高中数学选修2-1 全部(1)
高中数学选修2-1主要内容
![高中数学选修2-1主要内容](https://img.taocdn.com/s3/m/071cca8705087632311212f1.png)
对(2) 分析:
题设中没有具体给出动点所满足的几何条件, 但可以通过分析图形的几何性质而得出, 即圆
心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:
设弦的中点为 M(x , y) ,连结 OM ,
则 OM ⊥AM .
∵k OM · kAM =-1 ,
其轨迹是以 OA 为直径的圆在圆 O 内的一段弧 ( 不含端点 ). 2.定义法 利用所学过的圆的定义、 椭圆的定义、 双曲线的定义、 抛物线的定义直接写出所求的动点的 轨迹方程, 这种方法叫做定义法. 这种方法要求题设中有定点与定直线及两定点距离之和或
q 也是 p 的充要条件 . 概括地说 , 如果 p q, 那么 p 与 q 互为充要条件 .
一般地, 若p 若p 若p
q, 但 q q,但 q q,且 q
p,则称 p 是 q 的充分但不必要条件; p,则称 p 是 q 的必要但不充分条件; p,则称 p 是 q 的既不充分也不必要条件.
1.3 简单的逻辑连接词
(以下由学生完成 )
根据它们的对称性, 这两个点的横坐标应相等, 因此方
由弦长公式得:
即 a2b2=4b 2-a2.
2.2 椭圆
把平面内与两个定点 F1, F2 的距离之和等于常数(大于 F1 F2 )的点的轨迹叫做椭圆
(ellipse ).其中这两个定点叫做椭圆的焦点, 两定点间的距离叫做椭圆的焦距. 即当动点
且有 BP∶ PA=1 ∶2,当 B 点在抛物线上变动时,求点 P 的轨迹方程.
分析:
P 点运动的原因是 B 点在抛物线上运动,因此 B 可作为相关点,应先找出点 系.
P 与点 B 的联
解:设点 P(x , y) ,且设点 B(x 0, y 0)
高中数学选修2-1 2.3.1双曲线的标准方程(一)
![高中数学选修2-1 2.3.1双曲线的标准方程(一)](https://img.taocdn.com/s3/m/6a4c011ca32d7375a417809d.png)
3.求解方程
(1)建系 (2)设点 M(x,y) (3)限制条件 (4)代入等式 (5)化简整理
y M
O
x
MF1 MF2 2a 0 2a 2c
同学们亲手 练习!
x y 2 1(a 0, b 0) 2 a b
2
2
4.双曲线的标准方程
2 2 x y y x 2 1(a 0, b 0) 2 1(a 0, b 0) 2 2 a b a b 在双曲线方程中, 总有
2 2 2
双曲线 | MF1 | | MF2 | 2a x2 y2 2 1 2 a b 2 2 y x 2 1 2 a b ( c , 0) (0, c ) c a b
2 2 2
方程
焦点 a , b, c 的关系
四、讲练结合
例1.课本P 47, 例1 已知双曲线的两个焦点分别为F1 5, 0 , F2 5, 0 , 双曲线上一点P到F1 , F2 距离之差的绝 对值等于6.求双曲线的标准方程. 变式1.已知两点F1 5, 0 , F2 5, 0 , 求与这两点
(1)m ;
( 2)m ; (3)m 1; ( 4) 1 m 2
例3.求根据下列条件, 求双曲线的标准方程 (1)经过点P 3,10 ,Q 6, 2 的双曲线方程; ( 2)c 6 , 经过点( 5, 2), 焦点在x轴上. x y (3)已知双曲线与椭圆 1有共同的 27 36 焦点, 且过点
三、新知讲解
1.双曲线的定义 平面内与两个定点F1 , F2的距离之差的绝对值等 于常数2a (小于 | F1F2 |)的点的轨迹叫做双曲线.这两 个定点叫双曲线的焦点, 两焦点间的距离叫双曲线 的焦距.
人教版高中数学选修2-1 教案目录
![人教版高中数学选修2-1 教案目录](https://img.taocdn.com/s3/m/f09664d7dd3383c4ba4cd26b.png)
学科人教版高中数学选修2-1编写组责任人序号知识模块教案标题编写人1人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 基础)小榄校区(关潮辉)2人教版 选修2-1第一章 常用逻辑语 同步复习教案1( 提高)小榄校区(关潮辉)7人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 基础)小榄校区(温艺铭)8人教版 选修2-1第一章 常用逻辑语 同步复习教案2( 提高)小榄校区(温艺铭)9人教版 选修2-1第一章单元复习教案(基础)小榄校区(泰龙、马俊)10人教版 选修2-1第一章单元复习教案(提高)小榄校区(泰龙、马俊)11第一章单元测试卷(基础)小榄校区(泰龙、马俊)12第一章单元测试卷(提高)小榄校区(泰龙、马俊)13人教版 选修2-1 第二章 2.1曲线与方程 同步教案(基础)石岐(基础)贺丽春起湾(提高)郑狄苗14人教版 选修2-1 第二章 2.1曲线与方程同步教案(提高)石岐(基础)贺丽春起湾(提高)郑狄苗15人教版 选修2-1 第二章 2.1椭圆同步教案(基础)石岐(基础)何善庆起湾(提高)郑狄苗16人教版 选修2-1 第二章 2.1椭圆同步教案(提高)石岐(基础)何善庆起湾(提高)郑狄苗17人教版 选修2-1 第二章 2.2双曲线同步教案(基础)石岐(基础)刘冬有起湾(提高)郑狄苗18人教版 选修2-1 第二章 2.2双曲线同步教案(提高)石岐(基础)刘冬有起湾(提高)郑狄苗19人教版 选修2-1 第二章 2.3抛物线同步教案(基础)石岐(基础)肖爱 起湾(提高)郑狄苗20人教版 选修2-1 第二章 2.3抛物线同步教案(提高)石岐(基础)肖爱 起湾(提高)郑狄苗星火教育高中标准教案目录第一章常用逻辑用语单元复习单元测试卷第二章圆锥曲线与方程刘冬有。
最新人教版高中数学选修2-1第一章《命题与四种命题》课件
![最新人教版高中数学选修2-1第一章《命题与四种命题》课件](https://img.taocdn.com/s3/m/b78f12bb6529647d272852b3.png)
思考1:什么是命题? 提示:用文字或符号表述的可以判断真假的陈述句
例如:
1、π是无理数吗? (不是陈述句)
2、x>1
(不能判断真假)
思考2:什么是真命题、假命题
提示:判断为真的命题叫作真命题. 判断为假的命题叫作假命题.
例2:判断下列命题的真假: 1、三角形三个内角的和等于180°.
例4.设原命题是“若a=0,则ab=0”. (1)写出它的逆命题、否命题及逆否命题. (2)判断这四个命题是真命题还是假命题. 解(1) 逆命题:“若ab=0,则a=0”; 否命题:“若a≠0,则ab≠0”; 逆否命题:“若ab≠0,则a≠0” . (2)原命题和逆否命题都是真命题,逆命题和 否命题都是假命题.
(是,假)
(6)x>15. (不是命题)
【变式练习】判断下列语句是否是命题.
(1)求证: 3 是无理数.
(2)x 2 2 x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果. (5)一个正整数不是质数就是合数.
(6)若 x R ,则 x 2 4 x 7 0.
真命题
2、正弦函数y=sin x的定义域是实数集R. 真命题
3、 2 N
假命题
思考3:命题有几部分组成? 一般地,一个命题由条件和结论两部分组成.
例3: 写出命题“三角形三个内角的和等于180°”的条件和结论 条件: 三角形的三个内角
结论:它们的和等于180°
思考4:能否用条件和结论表示命题? 数学中,通常把命题表示为“若p,则q”的形式, 其中p是条件,q是结论
则它的对角线互相垂直且平分. 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分.
