为样本了解新冠疫苗的接种情况,则40岁以下年龄段应抽取( )A.6人 B.9人C.15人 D.20人4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用比例分配的分层抽样方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6 B.8C.10 D.125.某校为了解学生学习情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,共抽取35人进行问卷调查,在抽样中不需剔除个体,已知高二被抽取的人数为13人,则n等于( )A.660 B.720C.780 D.8006.(多选)某工厂的质检人员采用随机数法对生产的100件产品进行检查,若抽取10件进行检查,对100件产品采用下面的编号方法,其中正确的编号方法是( ) A.1,2,3,…,100 B.001,002,…,100C.00,01,02,…,99 D.01,02,03,…,1007.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.8.一个公司共有1 000名员工,下设一些部门,要采用分层抽样法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的员工人数是___ _____.9.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.10.某高级中学共有学生2 000名,各年级男、女生人数如下表:高一年级高二年级高三年级女生373x y男生377370z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样在全校抽取48名学生,则高三年级抽取多少名?[提能力]11.用简单随机抽样法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( ) A., B.,C.,D.,12.(多选)比例分配的分层抽样是将总体分成若干个互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法正确的是( ) A.甲应付51钱B.乙应付32钱C.丙应付16钱D.三者中甲付的钱最多,丙付的钱最少13.用随机数法从100名学生(男生25人)中抽取20人进行评教,则某男生被抽到的可能性是________.14.某地有居民100 000户,其中普通家庭99 000户、高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户、高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.15.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).[培优生]16.山东某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如表:高一年级高二年级高三年级泥塑a b c剪纸x y z其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取多少人.课时作业(五十二) 简单随机抽样 分层抽样1.解析:(1)中收入差距较大,采用分层抽样较合适;(2)中总体容量和样本容量都较小,采用简单随机抽样较合适.故选C.答案:C2.解析:由题意知,第一个红球编号为21,第二个编号为32,第三个编号为09,第四个编号为16,第五个编号为17,故选D.答案:D3.解析:根据题意可知,40岁以下年龄段应抽取30×50%=15人.故选C.答案:C4.解析:设在高二年级学生中抽取的人数为x,则=,解得x=8.故选B.答案:B5.解析:由已知,抽样比为=所以有= ,解得n=720 .故选B.答案:B6.解析:采用随机数法抽取样本,总体中各个个体的编号必须位数相同,这样保证每个个体被取到的可能性相同,故BC正确.故选BC.答案:BC7.解析:三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.答案:抽签法8.解析:从该部门抽取的员工人数是×200=10.答案:109.解析:第一步,将32名男生从0到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.10.解析:(1)∵=0.19,∴x=380.(2)高三年级人数为:y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为:×500=12名.11.解析:简单随机抽样中每个个体被抽取的机会相等,都为.故选A.答案:A12.解析:由比例分配的分层抽样方法可知,抽样比为=,则甲应付×560=51(钱);乙应付×350=32(钱);丙应付×180=16(钱).故选ACD.答案:ACD13.解析:因为样本量为20,总体容量为100,所以总体中每个个体被抽到的可能性都为=0.2.答案:0.214.解析:方法一 该地拥有3套或3套以上住房的家庭可以估计有99 000×+1 000×=5 700户,所以所占比例的合理估计是5 700÷100 000=5.7%.方法二 在普通家庭中拥有3套或3套以上住房的家庭所占比例为=,在高收入家庭中拥有3套或者3套以上住房的家庭所占比例为=,所以该地拥有3套或3套以上住房的家庭所占比例约为×100%=5.7%.答案:5.7%15.解析:方法一 抽签法.第一步,将试题的编号1~47分别写在一张纸条上,将纸条揉成团儿制成号签,并将物理、化学、生物题的号签分别放在一个不透明的袋子中并搅匀.第二步,从装有物理题的袋子中逐个抽取3个号签,从装有化学题的袋子中逐个抽取3个号签,从装有生物题的袋子中逐个抽取2个号签,并记录所得号签上的编号,这便是所要回答的问题的序号.方法二 随机数法.第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,每次读取两位,凡不在01~47中的数跳过去不读,前面已经读过的也跳过去不读,从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码.直到取满8个数为止,说明8个样本号码已取满.第三步,对应以上号码找出所要回答的问题的序号.16.解析:方法一 因为“泥塑”社团的人数占总人数的,故“剪纸”社团的人数占总人数的,所以“剪纸”社团的人数为800×=320.因为“剪纸”社团中高二年级人数比例为==,所以“剪纸”社团中高二年级人数为320×=96.由题意知,抽样比为=,所以从高二年级“剪纸”社团中抽取的人数为96×=6.方法二 因为“泥塑”社团的人数占总人数的,故“剪纸”社团的人数占总人数的,所以抽取的50人的样本中,“剪纸”社团中的人数为50×=20.又“剪纸”社团中高二年级人数比例为==,所以从高二年级“剪纸”社团中抽取的人数为20×=6.。
高一数学随机抽样试题
高一数学随机抽样试题1.某校高三年级有男生500人,女生400人.为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法【答案】D【解析】=,根据定义知为分层抽样,故选D.2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为()A.30B.36C.40D.没法确定【答案】B【解析】抽取比例为=,故样本容量为:×120=36.3.某校高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生________人.【答案】900【解析】高三年级被抽取了45-20-10=15(人),设此学校共有学生N人,则=,解得N=900.4.总体容量为203,若采用系统抽样法抽样,当抽样间距为多少时不需要剔除个体()A.4B.5C.6D.7【答案】D【解析】因为203=7×29,即203能被7整除,所以间隔为7时,不需要剔除个体.5.下列抽样问题中,最适合用系统抽样的是()A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家,为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加考试的1200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解情况【答案】C【解析】A中总体、样本容量都较小,可用抽签法或随机数法;B中总体不均匀,不易用系统抽样;D中样本容量较小,可用随机数法;只有C中总体与样本容量都较大6.某学校有学生4022人.为调查学生对2010年上海世博会的了解情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是________.【答案】134【解析】由于不是整数,所以从4022名学生中随机剔除2名,则分段间隔是=134,故填134.7.下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题.本村人口:1200人,户数300,每户平均人口数4人.应抽户数:30户.抽样间隔=40.确定随机数字:取一张人民币,编码的后两位数为12.确定第一样本户:编码为12的户为第一样本户.确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样?【答案】(1)系统抽样【解析】(1)系统抽样.(2) (3)见解析(2)本题是对某村各户收入情况进行抽样,而不是对某村人口抽样,抽样间隔为=10,其他步骤相应改为:确定随机数字:取一张人民币,编码的最后一位为2.确定第一样本户:编号为002的户为第一样本户.确定第二样本户:2+10=12,012号为第二样本户.……(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的最后一位为2.8.下列调查的方式合适的是()A.为了了解炮弹的杀伤力,采用普查的方式B.为了了解全国中学生的睡眠状况,采用普查的方式C.为了了解人们保护水资源的意识,采用抽样调查的方式D.对载人航天飞船“神舟七号”零部件的检查,采取抽样调查的方式【答案】C【解析】普查工作量大,有时受客观条件限制,无法对所有个体进行普查,有时调查还具有破坏性,不允许普查;抽样调查范围小,节约时间、人力、物力、财力,但保证抽样具有代表性,广泛性.航天器不同于一般事情,必须普查.9.已知总体容量为106,若用随机数表法抽取一个容量为10的样本,下面对总体的编号正确的是()A.1,2,…,106B.01,…,105C.00,01,…,105D.000,001,…,105【答案】D【解析】因总数大于100,所以编号应为3位数10.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中,样本容量是() A.40B.50C.120D.150【答案】C【解析】40×3=120。
高中数学统计抽样方法精选题目(附答案)
高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。
高中数学必修三习题:第二章2.1-2.1.1简单随机抽样含答案
第二章统计2.1 随机抽样2.1.1 简单随机抽样A级基础巩固一、选择题1.下面抽样方法是简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)解析:A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.答案:D2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是( )A.总体是240名B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是40名学生的身高,样本容量是40.答案:D3.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )A.36% B.72%C.90% D.25%解析:3640×100%=90%.答案:C4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:根据简单随机抽样的定义知个体a两次被抽到的可能性相等,均为110.答案:A5.某工厂的质检人员对生产的100件产品采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是( )A.①②B.①③C.②③D.③解析:根据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.答案:C二、填空题6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.解析:由抽签法的步骤知,正确顺序为④①③②⑤.答案:④①③②⑤7.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的30个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.解析:30个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.答案:抽签法8.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是___________________________________________________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 3281 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 3596 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 3216 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 7080 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 4982 96 59 26 94 66 39 67 98 60解析:所取的号码要在00~59之间且重复出现的号码仅取一次.答案:18,00,38,58,32,26,25,39三、解答题9.某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解:方案如下:第一步,将18名志愿者编号,号码为01,02,03, (18)第二步,符号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.B 级 能力提升1.(2015·湖北卷)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:254粒和1 534石中夹谷的百分比含量是大致相同的,可据此估计这批米内夹谷的数量.设1 534石米内夹谷x 石,则由题意知x 1 534=28254,解得x ≈169.故这批米内夹谷约为169石.答案:B2.从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N =________.解析:依题意有30N=25%,解得N =120. 答案:1203.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解:第一步:先确定艺人:(1)将30名内地艺人从01~30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1~20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
