材料的电学性能2

合集下载

材料的电学性能与测试方法

材料的电学性能与测试方法

材料的电学性能与测试方法引言:材料的电学性能是指材料在电场或电流作用下的响应和性质。

了解材料的电学性能对于材料的研究和应用具有重要意义。

本文将介绍几种常用的测试材料电学性能的方法。

一、电导率测试方法电导率是衡量材料导电性能的重要指标,其测试方法如下:1. 电导率测量仪器:使用四探针测试仪或电导率仪进行测量。

2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。

然后将四个电极按照规定的间距连接到材料上,并确保电极与材料之间的良好接触。

最后,通过测试仪器施加电流并测量电压,根据欧姆定律计算得出材料的电导率。

二、介电常数测试方法介电常数是材料在电场中对电场强度的响应能力,测试方法如下:1. 介电常数测量仪器:使用恒流恒压法或绝缘材料测试仪进行测量。

2. 测量步骤:将待测试材料加工成平板状或柱形状样品,保证样品的几何形状和尺寸稳定。

然后将测试仪器中的电极引线与样品连接,确保电极与材料的良好接触。

接下来,在测试仪器中施加电流和电压,测量得到材料的介电常数。

三、热释电测试方法热释电是指材料在电场作用下产生的热能释放,其测试方法如下:1. 热释电测量仪器:使用热释电测试仪进行测量。

2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。

然后将样品放置在测试仪器中,施加电场。

测试仪器会测量样品在电场下产生的温升,根据温升和已知的电场强度计算得出材料的热释电性能。

四、电阻温度系数测试方法电阻温度系数是指材料电阻随温度变化的程度,其测试方法如下:1. 电阻温度系数测量仪器:使用四探针测试仪或电阻测量仪进行测量。

2. 测量步骤:将待测试材料切割成细丝或片状样品,保持样品的几何形状和尺寸稳定。

然后将四个电极按照规定的间距连接到样品上,并确保电极与材料之间的良好接触。

接下来,在测试仪器中施加电流并测量电阻,随后在不同温度下重复测量电阻值。

最后,根据电阻值和温度变化计算得出材料的电阻温度系数。

材料物理性能学之材料的电性能

材料物理性能学之材料的电性能

材料物理性能学之材料的电性能引言材料的电性能是材料物理性能学的一个重要研究分支,它研究的是材料在电场、电流和电磁波等电学环境下的行为和性能。

材料的电性能对于材料的应用具有关键影响,比方在电子学、能源转换和传感器等领域中起着重要作用。

本文将探讨材料的电性能的根本概念、测试方法和常见的应用。

1. 电导率电导率是材料的一个根本电学性能参数,表示材料导电能力的强弱。

它常用符号σ表示,单位为S/m〔西门子/米〕。

电导率的量值越大,材料越好的导电性能。

电导率可以通过测量材料的电阻率来计算。

2. 电阻率电阻率是材料对电流流动的阻碍能力的度量,常用符号ρ表示,单位为Ω·m。

电阻率和电导率是一对相互关联的物理量,它们之间的关系可以用以下公式表示:ρ = 1/σ。

电阻率可以通过测量材料的电阻来得到。

3. 介电性能除了导电性能,材料还具有介电性能。

介电性能是材料对电场的响应能力的度量。

具有良好介电性能的材料可以阻止电流的流动,并被广泛应用于电容器、绝缘材料和电子设备等领域。

介电性能可以通过测量材料的介电常数来评估。

4. 介电常数介电常数是材料在电场中响应的能力的度量,常用符号ε表示。

介电常数可分为静电介电常数和动态介电常数。

静电介电常数表示在静电场中材料的响应能力,而动态介电常数那么表示在交变电场中材料的响应能力。

介电常数越大,材料对电场的响应能力越强。

5. 半导体材料的特性半导体材料是一类介于导体和绝缘体之间的材料,它具有特殊的电性能。

半导体材料的电导率较低,但随着温度的升高会逐渐增大。

半导体材料的导电性能可以通过添加杂质来调控,从而实现半导体器件的制造。

6. 材料的应用材料的电性能对于众多领域的应用至关重要。

在电子学领域中,导电性能好的材料可以用于制造电路和导线等电子元器件。

在能源转换领域中,材料的电性能对太阳能电池和燃料电池等能源转换器件的效率和稳定性有重要影响。

