数学建模统计模型图文稿

合集下载

统计回归模型数学建模演示文稿

统计回归模型数学建模演示文稿
销售额在 7.83203.7 29(百万元)以上
第七页,共42页。
模型改进
x1和x2对y 的影响独立 x1和x2对 y的影响 有交互作 用
第八页,共42页。
y 0 1x1 2 x2 3 x22
参数 参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
[11139 11261]
a1
498
[494 503]
a2
7041
[6962 7120]
a3
-1737
[-1818 -1656]
a4
-356
[-431 –281]
a5
-3056
[-3171 –2942]
a6
1997
[1894 2100]
R2= 0.9998 F=36701 p=0.0000
200 100
价格差较小时增加的 速率更大
价格差较小时更需要靠广告 来吸引顾客的眼球
第十一页,共42页。
完全二次多项式模型
y 0 1x1 2 x2 3 x1x2 4 x12 5 x22
MATLAB中有命令rstool直接求解

10 9.5
9 8.5
8 7.5
0
0.2
0.4
5.5
6
6.5
7
x1
x2
价格差 x1=0.3
yˆ x10.3 32.4535 8.0513x2 0.6712x22
x2 7.5357

yˆ yˆ x10.3
10.5
x10.1 10
价格优势会使销售量增加 9.5 9

数学建模作业2 统计模型

数学建模作业2     统计模型

病人服药后病痛减轻时间与用药剂量、性别和血压组别关系模型摘要某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。

我们运用数学统计工具minitab软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P(是否<0.05)和拟合度R-Sq的值是否更大(越大,说明模型越好)。

首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。

对模型Ⅰ用minitab软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用minitab软件进行回归分析后,用药剂量对病痛减轻时间不显著,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用minitab软件进行回归分析后,结果合理。

最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:xY=31.8-3.491x+56.13x-9.321x3x+0.2621对模型Ⅱ和模型Ⅲ关于男性病人用minitab软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用minitab软件进行回归分析后,结果合理。

最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:xY=32.8-4.021x+0.9551x3x+0.0.042721一、问题重述一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物实验,给患有同种病痛的病人使用这种新止痛剂的一下4个剂量中的某一个:2g,5g,7g和10g,并记录每个病人病痛明显减轻的时间(以分钟计)。

为了了解新药的疗效与病人性别和血压有什么关系,实验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试。

通过比较给个病人血压的历史数据,从低到高分成三组,分别记作0.25,0.50和0.75.实验结束后,公司的记录结果附录1-1表(性别以0表示,1表示男)。

【精品】数学建模数据统计与分析PPT课件

【精品】数学建模数据统计与分析PPT课件
参数估计就是从样本(X1,X2,…,Xn)出发,构造一些统计量 ˆi( X1,
X2,…,Xn) (i=1,2,…,k)去估计总体X中的某些参数(或数字特
征)i(i=1,2,…,k).这样的统计量称为估计量.
1. 点估计:构造(X1,X2,…,Xn)的函数 ˆi( X1,X2,…,Xn) 作为参数i的点估计量,称统计量ˆi为总体X参数i的点估计量.
(二)方差的区间估计 D X 在 置 信 水 平 1 - 下 的 置 信 区 间 为 [ ( n 2 1 ) s 2 , ( n 1 2 ) s 2 ] . 1 22
2021/7/15
数学建模
返回
14
对总体X的分布律或分布参数作某种假设,根据 抽取的样本观察值,运用数理统计的分析方法,检 验这种假设是否正确,从而决定接受假设或拒绝假 设.
X n) ,使 得
P (ˆ1ˆ2)1 则 称 随 机 区 间 (ˆ1,ˆ2)为 参 数 的 置 信 水 平 为 1的 置 信 区 ˆ1 间 , 称 为 置 信 下 限 ,ˆ2称 为 置 信 上 限 .
2021/7/15
数学建模
13
(一)数学期望的置信区间 1、已知DX,求EX的置信区间
s 设 样 本 ( X 1 , X 2 , … , X n ) 来 自 正 态 母 体 X , 已 知 方 差 D 2 X ,
( ) Y = X 1 2 X 2 2 X n 2
服 从 自 由 度 为 n 的 2分 布 , 记 为 Y ~ 2 n.
Y 的 均 值 为 n , 方 差 为 2 n .
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
0