高中数学(新人教A版)必修第二册同步习题:简单随机抽样(同步习题)【含答案及解析】
第九章统计9.1随机抽样9.1.1简单随机抽样基础过关练题组一统计学的有关概念1.下列调查中,可以用普查的方式进行调查的是()A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.调查某小组10名成员的业余爱好D.检验一批汽车的使用寿命2.为了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是,样本是,样本量是.3.某学校根据高考考场要求,需要给本校45个高考考场配备监控设备,该校高考前购进45套监控设备,现需要检查这批监控设备的质量,是全部检查还是抽取部分检查?谈谈你的想法和理由.深度解析题组二 简单随机抽样4.下列几个抽样中,简单随机抽样的个数是( )①仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;②某班从50名同学中选出5名数学成绩最优秀的同学代表本班参加数学竞赛;③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出7个号签;④为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾.A.0 B .1 C .2 D .35.(2020河南信阳高一下学期第一次月考)用简单随机抽样方法从含有10个个体的总体中抽取一个容量为3的样本,则某一特定个体“第一次被抽到”“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310 6.在总体量为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的概率为25%,则N 的值为 .题组三 抽签法和随机数法7.下列抽样试验中,适合用抽签法的是( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验8.为迎接2022年北京冬季奥运会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.9.为检验某公司生产的袋装牛奶的质量是否达标,需从800袋袋装牛奶中抽取50袋进行检验.试利用随机数法抽取样本,并写出抽样过程.题组四总体平均数与样本平均数10.下列判断正确的是()A.样本平均数一定小于总体平均数B.样本平均数一定大于总体平均数C.样本平均数一定等于总体平均数D.样本量越大,样本平均数越接近总体平均数11.用抽签法抽取一个容量为5的样本,样本数据分别为2,4,5,7,9,则该样本的平均数为()A.4.5B.4.8C.5.4D.612.从有400人参加的某项运动的达标测试中,通过简单随机抽样抽取50人的成绩,统计数据如下表,则这400人成绩的平均数的估计值是.分数54321人数5152055答案全解全析基础过关练1.C A.不能用普查的方式进行调查,因为这种试验具有破坏性;B.用普查的方式进行调查无法完成;C.可以用普查的方式进行调查;D.试验具有破坏性,且需要耗费大量的时间,普查在实际生产中无法实现.2.答案总体;所选30人的会考成绩;30解析为了强调调查目的,由总体、样本、样本量的定义知,70人的会考成绩的全体是总体,样本是所选30人的会考成绩,样本量是30.3.解析必须全部检查,即普查.因为高考是一件非常严肃、责任重大的事情,对高考的要求非常严格,所配设备必须全部合格,且这批设备数量较少,全部检查的方案是可行的,所以应该进行全部检查,这样可确保万无一失.深度剖析全面调查与抽样调查:方法特点全面调查抽样调查优点所调查的结果比较全面、系统1.迅速、及时;2.节约人力、物力和财力缺点耗费大量的人力、物力和财力获取的信息不够全面、系统适用范围1.调查对象很少;2.要获取详实、系统和全面的信息1.大批量检验;2.破坏性试验;3.不需要全面调查等4.B①不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”;②不是简单随机抽样,因为每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求;③是简单随机抽样,因为总体中的个体数是有限的,且是从总体中逐个进行抽取的,每个个体被抽到的可能性相同;④不是简单随机抽样,因为被抽取的总体中的个体数不确定.综上,只有③是简单随机抽样..5.A简单随机抽样中每个个体被抽取的机会均等,都为1106.答案120=25%=0.25,解得N=120.解析根据题意,得30N7.B A中总体容量较大,样本容量也较大,不适合用抽签法;B中总体容量较小,样本容量也较小,且同厂生产的两箱产品可视为搅拌均匀了,可用抽签法;C中甲、乙两厂生产的两箱产品质量可能差别较大,不能满足搅拌均匀的条件,不能用抽签法;D中总体容量较大,不适合用抽签法.8.解析①将30名志愿者编号,号码分别是1,2, (30)②将号码分别写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签;③将小纸片放入一个不透明的盒里,充分搅拌;④从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.9.解析①将800袋袋装牛奶分别编号,为1,2,3, (800)②利用随机数工具产生1~800范围内的整数随机数;③把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需的50袋.10.D由样本平均数的定义可知,样本量越大,其平均数越接近总体平均数.11.C样本的平均数为2+4+5+7+9=5.4.512.答案 3.2解析抽取的50人的成绩的平均数为1×(5×5+4×15+3×20+2×5+1×5)=3.2,所以这50400人成绩的平均数的估计值是3.2.。
高一数学《随机抽样》练习题
高一数学《随机抽样》练习题一、选择题1。
对于简单随机抽样,个体被抽到的机会 A.相等B .不相等 C.不确定 D.与抽取的次数有关2. 抽签法中确保样本代表性的关键是A.制签 B 。
搅拌均匀 C .逐一抽取 D.抽取不放回3。
用随机数表法从100名学生(男生25人)中20人进行评教,某男学生被抽到的机率是A.1001 B .251C.51D.414。
某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是 A.40 B 。
50 C .120 D.1505。
从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为A。
36%B .72% C .90%D .25%6。
为了解1200名学生对学校教改试验,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为A 。
40B .30 C.20 D.127。
从N 个编号中要抽取n 个号码入样,若采用系统抽样方法抽取,则分段间隔应为 A。
n N C.[n N ] D.[nN]1 8.下列说法正确的个数是①总体的个体数不多时宜用简单随机抽样法②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样 ③百货商场的抓奖活动是抽签法④整个抽样过程中,每个个体被抽取的机率相等(有剔除时例外) A.1 B.2 C .3 D 。
49。
某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员 A 。
3人 B。
4人 C 。
7人 D.12人 10. 问题:①有1000个乒乓球分别装在3个箱子内,其中箱子内有500个,蓝色箱子内有200个,箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ。
随机抽样法Ⅱ。
系统抽样法Ⅲ。
分层抽样法。
其中问题与方法能配对的是A.①Ⅰ,②ⅡB。
高中数学:随机抽样
高中数学:随机抽样1.以下抽样方法是简单随机抽样的是(D)A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验解析:选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.2.(2019·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是(B)A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样解析:因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的15名艺术特长生中选出3名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法.3.(2019·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为(A) A.100B.150C.200D.250解析:法一:由题意可得70n -70=3 5001 500,解得n =100. 法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.4.(2019·湖南怀化模拟)某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为( B )A .90B .180C .270D .360解析:设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y 320,得y =180.故选B.5.去年“3·15”,某报社做了一次关于“虚假广告”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成公差为正数的等差数列,共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽取30份问卷,则在D 单位抽取的问卷份数是( C )A .45B .50C .60D .65解析:由于B 单位抽取的问卷是样本容量的15,所以B 单位回收问卷200份.由等差数列知识可得C 单位回收问卷300份,D 单位回收问卷400份,则D 单位抽取的问卷份数是B 单位的2倍,即为60份.6.(2019·泉州质检)某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有1人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( A )A .36人B .30人C .24人D .18人解析:设持“喜欢”“不喜欢”“一般”态度的人数分别为6x ,x,3x ,由题意可得3x -x =12,x =6.∴持“喜欢”态度的有6x =36(人).7.(2019·石家庄模拟)某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( C )A .16B .17C .18D .19解析:因为从1 000名学生中抽取一个容量为40的样本,所以系统抽样的分段间隔为1 00040=25,设第一组随机抽取的号码为x ,则抽取的第18组编号为x +17×25=443,所以x =18.8.采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A ,编号落入区间[401,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( A )A .12B .13C .14D .15解析:根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d =1 00050=20的等差数列{a n },∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1 000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C 的共有12人.9.(2019·江苏南京联合体学校调研)为检验某校高一年级学生的身高情况,现采用先分层抽样后简单随机抽样的方法,抽取一个容量为210的样本,已知每个学生被抽到的概率为0.3,且男女生的比是4∶3,则该校高一年级女生的人数是300.解析:抽取的高一年级女生的人数为210×37=90,则该校高一年级女生的人数为90÷0.3=300,故答案为300.10.