概率论与数理统计自考
概率论与数理统计答案详解
![概率论与数理统计答案详解](https://img.taocdn.com/s3/m/b3cc9620cd1755270722192e453610661ed95a09.png)
全国2022年10月高等教育自学考试(概率论与数理统计)(经管类)试题及答案详解课程代码:04183一、单项选择题〔本大题共10小题,每题2分,共20分〕1.已知事件A ,B ,B A 的概率分别为5.0,4.0,6.0,则=)(B A P 〔 B 〕 A .1.0B .2.0C .3.0D .5.0A .0)(=-∞F ,0)(=+∞FB .1)(=-∞F ,0)(=+∞FC .0)(=-∞F ,1)(=+∞FD .1)(=-∞F ,1)(=+∞F3.设),(Y X 服从地域1:22≤+y x D 上的均匀分布,则),(Y X 的概率密度为〔 D 〕 A .1),(=y x fB .⎩⎨⎧∈=其他,0),(,1),(Dy x y x fC .π1),(=y x fD .⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x y x f π4.设随机变量X 服从参数为2的指数分布,则=-)12(X E 〔 A 〕 A .0B .1C .3D .4A .92 B .2 C .4 D .621n 11=⎭⎬⎫⎩⎨⎧≤∑=→∞0lim 1n i i n X P 〔 C 〕 A .0B .25.0C .5.0D .17.设n x x x ,,,21 为来自总体),(σμN 的样本,,σμ是未知参数,则以下样本函数为统计量的是〔 D 〕 A .μ-∑=ni i x 1B .∑=ni i x 121σC .∑=-ni i x n 12)(1μD .∑=n i i x n 121A .置信度越大,置信区间越长B .置信度越大,置信区间越短C .置信度越小,置信区间越长D .置信度大小与置信区间长度无关01A .1H 成立,拒绝0H B .0H 成立,拒绝H 0 C .1H 成立,拒绝1HD .0H 成立,拒绝1H10.设一元线性回归模型:i i i x y εββ++=10,i ε~),0(σN 〔n i ,,2,1 =〕,且各i ε相互独立.依据样本),(i i y x 〔n i ,,2,1 =〕,得到一元线性回归方程x y 10ˆˆˆββ+=,由此得ix 对 应的回归值为i y ˆ,i y 的平均值∑==ni i y n y 11〔0≠y 〕,则回归平方和回S 为〔 C 〕A .∑=-ni i y y 12)(B .∑=-ni i i yy 12)ˆ( C .∑=-ni i y y12)ˆ( D .∑=ni i y12ˆ21ˆnii y=∑二、填空题〔本大题共15小题,每题2分,共30分〕11.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为8.0,5.0,则甲、乙两人同时击中目标的概率为___________.12.设A ,B 为两事件,且)()(==B P A P ,)|(=B A P ,则=)|(B A P ___________.15.设随机变量X ~)2,1(N ,则=≤≤-}31{X P ___________.(附:8413.0)1(=Φ)16.设随机变量X 服从区间],2[θ上的均匀分布,且概率密度⎪⎩⎪⎨⎧≤≤=其他,02,41)(θx x f 则则==}{Y X P ___________.X则=+)(Y X E ___________.有=⎭⎬⎫⎩⎨⎧<-→∞εp n m P n lim ___________.n 21x )xn 21α分位数,则μ的置信度为96.0的置信区间长度是___________.25.设总体X ~),(σμN ,σ未知,n x x x ,,,21 为来自总体的样本,x 和s 分别是样本均值和样本方差,则检验假设00:μμ=H ;01:μμ≠H 采纳的统计量表达式为___________.26.