浙江省各地中考数学压轴题汇编(钟老师整理)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年浙江省各地中考数学压轴题精选
1.(2011浙江湖州)如图,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点。
P (0,m )是线段OC 上一动点(C 点除外),直线PM 交A B 的延长线于点D 。 ⑴求点D 的坐标(用含m 的代数式表示); ⑵当△APD 是等腰三角形时,求m 的值;
⑶设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2),当点P 从点O 向点C 运动时,点H 也随之运动。请直接写出点H 所经过的路径长。(不必写解答过程)
2.(2011浙江嘉兴)已知直线3+=kx y (k <0)分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.
(1)当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1). ① 直接写出t =1秒时C 、Q 两点的坐标;
② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值.
(2)当4
3-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D (如图2),
① 求CD 的长;
② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?
3、(2011•丽水)如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆C ,点B 是该半圆周上一动点,连接OB 、AB ,并延长AB 至点D ,使DB=AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连接CF . (1)当∠AOB=30°时,求弧AB 的长度; (2)当DE=8时,求线段EF 的长;
(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由.
4.(2011浙江宁波)如图,平面直角坐标系xOy 中,点A 的坐标为(2,2) ,点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,连结OA 、OB 、AB ,线段AB 交y 轴于点E . (1) 求点E 的坐标; (2) 求抛物线的函数解析式;
(3) 点F 为线段OB 上的一个动点(不与点O 、B 重合),直线EF 与抛物线交于M 、N 两
点(点N 在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求△BON 面积的最大值,并求出此时点N 的坐标;
(4) 连结AN ,当△BON 面积最大时,在坐标平面内求使得△BOP 与△OAN 相似(点B 、
B
A
O P
C
x
y
1
1
D
(图2)
(图1)
B A
O
P C
Q x
y
1
1
O、P分别与点O、A、N对应)的点P的坐标.
5、(2011浙江衢州)已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.
6、(2011浙江温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作 PC⊥x轴,垂足为C。记点P 关于y轴的对称点为P´(点P´不在y轴上),连结PP´, P´A, P´C.设点P的横坐标为a。(1)当b=3时,
○1求直线AB的解析式;
○2若点P´的坐标是(-1,m),求m的值;
(2)若点P在第一象限,记直线AB与P´C的交点为D。当P´D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P´CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由。
7、(2011浙江舟山)已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线
AB于点C,设运动时间为t秒.
(1)当k=﹣1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?
8.(2011浙江义乌)已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4. 设顶点为
点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN∥x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN. 在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒. 求S关于t的函数关系式.