在传感器领域中,材料的电性能可以用于制造压力传感器、温度传感器和湿度传感器等。

第十章 材料的电学性能

第十章 材料的电学性能

第四节
介质极化与介电性能
一 极化的基本概念
1 介质极化的基本概念 (1)电介质 (2 )介质极化
2 电介质分类 (1)非极性介质 无外电场作用时.正负电荷中 心重合 电偶极矩 外电性能
(2)极性介质 分子存在固有电偶极矩 电偶极矩转向外电场方向 外电场越强,电极化的程度越高 3 极化率 表征材料的极化能力 只与材料的性质有关 4 极化强度 线性极化 表征介质在电场作用下极化程度
第一节
在外加电场的作用下,从 而使正反向运动的电子数 不等,使金属导电 只有处于较高能态的自由 电子参与导电 缺陷和杂质产生的静态点 阵畸变和热振动引起的动 态点阵畸变,对电磁波造 成散射,形成电阻 超导现象 一价金属比二、三价金属 导电性较好
导电性能
第一节
导电性能
(3)能带理论 能带 金属中的价电子是公有化和 能量是量子化 金属中由离子所造成的势场 不是均匀的 价电子在金属中的运动要受 到周期场的作用 能带发生分裂,即有某些能 态是电子不能取值的 禁带 允带
第十章 材料的电学性能
第一节 第二节 第三节 第四节 第五节 第六节 导电性能 热电性能 半导体导电性的敏感效应 介质极化与介电性能 电介质的介质损耗 绝缘材料的抗电强度
第一节

导电性能
电阻与导电的基本概念
1 导电 当在材料的两端施加电压时,材料中 有电流流过 欧姆定律 2 电阻 与材料的性质有关,还与材料的长度 及截面积有关 3 电阻率 只与材料本性有关,而与导体的几何 尺寸无关 评定导电性的基本参数
2 热击穿 (1)热击穿的过程 损耗→部分电能转变成热能→ 热量的不平衡状态→击穿 (2)影响热击穿的因素 材料性质 绝缘结构 电压种类 环境温度
电子和空穴导电 B表示材料的电导活化能 应用 热敏温度计、电路温度补偿器

材料的电学性能测试实验报告

材料的电学性能测试实验报告

材料的电学性能测试,实验报告实验报告:材料的电学性能测试一、引言材料的电学性能是决定其在不同应用中的关键因素。

本实验报告主要介绍几种基本的电学性能测试方法,包括电阻率测试、绝缘电阻测试和介电常数测试,并通过具体实验示例对这些方法进行详细阐述。

二、实验材料与方法1.电阻率测试电阻率是衡量材料导电性能的参数,可通过四探针法进行测量。

四探针法的基本原理是:当四个探针在材料上施加一定的电流时,通过测量两对探针之间的电压降,可以计算出材料的电阻率。

2.绝缘电阻测试绝缘电阻是衡量材料绝缘性能的重要参数,可采用直流电压源和电流表进行测量。

基本原理是:在材料两端施加一定的直流电压,然后测量流过材料的电流大小,通过计算可得材料的绝缘电阻值。

3.介电常数测试介电常数是衡量材料介电性能的参数,可采用LCR数字电桥进行测量。

LCR数字电桥具有测量精度高、读数稳定等优点。

基本原理是:在材料上施加一定频率的交流电压,测量通过材料的电流及相位差,通过计算可得材料的介电常数值。

三、实验结果与分析1.电阻率测试结果与分析在本次实验中,我们选取了铜、镍和铝三种材料进行电阻率测试。

实验结果表明,铜的电阻率最低,具有良好的导电性能;而铝和镍的电阻率较高,相对而言导电性能较弱。

2.绝缘电阻测试结果与分析在本次实验中,我们选取了聚乙烯、聚氯乙烯和橡胶三种材料进行绝缘电阻测试。

实验结果表明,橡胶的绝缘电阻最高,具有最好的绝缘性能;而聚乙烯和聚氯乙烯的绝缘电阻相对较低,相对而言绝缘性能较弱。

3.介电常数测试结果与分析在本次实验中,我们选取了聚酰亚胺、聚碳酸酯和聚酯三种材料进行介电常数测试。

实验结果表明,聚酰亚胺的介电常数最高,具有较好的介电性能;而聚酯的介电常数相对较低,相对而言介电性能较弱。

四、结论本次实验通过电阻率测试、绝缘电阻测试和介电常数测试三种方法对不同材料的电学性能进行了评估。

实验结果表明:在导电性能方面,铜具有最好的导电性能,而铝和镍相对较弱;在绝缘性能方面,橡胶具有最好的绝缘性能,而聚乙烯和聚氯乙烯相对较弱;在介电性能方面,聚酰亚胺具有较好的介电性能,而聚酯相对较弱。