(2019·湖北重点中学适应模拟)某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为3.解析:系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.11.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是76.解析:由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.12.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为50;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为1_015小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015.13.(2019·安徽安庆一中模拟)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于 ( D )A .12B .18C .24D .36解析:根据分层抽样方法知n 960+480=24960,解得n =36. 14.(2019·云南玉溪一中一模)总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下摘取了随机数表中第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( B )6667 40 67 14 64 05 71 95 86 11 05 6409 68 76 83 20 37 90 5716 00 11 66 14 90 84 45 11 75 73 88 05 90 52 27 41 14 86A .05B .09C .11D .20解析:从随机数表第1行的第9列和第10列数字开始,依次是14,05,11,09,则第四个数字是09,故选B.15.为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新三县空气质量进行调查,按地域特点在三县内设置空气质量观测点.已知三县内观测点的个数分别为6,y ,z ,依次构成等差数列,且6,y ,z +6成等比数列,若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为( C )A .8B .6C .4D .2解析:∵6,y ,z 依次构成等差数列,且6,y ,z +6成等比数列,∴⎩⎪⎨⎪⎧ 6+z =2y ,y 2=6(z +6),解得⎩⎪⎨⎪⎧y =12,z =18.若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为126+12+18×12=4,故选C.16.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为36.解析:根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.。
高中数学必修二 9 1 1 简单随机抽样 练习(含答案)
9.1.1 简单随机抽样一、选择题1.关于简单随机抽样,下列说法正确的是( )①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③不做特殊说明时它是一种不放回抽样;④它是一种等可能性抽样A.①②③④B.③④C.①②③D.①③④【答案】A【解析】根据简单随机抽样的定义和性质知:①它要求被抽取样本的总体的个数有限,正确;②它是从总体中逐个地进行抽取,正确;③不作特殊说明时它是一种不放回抽样,正确;④它是一种等可能性抽样,正确;故选:A2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为()A.40% B.50% C.60% D.2 3【答案】A【解析】在简单随机抽样中,由于每个个体被抽到的可能性是相等的,所以抽到一名女生的可能性为20100%40%50⨯=.选A.3.利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11 行至第15行),根据下表,读出的第3个数是18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 7123 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 7552 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 5337 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39A.841 B.114 C.014 D.146【答案】B【解析】从随机数表中的第12行第5列的数3开始向右读数,每次读三位,读数时要做到不重不漏,不超范围,依次得到的三位数分别为389,449,114,…,因此第三个数为114.选B.4.用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽取”的可能性、“第二次被抽取”的可能性分别是()A.16,16B.13,16C.16,13D.13,13【答案】D【解析】由于简单随机抽样中每个个体每次被抽到的机会均等,所以个体a“第一次被抽取”的可能性与“第二次被抽取”的可能性是相同的,都为2163.故选D.5.(多选题)下列调查中,适宜采用抽样调查的是()A.调查某市中小学生每天的运动时间B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查C.农业科技人员调查今年麦穗的单穗平均质量D.调查新冠病毒疫区感染人员情况【答案】AC【解析】因为B中要对所有小朋友进行检查,所以用普查的方式;D中需要用普查的方式。
高中数学第九章统计9.1.1简单随机抽样同步练习含解析新人教A版必修第二册
课时素养评价三十四简单随机抽样(15分钟30分)1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是(A.总体B.个体C.样本量D.从总体中抽取的一个样本【解析】选A.根据题意,结合总体、样本、个体、样本量的定义可知,5 000名居民的阅读时间的全体是总体.2.为了检验某种产品的质量,决定从10 000件产品中抽取100件进行检查,选用法抽样更合适.【解析】由于个体量与样本量都较大,选用抽签法制签、抽取都比较困难,应选用随机数法.答案:随机数法3.为了了解某市100 000户居民的日用电量,甲用简单随机抽样从该市抽取100户调查,得到日用电量的平均数为5.2千瓦时,乙用同样的方法抽查了300户,得到日用电量的平均数为5.5千瓦时,据此推断该市居民日用电量的平均数约为千瓦时.【解析】由于乙抽取的样本量大于甲的,我们更愿意用他的调查结果估计该市的平均数.答案:5.54.省环保局收到各县市报送的环保案例28件,为了了解全省环保工作的情况,要从这28件案例中抽取7件作为样本研究.试确定抽取方法并写出操作步骤.【解析】总体容量小,样本量也小,可用抽签法.步骤如下:(1)将28件环保案例进行编号,号码是01,02,03, (28)(2)将以上28个号码分别写在28张相同的小纸条上,制成形状、大小均相同的号签.(3)把号签放入一个不透明的容器中,充分搅拌均匀.(4)从容器中无放回地逐个抽取7个号签,并记录上面的号码.(5)找出和所得号码对应的7件案例,组成样本.(20分钟40分)一、选择题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)1.下列抽样方法不是简单随机抽样的是(A.从50个零件中逐个抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中随机抽取10个分析奇偶性D.运动员从8个跑道中随机选取一个跑道【解析】选C.A是,因为逐个抽取是不放回简单随机抽样.B是有放回简单随机抽样.C不是,因为实数集是无限集.D是无放回简单随机抽样.2.从一群玩游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续玩游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为( A. B.k+m-nC. D.不能估计【解析】选C.设参加游戏的小孩有x人,则=,x=.3.某校高一12个班男生百米体测的平均成绩为13.6 s,已知1,3,4,7,8班男生的平均成绩为13.5 s,2,10,11班男生的平均成绩为14 s,5,6,12班男生的平均成绩为13.3 s,则9班男生的平均成绩为( A.13.5 s B.13.6 sC.13.7 sD.13.8 s【解析】选D.设9班男生百米体测的平均成绩为x s,由题意知,=13.6,解得x=13.8.4.(多选题)在以下调查中,适合抽样调查不适合普查的是(A.调查某个班一次数学测验的及格率B.调查某厂8月份生产的盒装牛奶的合格率C.调查一批炮弹的杀伤半径D.调查某校学生结核病的发病率【解析】选BC.抽查牛奶质量不能每盒检测、抽查炮弹的杀伤半径不能把每枚炮弹都投放,所以适合抽样调查,不能普查.二、填空题(每小题5分,共10分)5.采用抽签法从含有3个个体的总体{1,3,8}中抽取一个容量为2的样本,则所有可能的样本是.【解析】从含有3个个体的总体中任取2个即可组成样本,所以所有可能的样本为{1,3},{1,8},{3,8}.答案:{1,3},{1,8},{3,8}6.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则平均命中环数为;估计该学员射击一次命中环数为.【解析】=7.用样本估计总体,估计环数最可能为7.答案:7 7三、解答题7.(10分)一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).【解析】方法一:抽签法第一步,将试题的编号1~47分别写在纸条上,将纸条揉成团,制成号签,并将物理、化学、生物题的号签分别放在不透明的袋子中,搅匀.第二步,从装有物理题的号签的袋子中逐个抽取3个号签,从装有化学题的号签的袋子中逐个抽取3个号签,从装有生物题的号签的袋子中逐个抽取2个号签,并记录所得号签上的编号,这便是这个学生所要回答的问题的序号.方法二:随机数法第一步,将物理题的序号对应改成01,02,…,15,其余两科题的序号不变.第二步,准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,把它们放入一个不透明的袋子中.第三步,从袋子中有放回摸取2次,每次摸取前充分搅拌,并把第1,2次摸到球的数字分别作为十位、个位,这样就生成了一个两位随机数.凡不在01~47中的数跳过去不读,前面已经读过的也跳过去不读,从01~15中选3个号码,从16~35中选3个号码,从36~47中选2个号码,记录下来.第四步,与这些编号对应的即为所要回答的三门学科的题的序号.。
高中数学(人教A版)必修第二册课后习题:简单随机抽样【含答案及解析】
第九章统计9.1随机抽样9.1.1简单随机抽样课后篇巩固提升必备知识基础练1.为抽查汽车排放尾气的合格率,某环保局在一路口随机抽查,这种抽查是()A.放回简单随机抽样B.抽签法C.随机数法D.以上都不对(包括总体个数),因此不属于简单随机抽样.2.高三某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左向右依次选取两个数字,则选出来的第4个志愿者的座号为()495443548217379323788735209643842634916457245506887704744767217633502583921206A.23B.09C.16D.02,依次抽取的样本数据为:21,32,09,16,17,所以第4个数据是16.3.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481A.08B.07C.02D.01,选出的5个个体的编号为:08,02,14,07,01,故第5个个体的编号是01.4.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A.mN MB.mM NC.MN mD.N总体中带有标记的比例是N M ,则抽取的m 个个体中带有标记的个数估计为mN M .5.“XX 彩票”的中奖号码是从分别标有01,02,…,30的30个小球中逐个不放回地选出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是 .个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.6.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是 ,某女学生被抽到的可能性是 ..2 0.220,总体数量为100,所以总体中每个个体被抽到的可能性都为20100=0.2.7.已知数据x 1,x 2,…,x n 的平均数为x =4,则数据3x 1+7,3x 2+7,…,3x n +7的平均数为 .数据x 1,x 2,…,x n 的平均数为x =4,即数据(x 1+x 2+…+x n )=4n ,则数据3x 1+7,3x 2+7,…,3x n +7的平均数3(x 1+x 2+…+x n )+7nn =3×4n+7n n=19. 8.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱节目的同学.,将32名男生从00到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.关键能力提升练9.