数学建模中的统计学ppt课件

数学建模中的统计学ppt课件
i1
它反映了总体 方差的信息
样本标准差:
S
1 n 1
n i1
(Xi
X
)2
.
样本k阶原点矩 :
样本k阶中心矩 :
Ak
1 n
n i1
X
k i
它反映了总体k 阶矩的信息
M k
1 n
n
(Xi
i1
X )k
它反映了总体k 阶 中心矩的信息
Байду номын сангаас
X
为样本1阶原点矩A1,样本二阶中心矩M
记为
2
Sn2 =
1 n
总体分布 的实际情
H 0 成立
况(未知) H 0 不成立
判断正确 犯第 II 类错误
犯第 I 类错误 判断正确
断言:在座的各位平均身高是170cm。
要检验这句话正确与否,我们可以采用单 正态总体的均值检验。
设总体 X ~ N(, 2 ) ,( X1, X 2,, X n )为取自
该总体的一组样本
y
y
y f (x)
Y f (X)
x
0
x0
(b) 统计关系
例 2 城镇居民的收入与消费支出之间有很大的关 联,居民的收入提高了,消费也随之潇洒,但居民的 收入不能完全确定消费,人们的消费支出受到不同年 龄段的消费习惯的影响,也受到不同消费理念的影响。
因此居民的收入 x 与消费支出 y 就呈现出某种不确定
yˆ 33.73 0.516x (单位:英寸)
这1078对夫妇平均身高为 x 68 英寸,而
子代平均身高 y 69英寸
尽管“回归”这个名称的由来具有其 特定的含义,人们在研究大量的问题中变
量 x 与 y 之间的关系并不总是具有“回归” 的含义,但用这个名词来研究 x 与 y 之间

数学建模 统计分析 ppt课件

数学建模 统计分析 ppt课件

数学建模 统计分析
10
2. 正态分布的随机数
randn(n) randn(m, n)
% N(0, 1) % N(0, 1)
normrnd(a, b, m, n) % N(a, b^2)
或等价地,
x=randn(m, n); x=a+b*x
数学建模 统计分析
11
3. 指数分布的随机数
f(x)1exp1x, x0.
数学建模 统计分析
1
Outline
一、描述性统计 二、随机数的生成 三、参数假设检验 四、正态性检验* 五、方差分析 六、回归分析
数学建模 统计分析
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
数学建模 统计分析
42
clear
n=30;
N=5000;
for i=1:N
x=randn(1, n)+2;
a(i)= lillietest(x);
end
sum(a)/N
%?
数学建模 统计分析
43
五、方差分析(analysis of variance)
例1:在实验室内有多种方法可以测定生物样 品中的磷含量,现选取4种测定方法,测定同一干 草样品的磷含量,结果见下表,试分析这4种方法 之间差异是否显著。
别从这两个总体中抽取容量为n1和 n2的样本, 要检验的问题是
H0 :1 2, H1 :1 2,
设总体的方差未知,则使用的是两样本t检验:
数学建模 统计分析

数学建模:建立统计模型进行预测

数学建模:建立统计模型进行预测

费用统计表
1个月工资 2个月工资 3个月工资
全职工资
/人
/人
/人
2 000
4 800
7 500
15 840
7
3
13
10
14 000 14 400 97 500 158 400
313 175
培训费用
875 33 28 875
从计算结果可以看出,总费用会比全部雇用临时工少350 RMB,因为培训费用虽然 可以减少 8 750 RMB,但是工资却增加 8 400 RMB,所以在培训费用较高的情况下, 多雇用全职员工可减少总费用;在培训费用较低的情况下,就尽量少雇用全职员 工.例如:当培训费用减少至700 RMB时,若雇用10名全职工,总费用将增加 5 000 RMB.
雇用一个月人数为7人,雇用二个月的人数为3人,雇用三个月人数为33人.
当培训降低至700 RMB/人时运算结果如下:
雇佣人数分配表
项目/月份 雇佣一个月人数 雇佣二个月人数 雇佣三个月人数 总雇佣人数
1月份
10
0
2月份
23
0
3月份
19
0
4月份
26
0
5月份
20
0
6月份
14
0
合计
112
0
0
10
0
23
5
19
14
15
5月份
0
0
0
0
6月份
0
0
0
0
合计
7
3
33
43
项目
费用 人数 合计 总费用
费用统计表
2个月工资/
1个月工资/人

