投资组合中的可行集及有效边界问题研究报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
投资组合中的可行集与有效边界问题研究
王晓乐
(工学院经济与管理学院,213002)
摘要:本文从从马科维茨的投资组合理论思想出发,在已有结论基础之上,利用均值方差模型分别研究了风险资产组合和引入无风险资产后各自有效边界的确定和解析表达式,随之引入CAPM模型着重分析了资本市场中,投资者如何确定投资组合来均衡收益与风险之间的关系。
文末就CAPM的有效性问题和股票收益与风险的关系这两个延伸问题进行了简单的探讨。
关键词:投资可行集有效边界CAPM模型
一、引言
(一)课题研究的背景
面对五花八门的投资对象,大家都明白“鸡蛋不要都放在同一个篮子里”的简单道理,那么“鸡蛋”应该放在几个“篮子”里,这些“篮子”各有什么特点?在资本市场中,马科维茨的投资组合选择理论和在此基础上发展形成的CAPM模型,历来是投资者面对风险和收益决策投资组合的重要理论依据。
投资者在资本市场中,如何平衡风险与收益之间的关系,如何有效决策资产组合,这些都是关键问题。
(二)课题研究的价值
投资有效组合,使资产风险合理分散化,通过充分利用数学知识,借助计量经济学的帮助,分析投资理论中的风险类型和收益模型,推导在各种风险资产组合中的可行集和有效边界,风险最小的情况下,使得投资组合获得最大利益,从而更好地服务于现代证券市场。
二、已有相关研究观点评介
关于资产定价的原理和模型的研究,国不乏众多学者。
工业大学经济管理学院的邓英东教授(2004)在他的文章中评述:Markowitz的证券组合选择理论,在今天已经成为现代金融经济学的基石,人们在处理证券组合的收益-风险分析时,Markowitz理论始终是一种基本工具。
[1]东华大学理学院的静、胡良剑教授认为:金融决策的核心问题就是权衡证券收益与风险的问题。
[2]在论述有关CAPM模型的作用时,中国人民大学金融专业博士生导师吴晓求教授在他的文章里写道:CAPM给出了一个非常简单的结论,只有一种原因会使投资者得到更高回报,那就是投资高风险的股票。
不容怀疑,这个模型在现代金融理论里占据着主导地位。
[3]
三、马科维茨投资组合理论
风险资产的投资首先需要解决的是两个核心问题:即预期收益与风险,那么如何测定_____________________________________
作者小传:王晓乐(1994- ),女,工学院经管学院,学生,研究方向:经济学
组合投资的风险与收益和如何平衡这两项指标进行资产分配是市场投资者迫切需要解释的问题。
在这样的背景下,1952年,马科维茨(H.M.Markowitz)在《金融月刊》上发表了“资产选择的有效分散化”一文。
他在这篇文章中,首先采用风险资产的期望收益率和用方差(或标准差)代表风险来研究组合投资问题,1959年,他又出版了同名著作进一步阐述了他的组合投资理论。
在此以前,金融学通常以定性研究为主,马科维茨的投资组合选择理论从此成为金融定量分析的开端,马科维茨创立的现代证券组合理论,实际上市帮助投资者从若干可供选择的证券中,挑选出若干证券组成有效组合的理论和方法,研究了如何利用投资组合,即同时购买多种证券,使得在一定的预期收益率下,使投资风险达到可能的最小程度。
其核心思想是分散风险,并从风险资产的收益率与风险之间的关系出发,讨论在不确定经济系统中最优资产组合该如何选择的重要问题。
四、投资组合中有效边界的确定
(一)均值-方差思想理论
马科维茨的投资组合理论是从风险资产的收益率和风险之间的关系出发,在马克维茨均值–方差的模型中,每一种证券或证券组合可由均值–方差坐标系中的点来表示。
其中,他以期望收益率(收益率均值)来衡量未来实际收益率的总体水平,以收益率的方差(即偏离收益的程度)来衡量收益率的风险,将收益和风险量化,用数理统计的方法来进行决策,其决策目标本质上可以这样概括:在一定的风险水平上,投资者期望收益最大,相对应地,在一定的收益水平上,投资者希望风险最小。
(二)投资组合中的可行集和有效边界问题
1.可行区域和有效边界的定义