人教a版高中数学选修2-1全册同步练习及单元检测含答案
![人教a版高中数学选修2-1全册同步练习及单元检测含答案](https://img.taocdn.com/s3/m/d377f09303d276a20029bd64783e0912a2167c07.png)
⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。
高二数学(人教B版)选修2-1全册同步练习:3-2-3直线与平面的夹角
![高二数学(人教B版)选修2-1全册同步练习:3-2-3直线与平面的夹角](https://img.taocdn.com/s3/m/7c089917b7360b4c2f3f6400.png)
3.2.3直线与平面的夹角一、选择题1.已知平面α内的角∠APB =60°,射线PC 与PA 、PB 所成角均为135°,则PC 与平面α所成角的余弦值是( )A .-63B.63C.33D .-33[答案] B[解析] 由三余弦公式知cos45°=cos α·cos30°, ∴cos α=63. 2.三棱锥P —ABC 的底面是以AC 为斜边的直角三角形,顶点P 在底面的射影恰好是△ABC 的外心,P A =AB =1,BC =2,则PB 与底面ABC 所成角为( )A .60°B .30°C .45°D .90°[答案] B[解析] 由AB =1,BC =2,知AC =3,∴OA =32, 又∵PA =1,PQ ⊥AC ,∴PO =12,∵OB =OA =32,∴tan θ=33.∴应选B. 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的正弦值是( ) A.24 B.23 C.63D.32[答案] C[解析] 由计算得sin θ=23.故选C. 4.在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216B.833 C.21060D.21030[答案] D[解析] 以O 为原点,射线OA 、OB 、OP 为x 、y 、z 轴建立空间直角坐标系,如图,设AB =a ,则OP =72a ,OD →=(-24a,0,144a ),可求得平面PBC 的法向量为n =(-1,-1,17), ∴cos(OD →,n )=OD →·n |OD →||n |=21030,设OD →与面PBC 的角为θ,则sin θ=21030,故选D.5.若直线l 与平面α所成角为π3,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成角的取值范围是( )A.⎣⎡⎦⎤0,2π3 B.⎣⎡⎦⎤π3,2π3 C.⎣⎡π2,2π3D.⎣⎡π3,π2[答案] D6.如果平面的一条斜线段长是它在这个平面上的射影长的3倍,那么斜线段与平面所成角的余弦值为( )A.13B.223C.22D.23[答案] A7.如图,正方体AC 1中,BC 1与对角面BB 1D 1D 所成的角是( ) A .∠C 1BB 1 B .∠C 1BD C .∠C 1BD 1 D .∠C 1BO [答案] D[解析] 由三垂线定理得,OB 为BC 1在平面BB 1D 1D 上的射影.故选D.8.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π [答案] B[解析] 以D 为原点建立空间直角坐标系,平面BDE 的法向量n =(1,-1,2), 而BA 1→=(0,-1,1),∴cos θ=1+223=32,∴θ=30°.∴直线A 1B 与平面BDE 成60°角.9.正方形纸片ABCD ,沿对角线AC 折起,使点D 在面ABCD 外 ,这时DB 与平面ABC 所成角一定不等于( )A .30°B .45°C .60°D .90°[答案] D[解析] 当沿对角线AC 折起时,BD 在面ABC 上的射影始终在原对角线上,若BD ⊥面ABC ,则此时B 、D 重合为一点,这是不成立的,故选D.10.已知等腰直角△ABC 的一条直角边BC 平行于平面α,点A ∈α,斜边AB =2,AB 与平面α所成的角为30°,则AC 与平面α所成的角为( )A .30°B .45°C .60°D .90°[答案] B[解析] 过B 、C 作BB ′⊥α于B ′,CC ′⊥α于C ′, 则BB ′=CC ′=1,∴sin θ=22,∴θ=45°.故选B. 二、填空题11.正三棱柱ABC —A 1B 1C 1的所有棱长都相等,则AC 1与平面BB 1C 1C 的夹角的余弦值为________.[答案]104[解析] 设三棱柱的棱长为1,以B 为原点,建立坐标系如图,则C 1(0,1,1),A ⎝⎛⎭⎫32,12,0,AC 1→=⎝⎛⎭⎫-32,12,1,又平面BB 1C 1C 的一个法向量n =(1,0,0), 设AC 1与平面BB 1C 1C 的夹角为θ. sin θ=|cos 〈n ,AC 1→〉|=|AC 1→·n ||AC 1→||n |=64,∴cos θ=1-sin 2θ=104. 12.正四棱锥S —ABCD 中,O 为顶点S 在底面内的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是________.[答案] 30°13.AB ∥α,AA ′⊥α, A ′是垂足,BB ′是α的一条斜线段,B ′为斜足,若AA ′=9,BB ′=63,则直线BB ′与平面α所成角的大小为________.[答案] 60°14.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、A 1D 1的中点,则EF 与面A 1C 1所成的角为________.[答案] 45° 三、解答题15.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12SC 与平面ABCD 所成的角.[解析] 解法1:如图所示,设n 是平面α的法向量,AB 是平面α的一条斜线,A ∈α,则AB 与平面α所成的角为π2-arccos |AB →·n ||AB →|·n ;AS →是平面ABCD 的法向量,设CS →与AS →的夹角为φ. ∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1. |AS →|=1,|CS →|=(CB ―→+BA ―→+AS ―→)2 =|CB ―→|2+|BA ―→|2+|AS ―→|2=3, ∴cos φ=AS →·CS →|AS →|·|CS →|=33.∴φ=arccos33. 从而CS 与平面ABCD 所成的角为π2-arccos 33.解法2:连结AC ,显然∠SCA 即为SC 与平面ABCD 所成的角.计算得:AC =2,∴tan ∠SCA =22,故SC 与平面ABCD 所成角为arctan22. 16.如图,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OB =3,∠AOB =90°.D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点.若OP ⊥BD ,试求:(1)OP 与底面AOB 所成的角的大小; (2)BD 与侧面AOO ′A ′所成的角的大小.[解析] 如图,以O 为原点建立空间直角坐标系,由题意,有B (3,0,0),D ⎝⎛⎭⎫32,2,4,设P (3,0,z ),则BD →=⎝⎛⎭⎫-32,2,4,OP →=(3,0,z ).∵BD ⊥OP ,∴BD →·OP →=-92+4z =0,z =98.∴P ⎝⎛⎭⎫3,0,98.(1)∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. ∵tan ∠POB =983=38,∴∠POB =arctan 38.故OP 与底面AOB 所成角的大小是arctan 38.(2)∵OB →=(3,0,0),且OB →⊥平面AOO ′A ′, ∴平面AOO ′A ′的法向量为OB →=(3,0,0). 又DB →=(3,0,0)-⎝⎛⎭⎫32,2,4=⎝⎛⎭⎫32,-2,-4, ∴OB →·DB { =3×32+(-2)×0+(-4)×0=92.又|OB →|=3, |DB →|=⎝⎛⎭⎫322+(-2)2+(-4)2=892, ∴cos 〈OB →,DB →〉=OB →·DB →|OB →|·|DB →|=923×892=389 .∴BD 与侧面AOO ′A ′所成的角的大小为π2-〈OB →,DB →〉=π2-arccos 389(或写成arcsin389).17.如图,正方体ABCD -A 1B 1C 1D 1中,E 是CC 1的中点,求BE 与平面B 1BD 所成角的正弦值.[解析] 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).设平面B 1BD 的法向量为n =(x ,y ,z ), ∵n ⊥BD ,n ⊥BB 1∴⎩⎪⎨⎪⎧n ·BD →=-2x -2y =0n ·BB 1→=2z =0,∴⎩⎪⎨⎪⎧x =-y z =0, 令y =1时,则n =(-1,1,0), cos<n ,BE →>=n ·BE →|n ||BE →|=105.即BE 与平面B 1BD 所成的角的正弦值为105.18.(2009·北京)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC ;(2)当D 为PB 的中点时,求AD 与平面P AC 所成的角的大小; [解析] 考查线面垂直,直线与平面所成角,以及二面角等内容,可以用直接法实现,也可用向量法.解法一:(1)∵PA ⊥底面ABC ,∴PA ⊥BC . 又∠BCA =90°,∴AC ⊥BC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面P AC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA =AB ,∴△ABP 为等腰直角三角形, ∴AD =12AB .在Rt △ABC 中,∠ABC =60°,∴BC =12.∴在Rt △ADE 中,sin ∠DAE =DE AD =BC 2AD =24.∴AD 与平面PAC 所成的角的大小为arcsin24. 解法二:(1)如图,以A 为原点建立空间直角坐标系A -xyz .设PA =a ,由已知可得A (0,0,0),B ⎝⎛⎭⎫-12a ,32a ,0,C ⎝⎛⎭⎫0,32a ,0,P (0,0,a ). (1)∵AP →=(0,0,a ),BC →=⎝⎛⎭⎫12a ,0,0,∴BC →·AP →=0, ∴BC ⊥AP .又∵∠BCA =90°, ∴BC ⊥AC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴D ⎝⎛⎭⎫-14a ,34a ,12,E ⎝⎛⎭⎫0,34a ,12a .又由(1)知,BC ⊥平面P AC . ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面P AC 所成的角. ∵AD →=⎝⎛⎭⎫-14a ,34a ,12a ,AE →=⎝⎛⎭⎫0,34a ,12a ,∴cos ∠DAE =AD →·AE →|AD →||AE →|=144.∴AD 与平面PAC 所成的角的大小为arccos144.。
人教版高中数学选修2-1全套课件
![人教版高中数学选修2-1全套课件](https://img.taocdn.com/s3/m/b267d93d5022aaea988f0fbd.png)
2021/5/13
• 解析: (1)是假命题.因为一个数的算术 平方根为非负数. • (2)是假命题,直线l与平面α可以相交. • (3)是假命题,原因是当G=a=0时,a,G, b不是等比数列. • (4)是假命题.当a=0时,方程ax2+2x-1 =0有一个实根.