数学建模中的统计学

数学建模中的统计学

(
x )2
;
ak
1 n
n i1
xik
k 1,2,
mk
1 n
n i1
( xi
x )k
k 1,2,
sn2
1 n
n i1
( xi
x )2
,
sn =
1 n
n i1
( xi
x )2
精选ppt课件
10
在正态分布中σ代表标准差,μ代表均值x=μ即 为图像的对称轴 三σ原则即为 数值分布在(μ—σ,μ+σ)中的概率为0.6826 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
一元线性回归方程为:
y 0.73x 356
精选ppt课件
31
“回归”名称的由来,统计史上一 般归功于英国生物学家兼统计学家F. 高尔顿(F.Galton,1822-1911)及他的 学生现代统计学家的奠基者之一K. 皮尔逊(K.Pearson).
精选ppt课件
32
他们在研究父母身高与其子女身高的遗传
y 1000x
精选ppt课件
25
变量之间具有密切关联 而又不能由一个或某一些变 量唯一确定另外一个变量的 关系称为变量之间的相关关 系.
精选ppt课件
26
y
y
y f (x)
Y f (X)
x
0
x0
(b) 统计关系
精选ppt课件
27
例 2 城镇居民的收入与消费支出之间有很大的关 联,居民的收入提高了,消费也随之潇洒,但居民的 收入不能完全确定消费,人们的消费支出受到不同年 龄段的消费习惯的影响,也受到不同消费理念的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模统计模型文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]数学建模论文题目:一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作0.25,0.50和0.75. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男).请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.一、摘要在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。

我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻时间之间的数据进行深层次地处理并加以讨论概率值P(是否<0.05)和拟合度R-S q的值是否更大(越大,说明模型越好)。

首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。

对模型Ⅰ用m i n i t a b软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b软件进行回归分析后,结果合理。

最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=31.8-3.491x+56.13x-9.321x3x+0.2621x对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。

最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型:Y=32.8-4.021x+0.9551x 3x21 x关键词止痛剂药剂量性别病痛减轻时间二、问题的提出一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物实验,给患有同种病痛的病人使用这种新止痛剂的一下4个剂量中的某一个:2g,5g,7g和10g,并记录每个病人病痛明显减轻的时间(以分钟计)。

为了了解新药的疗效与病人性别和血压有什么关系,实验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试。

通过比较给个病人血压的历史数据,从低到高分成三组,分别记作0.25,0.50和0.75.实验结束后,公司的记录结果附录1-1表(性别以0表示,1表示男)。

现在为公司建立一个模型,根据病人用药的剂量、性别和血组别,预测出服药后病痛明显减轻的时间。

三、问题的分析假定每个患该种病的程度相差不大,即病情基本相同,根据现实,用药量与病痛减轻时间会有一定的关系,一般,药用量越高,病痛减轻时间变得越快;而更一般,男性身体素质相对于女性来说比较强壮,病痛减轻的时间也会跟性别有关系,正常而言,身体素质越好,病痛减轻时间越快;另一个,一个人的血压组别的高地也会影响到他的病痛减轻时间的快慢。

对1-1表格中的数据进行相关分析如下:相关分析:用药剂量(g),血压组别,知用药剂量(g)和血压组别的P e a r s o n相关系数=0.000P值= 1.000;由此,可以看出用药剂量与血压组别没有关系,如图1-1所示 1-1图相关分析: 用药剂量(g ), 性别,知用药剂量(g ) 和 性别 的P e a r s o n 相关系数=0.000 P 值 = 1.000;由此可以看出用药剂量与性别相互独立。

如1-2图所示 1-2图根据所给数据可分别作出病痛减轻时间与用药剂血压组别的散点图量,性别及如下: 1-3.1图 1-3.2图1-3.3图四、模型假设与符号假设假设病痛减轻时间只与用药剂量、性别和血压组别有关,不受其他因素的影响,由以上散点图(图1-3.1--图1-3.3)可以作出如下模型假设模型Ⅰ: εββββ++++=3322110x x x Y符号说明1、Y 为病痛减轻时间量,单位(m i n );2、1x 表示用药剂量 单位(g );3、2x 表示性别 ;4、3x 表示血压组别;5、 S 表示标准差;6、 R -S q 表示线性拟合度。

五、模型的建立下面用m i n i t a b 软件对分别对残差对用药剂量、残差对性别和残差对血压组别进行绘图,到出对应的1-4.1图、1-4.2图和1-4.3图,并对这些图进行分析,分别可以看出残差对用药剂量是正常的、残差对性别是正常的、残差对血压组别正常的。