(2021江西南昌二模)从编号依次为01,02,…,20的20人中选取5人,现从随机数表的第一行第3列和第4列数字开始,由左向右依次选取两个数字,则第五个编号为( ) 5308 3395 5502 6215 2702 4369 3218 1826 099478465887 3522 2468 3748 1685 9527 1413 8727 14955656A.09B.02C.15D.183列和第4列数字开始,依次读取:08,33(舍),95(舍),55(舍),02,62(舍),15,27(舍),02(舍),43(舍),69(舍),32(舍),18,18(舍),26(舍),09,则第五个编号为09.故选A.10.用放回简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是()A.110,110B.310,15C.1 5,310D.310,310,个体a每次被抽中的概率是相等的,因为总体容量为10,故个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.故选A.11.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knmB.k+m-nC.kmnD.不能估计x人,则kx =nm,解得x=kmn.12.(多选题)下列调查中,适宜采用抽样调查的是()A.调查某市中小学生每天的运动时间B.某幼儿园中有位小朋友得了手足口病,对此幼儿园中的小朋友进行检查C.农业科技人员调查今年麦穗的单穗平均质量D.调查某快餐店中8位店员的生活质量情况B中要对所有小朋友进行检查,所以用普查的方式;D中共8名店员,可采用普查的方式;A,C 中总体容量大,难以做到普查,故采用抽样调查的方式.13.(多选题)下列抽样方法是简单随机抽样的是()A.从50个零件中随机抽取5个做质量检验B.从50个零件中每次抽取一个有放回地共抽取5次做质量检验C.从整数集中随机抽取10个分析奇偶性D.运动员从8个跑道中随机选取一个跑道不是,因为整数集是无限集.14.(多选题)下列抽取样本的方式,不是简单随机抽样的是()A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中逐个不放回地选出5个零件进行质量检验C.从80件玩具中一次性随机抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛不是简单随机抽样,原因是简单随机抽样中总体的个数是有限的,而题中是无限的;B,C是简单随机抽样;D不是简单随机抽样,原因是指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.15.假设要抽查某种品牌的900颗种子的发芽率,抽取60粒进行实验.利用随机数法抽取种子时,先将900颗种子按001,002,…,900进行编号,如果从随机数表第8行第7列的数字7开始向右读,请你依次写出最先检测的3颗种子的编号.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 548行第7列的数字7开始向右读,第一个符合条件的是785,916要舍去,955要舍去,第二个符合条件是567,第三个符合条件是199,故最先检测的3颗种子的编号为785,567,199.16.某工厂抽取50个机械零件检验其直径大小,得到如下数据:估计这个工厂生产的零件的平均直径大约为..84 cm y=12×12+13×34+14×4=12.84(cm).50学科素养创新练17.选择合适的抽样方法抽样,并写出抽样过程.(1)现有一批电子元件600个,从中抽取6个进行质量检测;(2)现有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样.总体中个体数较大,用随机数法.第一步,给元件编号为001,002,003,...,099,100, (600)第二步,用随机数工具产生1~600范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的电子元件进入样本;第三步,依次操作,如果生成的随机数有重复,则剔除并重新产生随机数,直到样本量达到6;第四步,以上这6个号码对应的元件就是要抽取的对象.(2)总体中个体数较小,用抽签法.第一步,将30个篮球,编号为01,02, (30)第二步,将以上30个编号分别写在外观、质地等无差别的小纸条上,制成号签; 第三步,把号签放入一个不透明的盒子中,充分搅拌;第四步,从盒子中不放回地逐个抽取3个号签,并记录上面的号码;第五步,找出和所得号码对应的篮球.。
随机抽样与用样本估计总体 小题专练—2023届高考数学重难点二轮专题训练(含解析)
专题36随机抽样与用样本估计总体小题专练一、单选题1. 某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是,,,,,则高一参赛学生的成绩的众数、中位数、平均成绩分别为( )A. B. C. D.2. 某省普通高中学业水平考试成绩由高分到低分按人数所占比例依次分为,,,,五个等级,等级,等级,等级,,等级共其中等级为不合格,原则上比例不超过该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有名学生,则估计该年级拿到等级及以上级别的学生人数为()A. B. C. D.3. 下面规定一个学生数学成绩优秀的标志为连续次数学考试成绩满分分均不低于分现有甲、乙、丙三位学生连续次数学考试成绩的记录数据记录数据都是正整数情况:甲学生:个数据的中位数为,众数为乙学生:个数据的中位数为,总体均值为丙学生:个数据中有一个数据是,总体均值为,总体方差为.则可以断定数学成绩优秀的学生为( )A. 甲、丙B. 乙、丙C. 甲、乙D. 甲、乙、丙4. 从,,,,,,,中随机取两个数,这两个数一个比大,一个比小的概率为,已知为上述数据中的分位数,则的取值可能为( )A. B. C. D.5. 中国居民膳食指南数据显示,岁至岁儿童青少年超重肥胖率高达为了解某地中学生的体重情况,某机构从该地中学生中随机抽取名学生,测量他们的体重单位:千克,根据测量数据,按,,,,,分成六组,得到的频率分布直方图如图所示根据调查的数据,估计该地中学生体重的中位数是( )A. B. C. D.6. 某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了部分党员,对他们一周的党史学习时间进行了统计,统计数据如下表所示:党史学习时间小时党员人数则该单位党员一周学习党史时间的众数及第百分位数分别是( )A. ,B. ,C. ,D. ,7. 某赛季甲、乙两名篮球运动员各场比赛得分情况用茎叶图表示如下:根据下图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是( )A. 甲运动员得分的极差大于乙运动员得分的极差B. 甲运动员得分的的中位数大于乙运动员得分的的中位数C. 甲运动员的得分平均值大于乙运动员的得分平均值D. 甲运动员的成绩比乙运动员的成绩稳定二、多选题8. 已知样本数据,,,的平均数为,方差为,由这组数据得到新样本数据,,,,其中,则得到的新样本数据的平均数和方差分别是( )A. 新样本数据的样本平均数为B. 新样本数据的样本平均数为C. 新样本数据的样本方差为D. 新样本数据的样本方差为9. 某中学为了解高三男生的体能情况,通过随机抽样,获得了名男生的米体能测试成绩单位:秒,将数据按照,,,分成组,制成了如图所示的频率分布直方图.由直方图推断,下列选项正确的是( )A. 直方图中的值为B. 由直方图估计本校高三男生米体能测试成绩的众数为秒C. 由直方图估计本校高三男生米体能测试成绩不大于秒的人数为D. 由直方图估计本校高三男生米体能测试成绩的中位数为秒10. 图为年月日通报的天内省区市疫情趋势,则下列说法正确的是()A. 无症状感染者的极差大于B. 确诊病例的方差大于无症状感染者的方差C. 实际新增感染者的平均数小于D. 实际新增感染者的第百分位数为11. 若甲组样本数据,,,数据各不相同的平均数为,方差为,乙组样本数据,,,的平均数为,则下列说法正确的是( ) A. 的值为 B. 乙组样本数据的方差为C. 两组样本数据的样本中位数一定相同D. 两组样本数据的样本极差不同三、填空题12. 工厂年前加紧手套生产,设该工厂连续天生产的手套数依次为,,,,单位:万只,若这组数据,,,,的方差为,且,,,,的平均数为,则该工厂这天平均每天生产手套万只.13. 在我市今年高三年级期中联合考试中,某校数学单科前名的学生成绩依次是:,,,,,,,,,,这名同学数学成绩的分位数是.14. 定义一个同学数学成绩优秀的标准为“连续次数学考试成绩均不低于分满分分”现有甲乙丙三位同学连续次数学考试成绩的数据数据都是正整数的描述:甲同学的个数据的中位数为,总体均值为;乙同学的个数据的中位数为,众数为;丙同学的个数据的众数为,极差为,总体均值为.则数学成绩一定优秀的同学是.15. 若,,,这个数据的样本平均数为,方差为,则,,,,这个数据的方差为.16. 某同学次测评成绩的数据从小到大排列如下:,,,,,,,,,已知成绩的中位数为,若要使标准差最小,则的值是.答案和解析1.【答案】解:由频率分布直方图得:高一参赛学生的成绩的众数为:,的频率为:,的频率为,中位数为:,平均数为:.故选:.2.【答案】解:由题中两图可知等级所占比例为,所以等级及以上级别所占比例为,所以估计等级及以上级别的学生人数为.故选:.3.【答案】解:对于第十三届全国人大女代表所占比重为,第十一届为,提高个百分点,A正确;对于第十三届全国政协女委员所占比重为,第四届为,提高个百分点,B正确;对于从第一到第十三届全国政协女委员所占比重的平均值为,高于,C错误;对于第十三届全国人大代表的人数约为人,不高于人,D正确.故选:.4.【答案】解:在中,甲同学:个数据的中位数为,众数为,所以前三个数为,,,则后两个数肯定大于,故甲同学数学成绩优秀,故成立;在中,个数据的中位数为,总体均值为,可以找到很多反例,如:,,,,,故乙同学数学成绩不优秀,故不成立;在中,个数据的中位数为,总体均值为,总体方差为,假设有一个数据小于,设为,则此时方差大于,且数据越小,整体方差越大,故所有数据均不低于.数学成绩优秀有甲和丙个同学.故选A.5.【答案】解:从,,,,,,,中随机取两个数有种,一个数比大,一个数比小的不同结果有,于是得,整理得:,解得或,当时,数据中的分位数是第个数,则,解得,所有选项都不满足;当时,数据中的分位数是第个数,则,解得,选项A,,不满足,满足.故选:.6.【答案】解:因为,,所以该地中学生的体重的中位数在内,设该中位数为,则,解得.7.【答案】解:党员人数一共有,学习党史事件为小时的人数最多,故学习党史时间的众数为,由,则第百分位数是第和个数的平均数,第,个数分别为,,所以第百分位数是.故选:.8.【答案】解:首先将茎叶图的数据还原:甲运动员得分:乙运动员得分:对于,极差是数据中最大值与最小值的差,由图中的数据可得甲运动员得分的极差为,乙运动员得分的极差为,得甲运动员得分的极差大于乙运动员得分的极差,因此A正确;对于,甲数据从小到大排列:处于中间的数是,所以甲运动员得分的中位数是,同理求得乙数据的中位数是,因此甲运动员得分的中位数大于乙运动员得分的中位数,故B正确;对于,不难得出甲运动员的得分平均值约为,乙运动员的得分平均值为,因此甲运动员的得分平均值大于乙运动员的得分平均值,故C正确;对于,分别计算甲、乙两个运动员得分的方差,方差小的成绩更稳定.可以算出甲的方差为:,同理,得出乙的方差为:,因为乙的方差小于甲的方差,所以乙运动员的成绩比甲运动员的成绩稳定,故D不正确.故选:.9.【答案】解:设样本数据,,,的方差为,新样本数据的方差为,因为,所以新样本数据的平均数,新样本数据的方差为.故选AD.10.【答案】解:由概率统计相关知识可知,各组频率之和为,所以,解得,故A错误;测试成绩的众数是直方图中频率最高组的中点,即故B正确;由图可知,成绩不大于秒的人数为故C正确;设中位数是,则,解得:,故D错误.故选:.11.【答案】解:对于,,且日与日确诊病例的差值不超过,所以无症状感染者的极差必然大于,故A正确;对于,相比较而言,确诊病例数比无症状感染者数波动性小,所以确诊病例的方差小于无症状感染者的方差,故B错误;对于,实际新增感染者的平均数,所以C错误;对于,因为天内省区市的实际新增感染者数从小到大分别为:,,,,,,,,,,,,,,又,不是整数,所以实际新增感染者的第百分位数为为第位,即为,所以D正确.故选AD.12.【答案】解:对于选项A由两组数据的平均数可知,,,故选项A正确,对于选项B,,,,,故选项B正确,对于选项C因为随着的增大而增大,所以若为甲组数据的中位数,则为乙组数据的中位数,故选项C错误,对于选项D因为随着的增大而增大,所以甲组数据的极差为,乙组数据的极差为,故选项D正确,故选:.13.【答案】解:依题意得,设,,,,的平均数为,根据方差的计算公式有,,即,又,.故答案为.14.【答案】解:将学生成绩从低到高排列为,,,,,,,,,,,分位数为第个数据与第个数据的平均数即15.【答案】乙解:在中,甲同学的个数据的中位数为,总体均值为,如,,,,,故甲同学的数学成绩不一定优秀;在中,乙同学的个数据的中位数为,众数为,所以前三个数为,,,则后两个数肯定大于,故乙同学的数学成绩一定优秀;在中,丙同学的个数据的众数为,极差为,总体均值为,最大值与最小值的差为,若最大值为,则最小值为即,,,,,故丙同学的数学成绩不一定优秀.综上,数学成绩一定优秀的同学只有乙.故答案为:乙.16.【答案】解:,,,这个数据的样本平均数为,方差为,,,,,,,这个数据的方差:.故答案为:.17.【答案】解:因为,,,,,,,,,的中位数为,则,所以,因为成绩的平均数为,要使标准差最小,即方差最小,因为,则有,当且仅当,即时,等号成立,此时标准差取得最小值,且符合题意,所以,故答案为.。
高中数学 统计 经典例题和巩固练习(及详解)