2021/5/13
•
命题真假的判定方法
2021/5/13
• (7)指数函数是增函数吗? • 上述语句有什么特点?能判断它们的真假吗? • [提示] 语句(1)(2)(3)(4)是陈述句,能判断真 假.语句(5)(6)(7)不是陈述句,不能判断真假.
2021/5/13
命题的概念
2021/5/13
命题的结构
• 一般地,每一个命题都可以写成“若p,则q” 的形式,其中命题中的p叫做命题的_______,q叫 做命题的_____,也就条是件说,命题由___结__论_和 ______两部条分件组成结.论
假,两者同时成立才是命题.注意不要把假命题
误认为不是命题.
2021/5/13
• 1.判断下列语句是不是命题,并说明理由. • (1)求证π是无理数; • (2)若x∈R,则x2+4x+5≥0; • (3)一个数的算术平方根一定是负数. • 解析: (1)不是命题.因为它是祈使句.(2) 是命题.因为它是陈述句,并且可以判断真假.(3) 是命题.因为一个数的算术平方根为非负数.
2021/5/13
• 1.对命题概念的理解 • 对命题概念的理解抓住两点:可以判断真假和 陈述句.对于“x>0”,由于x是未知数,无法判 断该不等关系是否成立,所以它不是命题;对于 “三角函数是周期函数吗?”等疑问句或其他的 祈使句、感叹句等都不是命题.
2021/5/13
人教版A版高中数学选修2-1课后习题解答
![人教版A版高中数学选修2-1课后习题解答](https://img.taocdn.com/s3/m/2921ced565ce0508763213be.png)
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
高中数学选修2-1第二章圆锥曲线
![高中数学选修2-1第二章圆锥曲线](https://img.taocdn.com/s3/m/8570f0135f0e7cd184253660.png)
2
2
y x + 2 =1 (a > b > 0) 2 a b
2
2
x2 y2 − 2 =1 (a > 0,b > 0) 2 a b
抛物线的标准方程: 抛物线的标准方程:
y2 x2 − 2 =1 (a > 0,b > 0) 2 a b
y2 = ±2px ( p > 0)
动 M 一 定 F的 离 它 一 定 线的 离 比 点 与 个 点 距 和 到 条 直 l 距 的 是 数e, 常 l d .M
l
d
.M .
F
l
d.M
.
.
e >1
F
F
0 <e <1
e =1
定点是焦点,定直线叫做准线,常数e是离心率 .
椭圆的标准方程: 椭圆的标准方程:
x y + 2 =1 (a > b > 0) 2 a b
3.双曲线的几何性质:以 .双曲线的几何性质: x2/a2-y2/b2=1(a、b>0)表示的双曲线为例,其几 表示的双曲线为例, > 表示的双曲线为例 何性质如下: 何性质如下: (1)范围:x≤-a,或x≥a 范围: 范围 , (2)关于 轴、y轴、原点对称, 关于x轴 轴 原点对称, 关于 (3)两顶点是 ±a,0)(4)离心率 两顶点是(± 两顶点是 离心率 e=c/a∈(1,+∞).c=√a2+b2(5)渐近线方程为 ∈ 渐近线方程为 y=±bx/a,准线方程是 ±a2/c ± ,准线方程是x=±
椭圆 圆 锥 曲 线
定义 标准方程
双曲线
几何性质
抛物线
直线与圆锥曲线 的位置关系
高中数学人教A版选修2-1高考真题(一).docx
![高中数学人教A版选修2-1高考真题(一).docx](https://img.taocdn.com/s3/m/981314aca1c7aa00b52acbd5.png)
高中数学学习材料马鸣风萧萧*整理制作第一章 常用逻辑用语本章归纳整合高考真题1.(2012·重庆)命题“若p 则q ”的逆命题是( ). A .若q 则p B .若綈p 则綈qC .若綈q 则綈pD .若p 则綈q 解析 原命题的逆命题是交换原命题的条件和结论.故选A.答案 A2.(2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是 ( ).A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π4 解析 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”,故选C. 答案 C3.(2012·山东)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是 ( ).A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析 函数y =sin 2x 的最小正周期为2π2=π,故p 为假命题;x =π2不是y =cos x 的对称轴,命题q 为假命题,故p ∧q 为假.故选C.答案 C4.(2012·湖北)设a ,b ,c ∈R +,则“abc =1”是“1a +1b +1c ≤a +b +c ”的 ( ). A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件解析 ∵abc =1,∴a +b +c =1bc +1ac +1ab, ∵a ,b ,c ∈R +,∴1bc +1ac≥2 1abc 2=2· 1c =2c ,① 同理1bc +1ab ≥2b,② 1ac +1ab ≥2a,③ 当且仅当a =b =c 时取“=”.①+②+③得a +b +c ≥1a +1b +1c , 故abc =1是1a +1b +1c≤ a +b +c 的充分条件. 再令a =2,b =c =1,满足a +b +c ≥1a +1b +1c , 但abc ≠1,故abc =1不是1a +1b +1c≤a +b +c 的必要条件.故选A. 答案 A 5.(2012·天津)设x ∈R ,则“x >12”是“2x 2+x -1>0”的 ( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 解析 因为{x |2x 2+x -1>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪ x >12或x <-1,所以⎩⎨⎧⎭⎬⎫x ⎪⎪x >12{x |2x 2+x -1>0},故选A.答案 A6.(2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( ). A .x =-12B .x =-1C.x=5 D.x=0解析a⊥b⇔a·b=0,a·b=(x-1,2)·(2,1)=2(x-1)+2×1=2x=0,∴x=0,故选D.答案 D7.(2012·上海)对于常数m,n,“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析当m<0,n<0时,mn>0,但mx2+ny2=1没有意义,不是椭圆;反之,若mx2+ny2=1表示椭圆,则m>0,n>0,即mn>0.故选B.答案B。
高中数学选修2-1 各章节同步练习及答案解析
![高中数学选修2-1 各章节同步练习及答案解析](https://img.taocdn.com/s3/m/3a573c1a90c69ec3d4bb750f.png)
第一章 1.1第1课时一、选择题1.下列语句中命题的个数为()①{0}∈N;②他长得很高;③地球上的四大洋;④5的平方是20.A.0B.1C.2D.3[答案]C[解析]①④是命题,②③不是命题.地球上的四大洋是不完整的句子.2.若a>1,则函数f(x)=a x是增函数()A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关[答案]B[解析]当a>1时,指数函数f(x)=a x是增函数,故“若a>1,则函数f(x)=a x是增函数”是真命题.3.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α[答案]D[解析]验证排除法:A选项中缺少条件m与n相交;B选项中两平行平面内的两条直线m与n关系不能确定;C选项中缺少条件n⊄α.4.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中是真命题的是()A.①②③B.①②④C.①③④D.②③④[答案]B[解析]①中Δ=4-4(-k)=4+4k>0,所以①为真命题;②由不等式的乘法性质知命题正确,所以②为真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B.5.对于向量a、b、c和实数λ,下列命题中的真命题是()A. a·b=0,则a=0或b=0B.若λa=0,则λ=0或a=0C.若a2=b2,则a=b或a=-bD.若a·b=a·c,则b=c[答案]B[解析]A选项中可能有a⊥b;C选项中a2=b2说明|a|=|b|,a与b并不一定共线,D 选项中a·b=a·c说明a·(b-c)=0,则a⊥(b-c)6.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是()A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形[答案]C[解析]该命题的条件是“一个四边形是平行四边形”,结论是“这个四边形的对角线既互相平分,也互相垂直”.二、填空题7.下面是关于四棱柱的四个命题:①如果有两个侧面垂直于底面,则该四棱柱为直四棱柱;②如果两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③如果四个侧面两两全等,则该四棱柱为直四棱柱;④如果四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是__________________(写出所有真命题的编号).[答案]②④[解析]②中由过相对侧棱截面的交线垂直于底面并与侧棱平行,可知命题成立,④中由题意,可知对角面均为长方形,即可证命题成立.①、③错误,反例如有一对侧面与底面垂直的斜四棱柱.8.设a、b、c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是__________________.[答案]0[解析]∵垂直于同一直线的两条直线不一定平行,∴命题①不正确;∵与同一直线均异面的两条直线的位置关系可以共面,也可以异面,∴命题②不正确;∵与同一直线均相交的两条直线在空间中可以相交,也可以平行或异面,∴命题③不正确;∵当两平面的相交直线为直线b时,两平面内分别可以作出直线a与c,即直线a与c 不一定共面,∴命题④不正确.综上所述,真命题的个数为0.三、解答题9.判断下列语句中哪些是命题,是命题的,请判断真假.(1)末位是0的整数能被5整除;(2)△ABC中,若∠A=∠B,则sin A=sin B;(3)余弦函数是周期函数吗?(4)求证:当x∈R时,方程x2+x+2=0无实根.[解析](1)是命题,真命题.(2)是命题,真命题.(3)、(4)不是命题.10.把下列命题改写成“若p,则q”的形式,并判断真假.(1)对角线相等的四棱柱是长方体;(2)整数的平方是非负整数;(3)能被10整除的数既能被2整除,也能被5整除.[解析](1)可写为:“若四棱柱的对角线相等,则它是长方体”,这个命题是假命题,如底面是等腰梯形的直四棱柱.(2)可写为:“若一个数是整数,则它的平方是非负整数”,真命题.(3)可写为:“若一个数能被10整除,则它既能被2整除,也能被5整除”,真命题.一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这四句诗中,在当时条件下,可以作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思[答案]A[解析]“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.2.