材料性能学第十章--材料的电学性能

材料性能学第十章--材料的电学性能

+4
+4
+4
+4
电子和空穴在外电场的作用下都将作 定向运动,这种作定向运动电子和空 穴(载流子)参与导电,形成本征半 导体中的电流。
当温度升高时,有更多的电子能够跳到下一个能带去。这有两个结果:在上面的导带 中少数电子所起的作用和它们在金属中所起的作用相同;而价带中留下的空态即空穴 起着类似的作用,不过它们好象是正的电子,因此,它们有来自导带中的激发电子和 来自价带中的空穴的导电性;温度升高时,由于有更多的电子被激发到导带, 所以 电导率随温度而迅速增加。
第一节 导电性能
量子力学证明,对于一个绝对纯的理想的完整晶体,0 K时,电子波 的传播不受阻碍,形成无阻传播,电阻为零,导致所谓的超导现象。
二、导电机理
1、金属及半导体的导电机理
第一节 导电性能
实际金属内部存在着缺陷和杂质。缺陷和杂质产生的静态点阵畸 变和热振动引起的动态点阵畸变,对电磁波造成散射,这是金属 产生电阻的原因。由此导出的电导率为:
合金为:
10-7-
-5 10 Ω.m
半导体材料:ρ=10-2-109Ω.m
绝缘体材料:ρ>1010Ω.m
各种材料在室温的电导率
金属和合金
-1 -1 (Ω .m )
银 铜,工业纯 金 铝, 工业纯 Al-1.2%,Mn 合金 钠 钨, 工业纯 黄铜(70%Cu-30%Zn 镍,工业纯 纯铁,工业纯 钛,工业纯 不锈钢,301型 镍铬合金 (80%Ni-20%Cr)
第一节 导电性能
一、电阻与导电的基本概念
欧姆定律:当在材料的两端施加电压时,材料 中有电流流过
电阻与材料的性质有关,还与材料的长度 及截面积有关
电阻率只与材料本性有关,而与导体的几何 尺寸是无关,作为评定导电性的基本参数

材料物理性能

材料物理性能

2.本征半导体的迁移和电阻率
自由电子和空穴热运动,在外电场的作用下做定 向漂移运动,形成电流。漂移过程中不断碰撞,有一 定的漂移速度。 迁移率:单位场强下,载流子的平均漂移速度。
分别用μn和μP分别表示自由电子和空穴的迁移率。
(1)迁移率与外电场强成正比。 (2)自由电子的迁移率较空穴高。 (3)能带宽度大的迁移率低。 本征半导体电阻率:
金属导体的能带分布特点:无禁带 导带 价带 价 带 ( 导 带 )
第一种:价带和导带重叠。 第二种:价带未被价电子填满,价带本身就是导带。
这两种情况下的价电子就是自由电子,所以金属 即使在温度较低的情况下仍有大量的自由电子,具有 很强的导电能力。
非导体的能带分布特点:有禁带
在绝对零度时,满价带和空导带,基本无导电能力。
绝缘体:
禁带宽度大。在室温下,几乎没有价电子能跃迁 到导带中去,故基本无自由电子和空穴,所以绝缘体 几乎没有导电能力。
2.4 金属的导电性
2.4.1 金属导电的机制与马基申定律
金属导电的机制: 经典理论 在外电场的作用下,自由电子在导体中定向移动。 量子理论
在外电场的作用下,自由电子以波动的形式在晶 体点阵中定向传播。
2.8.2 半导体中的能量状态—能带
原子结合状态:价电子共有的共价键。 以Si为例:
单原子能级:3s2 3p2 ,3p 中有4个电子空位。
若有 N 个原子的无缺陷硅单晶:
能带:共价键结合后,能级分裂成满带和空带
满带: 4N 个价电子全部占满,能量 EV 。 空带:有 4N 个空位,没有电子,能量 EC 。 禁带:
2.5.2 金属化合物的导电性
两种金属的原子形成化合物 时,由于原子键合的方式发生本 质变化,使得化合物的电阻较固 溶体大大增大,接近于半导体的 导电性。 原因 部分结合方式由金属键变为 共价键或离子键。