高中数学 统计总复习(例题、巩固练习、例题和巩固练习详解)【典型例题】类型一:随机抽样例1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是( )A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法举一反三:【变式1】甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人【变式2】一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为l ,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m+k 的个位数字相同.若m=6,则在第7组中抽取的号码是 .【变式3】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的41,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例; (Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数.类型二:用样本估计总体例2.一次科技知识竞赛,两组学生成绩统计如下表:已经算得两个组的平均数都是80分,请根据你所学统计知识,进一步判断这两个组这次竞赛中的成绩谁优谁次,并说明理由。
人教A版高中数学第九章第1节《随机抽样》训练题 (8)(含答案解析)
第九章第1节《随机抽样》训练题 (8)一、单选题1.某中学高一、高二和高三各年级人数见表,采用分层抽样的方法调查学生的视力状况,在抽取的样本中,高二年级有20人,那么该样本中高三年级的人数为()A.16B.18C.22D.402.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列开始,由左至右依次读取,则选出来的第5个零件编号是()0347 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 14109577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179A.36B.16C.11D.143.某单位有老年人28人,中年人36人,青年人81人,为了调查他们的身体状况,需从他们中抽取一个容量为16的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样4.下列抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库的1000瓶可乐中一次性抽取20瓶进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士参加抢险救灾D.从10个手机中不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)5.为了调查全国人口的寿命,抽查了11个省(市)的2500 名城镇居民,这2500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量6.高一年级有男生510人,女生490人,小明按男女比例进行分层随机抽样,总样本量为100.则在男生中抽取的样本量为()A.48B.51C.50D.497.某校高二年级有男生600人,女生500人,为了解该年级学生的体育达标情况,从男生中任意抽取30人,从女生中任意抽取25人进行调查.这种抽样方法是()A.系统抽样法B.抽签法C.随机数法D.分层抽样法8.某学校有小学生126人,初中生280人,高中生95人,为了调查学生的近视情况,从他们当中抽取一个容量为100的样本,采用何种方法较为恰当()A.简单随机抽样B.系统抽样C.分层抽样D.先从小学生中剔除1人然后再分层抽样9.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002, ,599,600,从中抽取60个样本,如下提供随机数表的第5行到第7行:若从表中第6行第6列开始向右依次读取3个数据,则得到的第8个样本编号为()A.324B.345C.577D.57810.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为()件.A.1800B.1600C.1900D.100011.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则B组应抽取的人数为()A.2B.4C.8D.1012.某校选修乒乓球课程的学生中,高一年级有50名,高二年级有30名.现用分层抽样的方法在这80名学生中抽取一个样本,已知在高一年级的学生中抽取了10名,则在高二年级的学生中应抽取的人数为()A.6B.8C.10D.1213.现有以下两项调查:∶某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其装订质量状况;∶某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成∶∶这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法14.一支田径队有男运动员56人,女运动员42人,按性别进行分层,用分层随机抽样的方法从全体运动员中抽出一个容量为N的样本,如果样本按比例分配,男运动员抽取的人数为16人,则N 为()A.16B.20C.24D.2815.为调查德克士各分店的经营状况,某统计机构用分层随机抽样的方法,从A,B,C三个城市中抽取若干家德克士分店组成样本进行深入研究,有关数据见下表:(单位:个)则样本量为()A.12B.10C.6D.416.从某市参加升学考试的学生中随机抽查1000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是()A.总体指的是该市参加升学考试的全体学生B.样本是指1000名学生的数学成绩C.样本容量指的是1000名学生D.个体指的是1000名学生中的每一名学生17.对于简单随机抽样,每个个体被抽到的机会()A.相等B.不相等C.与抽样次序有关D.不确定18.从一个容量为m(3m≥,m N∈)的总体中抽取一个容量为3的样本,当选取简单随机抽样方法抽取样本时,总体中每个个体被抽中的可能性是13,则选取分层随机抽样方法抽取样本时,总体中每个个体被抽中的可能性是()A.15B.14C.12D.1319.某企业生产甲、乙、丙三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中甲型号产品有12件,则此样本的容量为()A.40B.60C.80D.12020.某奶制品工厂某天甲、乙、丙、丁四类奶制品的产量分别为2000盒、1250盒、1250盒、500盒.若按产量比例用分层随机抽样的方法抽取一个样本容量为60的样本,则样本中甲类奶制品的数量为()A.6盒B.15盒C.20盒D.24盒21.某班有男生20人,女生30人,用分层抽样的方法从该班抽取10 人参加志愿者活动,则应抽取的女生人数为()A.3B.4C.7D.622.2020年一场突如其来的新冠肺炎疫情让全世界生灵涂炭、经济停顿,应对新冠肺炎的有效办法之一就是接种疫苗.目前常见的国产疫苗有3种,生产厂家分别是国药集团武汉生物研究所(国药武汉)国药集团北京生物研究所(国药北京)、科兴控股生物技术有限公司(科兴生物).某地分别从这三家厂家采购了30000支、20000支、50000支疫苗用于接种,每人要接种两支,且需接种同一厂家生产的疫苗,所有疫苗都接种完后,某同学为调查疫苗接种的效果采用分层抽样的方法从所有已接种人员中抽取部分个体进行调查,若已知他调查的人员中,接种科兴生物疫苗的人数比接种国药北京疫苗的人数多150,那么他所抽取的样本容量是()A.250B.500C.750D.100023.某中学高一有男生600人,若按性别比例用分层抽样的方法从高一全体学生中抽取一个容量为120的样本,样本中的女生人数为48,则该中学高一共有学生()A.800人B.900人C.1000人D.1200人24.下列情况中,适合用全面调查的是()A.检查某人血液中的血脂含量B.调查某地区的空气质量状况C.乘客上飞机前的安检D.调查某市市民对垃圾分类处理的意识25.某全日制大学共有学生5600人,其中专科生有1300人,本科生有3000人,研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取()A.65人,150人,65人B.30人,150人,100人C.93人,94人,93人D.80人,120人,80人26.交通管理部门为了解机动车驾驶员(简称驾驶员)对新法规“开车不喝酒,喝酒不开车”的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查,假设四个社区总人数为N,其中甲社区有驾驶员96人,若在甲、乙、丙、丁四个社区抽取人数分别为12,21,25、43,则这四个社区驾驶员的总人数N为()A.101B.808C.1212D.212127.我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除,某单位老年、中年、青年员工分别有80人、100人、120人,现采用分层随机抽样的方法,从该单位上述员工中抽取30人调查专项附加扣除的享受情况,则应该从青年员工中抽取的人数为()A.8人B.10人C.12人D.18人28.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n的值为()A.120B.192C.200D.24029.(1)某小区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了解有关家用轿车购买力的某个指标,从中抽取一个容量为100的样本;(2)从10名学生中抽取3名参加座谈会.问题和抽样方法配对正确的是()A.(1)简单随机抽样法,(2)分层随机抽样法B.(1)分层随机抽样法,(2)简单随机抽样法C.(1)简单随机抽样法,(2)简单随机抽样法D.(1)分层随机抽样法,(2)分层随机抽样法30.总体由编号为00,01,…,28,29的30个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第6列和第7列开始由左到右依次选取两个数字.则选出来的第5个个体的编号为()0842 2689 5319 6450 9303 2320 9025 6015。
新教材高中数学课时作业11总体与样本简单随机抽样含解析新人教B版必修第二册
总体与样本、简单随机抽样一、选择题1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验2.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,...,100;②001,002,...,100;③00,01,02,...,99;④01,02,03, (100)其中正确的序号是( )A.②③④B.③④C.②③D.①②3.从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本容量4.总体由编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07C.02D.01二、填空题5.某中学高一年级有700人,高二年级有600人,高三年级有500人,以每人被抽取的机会为0.03,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量n为________.6.下列抽样试验中,用抽签法最方便的是________.①从某厂生产的3000件产品中抽取600件进行质量检验②从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验③从某厂生产的3000件产品中抽取10件进行质量检验7.从30个个体(编号00~29)中抽取10个样本,现给出某随机数表的第11行到第15行(见下表),如果某人选择第12行的第6列和第7列中的数作为第一个数并且由此数向右读,则选取的前4个的号码分别为________.9264 4607 2021 3920 7766 3817 3256 16405858 7766 3170 0500 2593 0545 5370 78142889 6628 6757 8231 1589 0062 0047 38155131 8186 3709 4521 6665 5325 5383 27029055 7196 2172 3207 1114 1384 4359 4488三、解答题8.从30架钢琴中抽取6架进行质量检查,请用抽签法确定这6架钢琴.9.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________.(下面摘取了随机数表第7行至第9行)8105010805 4557182405 3530342814 8879907439 23403097328326977602 020******* 6855574818 7305385247 18623385796357332135 0532547048 9055857518 2846828709 8340125624[尖子生题库]10.为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.课时作业(十一) 总体与样本、简单随机抽样1.解析:对每个选项逐条落实简单随机抽样的特点.A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;C不是简单随机抽样,因为总体的个体有明显的层次;D是简单随机抽样.答案:D2.解析:根据随机数表法的步骤可知,①④编号位数不统一.答案:C3.解析:由题可知在此简单随机抽样中,总体是500名学生的体重,A错误,个体是每个学生的体重,B错误;样本容量为60,D错误.故选C.答案:C4.解析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为02,14,07,01,故第5个数为01.答案:D5.解析:n=(700+600+500)×0.03=54.答案:546.解析:抽签法适于样本总体较小,样本容量较小,且总体中样本差异不太明显的抽样试验,从①②③来看,②最符合.答案:②7.解析:在随机数表中,将处于00~29的号码选出,第一个数76不合要求,第2个63不合要求,满足要求的前4个号码为17,00,02,07.答案:17,00,02,078.解析:第一步,将30架钢琴编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中逐个抽取6个号签,并记录上面的编号;第五步,所得号码对应的6架钢琴就是要抽取的对象.9.解析:找到第8行第7列的数开始向右读,凡不在000~799的跳过去不读,前面读过的也跳过去不读,得到的符合题意的五个数据依次为760,202,051,656,574.答案:760,202,051,656,57410.解析:第一步,将120名服药者重新进行编号,分别为001,002,003, (120)第二步,在随机数表(教材P103)中任选一数作为初始数,如选第9行第7列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.。