设α、β、γ为两两不重合的平面,c 、m 、n 为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c ⊂α,则c ∥β;③如果α∩β=c ,β∩γ=m ,γ∩α=n ,c ∥γ,则m ∥n .其中真命题个数是( )A .0个B .1个C .2个D .3个[答案] C[解析] ①α⊥γ,β⊥γ,则α与β可相交,①错误;②中∵α∥β,∴α与β无公共点,又c ⊂α,∴c 与β无公共点,∴c ∥β,故②正确;由c ∥γ,c ⊂β,β∩γ=m 得c ∥m ,同理可得c ∥n ,∴m ∥n ,故③正确.3.下面的命题中是真命题的是( )A .y =sin 2x 的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a>0 C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB →·BC →>0,则△ABC 为锐角三角形[答案] B[解析] y =sin 2x =1-cos2x 2,T =2π2=π,故A 为假命题; 当M ⊆N 时,M ∪N =N ,故C 为假命题;当AB →·BC →>0时,向量AB →与BC →的夹角为锐角,B 为钝角,故D 为假命题.4.设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定向量b 和正数μ,总存在单位向量c ,使a =λb +μc .④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b 、c 和a 在同一平面内,且两两不共线,则真命题的个数是( )A .1B .2C .3D .4 [答案] C[解析] 对于①,由向量的三角形加法法则可知其正确;由平面向量基本定理知②正确;对③,可设e 与b 是不共线单位向量,则存在实数λ,y 使a =λb +y e ,若y >0,则取μ=y ,c =e ,若y <0,则取μ=-y ,c =-e ,故③正确;④显然错误,给定正数λ和μ,不一定满足“以|a |,|λb |,|μc |为三边长可以构成一个三角形”,这里单位向量b 和c 就不存在.可举反例:λ=μ=1,b 与c 垂直,此时必须a 的模为2才成立.二、填空题5.给出下列四个命题:①若a >b >0,则1a >1b; ②若a >b >0,则a -1a >b -1b; ③若a >b >0,则2a +b a +2b >a b; ④若a >0,b >0,且2a +b =1,则2a +1b的最小值为9. 其中正确命题的序号是__________________.(把你认为正确命题的序号都填上)[答案] ②④[解析] ①在a >b >0两端同乘以1ab 可得1b >1a,故①错; ②由于⎝⎛⎭⎫a -1a -⎝⎛⎭⎫b -1b =(a -b )⎝⎛⎭⎫1+1ab >0, 故②正确;③由于2a +b a +2b -a b =b 2-a 2(a +2b )b <0,即2a +b a +2b <a b, 故③错;④由2a +1b =⎝⎛⎭⎫2a +1b ·(2a +b )=5+2b a +2a b≥5+22b a ·2a b =9,当且仅当2b a =2a b,即a =b =13时取得等号,故④正确. 6.已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题:①若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数;②若a 2-b >0,则f (x )在区间[a ,+∞)上是增函数;③当x =a 时,f (x )有最小值b -a 2;④当a 2-b ≤0时,f (x )有最小值b -a 2.其中正确命题的序号是__________________.[答案] ①④[解析] 由题意知f (x )=|x 2-2ax +b |=|(x -a )2+b -a 2|.若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2,可知f (x )在区间[a ,+∞)上是增函数,所以①正确,②错误;只有在a 2-b ≤0的条件下,才可能在x =a 时,f (x )取最小值b -a 2,所以③错误,④正确.三、解答题7.把下列命题改写成“若p ,则q ”的形式.(1)ac >bc ⇒a >b ;(2)当m >14时,mx 2-x +1=0无实根; (3)方程x 2-2x -3=0的解为x =3或x =-1.[解析] (1)若ac >bc ,则a >b .(2)若m >14,则mx 2-x +1=0无实根. (3)若x 2-2x -3=0,则x =3或x =-1.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.[解析] 由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,即x 2-2x -3≥0.解得x ≤-1或x ≥3.故命题p :x ≤-1或x ≥3.又命题q :0<x <4,且命题p 为真,命题q 为假,则⎩⎪⎨⎪⎧x ≤-1或x ≥3x ≤0或x ≥4, 所以x ≤-1或x ≥4.所以,满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).第一章 1.1 第2课时一、选择题1.给出命题:若函数y =f (x )是幂函数,则它的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .0[答案] C[解析] 原命题是真命题,因为幂函数的图象不过第四象限,反过来,图象不过第四象限的函数不一定是幂函数,所以逆命题为假命题,根据等价命题的真假性相同可知,否命题为假命题,逆否命题为真命题,故选C.2.“若x 2=1,则x =1”的否命题为( )A.若x2≠1,则x=1B.若x2=1,则x≠1C.若x2≠1,则x≠1D.若x≠1,则x2≠1[答案]C[解析]“若p则q”的否命题形式为“若¬p则¬q”.3.命题“如果a、b都是奇数,则ab必为奇数”的逆否命题是()A.如果ab是奇数,则a、b都是奇数B.如果ab不是奇数,则a、b不都是奇数C.如果a、b都是奇数,则ab不是奇数D.如果a、b不都是奇数,则ab不是奇数[答案]B[解析]命题“如果a、b都是奇数,则ab必为奇数”的逆否命题是“如果ab不是奇数,则a、b不都是奇数”.4.“a2+b2≠0”的含义是()A.a、b不全为0B.a、b全不为0C.a、b至少有一个为0D.a不为0且b为0,或b不为0且a为0[答案]A[解析]若a2+b2≠0,则a≠0且b≠0,或a=0且b≠0,或a≠0且b=0,即a、b不全为0,故选A.5.原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是()A.原命题是真命题B.逆命题是假命题C.否命题是真命题D.逆否命题是真命题[答案]C[解析]否命题是“非圆内接四边形不是等腰梯形”,为真命题.6.设a、b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b[答案]D[解析]命题“若a=-b,则|a|=|b|”的逆命题是“若|a|=|b|,则a=-b”,故选D.二、填空题7.(2015·福建八县一中高二期末测试)命题“若∠C=90°,则△ABC是直角三角形”的否命题的真假性为__________________.[答案]假[解析]原命题的否命题是“若∠C≠90°,则△ABC不是直角三角形”,是假命题.8.“若a∈A,则a∈B”的逆否命题为__________________.[答案]若a∉B,则a∉A[解析]一个命题的逆否命题是结论的否定作条件,条件的否定作结论,故原命题的逆否命题为“若a∉B,则a∉A”.三、解答题9.设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明他们的真假.[解析]逆命题:已知a、b为实数,若a、b都是无理数,则a+b是无理数.如a=2,b=-2,a+b=0为有理数,故为假命题.否命题:已知a、b是实数,若a+b不是无理数,则a、b不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a、b是实数,若a、b不都是无理数,则a+b不是无理数.如a=2,b=2,则a+b=2+2是无理数,故逆否命题为假.10.判断命题“已知a、x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假.[解析]逆否命题:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,真命题.判断如下:抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.∵a<1,∴4a-7<0,即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真.第三章综合素质检测时间120分钟,满分150分。
(完整word版)高中数学选修2-1第二章课后习题解答编辑版
![(完整word版)高中数学选修2-1第二章课后习题解答编辑版](https://img.taocdn.com/s3/m/d9b42f83763231126fdb1100.png)
新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程 2.1曲线与方程 练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==.3、解:设点,A M 的坐标分别为(,0)t ,(,)x y . (1)当2t ≠时,直线CA 斜率 20222CA k t t-==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t tx y -==.由2t x =得2t x =,代入42ty -=,得422xy -=,即20x y +-=……①(2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2) 此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线. 习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0). 由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y yx x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,33x y ==± 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤.解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=, 即2230x y x +-=. 其他同解法一. 习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x ya b+=. 因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=. 2、解:如图,设动圆圆心M 的坐标为(,)x y .由于动圆截直线30x y -=和30x y +=所得弦分别为AB ,CD ,所以,8AB =,4CD =. 过点M 分别作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆 练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c ==. (1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=. 