可行集(Feasible Set)是指资本市场上由风险资产可能形成的所有投资组合的总体。
在马克维茨均值–方差模型中,每一种证券或证券组合可以用坐标系中的点来表示,所有存在的证券组合在平面上构成一个区域,这个区域就是所谓的可行集。
投资者可以实现的既定风险下,最高收益的投资组合或者在一定收益水平,风险最小的投资组合的集合即有效边界,又称有效前沿。
整个可行集呈雨伞状,可行集的左侧边界即有效边界。
如图1所示,阴影部分代表资产组合的可行域,黑线边界即为有效边界,也是最小方差资产组合。
依据有效边界定理,在各种可行的投资组合中,投资者在选择最优的组合时往往遵循以下两个原则:(1)在一定的风险水平条件下,获得最大的期望收益率;(2)在一定期望收益率水平条件下,接受最小的投资风险。
投资者将根据自己的风险偏好(取决于无差异曲线),选择有效边界上的点进行投资。
2.多种风险资产组合有效边界的确定
假设一投资者对n支股票进行投资,每只股票的收益率记为ri(i=1,2,……n),其中ri 视为随机变量,将其期望值记为Ri,方差记为σ2。
若投资于第i只股票的资金比例为
Wi,比例系数向量系数为W=(W 1, W 2, W 3,……W n )T 1W n 1i i =∑=,则收益率∑==n 1i i
i r w r ,期望收益率Rp 为:Rp=R W T =wR 1+w 2R 2+……+w n Rn(其中R=(R 1,R 2,……R n )t ),再设r i 和r j 的协方差为ij σ,协方差矩阵为G=(ij σ)n x n ,则投资组合的方差GW W σT p 2=。
由于在一定的期望收益条件下,投资者追求的是投资风险最小,转换成数学思想也就是在一定的约束条件下的线性规划问题求解,即在p i n 1i i
R R W =∑=的条件之下,求GW W σT p 2=的最小值。
运用矩阵的知识,记⎪⎪⎭
⎫ ⎝⎛=I 1I r r r A n 21 ⎪⎪⎭⎫ ⎝⎛=-22211211T 1m m m m A AG ⎪⎪⎭⎫ ⎝⎛=1r E ,则求有效边界表达式的问题就可以表示为:min GW W T p =2σ,S.t.E AW =。
建立拉格朗日函数求解,得有效边界的数学表达式为:22p 12p 211p 2m R m 2R m ++=σ,根据以上数学表达式,已知T
A AG 1-是正定对称阵,所以我们可以得出以下结论:多种风险资产,投资组合的有效边界用直观图形表示,即纵坐标为)(p R E ,横坐标为p 2σ的坐标系(图1)第一象限上凹的一段曲线。
面对的有效边界即曲线AB 一段。
当风险资产和无风险资产并存时,投资者以无风险利率借贷时,此时有效边界变为图2所示的过点F (0,f R )且与原有效边界曲线AB 相切于点T 的切线FT 。
图2
切线FT 的斜率n
f n n n R R d dR K σσ-==,已知风险资产组合的有效边界表达式是: 221221122m R m R m p p p ++=σ,其中11m >0,22m >0,两边同时对p σ求导: p p p p p p d dR m d dR R m σσσ1211222+=,所以1211m R m d dR p p p p +=σσFT 与AB 于T 点相切
p f p p p
R R m R m σσ-=+12
11,(令p p p p p p d dR m d dR R m σσσ1211222+=一式中p n R R =,p n σ=σ), 与221221122m R m R m p p p ++=σ并联,可以得出:
121122
12m R m m R m R f f T ++=,22122112m R m R m T T r ++=σ
即切点T 的坐标为(121122
12m R m m R m f f ++,22122112m R m R m T T ++)
综合以上推导过程,我们可以得出以下结论:当投资者的偏好是规避风险时,此时的投资组合就是f R 为收益率的无风险资产和风险资产,其有效边界为图2中的射线FT ,其表达式为:)0(12211≥++=p p T T