一批零件由两台车床同时加工,第—台车床加工的零件数比第二台多一倍.第—台车床出现不合格品的概率是03.0,第二台出现不合格品的概率是06.0. 〔1〕求任取一个零件是合格品的概率;〔2〕如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设=A (取出第—台车床加工的零件),=B (取出合格品),则所求概率分别为: 〔1〕96.0252494.03197.032)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P ; 〔2〕3264.01442796.094.031)()|()()|(≈=⨯==B P A B P A P B A P .27.已知二维随机变量),(Y X 的分布律为求:〔1〕X 和Y 的分布律;〔2〕),cov(Y X 解:〔1〕X 和Y 的分布律分别为〔2()(=Y E 1.00113.0011.0)1(11.0102.0003.0)1(0)(-=⨯⨯+⨯⨯+⨯-⨯+⨯⨯+⨯⨯+⨯-⨯=XY E , 02.0)3.0(4.01.0)()()(),cov(=-⨯--=-=Y E X E XY E Y X .四、综合题〔本大题共2小题,每题12分,共24分〕28.某次抽样结果说明,考生的数学成绩〔百分制〕近似地服从正态分布),75(2σN ,已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率. 解:用X 表示考生的数学成绩,由题意可得05.0}85{=>X P ,近似地有05.075851=⎪⎭⎫ ⎝⎛-Φ-σ,05.0101=⎪⎭⎫⎝⎛Φ-σ,95.010=⎪⎭⎫ ⎝⎛Φσ,所求概率为9.0195.021102=-⨯=-⎪⎭⎫⎝⎛Φ=σ.29.设随机变量X 服从区间]1,0[上的均匀分布,Y 服从参数为1的指数分布,且X 与Y 相互独立.求:〔1〕X 及Y 的概率密度;〔2〕),(Y X 的概率密度;〔3〕}{Y X P >.解:〔1〕X 的概率密度为⎩⎨⎧≤≤=其他,010,1)(x x f X ,Y 的概率密度为⎩⎨⎧≤>=-0,00,)(y y e y f y Y ;〔2〕因为X 与Y 相互独立,所以),(Y X 的概率密度为=),(y x f )(x f X ⎪⎩⎪⎨⎧>≤≤=-其他,00,10,)(y x e y f yY ; 〔3〕⎰⎰⎰⎰⎰⎰--->-=-=⎪⎪⎭⎫ ⎝⎛==>10100100)1()(),(}{dx e dx e dx dy e dxdy y x f Y X P x x yx y y x11)(--=+=e e x x .五、应用题〔10分〕30.某种产品用自动包装机包装,每袋重量X ~)2,500(2N 〔单位:g 〕,生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值g x 502=.问:当方差不变时,这天包装机工作是否正常〔05.0=α〕?〔附:96.1025.0=u 〕 解:0H :500=μ,1H :500≠μ.已知5000=μ,20=σ,9=n ,502=x ,05.0=α,96.1025.02/==u u α,算得2/0096.139/2500502/||ασμu n x u =>=-=-=,拒绝0H ,这天包装机工作不正常.。
自考概率论与数理统计(二)(02197)及答案
![自考概率论与数理统计(二)(02197)及答案](https://img.taocdn.com/s3/m/551348cc250c844769eae009581b6bd97f19bcc7.png)
概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。
一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。
自考概率论与数理统计基础知识.