人教A版高中数学必修第二册课后习题第九章 统计 9.1.2 分层随机抽样 9.1.3 获取数据的途径
9.1.2 分层随机抽样9.1.3 获取数据的途径A级必备知识基础练1.为了了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男、女生视力情况差异不大,在下面抽样方法中,最合理的抽样方法是( )A.不放回简单随机抽样B.按性别分层随机抽样C.按学段分层随机抽样D.放回简单随机抽样2.某省将实行新高考,考试及录取发生了很大的变化.为了报考理想的大学,小明需要获取近年来我国各大学人工智能专业录取人数的相关数据,他获取这些数据的最好途径是( )A.通过调查获取数据B.通过试验获取数据C.通过观察获取数据D.通过查询获取数据3.某中学有高中生3 000人,初中生2 000人,男、女生所占的比例如图所示.为了解学生的学习情况,用分层随机抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是( )A.12B.15C.20D.214.从某地区15 000位老人中按性别分层随机抽取一个容量为500的样本,调查其生活能否自理的情况如下表所示.则该地区生活不能自理的老人中男性比女性多的人数约为( )A.60B.100C.1 500D.2 0005.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层随机抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A.200,20B.100,20C.200,10D.100,106.(多选题)某工厂生产A,B,C三种不同型号的产品,其相应产品数量之比为2∶5∶3,现用分层随机抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则( )A.此样本的容量n为20B.此样本的容量n为80C.样本中B型号产品有40件D.样本中B型号产品有24件7.一工厂生产了16 800件某种产品,它们分别来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层随机抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的产品个数分别是a,b,c,且2b=a+c,则乙生产线生产了件产品.8.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占,且该组中,青年47.5%,老年人占10%.登山组的职工占参加活动总人数的14人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.B级关键能力提升练9.我国古代数学名著《九章算术》中有如下问题“今有北乡算八千七百五十八,西乡算七千二百三十六,南乡算八千三百五十六,凡三乡,发役三百七十八人,欲以算数多少出之,问各几何?”意思是:北乡有8 758人,西乡有7 236人,南乡有8 356人,现要按人数比例从三乡共征集378人,问从各乡征集多少人?在上述问题中,需从西乡征集的人数约是( )A.102B.112C.130D.13610.下列调查方案中,抽样方法合适、样本具有代表性的是( )A.用一本书第1页的字数估计全书的字数B.为调查某校学生对航天科技知识的了解程度,上学期间,在该校门口,每隔2分钟随机调查一名学生C.在省内选取一所城市中学,一所农村中学,向每个学生发一张卡片,上面印有一些科学家的名字,要求每个学生只能在一个喜欢的科学家名字下面画“√”,以了解全省中学生最喜欢的科学家是谁D.为了调查我国小学生的健康状况,共抽取了100名小学生进行调查11.为制定本市七、八、九年级男学生校服的生产计划,有关部门准备对180名初中男生的身高做调查,现有三种调查方案:(1)测量少年体校中180名男子篮球、排球队员的身高;(2)网上查阅有关我国其他地市180名男生身高的统计资料;(3)按本市七、八、九年级男学生数目的比例分别从三个年级共抽取180名男生调查其身高.为了达到估计本市初中这三个年级男生身高分布的目的,则上述调查方案不合理的是,合理的是.(填序号)12.一个地区共有5个镇,共计3万人,其人口比例为3∶2∶5∶2∶3,从这3万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.参考答案9.1.2 分层随机抽样9.1.3 获取数据的途径1.C 小学、初中、高中三个学段学生的视力情况有较大差异,而男、女生视力情况差异不大,故选用按学段分层随机抽样的抽样方法.2.D 因为近年来我国各大学人工智能专业录取人数的相关数据有存储,所以小明获取这些数据的最好途径是通过查询获取数据.3.A 由扇形图可得该中学有高中生3000人,其中男生人数为3000×30%=900,女生人数为3000×70%=2100,初中生人,其中男生人数为×60%=1200,女生人数为×40%=800,用分层随机抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取女生21人,则n 5000=212100,解得n=50,∴从初中生中抽取的男生人数为50×12005000=12.故选A.4.A 由分层随机抽样方法知所求人数为23-21500×15000=60.5.A 该地区中小学生总人数为3500++4500=10000,则样本容量为10000×2%=200,其中抽取的高中生近视人数为×2%×50%=20.6.BC 工厂生产A,B,C 三种不同型号的产品,其相应产品数量之比为2∶5∶3,现用分层随机抽样方法抽出一个容量为n 的样本,样本中A 型号产品有16件,则n=16÷2k 2k+5k+3k=80,故A 错误,B 正确;样本中B 型号产品有80×5k 2k+5k+3k=40(件),故C 正确,D 错误.故选BC.7.5 600 设甲、乙、丙3条生产线各生产了T 甲,T 乙,T 丙件产品,则a ∶b ∶c=T 甲∶T 乙∶T 丙,即a T 甲=b T 乙=c T 丙.又因为2b=a+c,所以{T 甲+T 丙=2T 乙,T 甲+T 乙+T 丙=16800,所以T 乙=168003=5600.故乙生产线生产了5600件产品. 8.解(1)设参加活动的总人数为x,在游泳组中,青年人、中年人、老年人所占比例分别为a,b,c,则a=42.5%x -x 4×50%(1-14)x =40%, b=47.5%x -x 4×40%(1-14)x=50%,c=10%x -x 4×10%(1-14)x=10%,故游泳组中青年人、中年人、老年人所占的比例分别为40%,50%,10%. (2)因为是分层随机抽样,所以,游泳组中青年人抽取的人数为200×34×40%=60;中年人抽取的人数为200×34×50%=75;老年人抽取的人数为200×34×10%=15.9.B 因为北乡有8758人,西乡有7236人,南乡有8356人,现要按人数多少从三乡共征集378人,故需从西乡征集的人数是378×72368758+7236+8356≈112.10.B 选项A 中,样本缺少代表性(第1页的字数一般较少);选项B 中,抽样保证了随机性原则,样本具有代表性;选项C 中,城市中学与农村中学的规模往往不同,学生喜欢的科学家也未必在所列的名单之中,这些都会影响数据的代表性;选项D 中,总体数量很大,而样本容量太少,不足以体现总体特征.11.(1)(2) (3) (1)中,少年体校的男子篮球、排球的运动员的身高一般高于平均水平,因此不能用测量的结果去估计总体的结果,故方案(1)不合理;(2)中,用外地学生的身高也不能准确地反映本地学生身高的实际情况,故方案(2)不合理;(3)中,由于初中三个年级的男生身高是不同的,所以应该用按比例分别抽取的方法从初中三个年级抽取180名男生调查其身高,方案(3)合理.12.解因为疾病与地理位置和水土均有关系,所以不同镇的发病情况差异明显,因而应采用分层随机抽样的方法.具体过程如下: (1)将3万人分成5层,一个镇为一层. (2)按照各镇的人口比例随机抽取各镇的样本:300×315=60(人),300×215=40(人),300×515=100(人),300×215=40(人),300×315=60(人).各镇分别用分层随机抽样抽取的人数分别为60,40,100,40,60. (3)将抽取的这300人组到一起,即得到一个样本.。
高三数学随机抽样试题
高三数学随机抽样试题1.某私立校共有3600人,其中高中部、初中部、小学部的学生人数成等差数列递增,已知公差为600,现在按1:100的抽样比,用分层抽样的方法抽取样本,则应抽取小学部学生人数为 .【答案】18【解析】根据等差数列的性质可知,公差为600,连续的三项何为3600,可知中间的初中部的学生为1200,那么高中部为600,小学部为1800,则可知按照比例1:100的抽样比,那么小学生抽取的人数为1800,答案为18.【考点】分层抽样点评:考查了分层抽样的概念和等比例性质的运用,属于基础题。
2.某高中学校有高一学生400人,高二学生300人,高三学生300人,现通过分层抽样抽取一个容量为n的样本,已知每个学生被抽到的概率为0.2,则n=;【答案】200【解析】由,得.【考点】分层抽样.点评:本题考查分层抽样方法,涉及等可能事件的概率计算,是简单题;熟悉分层抽样方法的定义即可.3.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取________人.【答案】8【解析】男女运动员人数的比是,所以要抽取14人,需要抽取男运动员人.【考点】本小题主要考查分层抽样.点评:应用分层抽样抽取样本时,关键是找出各层的比例,按比例抽取即可.4.(本小题满分13分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答下列问题:(Ⅰ)求全班人数及分数在之间的频数;(Ⅱ)不看茎叶图中的具体分数,仅根据频率分布直方图估计该班的平均分数;(Ⅲ)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.【答案】(Ⅰ)全班人数为25人,分数在之间频数为4;Ⅱ);Ⅲ). 【解析】(Ⅰ),即全班人数为25人,分数在之间频数为4 4分(Ⅱ)平均分数估计值 8分(Ⅲ)记这6份试卷代号分别为1,2,3,4,5,6.其中5,6是之间的两份,则所有可能的抽取情况有: 1,2 1,3 1,4 1,5 1,62,3 2,4 2,5 2,63,4 3,5 3,64,5 4,65,6 10分其中含有5或6的有9个,故. 13分【考点】本题考查了概率求法、统计.茎叶图、频率分布直方图的认识与应用点评:此类问题常常考查统计学知识,包括茎叶图,频率分布直方图,统计案例(线性回归分析和独立性检验).他们之间的综合问题更应引起重视,以及与概率等知识综合在一起进行设计试题是近几年高考的一种命题趋势5.某校有教师160人,男学生960人,女学生800人,现用分层抽样的方法从所有教师中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n的值为。
高中数学例题:简单随机抽样
高中数学例题:简单随机抽样例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作样本;(2)盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意抽出1个零件进行质量检验后再把它放回盒子里.【解析】(1)不是简单随机抽样,因为总体的个数是无限的.(2)不是简单随机抽样,因为它是放回抽样.【总结升华】简单随机抽样的四个特点:(1)总体的个数有限;(2)逐个抽取;(3)是不放回的抽取;(4)每个个体被抽到的可能性必须是相同的.举一反三:【变式1】下面的抽样方法是简单随机抽样吗?为什么?(1)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检验.(3)一小孩从玩具箱中的20件玩具中随意拿出一件来玩.玩后放回再拿下一件,连续玩了5件.【解析】(1)不是简单随机抽样.因为这不是等可能抽样.(2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(3)不是简单随机抽样.因为这是有放回抽样.例2.某工厂有112件产品,产品的编号为1,2,…,112.用随机数表法抽取一个容量为10的样本,写出抽样过程.【解析】解法一:第一步,将这112件产品原有的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,例如,选第9行第7列的数“3”,向右读;第三步,从“3”开始,向右读,每次读出三位,凡不在001~112中的数跳过去不读,前面已经读过的数也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,产品原来的编号为74,100,94,52,80,3,105,107,83,92的那10件就是被抽取出来的产品.解法二:第一步,将这112件产品原来的编号调整为101,102,103, (212)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向,例如,选第9行第7列的数“3”,向右读;第三步,从“3”开始,向右读,每次读出三位,凡不在101~212中的数跳过去不读,前面已经读过的数也跳过去不读,依次可得到155,134,174,180,165,196,206,105,160,201;第四步,对应原来编号为55,34,74,80,65,96,106,5,60,101的产品就是要抽取的对象.