所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM yk x =+(1)x ≠-; 直线BM 的斜率 1BM y k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y yx x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F . 点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F =所以,2OF c =. 同样有1OF c =. 2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12,因为132>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=,椭圆221610x y +=,因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7.习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率2e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得x = 所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆. 8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=-- (1)由0∆>,得m -<< 当这组直线在y轴上的截距的取值范围是(-时,直线与椭圆相交. (2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y .则 1223x x mx +==-. 因为点M 在直线32y x m =+上,与3mx =-联立,消去m ,得320x y +=.这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=.(第7题)10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以2204x y += ……②. 将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+=当P e 与1O e :22(3)4x y ++=外切时,有12O P R =+ ……① 当P e 与2O e :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =(第4题)所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭由此得12=将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E -,F 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+.联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n +=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b -=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩ 令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a =.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==222c a =,因此2222222b c a a a a =-=-=.设双曲线的标准方程为 22221x y a a -=,或22221y x a a -=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=. 习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =.当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,-提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±.练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±. 因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-;(2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩L L L L将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y = 由第5题图知1(,)33-不合题意,所以点M的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得3x =± 则321y ==± 因为OB k =,OA k = 所以15195OB OA k k -⋅===-- 所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =. 又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称.(第8题)因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-.由题意,得2AM BM k k -=,所以,2(1)11y yx x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a+=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=解得 7782.5a =,8755c =所以 b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (第1题)(3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点,所以,k 的取值范围为k >k < 6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp -设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =+代入)2p y x =-,得 17(2x p =+.把22)y p =代入)32p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-+,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得 222(2)2(12)(12)20k x k k x k ------=2(20)k -≠. ……①所以,122(12)22x x k k x k +-==- 由题意,得2(12)22k k k -=-,解得4k = 当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BCy k x x =≠-由题意,得AC BC k k m =. 所以,(5)55y y m x x x ⨯=≠±+- 化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-; 当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===当2y =时,d. 此时1x =,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =--解得 24p =-为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -(第12题)(第4题)直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,2a c =. 由已知及1F A a c =+,得 105a c +=+所以 (12)105c = 5c =所以,10a =,5b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =. 对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥.因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y yx x x +=≠±-+,化简,得21(1)xy x x =-≠±所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=.因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.(第7题)。
高中数学选修2-1课后习题答案[人教版]
![高中数学选修2-1课后习题答案[人教版]](https://img.taocdn.com/s3/m/9891d271941ea76e58fa04f4.png)
高中数学选修2-1课后习题答案第一章常用逻辑用语1.1 命题及其关系练习(P4)3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称. 这是真命题. (3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题. 2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b,则22243aba b ()()2()22231a b a b a bba b b ab所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数a与b 的和a b是偶数,则,a b都是偶数. 这是假命题.否命题:若两个整数,a b不都是偶数,则ab不是偶数. 这是假命题.逆否命题:若两个整数a与b 的和a b不是偶数,则,a b不都是偶数. 这是真命题.(2)逆命题:若方程2xxm有实数根,则m. 这是假命题.否命题:若m,则方程2x xm没有实数根. 这是假命题.逆否命题:若方程20x x m没有实数根,则0m. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p,则q”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,A B C D是O的两条互相平分的相交弦,交点是E,若E和圆心O重合,则,A B C D是经过圆心O的弦,,A B C D是两条直径. 若E和圆心O不重合,连结A O B O C O和D O,则O E是等腰A O B,C O D的底边上中线,所以,O E A B,O E C D.,,A B和C D都经过点E,且与O E垂直,这是不可能的. 所以,E和O必然重合. 即A B和C D是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2 充分条件与必要条件练习(P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p是q的充要条件;(2)原命题和它的逆命题都是真命题,p是q的充要条件;(3)原命题是假命题,逆命题是真命题,p是q的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;(3)p是q的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略.2、(1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是222a b r.