![自考概率论与数理统计基础知识.](https://img.taocdn.com/s3/m/6bfe354f79563c1ec5da718e.png)
一、《概率论与数理统计(经管类)》考试题型分析:题型大致包括以下五种题型,各题型及所占分值如下:由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。
计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。
应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。
结合历年真题来练习,就会很容易的掌握解题思路。
总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。
二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。
第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。
4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。
一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。
6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。
结论:若A与B相互独立,则A与,与B 与都相互独立。
2023年10月自考04183概率论与数理统计(经管类)
![2023年10月自考04183概率论与数理统计(经管类)](https://img.taocdn.com/s3/m/189700810d22590102020740be1e650e52eacf8b.png)
2023年10月自考04183概率论与数理统计(经管类)引言概率论与数理统计作为经管类考试中的一门重要课程,为学生提供了解决现实生活中统计数据和不确定性问题的基本工具。
本文将介绍2023年10月自考04183概率论与数理统计(经管类)考试的相关内容和考试要点。
一、考试大纲概述2023年10月自考04183概率论与数理统计(经管类)的考试大纲主要包括三个部分:概率论、数理统计基础和应用统计分析。
下面将对这三个部分进行简要介绍:1.1 概率论概率论是研究随机现象的数量规律和数字特征的数学分支。
在概率论部分,考生需要熟练掌握概率的基本概念、概率计算方法、常见的离散型和连续型概率分布、随机变量及其分布特征等内容。
还需要了解概率的运算规则、条件概率、独立性、随机事件的概率、大数定律等重要概念。
1.2 数理统计基础数理统计是概率论在统计学研究中的应用,用于从样本数据中推断总体参数,并对统计结论进行可靠性评估。
考试大纲中的数理统计基础部分涵盖了统计数据的描述和汇总、样本数据的分布特征、点估计和区间估计、假设检验、回归与相关等知识点。
考生需要掌握样本统计量的性质、抽样分布的基本概念、参数估计的方法和判断标准、假设检验的步骤和原理等内容。
1.3 应用统计分析应用统计分析是将概率论和数理统计的理论与实际问题相结合,用统计方法对实际问题进行分析和解决的过程。
考试大纲中的应用统计分析部分包括相关系数与回归分析、方差分析、非参数检验、贝叶斯统计等内容。
考生需要了解各种统计方法的应用场景、分析步骤和结果解释。
二、备考要点为了顺利通过2023年10月自考04183概率论与数理统计(经管类)考试,考生需要注意以下备考要点:2.1 理论学习与实践应用的结合概率论与数理统计是一门理论实践型的学科,理论学习和实践应用并重。
考生在备考过程中应该注重理论知识的学习,理解关键概念和方法的含义和应用场景。
同时,要将理论知识与实际问题相结合,学会灵活运用所学知识解决实际问题。
概率论与数理统计试题及答案(自考)
![概率论与数理统计试题及答案(自考)](https://img.taocdn.com/s3/m/c51e670f941ea76e59fa04db.png)
概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。
2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。
A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。
故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。
A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。
6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。
选择A。
7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。
计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。
8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。