f p m R m R R σσσ。
当投资者偏好风险投资时,有效边界即图2中的直线FT 和曲线TB 段,其表达式为:)(222122112r p p P
p m R m R m σσσ
++=[4] 4.有效边界的特征 根据以上两种投资组合各自有效边界的计算和分析,结合图1和图2,我们不难发现有F
效集曲线具备以下几个特征:①向右上方倾斜,体现了“高收益、高风险”的原则;②是一条向上凸的曲线,曲线上不可能有凹陷的地方;③厌恶风险程度较高的投资者,其无差异曲线的斜率较陡,那么其最优投资组合越接近A 点(图2),厌恶风险程度较低的投资者,其无差异曲线的斜率较小,其最优投资组合越接近B 点(图2)。
五、CAPM 模型
(一)CAPM 模型产生基础
马科维茨开创的均值-方差模型有效解决了应该如何最优持有有效证券组合的问题,正是由于这一开创性的重要关系式,使得夏普等人能够在此基础上,利用竞争均衡定价的概念,在具有众多资产和众多投资者的资本市场中导出每种资产的超额收益率和市场资产组合超额收益率之间的关系,也就是后来的资产定价模型(CAPM )。
(二)CAPM 的基本假设和表达形式
标准的CAPM 是在理想的资本市场中建立的,建立模型的基础性假设有以下九种: ①投资者具有均值—方差效用函数;②对所有投资者信息充分且畅通无阻,对资产收益概率分布模式一致认同,因此市场有效前沿曲线只有一条;③所有投资者都有相同投资日期和固定的投资期限;④资产是无限可分的,而投资者可以以任意金额投资于各种资产,市场上的资产数量是固定的;⑤市场没有卖空限制;⑥市场存在无风险资产,投资者能以固定无风险利率借入任意数量的这种资产;⑦资本市场没有税收,交易成本,资产没有红利分配;⑧没有通货膨胀和利率变化;⑨市场上的任何投资者均不能通过其投资行为影响资产价格。
假设市场存在无风险资产时,那么任意风险资产的超额收益率可以表示为:
)(()(f M Mi f i R R E R R E -=-β,其中)(f M R R E -是市场风险资产组合的超额收益率
值的大小可以说明单个证券与市场组合风险的相关程度,)var(M R 表示市场组合收益率的方差,由此可以推导出CAPM 的表达形式就是:[]iM f M f i R )R (E R )R (E β-+=,其实质是关于风险补偿的精确描述。
[5]用夏普的思想解释就是,系统风险可以带来收益的补偿,而非系统风险则得不到收益补偿。
(三)资本市场线(CML )和证券市场线(SML )
上文讨论到马科维茨“均值-方差模型”中引入风险资产并允许风险资产卖空的情况下,曾得出有效边界变为一条射线FT (图2),那条射线就被称为资本市场线(CML )。
资本市场线是指表明有效组合的期望收益率和标准差之间的一种简单的线性关系的一条射线。
它是沿
着投资组合的有效边界,由风险资产和无风险资产构成的投资组合。
其表达式为:
p m
f m f R )R (E R )R (E p σσ-+=,揭示的是“持有不同比例的无风险资产和市场组合情况下”风险和报酬的权衡关系,位于资本市场线上的点就是有效组合。
证券市场线(SML )其实也就是资本资产定价模型(CAPM )的图示形式,如图4所显示的在以Ep 为纵坐标、βp 为横坐标的坐标系中的一条直线,其中R 和β分别表示证券组合的必要报酬率和β系数:m
2im m m i i i f M f i )R (V ar )R ,R (Cov ,)R )R (E (R )R (E σσ==ββ-+=,其中β系数表示某证券对于市场组合的风险度量,也就是测量风险的工具。
证券市场线揭示的是“证券的本身的风险和报酬”之间的对应关系,因为证券市场线表明的是任何一种单个资产或者组合的期望收益与其系统风险之间的关系,所以证券市场线上的点不一定在资本市场线上。
[6]
需要说明的是,资本市场线实质是证券市场线的一个特例。
当一个证券组合与市场组合的相关系数等于1,此时,证券市场线与资本市场线便是相同的。
六.CAPM 的实用性和有效性讨论
(一)CAPM 的重要含义与广泛应用