习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:(1)充分性:如果222a b c a b a c b c.a b c a b a c b c,那么2220所以222a b a c b c()()()0所以,0b c.a b,0a c,0即a b c,所以,A B C是等边三角形.(2)必要性:如果A B C是等边三角形,那么a b c所以222a b a c b c()()()0所以2220a b c a b a c b c所以222a b c a b a c b c习题 1.3 A组(P18)1、(1)4{2,3}或2{2,3},真命题;(2)4{2,3}且2{2,3},假命题;(3)2是偶数或3不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1)2不是有理数,真命题;(2)5是15的约数,真命题;(3)23,假命题;(4)8715,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题. 因为p为真命题,q为真命题,所以p q为真命题;(2)真命题. 因为p为真命题,q为真命题,所以p q为真命题;(3)假命题. 因为p为假命题,q为假命题,所以p q为假命题;(4)假命题. 因为p为假命题,q为假命题,所以p q为假命题.1.4 全称量词与存在量词练习(P23)1、(1)真命题;(2)假命题;(3)假命题. 2、(1)真命题;(2)真命题;(3)真命题.练习(P26)1、(1)00,n Z n Q;(2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)32,x N x x ;(2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)(1)假命题. 存在一条直线,它在y轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180;(4)真命题. 每个四边形都有外接圆.第一章复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题. 2、略. 3、(1)假;(2)假;(3)假;(4)假. 4、(1)真;(2)真;(3)假;(4)真;(5)真. 5、(1)2,0nN n;(2){P P P在圆222xyr上},(O Pr O为圆心);(3)(,){(,),x y x y x y是整数},243xy;(4)0{x x x是无理数},3{x q q是有理数}. 6、(1)32,真命题;(2)54,假命题;(3)0,0x R x ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题B 组(P31)1、(1)pq ;(2)()()p q ,或()p q .2、(1)R t A B C,90C,,,A B C的对边分别是,,a b c,则222ca b;(2)A B C,,,A B C的对边分别是,,a b c,则sin sin sin a bcAB C.第二章圆锥曲线与方程2.1 曲线与方程练习(P37)1、是. 容易求出等腰三角形A B C的边B C上的中线A O所在直线的方程是x .2、3218,2525ab.3、解:设点,A M的坐标分别为(,0)t ,(,)x y . (1)当2t时,直线C A斜率20222C Ak tt所以,122C BC At k k 由直线的点斜式方程,得直线C B的方程为22(2)2t y x .令x,得4y t,即点B的坐标为(0,4)t .由于点M 是线段A B的中点,由中点坐标公式得4,22t txy.由2t x 得2tx,代入42ty,得422xy,即2xy……①(2)当2t 时,可得点,A B的坐标分别为(2,0),(0,2)此时点M的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M的轨迹方程,它表示一条直线.习题 2.1 A组(P37)1、解:点(1,2)A 、(3,10)C 在方程2210xxy y 表示的曲线上;点(2,3)B 不在此曲线上2、解:当c时,轨迹方程为12c x;当0c时,轨迹为整个坐标平面.3、以两定点所在直线为x轴,线段A B垂直平分线为y轴,建立直角坐标系,得点M的轨迹方程为224xy.4、解法一:设圆22650xyx 的圆心为C,则点C的坐标是(3,0).由题意,得C M A B,则有1C M A Bk k .yxABCEFOMD(第2题)所以,13y y x x (3,0)x x 化简得2230xyx(3,0)xx当3x时,y,点(3,0)适合题意;当0x 时,y ,点(0,0)不合题意.解方程组222230650x y x xyx,得525,33xy所以,点M的轨迹方程是2230xyx ,533x .解法二:注意到O C M是直角三角形,利用勾股定理,得2222(3)9xyx y,即2230xyx . 其他同解法一.习题 2.1 B组(P37)1、解:由题意,设经过点P的直线l 的方程为1x y ab.因为直线l经过点(3,4)P ,所以341ab因此,430a b ab由已知点M 的坐标为(,)a b ,所以点M的轨迹方程为430x y x y .2、解:如图,设动圆圆心M的坐标为(,)x y .由于动圆截直线30xy和30xy 所得弦分别为A B,C D ,所以,8A B,4C D . 过点M分别作直线30xy和30xy的垂线,垂足分别为E,F,则4A E ,2C F.310xyM E,310xy M F.连接M A,MC,因为M A M C,则有,2222A E M EC F M F所以,22(3)(3)1641010xy xy ,化简得,10x y .因此,动圆圆心的轨迹方程是10xy .(第1题)y xB 1A 1F 1F 2OA 2B 22.2 椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220P F P F ,因为16P F ,所以214P F .2、(1)22116xy;(2)22116yx;(3)2213616xy,或2213616yx.3、解:由已知,5a ,4b,所以223c a b .(1)1A F B的周长1212A F A FB F B F .由椭圆的定义,得122A F A F a,122B F B F a.所以,1A F B的周长420a.(2)如果A B不垂直于x轴,1A F B的周长不变化.这是因为①②两式仍然成立,1A F B的周长20,这是定值.4、解:设点M的坐标为(,)x y ,由已知,得直线A M的斜率1A My k x (1)x ;直线B M的斜率1B My k x(1)x;由题意,得2A MB Mk k ,所以211y y xx(1,0)x y 化简,得3x (0)y 因此,点M的轨迹是直线3x ,并去掉点(3,0).练习(P48)1、以点2B (或1B )为圆心,以线段2O A (或1O A )为半径画圆,圆与x轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22R tB O F 中,2O B b,222B F O A a,所以,2O F c. 同样有1O F c.2、(1)焦点坐标为(8,0),(8,0);(2)焦点坐标为(0,2),(0,2).3、(1)2213632xy;(2)2212516y x.4、(1)22194x y(2)22110064x y,或22110064yx.5、(1)椭圆22936xy的离心率是223,椭圆2211612x y的离心率是12,因为22132,所以,椭圆2211612x y更圆,椭圆22936xy更扁;(2)椭圆22936xy的离心率是223,椭圆221610xy的离心率是105,因为221035,所以,椭圆221610x y更圆,椭圆22936xy更扁.6、(1)8(3,)5;(2)(0,2);(3)4870(,)3737. 7、827.习题 2.2 A 组(P49)1、解:由点(,)M x y 满足的关系式2222(3)(3)10xy xy 以及椭圆的定义得,点M 的轨迹是以1(0,3)F ,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516yx.2、(1)2213632x y;(2)221259yx;(3)2214940xy,或2214940yx.3、(1)不等式22x ,44y 表示的区域的公共部分;(2)不等式2525x ,101033y表示的区域的公共部分.图略.4、(1)长轴长28a ,短轴长24b ,离心率32e,焦点坐标分别是(23,0),(23,0),顶点坐标分别为(4,0),(4,0),(0,2),(0,2);(2)长轴长218a ,短轴长26b,离心率223e,焦点坐标分别是(0,62),(0,62),顶点坐标分别为(0,9),(0,9),(3,0),(3,0).5、(1)22185xy;(2)2219xy,或221819yx;(3)221259x y ,或221259y x.6、解:由已知,椭圆的焦距122F F .因为12P F F 的面积等于1,所以,12112PF F y ,解得1Py .代入椭圆的方程,得21154x,解得152x.所以,点P的坐标是15(,1)2,共有4个.7、解:如图,连接Q A. 由已知,得Q AQ P. 所以,Q OQ A Q OQ PO P r.又因为点A在圆内,所以O A O P根据椭圆的定义,点Q的轨迹是以,O A为焦点,r为长轴长的椭圆.8、解:设这组平行线的方程为32yx m.把32y x m代入椭圆方程22149xy ,得22962180xm x m.这个方程根的判别式223636(218)m m(1)由,得3232m .当这组直线在y轴上的截距的取值范围是(32,32)时,直线与椭圆相交.(2)设直线与椭圆相交得到线段A B,并设线段A B的中点为(,)M x y .则1223x x m x.因为点M在直线32yxm上,与3m x联立,消去m,得320xy .这说明点M的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.lQOAP(第7题)9、222213.525 2.875xy.10、地球到太阳的最大距离为81.528810km ,最下距离为81.471210km.习题 2.2 B组(P50)1、解:设点M的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0xx ,032y y. 所以x x,23y y……①.因为点00(,)P x y 在圆上,所以224x y ……②.将①代入②,得点M的轨迹方程为22449xy,即22149xy 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到. 2、解法一:设动圆圆心为(,)P x y ,半径为R,两已知圆的圆心分别为12,O O .分别将两已知圆的方程2265xyx,226910xyx 配方,得22(3)4xy ,22(3)100x y 当P与1O :22(3)4xy外切时,有12O PR ……①当P与2O :22(3)100xy 内切时,有210O PR……②①②两式的两边分别相加,得1212O PO P即,2222(3)(3)12xyx y……③化简方程③.先移项,再两边分别平方,并整理,得222(3)12x yx……④将④两边分别平方,并整理,得22341080xy ……⑤将常数项移至方程的右边,两边分别除以108,得2213627xy……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,63.