自考-04183概率论与数理统计
![自考-04183概率论与数理统计](https://img.taocdn.com/s3/m/e8863b264b73f242326c5f0c.png)
04183概率论与数理统计(经管类) 一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1 B .0.2 C .0.3 D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .n k k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为则(0,1)F = C 。
A .0.2 B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
概率论与数理统计自考题型
![概率论与数理统计自考题型](https://img.taocdn.com/s3/m/a8c95ec70129bd64783e0912a216147917117ed1.png)
概率论与数理统计自考题型一、选择题(每题3分,共30分)1. 设随机变量X服从正态分布N(μ,σ²),则P(X ≤ μ)等于()A. 0B. 0.5C. 1D. 取决于μ和σ的值。
答案:B。
解析:正态分布的图像关于x = μ对称,所以P(X ≤ μ) = 0.5。
2. 若事件A与B相互独立,P(A) = 0.4,P(B) = 0.5,则P(A∪B)等于()A. 0.7B. 0.8C. 0.6D. 0.9。
答案:A。
解析:因为A与B相互独立,所以P(A∪B)=P(A)+P(B)-P(A)P(B)=0.4 + 0.5 - 0.4×0.5 = 0.7。
3. 设离散型随机变量X的分布律为P(X = k)=ck,k = 1,2,3,则c的值为()A. 1/6B. 1/3C. 1/2D. 2/3。
答案:A。
解析:根据离散型随机变量分布律的性质,所有概率之和为1,即c+2c+3c = 1,解得c = 1/6。
4. 对于二维随机变量(X,Y),如果X与Y相互独立,则()A. Cov(X,Y) = 0B. D(X + Y)=D(X)+D(Y)C. 以上两者都对D. 以上两者都不对。
答案:C。
解析:当X与Y相互独立时,Cov(X,Y) = 0,且D(X + Y)=D(X)+D(Y)。
5. 设总体X服从参数为λ的泊松分布,X₁,X₂,…,Xₙ是来自总体X的样本,则λ的矩估计量为()A. XB. 1/XC. X²D. 1/X²。
答案:A。
解析:根据泊松分布的期望为λ,由矩估计法,用样本均值X估计总体的期望λ。
6. 样本方差S²是总体方差σ²的()A. 无偏估计B. 有偏估计C. 极大似然估计D. 矩估计。
答案:A。
解析:样本方差S²是总体方差σ²的无偏估计。
7. 设总体X~N(μ,σ²),其中μ未知,σ²已知,X₁,X₂,…,Xₙ是来自总体X的样本,则μ的置信区间为()A. (X - zα/2(σ/√n),X + zα/2(σ/√n))B. (X - tα/2(s/√n),X + tα/2(s/√n))C. (X - zα/2(s/√n),X + zα/2(s/√n))D. (X - tα/2(σ/√n),X + tα/2(σ/√n))。
自考_概率论与数理统计(经管类)__真题及答案详解分析
![自考_概率论与数理统计(经管类)__真题及答案详解分析](https://img.taocdn.com/s3/m/f07eae2216fc700abb68fc60.png)
1【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).2.【答案】C【解析】根据分布函数的性质,选择C。
【提示】分布函数的性质:① 0≤F(x)≤1;② 对任意x1,x2(x1<x2),都有P{x1<X≤x2}=F(x2)-F(x1);③ F(x)是单调非减函数;④ ,;⑤ F(x)右连续;⑥ 设x为f(x)的连续点,则F‘(x)存在,且F’(x)=f(x).3【答案】D【解析】由课本p68,定义3-6:设D为平面上的有界区域,其面积为S且S>0. 如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。
若(X,Y)服从二维正态分布,表示为(X,Y)~.4.【答案】A【解析】因为随机变量X服从参数为2的指数分布,即λ=2,所以;又根据数学期望的性质有 E(2X-1)=2E(X)-1=1-1=0,故选择A.【提示】1.常用的六种分布(1)常用离散型随机变量的分布:A. 两点分布① 分布列② 数学期望:E(X)=P③ 方差:D(X)=pq。
2023年全国自考概率论与数理统计试题及答案新编
![2023年全国自考概率论与数理统计试题及答案新编](https://img.taocdn.com/s3/m/42fe51acf80f76c66137ee06eff9aef8941e48da.png)
全国2023年4月自考概率论与数理记录(经管类)试题课程代码: 04l83一、单项选择题(本大题共10小题, 每题2分, 共20分)在每题列出旳四个备选项中只有一种是符合题目规定旳, 请将其代码填写在题后旳括号内。