南昌大学材料性能学重点 材料电学性能

南昌大学材料性能学重点 材料电学性能

第二章材料电学性能内容概要:本章介绍金属的导电机理,以及影响金属导电的因素,导电率的测量方法及其它材料的电学性质。

具体内容和学时安排如下:第一节导电性能及本质要求学生掌握导电的三大理论:经典电子理论;电子的量子理论;能带理论。

这三大理论的成功或不足点。

理解自由电子、能级和能带、周期性势场、能带密度、K空间的概念。

第二节金属导电性能影响因素理解温度、相变、应力和热处理(淬火和退火)对材料导电性能的影响。

第三节合金的导电性能理解固溶体和化合物的导电性第四节电阻率的测量电阻率的测量方法有单电桥法;双电桥法;电子四探针法。

重点要求掌握单电桥法。

第五节电阻分析应用根据电阻率与温度的线性关系,可来研究材料的相变,材料的组织结构变化。

第六节超导电性掌握超导的两大性能:完全导电性和完全抗磁性。

掌握超导态转变为正常态的三个条件:临界温度;临界电流;临界磁场。

超导的本质-BCS理论。

第七节材料的热电性能了解三大热电现象:第一热导效应、第二热电效应、第三热电效应。

第八节半导体导电性的敏感效应了解半导体能带结构特点;半导体导电有本征导电和杂质导电;实现导电的条件。

第九节介电极化与介电性能掌握电介质极化机理和介电常数的本质第十节电介质的介电损耗了解电介质的能量损耗。

(共12个学时)第一节导电性能及本质材料的电学性能是指材料的导电性能,与材料的结构、组织、成分等因素有关。

一、电阻与导电的概念R=U/I R 不仅与材料的性质有关,还与材料的几何形状有关 。

SL R ρ=L 与材料的长度,s与材料的横截面积,ρ为电阻率,单位为 m Ω∙ρσ1=值越小,a 值越大。

ρ 值愈小,σ值愈大。

纯金属:e 为10-8~10-7合金: 10-7~10-5半导体:10-3~109绝缘体:﹥109导电性能最好的金属是银、铜、金,其电阻率分别为1.5×10-8Ω⋅m 、1.73×10-8Ω⋅m 、等 二、导电机理及能带理论关于材料的导电机理有三大理论:经典电子理论;电子的量子理论;能带理论。

材料的电学性能

材料的电学性能
34
电阻的本质 电子波在晶体点阵中传播时,受到散射,从而产 生阻碍作用,降低了导电性。 电子波在绝对零度下,通过一个理想点阵时,将 不会受到散射,无阻碍传播,电阻率为0。
35
能带理论认为:导带中的电子可在晶格中自由运 动——电子波通过理想晶体点阵(0K)时不受散射, 电阻为0——破坏晶格周期性的因素对电子的散射 形成电阻
10
2、迁移率和电导率的一般表达式 物体的导电现象,其微观本质是载流子在
电场作用下的定向迁移。
设单位截面积为 S 1cm2 ,在单位体积 1cm3 内载流子数
为ncm3 ,每一载流子的电荷量为q ,则单位体积内参加导
电的自由电荷为nq 。
11
电导率为 J nqv
EE
令 v E (载流子的迁移率)。其物理意义为载流
(金属的纯度和完整性)
41
理想晶体和实际晶体在 低温时的电阻率-温度 关系
e2n F e2nlF
m mvF
与经典自由电子理论下的电导率的形式相同。但
其豫时中间的、F、平l均F、自vF由分程别和是运费动米速面度附。近的电子的弛
——可以成功地解释一价的碱金属的电导。 但对其他金属,如过渡金属,其电子结构复杂, 电子分布不是简单的费米球,必须用能带理论才 能解释其导电性。
的温度。
在T<<D的低温,有 T5
在2K以下的极低温,声子对电子的散射效应变得很微弱, 电子-电子之间的散射构成了电阻的主要机制,此时有:
T2
理想晶体的电阻总是随温度的升高而升高。
38
定义=1/lF为散射系数
1
m * vF e2n *lF
1 lF
由于实际材料总是有杂质和缺陷的,所以对实际材 料散射系数可表示为

培训_第三章材料的电学性能

培训_第三章材料的电学性能

离子在晶格点附近不断的热振动,偏离了晶格格
点,这种偏离引起晶格对电子的散射,称为晶格 实散际射金。属内部还存在着缺陷和杂质,产生的静态
点阵畸变和热振动引起的动态点阵畸变,对电子
波造成散射而形成电阻。 而对于一个纯的理想的完整晶体,0K时,电子波
的传播不受阻碍,形成无阻传播,电阻为零,导
致所谓的超导现象。
为自由电子,同时在价带中形成空穴,这样就使 半导体具有一些导电能力。
绝缘体:
禁带宽度大。在室温下,几乎没有价电子能 跃迁到导带中去,故基本无自由电子和空穴,所 以绝缘体几乎没有导电能力。
三、影响金属导电性的因素
晶体点阵的不完整性是引起电子散射的原因,而电阻来
源于晶体对自由运动电子的散射,因此电阻具有 组织结构敏感性,温度、形变(应力)、合金
18
同自由电子理论一样,也认为金属中的价电子 是公有化和能量是量子化的,所不同的是,它 认为金属中由离子所造成的势场不是均匀的, 而是呈周期性变化的,能带理论就是研究金属 中的价电子在周期势场作用下的能量分布问题
的电。子在周期势场中运动,随着位置的变化, 它的能量也呈周期变化,即接近正离子时势能 降低,离开时势能增高。这样价电子在金属中 的运动就不能看成是完全自由的。
原因:由于高压作用,导致原子间距发生变化(变小),使
金属内部的电子结构、费米能和能带结构发生变化,从而影 响导电性。
能带结构和导电机理:由于周期场的影响,使得价电子在
金属中以不同能量状态分布的能带发生分裂,也就是说,
有些能态是电子不能取值的。 由右图可以看到:
禁带宽窄取决于周期 势场的变化幅度,变 化越大,则禁带越宽。
当 线规-K律1<连K 续<K变1时化,;曲线按抛物 当增K=K1时,只要波数稍微