解法二:同解法一,得方程2222(3)(3)12xyx y……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O 和点2(3,0)O 距离的和是常数12,yxN MLBAET'R'S'C DTRSHF OG(第4题)所以点P的轨迹方程是焦点为(3,0)、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x轴上,于是可求出它的标准方程.因为26c,212a,所以3c ,6a所以236927b .于是,动圆圆心的轨迹方程为2213627xy.3、解:设d是点M到直线8x 的距离,根据题意,所求轨迹就是集合12M FPMd由此得22(2)182xyx将上式两边平方,并化简,得223448xy,即2211612x y所以,点M的轨迹是长轴、短轴长分别为8,43的椭圆.4、解:如图,由已知,得(0,3)E ,(4,0)F ,(0,3)G ,(4,0)H.因为,,R S T是线段O F的四等分点,,,R S T 是线段C F的四等分点,所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T .直线E R的方程是33yx;直线G R 的方程是3316y x.联立这两个方程,解得3245,1717xy.所以,点L的坐标是3245(,)1717. 同样,点M的坐标是169(,)55,点N的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221xy mn(0,0)m n ……①把点,L M的坐标代入方程①,并解方程组,得22114m,22113n.所以经过点,L M的椭圆方程为221169xy .把点N的坐标代入22169x y,得22196121()()11625925,所以,点N在221169x y 上.因此,点,,L M N都在椭圆221169xy上.2.3 双曲线练习(P55)1、(1)221169xy . (2)2213y x.(3)解法一:因为双曲线的焦点在y轴上所以,可设它的标准方程为22221y x a b (0,0)a b 将点(2,5)代入方程,得222541ab,即22224250a bab又2236ab解方程组222222425036a b a bab令22,ma nb,代入方程组,得425036m n m nmn 解得2016m n,或459m n第二组不合题意,舍去,得2220,16a b所求双曲线的标准方程为2212016yx解法二:根据双曲线的定义,有2224(56)4(56)45a.所以,25a又6c,所以2362016b由已知,双曲线的焦点在y轴上,所以所求双曲线的标准方程为221 2016y x.2、提示:根据椭圆中222a b c和双曲线中222a b c的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m,解得2m,或1m练习(P61)1、(1)实轴长282a,虚轴长24b;顶点坐标为(42,0),(42,0);焦点坐标为(6,0),(6,0);离心率324e.(2)实轴长26a,虚轴长218b;顶点坐标为(3,0),(3,0);焦点坐标为(310,0),(310,0);离心率10e.(3)实轴长24a,虚轴长24b;顶点坐标为(0,2),(0,2);焦点坐标为(0,22),(0,22);离心率2e.(4)实轴长210a,虚轴长214b;顶点坐标为(0,5),(0,5);焦点坐标为(0,74),(0,74);离心率745e.2、(1)221169x y;(2)2213628y x. 3、22135x y4、2211818x y,渐近线方程为y x.5、(1)142(6,2),(,)33;(2)25(,3)4习题 2.3 A组(P61)1、把方程化为标准方程,得2216416y x. 因为8a,由双曲线定义可知,点P到两焦点距离的差的绝对值等于16. 因此点P到另一焦点的距离是17.2、(1)2212016x y. (2)2212575x y3、(1)焦点坐标为12(5,0),(5,0)F F ,离心率53e;(2)焦点坐标为12(0,5),(0,5)F F ,离心率54e;4、(1)2212516xy. (2)221916y x(3)解:因为2c ea,所以222c a,因此2222222bcaaaa.设双曲线的标准方程为22221x y aa,或22221y x aa .将(5,3)代入上面的两个方程,得222591aa,或229251aa.解得216a(后一个方程无解).所以,所求的双曲线方程为2211616xy.5、解:连接Q A,由已知,得Q A Q P.所以,Q AQ OQ P Q OO Pr.又因为点A在圆外,所以O A O P.根据双曲线的定义,点Q的轨迹是以,O A为焦点,r为实轴长的双曲线.6、22188xy.习题 2.3 B组(P62)1、221169x y2、解:由声速及,A B两处听到爆炸声的时间差,可知,A B两处与爆炸点的距离的差,因此爆炸点应位于以,A B为焦点的双曲线上.使,A B 两点在x轴上,并且原点O与线段A B的中点重合,建立直角坐标系x O y.设爆炸点P的坐标为(,)x y ,则34031020P A P B.即21020a ,510a.又1400A B,所以21400c,700c ,222229900bca.因此,所求双曲线的方程为221260100229900xy.3、22221x y ab4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段A B的中点为(,)M x y .设经过点P的直线l 的方程为1(1)yk x,即1ykxk把1y k x k代入双曲线的方程2212y x得222(2)2(1)(1)20k x k k x k(220k )……①所以,122(1)22x x k k xk由题意,得2(1)12k k k,解得2k .当2k时,方程①成为2243x x .根的判别式16248,方程①没有实数解.所以,不能作一条直线l与双曲线交于,A B两点,且点P是线段A B的中点.2.4 抛物线练习(P67)1、(1)212yx;(2)2yx;(3)22224,4,4,4yx yx xy x y.2、(1)焦点坐标(5,0)F ,准线方程5x;(2)焦点坐标1(0,)8F ,准线方程18y;(3)焦点坐标5(,0)8F ,准线方程58x;(4)焦点坐标(0,2)F ,准线方程2y;3、(1)a ,2p a. (2)(6,62),(6,62)提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M到准线的距离等于9,所以39x,6x,62y.练习(P72)1、(1)2165yx;(2)220xy;(3)216yx ;(4)232xy. 2、图形见右,x的系数越大,抛物线的开口越大.yxy 2=12xy 2=x y 2=2xy 2=4xO3、解:过点(2,0)M 且斜率为1的直线l 的方程为2yx 与抛物线的方程24yx联立224y x yx 解得11423223x y ,22423223x y 设11(,)A x y ,22(,)B x y ,则222121()()A Bx x y y 22(43)(43)46.4、解:设直线A B的方程为xa (0)a.将x a代入抛物线方程24y x ,得24ya,即2y a.因为222443A B y aa ,所以,3a因此,直线A B的方程为3x.习题 2.4 A组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y;(2)焦点坐标3(0,)16F ,准线方程316y ;(3)焦点坐标1(,0)8F ,准线方程18x;(4)焦点坐标3(,0)2F ,准线方程32x.2、(1)28yx;(2)(4,42),或(4,42)3、解:由抛物线的方程22yp x (0)p ,得它的准线方程为2p x.根据抛物线的定义,由2M F p,可知,点M的准线的距离为2p.设点M的坐标为(,)x y ,则22p xp,解得32p x.将32p x代入22yp x中,得3y p .因此,点M的坐标为3(,3)2p p ,3(,3)2p p .4、(1)224yx,224yx;(2)212xy(图略)5、解:因为60xF M ,所以线段F M所在直线的斜率ta n 603k.因此,直线F M 的方程为3(1)yx与抛物线24yx联立,得23(1)142y x yx将1代入2得,231030xx ,解得,113x ,23x 把113x ,23x 分别代入①得1233y ,223y 由第5题图知123(,)33不合题意,所以点M的坐标为(3,23).因此,22(31)(230)4F M 6、证明:将2yx代入22y x中,得2(2)2x x,化简得264x x ,解得35x则35215y因为1535O Bk ,1535O Ak 所以1515151953535O B O Ak k 所以O A O B7、这条抛物线的方程是217.5xy8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22xp y,因为拱桥离水面 2 m ,水面宽 4 m 所以222(2)p ,1p因此,抛物线方程为22xy……①水面下降 1 m ,则3y,代入①式,得22(3)x,6x.这时水面宽为26m.习题 2.2 B组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x,12y y,代入2112y p x ,得轨迹方程为212yp x.xly 42O(第8题)由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p 的抛物线.2、解:设这个等边三角形O A B的顶点,A B在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则2112y p x ,2222y p x .又O AO B,所以22221122x y x y 即221212220x x p x p x ,221212()2()0x x p x x 因此,1212()(2)x x x x p 因为120,0,20x x p ,所以12x x 由此可得12y y ,即线段A B关于x轴对称.因为x轴垂直于A B,且30A O x ,所以113ta n 303y x .因为2112y x p,所以123y p,因此1243A By p.3、解:设点M的坐标为(,)x y 由已知,得直线A M的斜率(1)1A My k xx .直线B M的斜率(1)1B My k xx .由题意,得2A MB Mk k ,所以,2(1)11y y xxx ,化简,得2(1)(1)xy x 第二章复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x轴上,所以设它的标准方程为22221(0)x y a b ab.则22acO AO F F A63714396810,22a c O B O F F B 637123848755,解得7782.5a ,8755c所以22()()87556810bacac ac 用计算器算得7722b xyF 2F 1BOA (第1题)因此,卫星的轨道方程是2222177837722xy.2、解:由题意,得12a c R r acRr ,解此方程组,得1221222Rr r ar r c因此卫星轨道的离心率21122c r r eaRr r .3、(1)D ;(2)B .4、(1)当0时,方程表示圆.(2)当090时,方程化成2211c o syx. 方程表示焦点在y轴上的椭圆.(3)当90时,21x,即1x ,方程表示平行于y轴的两条直线.(4)当90180时,因为co s 0,所以22c o s1xy 表示双曲线,其焦点在x轴上. 