错选、多选或未选均无分。
1.设A,B 为B 为随机事件, 且 , 则 等于( )A.B. C.AD.A2. 设A, B 为随机事件, 则 = ( )A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +- 3. 设随机变量X 旳概率密度为 则 ( )A.B. C.{}3<5P X ≤ D.{}2<7P X ≤4. 已知随机变量X 服从参数为 旳指数分布, 则X 旳分布函数为( )A. B.C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩5. 设随机变量X 旳分布函数为F(x), 则( )A. B.C.()0F +∞=D.()1F +∞=6. 设随机变量X 与Y 互相独立, 它们旳概率密度分别为 , 则(X, Y)旳概率密度为( )A. B. C.1()()2X Y f x f y D.()()X Y f x f y7. 设随机变量 , 且 , 则参数n,p 旳值分别为( )A. 4和0.6B.6和0.4C.8和0.3D.3和0.88. 设随机变量X 旳方差D(X)存在, 且D(X)>0, 令 , 则 ( )A. B.0C.1D.29. 设总体 x1,x2,…, xn 为来自总体X 旳样本, 为样本均值, 则下列记录量中服从原则正态分布旳是() A.23x - B.29x -x x 10. 设样本x1,x2,…, xn 来自正态总体 , 且 未知. 为样本均值, s2为样本方差.假设检查问题为 , 则采用旳检查记录量为( )xx二、填空题(本大题共15小题, 每题2分, 共30分)请在每题旳空格中填上对旳答案。
2023年10月全国自考《02197概率论与数理统计二》真题及答案
![2023年10月全国自考《02197概率论与数理统计二》真题及答案](https://img.taocdn.com/s3/m/6ca2f002bf1e650e52ea551810a6f524ccbfcbb2.png)
2023年10月全国自考《02197概率论与数理统计二》真题及答案一、概率论部分选择题1. 在伯努利试验中,试验次数和事件的关系是()A. 试验次数越多,事件发生的概率越大B. 试验次数越多,事件发生的概率越小C. 试验次数和事件的概率无关D. 不能确定答案:C解析:在伯努利试验中,每次试验的结果只有两个可能的情况,且各次试验之间相互独立。
试验次数和事件发生的概率无关。
2. 设A和B为两个事件,且P(A)=0.4,P(B)=0.6,如果A和B相互独立,则P(A且B)=()A. 0.24B. 0.16C. 0.4D. 0.6答案:A解析:如果事件A和B相互独立,则P(A且B) = P(A) ×P(B) = 0.4 × 0.6 = 0.24。
论述题1. 离散随机变量与连续随机变量有哪些区别?离散随机变量与连续随机变量是概率论中的两个重要概念,它们有以下区别:•取值方式:离散随机变量的取值是有限的或可列的,而连续随机变量的取值是连续的。
•概率密度函数和概率质量函数:离散随机变量用概率质量函数描述,连续随机变量用概率密度函数描述。
•概率计算:对于离散随机变量,可以通过概率质量函数计算各取值的概率,并通过求和得到整体概率。
对于连续随机变量,需要通过概率密度函数计算某一区间内的概率,通过积分得到整体概率。
•可数性:离散随机变量的取值可以一一列举,而连续随机变量的取值是无限的,无法一一列举。
•概率分布:离散随机变量的概率可以用概率分布列或概率质量函数表示,连续随机变量的概率可以用概率密度函数表示。
综上所述,离散随机变量和连续随机变量在取值方式、概率表示和概率计算等方面有明显的区别。
二、数理统计部分选择题1. 样本均值的分布称为()A. 参数估计B. 假设检验C. 正态分布D. 抽样分布答案:D解析:样本均值的分布称为抽样分布,它是对总体均值的估计。
2. 如何计算样本的方差?A. 样本方差等于样本标准差的平方B. 样本方差等于样本标准差除以样本大小减一C. 样本方差等于样本标准差除以样本大小D. 样本方差等于样本标准差的平方除以样本大小减一答案:D解析:样本的方差等于样本标准差的平方除以样本大小减一。
自考概率论与数理统计(经管类)自学资料
![自考概率论与数理统计(经管类)自学资料](https://img.taocdn.com/s3/m/05f5695bdd3383c4ba4cd288.png)
自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。
引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。
从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。
(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。
由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。
虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。