1-4.1图 1-4.2图 1-4.3图由1-4.1~1-4.3图分析,可以用药剂量和血压组别的乘积表示对病痛减轻时间的交互式影响,性别对病疼减轻时间有显着影响,因此可以对男性和女性分开讨论,得到如下模型: 模型Ⅱ εββββ++++=31433110x x x x Y (1)对女性的进行分析如下:回归分析: 病痛减轻时间(m i n ) 与 用药剂量(g ), 血压组别, 用药剂量及血压组别 回归方程为病痛减轻时间(m i n ) = 23.1 + 0.040 用药剂量(g ) + 59.4 血压组 别 - 10.2 用药剂量及血压组别交叉项 即 Y =23.1+0.0401x +59.43x -10.21x 3x自变量 系数 系数标准误 T P 常量 23.096 6.108 3.78 0.005用药剂量(g) 0.0397 0.9767 0.04 0.969血压组别 59.38 11.84 5.02 0.001用药剂量及血压组别 -10.163 2.021 -5.03 0.001S = 3.37051 R-Sq = 96.5% R-Sq(调整) = 95.2%方差分析来源自由度 SS MS F P回归 3 2486.03 828.68 72.94 0.000残差误差 8 90.88 11.36合计 11 2576.92来源自由度 Seq SS用药剂量(g) 1 2184.16血压组别 1 14.52用药剂量及血压组别 1 287.36异常观测值用药剂病痛减轻时拟合值标准化观测值量(g)间(min)拟合值标准误残差残差8 7.0 11.000 17.495 1.081 -6.495 -2.03RR表示此观测值含有大的标准化残差因为用药剂量p值为0.969,所以对病痛减轻时间影响不显着,不妨引进用药剂量的平方项加以讨论,因此模型进一步改进为:模型Ⅲ回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别, 用药剂量的平方 回归方程为:病痛减轻时间(min ) = 31.8 - 3.49 用药剂量(g ) + 56.1 血压组别 - 9.32 用药剂量及血压组别 + 0.264 用药剂 量的平方即 Y=31.8-3.491x +56.13x -9.3231x x +0.2621x自变量 系数 系数标准误 T P 常量 31.779 5.755 5.52 0.001 用药剂量(g ) -3.494 1.558 -2.24 0.060 血压组别 56.122 9.141 6.14 0.000 用药剂量及血压组别 -9.322 1.579 -5.90 0.001 用药剂量的平方 0.2636 0.1020 2.58 0.036 S = 2.57789 R-Sq = 98.2% R-Sq (调整) = 97.2% 方差分析来源 自由度 SS MS F P 回归 4 2530.40 632.60 95.19 0.000 残差误差 7 46.52 6.65 合计 11 2576.92来源 自由度 Seq SS 用药剂量(g ) 1 2184.16 血压组别 1 14.52 用药剂量及血压组别 1 287.36由拟合值R-S q=98.2%可以确定,该模型比较合理。

(2)、对男性用模型Ⅱ进行分析,分析结果如下:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别回归方程为:病痛减轻时间(min) = 31.5 + 0.16 用药剂量(g) + 39.0 血压组别- 7.59 用药剂量及血压组别x即 Y=31.5+0.161x+39.03x-7.5931x系数标自变量系数准误 T P常量 31.48 13.71 2.30 0.051用药剂量(g) 0.157 2.055 0.08 0.941血压组别 39.03 25.39 1.54 0.163用药剂量及血压组别 -7.588 3.806 -1.99 0.081S = 7.84538 R-Sq = 76.6% R-Sq(调整) = 67.9%方差分析来源自由度 SS MS F P回归 3 1615.27 538.42 8.75 0.007残差误差 8 492.40 61.55合计 11 2107.67来源自由度 Seq SS血压组别 1 21.13用药剂量及血压组别 1 244.72因为用药剂量p值为0.941,所以对病痛减轻时间影响不显着,不妨引进用药剂量的平方项加以讨论,因此可以利用模型Ⅲ进行分析:回归分析:病痛减轻时间(m i n)与用药剂量(g),血压组别,用药剂量及血压组别,用药剂量的平方回归方程为:病痛减轻时间(min) = 49.8 - 7.84 用药剂量(g) + 39.0 血压组别- 7.59 用药剂量及血压组别 + 0.667 用药剂量的平方即 Y=49.8-7.841x+39.0x-7.5931x x+0.66721x3自变量系数系数标准误 T P常量 49.81 10.71 4.65 0.002用药剂量(g) -7.843 2.784 -2.82 0.026血压组别 39.03 16.96 2.30 0.055用药剂量及血压组别 -7.588 2.543 -2.98 0.020用药剂量的平方 0.6667 0.2018 3.30 0.013S = 5.24268 R-Sq = 90.9% R-Sq(调整) = 85.7%方差分析来源自由度 SS MS F P回归 4 1915.27 478.82 17.42 0.001残差误差 7 192.40 27.49合计 11 2107.67来源 自由度 Seq SS用药剂量(g ) 1 1349.42血压组别 1 21.13用药剂量及血压组别 1 244.72用药剂量的平方 1 300.00由此,可以看出,在男性方面血压组别的P =0.55,对病痛减轻时间不显着,不妨取消血压组别这个单变量,将模型进一步改进。

相关文档
最新文档