根据上述对CAPM 模型的推导和表述,我们不难发现 CAPM 的重要含义大概有以下几点:①股票系统风险的衡量指标是β值,β=1时系统性风险等于市场组合风险,β>1和β<1时股票的系统性风险则相应大于和小于市场组合风险。
②股票风险处于均衡状态时,每只股票与股票组合的预期收益率呈线性关系。
③系统性风险决定股票价格是唯一变量,非系统性风险可以通过持有充分分散的组合趋向零。
[7]
图3 资本市场线 图4 证券市场线
CAPM实质是一个可以衡量风险大小的模型,来帮助投资者决定所得到的额外回报是否与当中的风险相匹配,从理论上来看,我们利用资本资产定价模型,就可以对任一证券的预期收益率的作出估计,关键因素是要估算出β的值,如果证券市场的发展是平稳、有秩序的,我们就可以利用有关历史数据来作回归分析,从而得到β系数估计值,在现实中,β值的计算量很大,过程也比较复杂。
CAPM模型在金融投资理论的地位显著,得到了普遍认可,证券投资界投资专家用它来对证券的预期收益进行度量;立法机构用它来规基金界人士的费用率;评级机构用它来测定投资管理者的业绩对资金成本进行估计等等,应用非常广泛。
(二)关于CAPM有效性的讨论
由于受到一系列假设条件的限制,CAPM模型的实用性在不同的现实市场中受到不同程度的挑战,国外学者就CAPM模型在各国资本市场上的适用程度进行了大量的实证研究:著名经济学家法玛和弗兰奇(Kenneth French) 在研究1963年到1990年期间纽约证交所,美国证交所,以及纳斯达克市场里的股票回报时发现:在短时间,单个股票的Beta和回报率之间的线性关系并不存在,而从长时期来看,β值并不能充分解释股票的表现,似乎在现实资本市场,CAPM的有效性并不高。
我国学者通过CAMP的构造研究股票市场,通过回归分析结果,发现拟合出的SML计算出的收益率和实际值的吻合程度并不高,β值对收益率有一定的解释力,但对市场风险度量缺乏显著作用,如此看来,CAPM对我国股票定价的有效性不够明显。
[8]深究其中原因,我国股市发展还不成熟,存在投资者的短期投机动机很强,禁止卖空,市场缺乏退出机制,无法实现上市公司的优胜劣汰等问题,这些导致在这样的股市环境与CAPM 成立的假设条件相差甚远,导致CAPM有效性不显著。
七、结论
(一)CAPM在允许卖空和退出的长期投资组合中有效性显著
实证的有效性检验,只能用来说明CAPM在某个证券市场上是否适用,而不能冲击这个模型在理论上的正确性。
具体来说,当资本市场环境基本符合CAPM成立的假设条件,比如资本主义国家发达成熟的资本市场,CAPM有效性是显著的。
在禁止卖空,缺乏退出机制,短期投机动机强的资本市场中,CAPM有效性则很低。
(二)风险不是决定收益的唯一因素,股本规模、可流通股占总股本的比例等产因素均生不同程度的影响
CAPM自诞生起,传达给众投资者的重要结论就是:风险决定收益,只有一种原因会使投资者得到更高回报,那就是投资高风险的股票。
然而,在现实资本市场中,是否“高风险=高收益”,低风险收益注定就很小呢?在现实股票市场中研究后就会发现,风险和收益的关系并不完全是CAPM理论所预期的那样,其中,系统风险并不是决定收益的唯一因素,其他因素如如股本规模、可流通股占总股本的比例等都对股票收益产生不同程度的影响作用,这些因素对收益的具体影响有待以后的进一步研究。
(该文系2015暑期社会实践课程II的作业)
参考文献
[1]邓英东资本定价理论的发展[J] 工业大学学报2004,5:75-76;
[2]静胡良剑证券收益与风险的投资可行集与有效边界数学刻画[J] 科技与工程2009,12:78-83;
[3]吴晓求中国资本市场分析要义[M] 2005年;
[4]唐小我长修组合证券投资有效边界的研究[J] 预测1998,15:53-56;
[5]叶中行林建忠数理金融[M] 科学2002年;
[6]史树中杰证券组合投资的有效子集[J]应用数学学报2002,25:176-185;
[7]唐红兵新俊有风险投资与无风险投资组合的研究[J] XX农业大学学报2000,23:25-43;
[8]剑峰资本资产定价模型(CAPM)对股市的实证研究[J]统计2002,6:12-17;。