必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。
例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。
不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。
例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。
(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。
例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。
全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。
(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。
例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。
∴A={1,2},B={1,2,3}。
所以A发生则必然导致B 发生。
显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。
全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典
![全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典](https://img.taocdn.com/s3/m/c7644226178884868762caaedd3383c4bb4cb48c.png)
概率论与数理统计(经管类)(04183适用全国)速记宝典命题来源:围绕学科的基本概念、原理、特点、内容。
答题攻略:(1)不能像名词解释那样简单,也不能像论述题那样长篇大论,但需要加以简要扩展。
(2)答案内容要简明、概括、准确,即得分的关键内容一定要写清楚。
(3)答案表述要有层次性,列出要点,分点分条作答,不要写成一段;(4)如果对于考题内容完全不知道,利用选择题找灵感,找到相近的内容,联系起来进行作答。
如果没有,随意发挥,不放弃。
考点1:随机事件。
在随机试验中,产生的各种结果叫做随机事件(random Events),简称事件(Events).随机事件通常用大写英文字母A、B、C等表示.如观察马路交叉口可能遇上的各种颜色交通灯,这是随机试验,而“遇上红灯”则是一个随机事件。
例:投掷一个骰子,观察其朝上的点数。
A={朝上的点数为2}B={朝上的点数为偶数点}都是随机事件。
必然事件Certainty Events必然事件——样本空间Ω本身也是事件,它包含了所有可能的试验结果,因此不论在哪一次试验它都发生,称为必然事件。
也将它记为Ω。
如:“抛掷一颗骰子,出现的点数不大于6”不可能事件Impossible Event不可能事件——不包含任何样本点的事件,记为φ,每次试验必定不发生的事件.如:“抛掷一颗骰子,出现的点数大于6”考点2:古典概型。
设某随机试验具有如下特征:(1)试验的可能结果只有有限个;(2)各个可能结果出现是等可能的。
则称此试验为古典(等可能)概型。
古典概型中概率的计算:n=进行试验的样本点总数ΩK=所考察的事件A含的样本点数P(A)=k/n=A的样本点数/样本点总数P(A)具有如下性质:(1)0≤P(A)≤1;(2)P(Ω)=1;P(φ)=0(3)AB=φ,则P(A∪B)=P(A)+P(B)考点3:乘法公式。
若抽取是不放回地,求以上三问?设A、B∈Ω,P(A)>0,则P(AB)=P(A)P(B|A).(1)式(1)就称为事件A、B的概率乘法公式。
历年自考《概率论与数理统计》试题及答案
![历年自考《概率论与数理统计》试题及答案](https://img.taocdn.com/s3/m/5a498c04590216fc700abb68a98271fe900eaf56.png)
历年自考《概率论与数理统计》试题及答案概率论与数理统计自考试题及答案概率论与数理统计作为一门重要的学科,旨在研究事物发生的概率和统计规律。
自考《概率论与数理统计》科目作为自考证书的一部分,对于自考学生来说具有重要的意义。
本文将为大家介绍历年自考《概率论与数理统计》试题及答案,供大家学习参考。
一、选择题试题及答案1. 以下哪种是属于离散型随机变量?A) 考试成绩B) 温度C) 股票价格D) 身高答案:A) 考试成绩2. 下列哪种是连续型随机变量?A) 投硬币的结果B) 抛骰子的结果C) 学生身高D) 班级人数答案:C) 学生身高3. 一批商品中有10%的次品,现在从中随机抽取5件商品,求至少有1件次品的概率。
A) 0.59B) 0.95C) 0.41D) 0.24答案:B) 0.95二、填空题试题及答案1. 对于一个事件的概率,有一个基本性质称为________。
答案:非负性2. 设事件A和事件B相互独立,P(A) = 0.3,P(B) = 0.4,则P(A∪B) = ________。
答案:0.523. 设事件A和事件B互斥,则P(A∪B) = ________。