材料的电学性能测试实验报告

材料的电学性能测试实验报告

材料的电学性能测试实验报告Title: Experimental Report on Electrical Performance Testing of Materials1. IntroductionThe electrical performance of materials is a crucial factor that determines their suitability for various applications. This experimental report aims to investigate the electricalproperties of different materials by conducting tests such as resistance measurement and dielectric strength analysis. The results obtained will provide valuable insights into the electrical behavior of materials and aid in their selection for different electrical applications.2. Experimental Setup2.1 Materials Selection: Three different materials were chosen for the experiment: copper, aluminum, and rubber. Copper and aluminum were selected due to their widespread use in electrical conductors, while rubber was chosen as an insulating material.2.3 Dielectric Strength Analysis: The dielectric strength of the materials was determined using a high voltage insulation tester. The samples were cut into thin rectangular pieces and the tester applied a progressively increasing voltage until abreakdown occurred. The voltage at breakdown was noted for each material.3. Results and Discussion3.1 Resistance Measurement:3.2 Dielectric Strength Analysis:The breakdown voltage for copper and aluminum was negligible, as they are conductive materials and do not possess a dielectric strength. However, rubber displayed a relatively high breakdown voltage, indicating its suitability as an insulating material.4. Conclusion。

材料的电学性能.PPT

材料的电学性能.PPT

② 临界磁场Hc :T< Tc时,将超导体放入磁 场中,若H>Hc,则磁力线穿入超导体,超 导体被破坏而成为正常态。 Hc是破坏超导态 的最小磁场。
.
15
超导电性的三个重要性能指标:
③ 临界电流密度Jc :如果输入电流所产生 的磁场与外磁场之和超过临界磁场,则超 导态被破坏,此时输入的电流为临界电流。 H增加, Jc 必须相应地减小,以使磁场总 和不超过Hc 而保持超导态。 Jc 是材料保持 超导态的最大输入电流密度。
禁带:能隙的存在意味着禁止电 子具有A和B与C和D之间的能量, 能隙所对应的能带。
允带:电子可以具有的能级所组 成的能带。
允带与禁带相互交替,形成了材 料的能带结构。
.
8
(3)能带理论 空能级指允带中未被电子填满的能级。
导带:具有空能级的允带中的电子是自由的,在 外电场作用下参与导电,这样的允带称为导带。
.
16
超导电性的三个重要性能指标:
①临界转变温度Tc ② 临界磁场Hc ③ 临界电流密度Jc
.
17
上节回顾
1、掌握铁磁性的本质,铁磁体的两大特征, 磁畴结构的大小,磁化曲线和磁滞回线, 铁磁材料的性能指标。
2、利用能带结构分析材料的导电性差异。
3、熟悉超导体的概念,掌握超导体的两个 特征和三个性能指标。
不同材料的导电能力相差很大,这决定于结构 与导电本质。
.
4
二、导电机理
(1)经典电子理论
金属晶体中,自由电子定向运动时,要不断与正 离子发生碰撞,使电子受阻,这是产生电阻的原因。
(2)量子自由电子理论 金属中每个原子的内层电子保持着单个原子时
的能量状态,而所有价电子按量子化规律具有不同 的能量状态,即具有不同的能级。

材料的电学性能课件

材料的电学性能课件

电介质的损耗
电介质损耗
电介质在电场作用下,由于电导和极化的原因,将电能转换为热 能的现象。
损耗与电介质性能的关系
损耗的大小反映了电介质的导电和极化能力,是评估电介质性能的 重要参数。
损耗的测量方法
通过测量电介质在交流电场下的功率损耗或相位角来计算。
电介质的击穿
01
02
03
击穿
当电场强度足够高时,电 介质丧失其绝缘性能的现 象。
热电材料的应用
温差发电
利用热电材料将热能转 化为电能。
温度传感器
利用热电材料对温度的 敏感性,检测温度变化