【总结升华】本例中,112件产品原有的编号1,2, (112)位数不统一,有1位数,有2位数,还有3位数.为了解决这一矛盾,解法一采用了“在位数少的数前面加0”的处理方法,例如,1变为001,11变为011;解法二采用了“把原来的数加上10的倍数”的处理方法.例如,2变为102,12变为112.解法一、解法二所采用的处理方法都达到了凑齐位数的效果.举一反三:【变式1】某校有学生1200人,为调查某种情况,打算抽取一个样本容量为50的样本,则此样本采用简单随机抽样将如何获得?【解析】解法一:(抽签法)①把该校学生编号,号码为0001,0002,0003,…,1200;②做大小、形状相同的号签;③将这些号签放在同一个箱子里,进行均匀搅拌;④抽签时,每次从中抽出1个号签,连续抽出50个号签,就得到了一个容量为50的样本.解法二:(随机数表法)①把该校学生编号,号码为0001,0002,0003,…,1200;②在随机数表中选定一个起始位置,假如起始位置是表中第5行第9列的数字6;③从6开始向右连续取数字,以4个数为一组,取到一行末尾时转到下一行从左到右继续读取,所得数字如下:6438,5482,4622,3162,4309,9006,1844,3253,2383,0130,3016……所取得的4位数字如果小于或等于1200,则对应此号的学生就是被抽取的个体.如果所取得的4位数字大于1200而小于2400则减去1200,剩余数字即是被抽取的号码.如果遇到相同号码,则只留第一次取得的数字,其余的舍去,经此处理,被抽取的学生号码如下:0438,0682,1022,0762,0709,0606,0644,0853,1183,0130,0616……一直取够50人止.【变式2】要从10架钢琴中抽取4架进行质量检验,请你设计抽样方案.【解析】解法一:(随机数表法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第3行第6列的数“2”,向右读.第三步,从数“2”开始,向右读,每次读取1位,重复数字只记录一次,依次可得到2,7,6,5.第四步,以上号码对应的4架钢琴就是要抽取的对象.解法二:(抽签法)第一步,将10架钢琴编号,号码是0,1, (9)第二步,将号码分别写在一张纸条上,揉成团,制成号签第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个抽取4个号签,并记录上面的编号.第五步,所得号码对应的4架钢琴就是要抽取的对象.【总结升华】(1)将钢琴编号从0开始,10架钢琴用0—9就可表示,这样总体中的所有个体可用一位数表示,便于使用随机数表.(2)用抽签法抽样关键是将号签搅匀.。
高中数学9.1.1《简单随机抽样》基础过关练习题
第九章 9.1 9.1.1A 级——基础过关练1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是( )A .总体B .个体C .样本量D .从总体中抽取的一个样本【答案】A 【解析】根据题意,结合总体、样本、个体、样本容量的定义可知,5 000名居民的阅读时间的全体是总体.2.(2019年哈尔滨第三中学期末)总体由编号为01,02,03,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )78 16 65 72 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81A .08B .07C .02D .01【答案】B 【解析】从随机数表第1行的第3列开始由左到右依次选取两个数字中小于20的编号,依次为16,08,02,14,07,则第5个个体的编号为07.故选B .3.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .从实数集中逐个抽取10个数分析能否被2整除C .福利彩票用摇奖机摇奖D .规定凡买到明信片的最后几位号码是“6637”的人获三等奖【答案】C 【解析】简单随机抽样要求总体个数有限,从总体中逐个进行不放回抽样,每个个体有相同的可能性被抽到,分析可知选C .4.(2019年天津期末)已知m 个数的平均数为a ,n 个数的平均数为b ,用这m +n 个数的平均数为( )A .a +b 2B .a +b m +nC .ma +nb a +bD .ma +nb m +n【答案】D 【解析】m 个数的平均数为a ,n 个数的平均数为b ,则这m +n 个数的平均数为x =ma +nb m +n.故选D . 5.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.下列说法中正确的为( )①2 000名运动员的年龄是总体;②每个运动员的年龄是个体;③所抽取的20名运动员的年龄是一个样本;④样本量为2 000;⑤每个运动员被抽到的机会相等.A .①⑤B .④⑤C .③④⑤D .①②③⑤【答案】D 【解析】样本容量为20,④错误.①②③⑤正确.6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各随机抽取3名学生进行调查.【答案】②④ 【解析】①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.7.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是________.【答案】15 【解析】简单随机抽样是等可能性抽样,每个个体被抽到的概率都是20100=15. 8.齐鲁风采“七乐彩”的中奖号码是从分别标有1,2,…,30的三十个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是________.【答案】抽签法 【解析】三十个小球相当于号签,搅拌均匀后逐个不放回地抽取,这是典型的抽签法.9.某校2018级高一年级有50位任课教师,为了调查老师的业余兴趣情况,打算抽取一个样本量为5的样本,问此样本若采用抽签法将如何获得?解:首先,把50位任课教师编上号码:01,02,03,…,50.制作50个形状、大小均相同的号签(号签可以用小球、卡片、纸条等制作),然后将这些号签放在一个不透明的箱子里,进行均匀搅拌.抽签时,每次从中抽出1个号签,不放回,连续抽取5次,就得到一个容量为5的样本.10.某企业调查消费者对某产品的需求量,要从95户居民中抽选10户居民,用随机数法抽选样本时,应如何操作?附部分随机数表:85 38 44 05 2748 98 76 06 0216 08 52 99 7161 27 94 30 2192 98 02 77 6826 91 62 77 83解:第一步:将95户居民编号,每一户一个编号,即01~95.第二步:随机确定抽样的起点和抽样的顺序.如假定从第1行第6列开始读取,读数顺序从左往右,每次读两位.(横的数列称为“行”,纵的数列称为“列”).第三步:将编号范围内的数取出,编号范围外或重复的数去掉.得到的样本号码是:40,52,74,89,87,60,21,85,29,16.由此产生10个样本号码,编号为这些号码的居民家庭就是抽样调查的对象.B级——能力提升练11.下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个样本量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量【答案】B【解析】A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.12.某总样本量为M ,其中带有标记的有N 个,现用简单随机抽样的方法从中抽取一个样本量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A .mN MB .mM NC .MN mD .N【答案】A 【解析】由随机抽样的意义可得x N =m M ,故x =mN M,即抽取的m 个个体中带有标记的个数估计为mN M. 13.(2020年荆门月考)某学校为了调查学生的学习情况,由每班随机抽取5名学生进行调查,若一班有50名学生,将每一学生编号从01到50,请从随机数表的第1行第5列(如表为随机数表的前2行)开始,依次向右,直到取足样本,则第五个编号为________.78 16 65 14 08 02 63 14 07 02 43 69 97 28 01 9832 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81【答案】43 【解析】根据应用随机数表取样本数据的特征知,依次抽取的5个数据分别为14,08,02,07,43.所以第5个编号为43.14.一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽到的可能性是________;第三次抽取时,剩余小球中的某一特定小球被抽到的可能性是________.【答案】12 14 【解析】因为简单随机抽样时每个个体被抽到的可能性为36=12,所以某一特定小球被抽到的可能性是12.因为此抽样是不放回抽样,所以第一次抽样时,每个小球被抽到的可能性均为16;第二次抽取时,剩余5个小球中每个小球被抽到的可能性均为15;第三次抽取时,剩余4个小球中每个小球被抽到的可能性均为14. 15.为制定本市高一、高二、高三年级学生校服的生产计划,有关部门准备对180名高中男生的身高作调查,现有三种调查方案:方案一:测量少年体校中180名男子篮球、排球队员的身高;方案二:查阅有关外地180名高中男生身高的统计资料;方案三:在本市的市区任选两所中学、郊区任选一所中学,在这三所学校有关的年级中,用抽签的方法分别选出20名男生,然后测量他们的身高.为了达到估计本市高中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?解:方案三比较合理,理由如下:方案一中,少年体校的男子篮球、排球的运动员的身高一定高于一般的情况,因此无法用测量的结果去估计总体的结果.方案二中,用外地学生的身高也不能准确地反映本地学生身高的实际情况.方案三中的抽样方法符合简单随机抽样,因此用方案三比较合理.16.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?(下面抽取了第5行到9行的随机数表)16 22 77 94 3949 54 43 54 8217 37 93 23 7887 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79解:(方法一,抽签法)①将这40件产品编号为01,02, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.(方法二,随机数法)①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第7行第9列的数8开始;③从选定的数8开始向右读下去,得到一个两位数字号码88,由于88>39,将它去掉;继续向右读,得到77,由于77>39,将它去掉;继续向右读,得到04,将它取出;继续下去,又得到21,33,25,12,06,01,16,19,10,至此,10个样本号码已经取满,于是,所要抽取的样本号码是04,21,33,25,12,06,01,16,19,10.C级——探索创新练17.从某批零件中抽取50个,然后再从这50个中抽取40个进行合格检查,发现合格产品有36个,则该产品的合格率为()A.36%B.72%C.90%D.25%【答案】C 【解析】3640×100%=90%. 18.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次抽到的可能性为a ,第二次被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110【答案】D 【解析】由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到,故五班在每次抽样中被抽到的可能性都是110.。
高中数学必修三简单随机抽样及系统抽样课后练习含答案