答案:P(A) + P(B)三、简答题试题及答案1. 什么是条件概率?答案:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
2. 请解释经验概率和几何概率的概念。
答案:经验概率是通过实验或观察得出的概率值,是频率的极限;而几何概率是指基于数学原理和几何形状计算得出的概率值。
四、计算题试题及答案1. 一批商品中有10%的次品,现在从中随机抽取5件商品,求至少有1件次品的概率。
解答:设事件A为至少有1件次品。
根据题目可知,商品次品的概率为0.1。
则P(没有次品) = 0.9^5 = 0.59049所以,P(A) = 1 - P(没有次品) = 1 - 0.59049 = 0.40951因此,至少有1件次品的概率为0.40951。
自考-概率论与数理统计课件(经管类)
![自考-概率论与数理统计课件(经管类)](https://img.taocdn.com/s3/m/c51eae9a32d4b14e852458fb770bf78a65293a8f.png)
贝叶斯定理
贝叶斯定理的表述
对于任何事件A和B,有P(B|A)=P(A∩B)/P(A)。
贝叶斯定理的应用
贝叶斯定理在统计推断、决策分析和机器学习等领域 有广泛的应用。
贝叶斯定理的推导
贝叶斯定理可以通过条件概率的定义和全概率公式进 行推导。
02 随机变量及其分布
离散随机变量
定义
离散随机变量是在一定区间内取有限个值的随机变量,通 常用整数或离散值表示。
04 数理统计基础
样本与抽样分布
总体与样本
总体是研究对象的全体,样 本是从总体中抽取的一部分 。
随机抽样
随机抽样是从总体中按照随 机原则抽取一部分个体的方 法。
抽样分布
抽样分布是描述样本统计量 的分布情况。
参数估计
点估计
点估计是利用样本数据对总体参数进行估计的 方法。
区间估计
区间估计是基于点估计,给出总体参数可能存 在的区间范围。
性质
随机变量的函数的概率分布可以 通过对原随机变量的概率分布进 行相应的运算得到。
03 数字特征与特征函数
期望与方差
期望
期望是概率论中用来度量随机变量取值的平均水平的数学工具,常用符号E表示。期望的计算公式为 E(X)=∑XP(X),其中X是随机变量,P(X)是随机变量取各个可能值的概率。
方差
方差是用来度量随机变量取值分散程度的数学工具,常用符号D表示。方差的计算公式为 D(X)=E[(X−E(X))^2],其中E(X)是随机变量的期望值。
市场调查数据分析
调查问卷设计
基于概率论与数理统计原理,设计有 效的调查问卷,确保数据收集的准确
性和代表性。
数据处理与分析
利用统计分析方法对市场调查数据进 行处理和分析,提取有价值的信息,
概率论与数理统计自考(习题卷4)
![概率论与数理统计自考(习题卷4)](https://img.taocdn.com/s3/m/29db916f76232f60ddccda38376baf1ffc4fe3a1.png)
概率论与数理统计自考(习题卷4)第1部分:单项选择题,共38题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]已知随机变量X只能取值-1,0,1,2,其相应的概率依次为,则P{X<1|X≠0}=( )。
A)4/25B)8/25C)12/25D)16/25答案:B解析:① 求c:,解得,得X的分布律2.[单选题]设随机变量X服从参数为2的指数分布, 随机变量Y =2X+2, 则E(Y)=A)0.5B)1C)2D)3答案:D解析:本题考察指数分布的数字特征及随机变量函数的数字特征。
已知~,则,所以,故选择D.3.[单选题]设随机变量X与Y的方差分别为4和9,斜方差为4.2,则相关系数为A)0.7B)0.4C)0.5D)0.9答案:A解析:4.[单选题]已知D(X)=9,D(Y)=16,ρXY=0.4,则D(X+Y)为A)9.4B)16.4C)34.5D)34.6答案:D解析:因为,因此Cov(X,Y)=3×4×0.4=4.8,而D(X+Y)=D(X)+D(Y)+2 Cov(X,Y)=9+16+2×4.8=34.6,因此选D。
5.[单选题]在某大学抽查100个学生,调查他们自觉储蓄的比例,情况如下:A)0.9475B)0.9321C)0.8702D)0.6356答案:A解析:Eξ=7.99, Dξ=0.21,切比雪夫不等式:即学生储蓄率为ξ%与平均水平7.99%相差不足两个百分点(ξ=2)的概率不小于0.94756.[单选题]设X1,…Xn为来自正态总体N(μ,σ2)的简单随机样本,则数学期望等于()。
A)n3(n-1)μ·σ2B)(n-1)μ·σ2C)n2(n-1)μ·σ2D)n3(n-1)μ·σ答案:A解析:由于-X,S 是相互独立的,则7.[单选题]设总体X服从正态分布N(0, σ2), X,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n-l的t分布的随机变量()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年4月自考《概率论与数理统计》模拟试题
第一部分 选择题
一 单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1 对于任意两个事件A 与B,必有P(A-B)=( )