而当180时,方程表示等轴双曲线.5、解:将1ykx代入方程224xy得2222140xk xkx 即22(1)25k xkx ……①222420(1)2016k k k 令0,解得52k,或52k因为0,方程①无解,即直线与双曲线没有公共点,所以,k的取值范围为52k,或52k6、提示:设抛物线方程为22yp x,则点B的坐标为(,)2p p ,点C的坐标为(,)2p p 设点P的坐标为(,)x y ,则点Q的坐标为(,0)x .因为,2P Q yp x,2B Cp,O Q x.所以,2P Q B C O Q,即P Q是B C和O Q的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B,其中点A在x 轴上方.直线F A的方程为3()32p yx与22y p x联立,消去x,得22230yp y p解方程,得1(32)y p,2(32)y p把1(32)y p代入3()32p y x,得17(23)2x p.把2(32)y p代入3()32p yx,得27(23)2x p.所以,满足条件的点A有两个17((23),(32))2A p p ,27((23),(32))2A p p . 根据图形的对称性,可得满足条件的点B也有两个17((23),(32))2B p p ,27((23),(32))2B p p 所以,等边三角形的边长是112(32)A B p,或者222(23)A B p.8、解:设直线l的方程为2y x m.把2yxm代入双曲线的方程222360xy,得221012360xm x m.1265m x x ,2123610mx x ……①由已知,得21212(14)[()4]16x x x x ……②把①代入②,解得2103m所以,直线l的方程为21023y x9、解:设点A的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M的直线l 的方程为1(2)yk x ,即12yk xk.把12y k x k代入双曲线的方程2212yx,得222(2)2(12)(12)0kxk k x k 2(20)k . ……①所以,122(12)22x x k k xk 由题意,得2(12)22k k k,解得4k 当4k时,方程①成为21456510xx 根的判别式25656512800,方程①有实数解.所以,直线l的方程为47y x .10、解:设点C的坐标为(,)x y .由已知,得直线A C的斜率(5)5A Cy k xx 直线B C 的斜率(5)5B Cy k xx 由题意,得A CB Ckk m. 所以,(5)55y y m xxx 化简得,221(5)2525xyx m当0m 时,点C 的轨迹是椭圆(1)m,或者圆(1)m ,并除去两点(5,0),(5,0);当0m时,点C的轨迹是双曲线,并除去两点(5,0),(5,0);11、解:设抛物线24yx上的点P的坐标为(,)x y ,则24y x.点P 到直线3y x 的距离22412(2)8324242yy yxy d.当2y 时,d的最小值是2. 此时1x,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y轴(向上),建立直角坐标系. 设隧道顶部所在抛物线的方程为22xp y因为点(4,4)C 在抛物线上所以242(4)p 解得24p所以,隧道顶部所在抛物线的方程xy 抛物线6 m8 m3 m3 m 2 mABFDC OE(第12题)为24x y.设0.5E F h. 则(3, 5.5)Fh把点F的坐标代入方程24x y,解得3.25h .答:车辆通过隧道的限制高度为3.2 m.第二章复习参考题B 组(P81)1、12243P F F S.2、解:由题意,得1P F x轴.把xc代入椭圆方程,解得2bya. 所以,点P的坐标是2(,)bc a直线O P的斜率21bk a c. 直线A B的斜率2b k a.由题意,得2b b a ca ,所以,b c,2ac.由已知及1F Aac ,得105a c 所以(12)105c ,解得5c 所以,10a ,5b因此,椭圆的方程为221105xy .3、解:设点A的坐标11(,)x y ,点B 的坐标22(,)x y .由O AO B,得1212x x y y .由已知,得直线A B的方程为25yx.则有12125()250y y y y ……①由25yx与22yp x消去x,得250yp yp……②12y y p,125y y p……③把③代入①,解得54p(第4题)当54p时,方程②成为245250yy ,显然此方程有实数根. 所以,54p4、解:如图,以连接12,F F 的直线为x轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p ,所以,4584p,29168p .对于双曲线,有2080529c a ca解此方程组,得775.5a ,1304.5c因此,2221100320bca.所以,所求双曲线的方程是221601400.31100320xy(775.5)x .因为抛物线的顶点横坐标是(1763)(1763775.5)987.5a 所以,所求抛物线的方程是29168(987.5)yx 答:抛物线的方程为29168(987.5)yx,双曲线的方程是221601400.31100320x y(775.5)x .5、解:设点M的坐标为(,)x y 由已知,得直线A M的斜率(1)1A My k xx直线B M 的斜率(1)1B My k xx 由题意,得2A MB Mk k ,所以2(1)11y y xxx ,化简,得21(1)xy xx 所以,点M轨迹方程是21(1)x y xx.6、解:(1)当1m时,方程表示x 轴;(2)当3m时,方程表示y轴;(3)当1,3m m 时,把方程写成22131x ymm. ①当13,2m m 时,方程表示椭圆;②2m时,方程表示圆;③当1m,或3m 时,方程表示双曲线.7、以A B为直径的圆与抛物线的准线l相切.证明:如图,过点,A B分别作抛物线22(0)yp x p 的准线l 的垂线,垂足分别为,D E.由抛物线的定义,得A D A F,B E B F.所以,A B A F B F A D B E.设A B的中点为M,且过点M作抛物线22(0)y p x p的准线l的垂线,垂足为C.显然M C∥x轴,所以,M C是直角梯形A D E B的中位线. 于是,11M C A D B E A B.()22因此,点C在以A B为直径的圆上.又M C l,所以,以A B为直径的圆与抛物线的准线l相切.类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离;对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.第三章空间向量与立体几何3.1 空间向量及其运算练习(P86)1、略.2、略.3、AC A B AD A A,B DA B A D A A,D BA A AB A D.练习(P89)1、(1)A D ;(2)A G;(3)M G.2、(1)1x ;(2)12x y;(3)12x y.3、如图.练习(P92)1、B.2、解:因为A CA B A D A A,所以22()A C A BA DA A 2222222()4352(0107.5)85A B A D A A A B A D A B A A A D A A 所以85A C 3、解:因为A C 所以A CB D ,A CA B ,又知B D A B .所以A CB D,A CA B,又知B DA B.2C D C D C D222222()()C AA BB DC A A B B DC A A B B Dabc所以222C D ab c.练习(P94)PRS B CAQO(第3题)。
高中数学选修2-1全册综合测试题含答案
![高中数学选修2-1全册综合测试题含答案](https://img.taocdn.com/s3/m/b93d67f14028915f804dc23e.png)
选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。
【新人教A版】高中数学选修2--1教案(全套)
![【新人教A版】高中数学选修2--1教案(全套)](https://img.taocdn.com/s3/m/795b6dc4c850ad02df80418d.png)
【新人教A版】高中数学选修2-1教案第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。
教学设想:通过学生的参与,激发学生学习数学的兴趣。
(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。
高中数学选修2一1教案
![高中数学选修2一1教案](https://img.taocdn.com/s3/m/921ffb4b6ad97f192279168884868762caaebb36.png)
高中数学选修2一1教案
教学目标:
1. 掌握数列的定义和基本性质,理解数列的概念和实质。
2. 学习并掌握等差数列和等比数列的求和公式,能够熟练应用。
3. 能够解决实际问题中的数列应用题。
教学重点:
1. 等差数列和等比数列的定义和性质。
2. 等差数列和等比数列的求和公式和应用。
3. 实际应用中的数列问题解决。
教学难点:
1. 等差数列和等比数列的应用题目解决。
2. 能够灵活运用求和公式解决问题。
教学过程:
一、导入:
通过一个生活中的例子引入数列的概念,让学生理解数列的定义和基本性质。
二、讲解:
1. 等差数列和等比数列的概念和基本性质。
2. 等差数列的通项公式和求和公式。
3. 等比数列的通项公式和求和公式。
三、练习:
1. 让学生完成一些基础的等差数列和等比数列的题目。
2. 练习应用题目,让学生灵活运用求和公式解决实际问题。
四、拓展:
引导学生思考更复杂的数列问题,如特殊数列、递归数列等,拓展数列应用的范围。
五、总结:
总结本节课的重点内容,强化学生对数列的理解和应用能力。
六、作业:
布置相关的数列练习题作为课后作业,以巩固学生对数列的掌握。
七、反馈:
下节课开始前对上节课的内容进行复习和总结,及时纠正学生的错误和提出问题。
以上为本教案的主要内容,希望老师们在教学过程中能灵活运用,使学生真正理解数列的概念和应用。
人教A版高中数学选修2-1课件空间正交基向量
![人教A版高中数学选修2-1课件空间正交基向量](https://img.taocdn.com/s3/m/c6c7fb3c02020740bf1e9b26.png)
(金戈铁骑 整理制作)
3.空间向量基本定理 a、b、c不共面 p xa yb zc ( x、y、z存在且唯一) {a,b,c} : 基底 a,b,c:基向量
特别提示:对于基底{a,b,c},除了应知道a,b,c不共面,
还应明确: (1)任意不共面的三个向量都可做为空间的一个基底。
2019/5/25
二、距离与夹角
1.距离公式 (1)向量的长度(模)公式
| a |2 a a a12 a22 a32
| b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式 在空间直角坐标系中,已知 A(x1 , y1 , z1) 、
a (a1,a2,a3),( R) ;
a b a1b1 a2b2 a3b3 ;
a // b a1 b1,a2 b2 ,a3 b3( R) ; a1 / b1 a2 / b2 a2 / b2 .
a b a1b1 a2b2 a3b3 0 ;
(2)由于可视为与0任意一个非零向量共线,与任意两
个非零向量共面,所以三个向量不共面,就隐含着它们
都不是。 0
(3)一个基底是指一个向量组,一个基向量是指基 底中的某一个向量,二者是相关连的不同概念。
推论:设O、A、B、C是不共线的四点,则对空间任一 点P,都存在唯一的有序实数组{x,y,z},使
OP xOA yOB zOC.
点O叫做原点,向量e1,e2,e3都叫做坐标向量. 通过每两个坐标轴的平面叫做坐标平面。
3.空间向量基本定理 a、b、c不共面 p xa yb zc ( x、y、z存在且唯一) {a,b,c} : 基底 a,b,c:基向量