热电制冷
利用热电材料的皮尔兹 效应实现制冷效果。
航天器热控
利用热电材料调节航天 器内部温度。
热电材料的发展趋势
高性能热电材料研究
提高热电材料的转换效率,降 低成本。
多功能化
开发具有多种功能的热电材料 ,如导热、导电、发光等。
材料的电学性能研究历史与现状
材料的电学性能研究始于19世纪初, 随着电子学的兴起和发展,逐渐成为 一门独立的学科。
随着新材料和新技术的发展,材料的 电学性能研究将不断深入,为电子器 件和集成电路的发展提供更多的理论 和技术支持。
目前,材料的电学性能研究已经取得 了长足的进展,涉及的研究领域不断 扩大,研究手段和方法也日益丰富和 先进。
材料的电学性能课件
目录
CONTENTS
• 引言 • 材料的导电性能 • 材料的介电性能 • 材料的磁学性能 • 材料的铁电性能 • 材料的热电性能
01 引言
材料的电学性能定义
材料的电学性能是指材料在电场 作用下的各种物理性质,包括导 电性、电阻、电导率、电场效应

第九章材料的电学性能

第九章材料的电学性能

第九章材料的电学性能导体是能够让电流通过的材料,而绝缘体则是阻挡电流流动的材料。

这些特性与材料的电学性能密切相关。

本章将详细讨论导体、绝缘体和半导体这三种不同材料的电学性能。

9.1导体导体是那些允许电流通过的材料。

导体具有以下几个主要特征:1.高电导率:导体能够容易地传递电荷。

这是因为导体中的自由电子可以在材料中自由移动。

金属是最常见的导体,因为金属中存在着大量的自由电子。

其他导体材料包括水、盐溶液和等离子体等。

导体的电导率通常用电阻率的倒数来表示,即电导率=1/电阻率。

2.低电阻率:与电导率相对应,导体具有很低的电阻率。

电阻率是导体阻碍电流流动的程度的衡量指标。

电阻率取决于导体材料的特性以及温度。

普通金属的电阻率通常很低,而超导体则可以具有接近于零的电阻率。

3.低电阻:与电阻率一样,导体材料的电阻也是非常低的。

电阻是材料对电流流动的阻碍程度的量度。

导体的电阻通常可以忽略不计。

4.高导电性:导体材料能够传导电荷。

这是因为导体中的自由电子可以移动。

导体通常具有良好的导电性能,能够有效地传递电流。

导体材料的应用非常广泛,例如用于电线、电路板和其他电子器件中。

9.2绝缘体绝缘体是那些不能让电流通过的材料。

绝缘体具有以下几个主要特征:1.低电导率:与导体相比,绝缘体的电导率非常低。

这是因为绝缘体中的电子并不容易移动,电流无法在材料中传递。

2.高电阻率:绝缘体的电阻率通常很高。

这意味着绝缘体对电流的阻碍程度很大,电流很难在绝缘体材料中流动。

3.高电阻:与电阻率相对应,绝缘体的电阻也很高。

电阻是材料对电流流动的阻碍程度的量度。

绝缘体的电阻非常大,电流几乎无法通过。

4.低导电性:绝缘体材料几乎完全不传导电荷。

绝缘体中的电子不能自由移动,电流无法在材料中流动。

绝缘体材料在电力设备、绝缘体材料和其他高电压应用中得到广泛使用。

9.3半导体半导体是处于导体和绝缘体之间的材料。

半导体具有以下几个主要特征:1.可变电导率:半导体的电导率介于导体和绝缘体之间。

材料的电学性能ppt课件

材料的电学性能ppt课件
强度下,间隙离子单从电场中获得的能量不足以克服势垒 进行跃迁,因而热运动能是间隙离子迁移所需能量的主要 来源。
.
16
.
17
• 间隙离子的势垒变化

• 单位时间沿某一方向跃迁的次数 •
Pv60 expU ( 0/kT)
• 离子迁移与势垒U0的关系;ν0-间隙原子在半稳定位置上 振动频率
• 无外加电场时,各方向迁移的次数都相同,宏观上无电荷 的定向运动。故介质中无导电现象。
• 离子电导的微观机构为载流子 ─ 离子的扩散。间隙离子 处于间隙位置时,受周置跃入相邻间隙位置, 需克服高度为U0的势垒完成一次跃迁,又处于新的平衡位 置上。这种扩散过程就构成了宏观的离子“迁移”。
• 由于U0相当大,远大于一般的电场能,即在一般的电场
gCQ Q/F
g为电解质 ;Q为 的通 量过的 ;C为 电电 量化当量
F为法拉第常数
.
9
• (2)迁移率和电导率的一般表达式
• 物体的导电现象,其微观本质是载流子在电场作 用下的定向迁移。
单位时间 ( 1 s ) 通过单位截面 S 的电荷量 :
J nqv 欧姆定律 :
J E / E
J / E nqv / E
就可以在电场下产生导电电流。 • 金属中: 自由电子 • 无机材料中:
C 电子(负电子/空穴)——电子电导 C 离子(正、负离子/空穴)——离子电导 •
.
5
①霍尔效应
电子电导的特征是具有霍尔效应。 沿试样x轴方向通入电流I(电流密度Jx),z轴方向 上加一磁场Hz,那么在y轴方向上将产生一电场Ey, 这种现象称霍尔效应。
• 弗仑克尔缺陷:
• (弗仑克尔缺陷中N 填隙f 离N 子和ex 空p位( 的E 浓f度/2 是K 相T等)的)