简单随机抽样及系统抽样课后练习题一:下列说法中正确说法的个数是()①总体中的个体数不多时宜用简单随机抽样法;②在总体均分后的每一部分进行抽样时,采用的是简单随机抽样;③百货商场的抓奖活动是抽签法;④整个抽样过程中,每个个体被抽取的概率相等(有剔除时例外).A.1 B.2 C.3 D.4题二:在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法:抽签取出20个样本.②采用系统抽样法:将零件编号为00,01,…,99,然后平均分组抽取20个样本.③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.下列说法中正确的是()A.无论采用哪种方法,这100个零件中每一个被抽到的概率都相等B.①②两种抽样方法,这100个零件中每一个被抽到的概率都相等;③并非如此C.①③两种抽样方法,这100个零件中每一个被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的题三:在某班的50名学生中,依次抽取学号为5、10、15、20、25、30、35、40、45、50的10名学生进行作业检查,这种抽样方法是() .A.随机抽样B.分层抽样C.系统抽样D.以上都不是题四:(1)某学校为了了解2012年高考数学的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.问题与方法配对正确的是()A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ题五:一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 9282 80 84 25 3990 84 60 79 8024 36 59 87 3882 07 53 89 3596 35 23 79 1805 98 90 07 3546 40 62 98 8054 97 20 56 9515 74 80 08 3216 46 70 50 8067 72 16 42 7920 31 89 03 4338 46 82 68 7232 14 82 99 7080 60 47 18 9763 49 30 21 3071 59 73 05 5008 22 23 71 7791 01 93 20 4982 96 59 26 9466 39 67 98 60题六:设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数法抽取该样本的步骤.随机数表(部分):6964736614699698162 9774246762428123732 16766713 125685992696966827310503729315 555956356438548246223162430990 162277943949544354821737932378 8442175337704744767 6355567199810507175 3321123429786456428 5762796544917460962 18716582 2662389775841663224 2342477810745321408 6236281995556763138 3785943512833959688题七:在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的可能性为________.题八:在一个个体数目为2 003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为().(A)120(B)1100(C)1002 003(D)12 000题九:为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为()A.2B.3C.4 D.5题十:学校为了了解某企业 1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为().(A)40 (B)30.1 (C)30 (D)12题十一:要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是().A.5, 10, 15, 20, 25 B.3, 13, 23, 33, 43C.1, 2, 3, 4, 5 D.2, 4, 8, 16, 32题十二:用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是().(A)8 (B)6 (C)4 (D)2题十三:将参加学校期末考试的高三年级的400名学生编号为001,002,…,400,已知这400名学生到甲乙丙三栋楼去考试,从001到200在甲楼,从201到295在乙楼,从296到400在丙楼;采用系统抽样方法抽取一个容量为50的样本且随机抽得的首个号码为003,则三个楼被抽中的人数依次为___________.题十四:采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15题十五:一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.题十六:一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是________.简单随机抽样及系统抽样课后练习参考答案题一:C.详解:①②③显然正确,系统抽样无论有无剔除都是等概率抽样;④不正确.题二:A.详解:上述三种方法均是可行的,每个个体被抽到的概率均等于20100=15.故选A.题三:C.详解:由系统抽样的特点——等距,可知C正确.题四:A.详解:通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.题五:18, 00, 38, 58, 32, 26, 25, 39.详解:由随机数表法抽取的规则,所取的数要在00~59之间,且重复出现的仅算一次可得.题六:见详解.详解:第一步,将100名教师进行编号:00,01,02, (99)第二步,在随机数表中任取一数作为开始,如从第12行第9列开始.第三步,依次向右读取(两位、两位读取),75,84,16,07,44,99,83,11,46,32,24,23.以这12个编号对应的教师组成样本.题七:1 6.详解:每一个个体被抽到的概率都是样本容量除以总体,即20120=16.题八:C.详解:采用系统抽样的方法从个体数目为2003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会都是1002 003.题九:A.详解:因为1252=50×25+2,所以应随机剔除2个个体,故选A.题十:C.详解:了解1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,∵1 203除以40不是整数,∴先随机去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k为30.题十一:B.详解:根据系统抽样的特点,可将50枚导弹分成5组(10枚/组),再等距抽取.题十二:B.详解:∵16020=8,∴第1组中号码为126-15×8=6.题十三:25, 12, 13.详解:由系统抽样的方法先确定分段的间隔k,k =40050=8,故甲楼被抽中的人数为:2008=25(人).因为95=11×8+7,故乙楼被抽中的人数为12人.故丙楼被抽中的人数为50-25-12=13(人).题十四:C.详解:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即l=30,第k组的号码为(k-1)30+9,令451≤(k-1)30+9≤750,而k∈z,解得16≤k≤25,则满足16≤k≤25的整数k有10个,故答案应选C.题十五:63.详解:由题意知第7组中的数为“60~69”10个数.由题意知m=6,k=7,故m+k=13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.题十六:6, 17, 28, 39, 40, 51, 62, 73, 84, 95.详解:在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6, 17, 28, 39, 40, 51, 62, 73, 84, 95.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学练习:随机抽样
基础巩固(时间:30分钟)
1。
打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体抽取一个13张的样本。
这种抽样方法是( A )
(A)系统抽样
(B)分层抽样
(C)简单随机抽样
(D)非以上三种抽样方法
解析:符合系统抽样的特征。
2。
总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( B )
66 67 40 67 14 64 05 71 95 86 11 05 65 09 68 76 83 20 37 90
57 16 00 11 66 14 90 84 45 11 75 73 88 05 90 52 83 20 37 90
解析:从随机数表第1行的第9列和第10列数字开始由左向右读取,符合条件的数有14,05,11,05,09,因为05出现了两次,所以选出来的第4个个体的编号为09。
3。
(郑州市模拟)为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取( A )
(A)20 (B)30 (C)40 (D)50
解析:采用系统抽样的方法从600名学生中抽取容量为20的样本,则需分成20个小组进行抽取,故选A。
4。
(洛阳模拟)某大学数学系共有本科生1 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( B )
(A)80 (B)40 (C)60 (D)20
解析:因为要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4∶3∶2∶1,所以三年级要抽取的学生人数是×200=40。
5。
(北京模拟)共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如表所示:
年龄12~20岁20~30岁30~40岁40岁及以上比例14% 45。
5% 34。
5% 6%
为调查共享单车使用满意率情况,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取20~30岁的人数为( D )
(A)12 (B)28 (C)69 (D)91
解析:由分层抽样的定义得应抽取20~30岁的人数为200×45。
5%
=91人。
6。
在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本。
①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个。
则( A )
(A)不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是
(B)①②两种抽样方法,这100个零件中每个被抽到的概率都是,③并非如此
(C)①③两种抽样方法,这100个零件中每个被抽到的概率都是,②并非如此
(D)采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同
解析:根据抽样的定义知道,三种抽样方法的特点就是保证了每个个体从总体中被抽到的可能性都相同,保证了总体中每个个体被抽到的概率相等的公平性。
由三种抽样法的有关计算公式
计算所得的概率都是。
故选A。
7。
(南通一模)已知某校高一、高二、高三的学生人数分别为400,400,500。
为了解该校学生的身高情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为65的样本,则应从高三年级抽取名学生。
解析:根据题意,抽样比例为=。
所以应从高三年级抽取500×=25(名)。
答案:25
8。
利用随机数表法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行),根据下表,读出的第3个数是。
18180 79245 44171 65809 79838 61962 06765 00310 55236 40505
26623 89775 84160 74499 83114 63224 20148 58845 10937 28871
解析:最先读到的数据的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一个数是114。
故读出的第3个数是114。
答案:114
能力提升(时间:15分钟)
9。
(江西八校联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( C ) (A)480 (B)481 (C)482 (D)483
解析:根据系统抽样的定义可知样本的编号成等差数列,令a
1=7,a
2
=32,则d=25,所以7+25(n-1)
≤500,所以n≤20,最大编号为7+25×19=482。
10。
某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会。
如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,则n等于( B ) (A)5 (B)6 (C)7 (D)8
解析:总体容量为6+12+18=36。
当样本容量是n时,由题意知,系统抽样的间隔为,分层
抽样的比例是,抽取的工程师人数为·6=,技术员人数为·12=,技工人数为
·18=,所以n应是6的倍数,36的约数,即n=6,12,18。
当样本容量为(n+1)时,剔除
1个个体后,总体容量为35人,系统抽样的间隔为,因为必须是整数,所以n只能
取6,即样本容量n=6。
故选B。
11。
(山西八校联考)某校高三年级共有30个班,学校心理咨询室为了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取6个班进行调查,若抽到的编号之和为87,则抽到的最小编号为。
解析:该系统抽样的抽取间隔为=5,设抽到的最小编号为x,则x+(5+x)+(10+x)+(15+x)+(20+x)+(25+x)=87,所以x=2。
答案:2
12。
(衡阳一模)某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
产品类别 A B C 产品数量(件) 1 300
各层抽取件数130
由于不小心,表格中A,C产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是件。
解析:设样本的总容量为x,则×1 300=130,
所以x=300,
所以A产品和C产品在样本中共有300-130=170(件),
设C产品的样本容量为y,
则y+y+10=170,所以y=80。
所以C产品的数量为×80=800。
答案:800
13。
(2017·汕头模拟)某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A,B,C,D四个单位回收的问卷数依次成等差数列,且共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B单位抽取30份,则在D单位抽取的问卷是份。
解析:由题意依次设在A,B,C,D四个单位回收的问卷数分别为a
1,a
2
,a
3
,a
4
,在D单位抽
取的问卷数为n,则有=,解得a
2=200,又a
1
+a
2
+a
3
+a
4
=1 000,即3a
2
+a
4
=1 000,所以
a
=400,所以=,解得n=60。
4
答案:60。