A. P(A)-P(B) B P(A)-P(B)+P(AB) C P(A)-P(AB) D P(A)+P(B)
2.某种动物活到25岁以上的概率为0.8,活到30岁的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是( )。
A. 0.76
B. 0.4
C. 0.32
D. 0.5
3.设F(x)和f(x)分别为某随机变量的分布函数和概率密度,则必有( )
A f(x)单调不减 B
()1F x dx +∞-∞=⎰ C ()0F -∞= D ()()F x f x dx +∞
-∞=⎰
4.设随机变量X 与Y 相互独立,且⎪⎭⎫ ⎝⎛
21,16~B X ,Y 服从于参数为9的泊松分布,则=
+-)12(Y X D ( )。
A. –14
B. –13
C. 40
D. 41
5.设随机变量X 的数学期望存在,则=)))(((X E E E ( )。
A. 0
B. )(X D
C. )(X E
D. []2
)(X E
6.设二维随机变量(X,Y)的联合分布列为
若X 与Y 独立,则( ) 7设随机变量X~N(1,4),已知(0.5)0.6915ϕ=,则P{1≤X ≤2}=( )
A 0.6915
B 0.1915
C 0.5915
D 0.3915
8 设总体未知参数θ的估计量θ满足()E θθ≠,则θ一定是θ的( )
A 极大似然估计
B 矩估计
C 有偏估计
D 有效估计
9.设X 1,X 2,…X 6是来自正态总体N(0,1)的样本,则统计量X 12+X 22+…+X 62服从( )分布
A 正态分布
B t 分布
C F 分布
D 2
χ分布
10 设总体2~(,)X N μσ,且μ未知,检验方差220σσ=是否成立需要利用( ) A 标准正态分布 B 自由度为n-1的t 分布
C 自由度为n 的2χ分布
D 自由度为n-1的2
χ分布
第二部分非选择题
二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设A,B为随机事件
,A与B互不相容,P(B)=0.2,则()
P AB=__________
12.一个射手命中率为80%,另一射手命中率为70%,两人各射击一次,两人中至少有一个人命中的概率是______________
13.设随机变量X服从参数为λ的泊松分布,且{}{}2
1=
=
=X
P
X
P,则=
)
(X
D______
15. 设随机变量X的概率函数为P(X=k)= 1
5
,k=1,2,3,4,5,则EX=_______
16.设~(3,2)
N
ξ-,则密度函数p(x)=_____________
18 设随机变量X~N(2,32),Y~B(12,0.5),X与Y独立,则D(X+Y)=____________
19.已知EX=1,EY=2,EXY=3,则X与Y的协方差Cov(X,Y)=_______________
20 已知X~N(0,1), 2
~()
Y n
χ,则2
/
~
X
Y n
________分布
21.设总体X服从几何分布P(X=k)=p(1-p)k-1,k=1,2,…,其中0<p<1,x1,x2,…x n是来自X的样本值,则未知参数p 的矩估计为__________
22 设x1,x2,…x n是来自密度函数为1
2
(),,0
x
f x e x
σ
σ
σ
-
=-∞<<+∞>的总体的样本,则σ的最大似然估计量为______________
23 设随机变量X的数学期望2
,
EX DX
μσ
==,则{3}
P Xμσ
-≥≤_______
25 设x1,x2,…x n是来自总体2
~(,)
X Nμσ的样本,则当2σ未知且检验
μμ
=时,采用统计量___________________
三、计算题(本大题共8分)
26 设随机变量ξ服从参数λ=1的指数分布,求方程2
44(2)0
x x
ξξ
+++=无实根的概率.
四、证明题(本大题共8分)
27 已知随机变量ξ与η同分布,U=ξ-η,V=ξ+η,试证U与V不相关.
五、综合题(本大题共2小题,每小题12分,共24分)
28 设随机变量ξ的密度函数为
2
1
1
2
11
()
0,
:(1));(3)()
A
x
x
p x
F x
ξξ
-
-<<
⎧⎪
=⎨
⎪⎩
<<
1
2
其他
求常数A;(2)P(-的分布函数
29 设(X,Y)的联合密度函数为
,01,0
(,)
0,
(1)?
(2).
y
e x y
f x y
X Y
X Y
-
⎧<<>
=⎨
⎩其他
与是否独立
求与的分布函数
六、应用题(共10分)
30.某切割机正常工作时,切割每段金属棒的平均长度为10.5cm,标准差为0.15cm.今从一批产品中随机抽取15段进行测量,其结果如下(单位:cm):
10.4, 10.6, 10.1,10.4, 10.5, 10.3, 10.3, 10.2, 10.9, 10.6, 10.8, 10.5 ,10.7, 10.2, 10.7
由以往经验知道,金属棒长度服从正态分布,在显著性水平α=0.05下,检验该切割机的工作是否正常?( 0.0250.051.96, 1.645U U ==)。