材料的电学性能

材料的电学性能

材料的电学性能材料的电学性能是指材料在电场作用下的响应特性,包括导电性、介电性、磁电性等。

这些性能对于材料在电子器件、电力设备、通信技术等领域的应用具有重要意义。

本文将就材料的电学性能进行详细介绍,以便更好地理解和应用这些性能。

首先,导电性是材料的一种重要电学性能。

导电性好的材料能够快速传导电流,常见的导电材料包括金属、导电聚合物等。

金属具有良好的导电性,是电子器件中常用的材料。

而导电聚合物则是一种新型的导电材料,具有轻质、柔韧等特点,适用于柔性电子器件的制备。

导电性的大小取决于材料内部自由电子的数量和迁移率,因此在材料设计和制备过程中需要考虑材料的电子结构和晶格结构。

其次,介电性是材料的另一重要电学性能。

介电性好的材料能够在电场作用下产生极化现象,常用于电容器、绝缘材料等领域。

常见的介电材料包括氧化物、聚合物、玻璃等。

这些材料具有不同的介电常数和介质损耗,适用于不同的电子器件和电力设备。

在实际应用中,需要根据具体的工作条件选择合适的介电材料,以确保设备的稳定性和可靠性。

最后,磁电性是材料的另一重要电学性能。

磁电材料能够在外加电场下产生磁化现象,常用于传感器、存储器件等领域。

常见的磁电材料包括铁电体、铁磁体等。

这些材料具有不同的铁电极化和磁化强度,适用于不同的磁电器件和磁存储器件。

磁电性的大小取决于材料内部的磁矩和电偶极矩,因此在材料设计和制备过程中需要考虑材料的晶体结构和磁电耦合效应。

综上所述,材料的电学性能是材料科学和电子技术领域的重要研究内容。

通过对导电性、介电性、磁电性等性能的深入理解,可以更好地设计和制备新型的电子器件和电力设备,推动电子技术的发展和应用。

希望本文能够为相关领域的研究人员和工程师提供一定的参考和帮助,促进材料的电学性能在实际应用中的进一步发展和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶轴方向的电阻率,不同金属和不同温度下是不相等
的。常温下是定值。
• 多晶试样的电阻可通过晶体不同方向的电阻率表达:
多晶
பைடு நூலகம்1(2
3

//
6、冷加工和缺陷对电阻率的影响
• 现象:冷加工(冷轧/锻、冷冲、冷拔等)后,一般金属电
阻率上升2~6%,变形量越大,电阻率越高;
• 特例,金属钨、钼,当冷变形量很大时,钨电阻可增加 30%---50%,钼增加15%—20%。
原因:冷加工直接造成晶格畸变,产生大量位错、空位,增加 电子散射几率;
同时冷加工也会引起金属晶体原子间距键合的改变,导 致原子间距的改变。
冷加工金属退火后,消除晶格缺陷,电阻率可恢复。
1) 塑性变形引起的电阻率增加
• 形变在金属内部产生大量空位、间隙原子、位错等晶体缺 陷,引起点阵周期势场破坏,使金属电阻率增加。
费米能
能带结构
流体静压力下金属的电阻率
(T) 0 1P
0:真空条件下的电阻率 P: 压力 :压力系数
d 0dp
106
1)正常金属:压力增大,电阻率下降 0
例如,铁、钴、镍、钯、铂、铜、银等;
2)反常金属:压力增大,电阻率升高 0
例如,大部分碱金属和稀土金属;
p ~ ~ R
压阻材料: 应变-电阻变化 压敏材料: 应力-电阻变化
R ~
R R ~ p R
探测应变 感应应力
5、尺寸效应和晶体各向异性对电阻率的影响
1)尺寸效应
从金属导电的机制可知,当金属导电电子的自由程同试样尺 寸是同一数量级时,这种影响就显得十分突出。这一现象对 研究和测试金属薄膜和细丝材料(厚度约(10~100)×10- 10m)的电阻很重要。
原因:电子在薄膜表面产生散射,构成新的附加电阻。
1) 固溶体电阻率
--当形成固溶体时,合金导电性下降;即使是在导电 性好的金属溶剂中溶入导电性很高的溶质金属时,也是 如此。
① 溶质进入溶剂晶格后,溶质晶格畸变,影响周期势 场,改变了固体能带,增加了电子散射几率,电阻率增 高。
②固溶体组元之间的相互作用,使能带及电子云分布 发生变化也是导致电阻率改变的因素之一。
能带理论: ne
:电子的迁移率
量子自由电子理论: ne2t
2m
n:单位体积内参与 导电的电子数
m: 电子质量
经典电子理论:
ne2L
2mv
n:单位体积内的电子数
2.2.2 影响金属导电性的因素
影响金属导电性的因素
外部因素
内部因素
温度、 压力
尺寸因素
电阻率各项 异性
金属缺陷、 冷加工
1. 金属中电阻产生的原因: 电阻的产生总是伴随着晶格的不完整性。 1)温度引起晶格的热振动加大,使晶格对自由电子的散
空位 位错
• 退火时,温度升高到能使空位扩散复合时,空位 0,而位
错引起电阻率的增加则需加热到再结晶温度以上才能消除。
根据马西森定律 (T ) C
• 在极低温度下,纯金属电阻率主要由其内部缺陷(包括杂
质原子)决定,即由剩余电阻率′决定。因此,研究晶体
缺陷对估价单晶体结构完整性有重要意义。
薄膜材料电阻率: 0 d d (1 L / D)
L:样品内电子的平均自由程 D:样品表面受到散射的电子平均自由程
2)各向异性
•一般在立方系晶体中金属的电阻表现为各向同性;但
在对称性较差的六方晶系、四方晶系、斜方晶系和菱
面体中,导电性表现为各向异性。
•电阻各向异性系数 / //
•⊥为垂直六方晶轴方向测得的电阻率,∥为平行六方
2) 缺陷对电阻率的影响
缺陷种类:造成剩余电阻率,与温度无关。 点缺陷:空位、间隙原子、置换原子等位错等 线缺陷:位错 面缺陷:表面、晶界、相界、层错
剩余电阻率是评价单晶体质量的重要指标。
不同类型的晶体缺陷对金属电阻率影响程度不 同,点缺陷对剩余电阻率的影响相似,在同一数 量级。
2.2.3 固溶体的电阻率
--ρ’,是晶体杂质、缺陷引起的电阻(电子在杂质 和缺陷上的散射) ,与温度无关,在T=0K不为0,称为 残余电阻。
3、温度对电阻率的影响 一般意义上:
(T ) 1 T T 2 T 3 ... 0
(T ) 1 T 0
(T ) 0
T
0
平均电阻系数
d(T ) T dT
0
真电阻系数
射增大,产生电阻; 2)其他组元的加入及晶格畸变引起晶格周期性势场的规
律性和能带结构的改变等因素。
2、马基申定则(Matthissen’s Law)
T
'(T )
--ρ (T),为与温度有关的金属基本电阻,即溶剂金 属(纯金属)的电阻,对应着两种散射机制(声子散射和 电子散射) 。这个电阻在T=0K降为零。
低浓度固溶体的电阻温度系数低于纯金属 ,但固溶体电阻率随温度变化的斜率与纯 金属相同,与溶质浓度无关。
纯金属有局限性, 合金化是改变和提高金属材料的性能 最主要的途径。由两种或两种以上的金属经熔混而成的、具 有金属特性的物质称为合金(alloy)。
合金相的晶体结构:主要有固溶体和中间相(又称金属 间化合物)两大类。
溶质原子进入溶剂晶体结构,占据主晶相结点位置一部 分或间隙位置一部分,仍然保持晶相类型,这种晶体称为固 溶体。置换式、间隙式固溶体。
2)低浓度固溶体的电阻率
马西森定律:
0 (T ) 溶剂组元电阻率(晶格热振动,电子散射), 与温度有关,绝对零度时为零。
残余电阻(合金原子,空位、间隙原子及位错
等),与温度无关;C为杂质原子含量; 为1%原
子杂质引起的附加电阻。
0 (T ) C
对于同一溶剂的低浓度固溶体,掺入不同 溶质原子会导致金属电阻率升高,且与温 度无关。
(T )
'
T2 电-电
T5 电-声
1 理想金属
3
2 含杂质金属
3 含缺陷金属 2
1
T 电-声
T ①T
2 3
D
电-声
T ② T D 电-声
5
③ 2K时, T 2 电-电
2
2TD/3
T /K
图3.1 温度对金属低温比电阻的影响
4、压力对金属导电性的影响
高压力
原子间距缩小
内部缺陷形态 电子结构
第二章 材料的电学性能
目录
1 2.1导体、绝缘体和半导体的划分 2 2.2金属的导电性 3 2.3半导体的电学性能 4 2.4电介质材料及其介电性能
2.5压电材料及其介电性能 2.6热释电材料及其介电性能 2.7铁电材料及其介电性能 2.8热电材料及其介电性能 2.9超导材料及其超导电性
2.2.1 金属导电的理论
相关文档
最新文档