第二十三章旋转试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.把26个英文字母按规律分成5组,现在还有5个字母D、M、Q、X、Z,请你按原规
律补上,其顺序依次为()
①F R P J L G()②H I O()
③N S()④B C K E()
⑤V A T Y W U()
A.Q X Z M DB.D M Q Z X
C.Z X M D QD.Q X Z D M
8.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,
方法二:可看作是 绕中心O依次旋转60°、120°得到整个图案的.
方法三:可看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.
①△O′BO为等边三角形,且A′、O′、O、C在一条直线上.
②A′O′+O′O=AO+BO.
③A′P′+P′P=PA+PB.
④PA+PB+PC>AO+BO+CO.
A.1个B.2个C.3个D.4个
6.如图11-11,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案相互重合,其中有一个图案与其余三个图案旋转的角度不同,它是( ).
4.如图11-9,△ABC中,AD是∠BAC内的一条射线,BE⊥AD,且△CHM可由△BEM旋转而得,则下列结论中错误的是( ).
A.M是BC的中点B.
C.CF⊥AD D.FM⊥BC
5.如图11-10,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC内不同于O的另一点;△A′BO′、△A′BP′分别由△AOB、△APB旋转而得,旋转角都为60°,则下列结论中正确的有( ).
2.下列描述中心对称的特征的语句中,其中正确的是( )
A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心
B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段
C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分
D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分
15.如图11-6,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有_____________.
三、作图题
16.如图11-13,将图形绕O点按顺时针方向旋转45°,作出旋转后的图形.
四、解答题
17.如图11-14,△ABC、△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?
18.如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,
△ABD经过旋转后到达△ACE的位置,
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
19.如图所示,△ABP是由△ACE绕A点旋转得到的,那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,∠PAC=20°,求旋转角及∠CAE、∠E、∠BAE的度数。
13.如图11-4,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=_____________.
14.如图11-5,O是等边△ABC内一点,将△AOB绕B点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为_____________,图中除△ABC外,还有等边三形是_____________.
17.如图23—A—8,△ABC绕点A旋转后到达△ADE处,若∠BAC=120°,∠BAD=30°,则∠DAE=__________,∠CAE=__________。
18.如图23—A—9,△ABC中,∠BAC=90°,AB=AC=5cm,△ABC按逆时针方向旋转一个角度后,成为△ACD,则图中的____________是旋转中心,旋转角是___________。
12.一条线段绕其上一点旋转90°与原来的线段位置关系.
13.下列大写字母A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.
14.钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。
(A) (B) (C) (D)
二、填空题(每小题分,共分)
11.如图11-1所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=_____________.
12.如图11-3,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA_______PB+PC(填“>”、“<”或“=”).
(2) 若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.
第二十三章旋转(A)
一、选择题
1.D 2.D 3.D 4.C 5.D 6.B 7.B 8.A 9.B 10.A 11.D
二、填空题
12.垂直 13.O X ; H I O X 14.表盘中心 120° 15.直角6cm16.120 17.120°30°18.点A 90°
3. (2005·福建南平)
4.下列图形中即是轴对称图形,又是旋转对称图形的是( )
A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)
5.下列图形中,是中心对称的图形有( )
①正方形 ;②长方形 ;③等边三角形; ④线段; ⑤角; ⑥平行四边形。
A.5个 B.2个 C.3个 D.4个
22.①如图11一26所示
②AB与AB′,AC与AC′,BC来自百度文库BC′分别为对应边.
第二十三章旋转(B)
一、选择题
1.C 2.D 3.C 4.D 5.D 6.A 7.D 8.A 9.D 10.C
二、填空题
11.60°12.< 13.45°14.60°;△AOD 15.△CPS和△EPQ
三、作图题
16.略。
6.(2005·甘肃平凉)在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是( )
A.(2,3) B.(—2,3) C.(—2,—3) D.(—3,2)
7.将图形 按顺时针方向旋转900后的图形是( )
A B C D
8.将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()
A.顺时针旋转60°得到
B.顺时针旋转120°得到
C.逆时针旋转60°得到
D.逆时针旋转120°得到
3.如图11-8,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的三角形对数有( ).
A.1对B.2对C.3对D.4对
20.观察如图23—A—11所示的图形是否有其中一个图形,是另一个图形经旋转得到的.
21.你能分析出图23—A—12中旋转的现象吗?
22.已知如图23—A—13,△ABC是等腰直角三角形,∠C直角.
(1)画出以A为旋转中心,逆时针旋转45°后的图形.
(2)指出面ABC三边的对应线段.
九年级数学第二十三章旋转测试题(B)
45分钟 100分
一、选择题(每小题分,共分)
1.如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).
①对应点连线的中垂线必经过旋转中心.
②这两个图形大小、形状不变.
③对应线段一定相等且平行.
④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.
A.1个B.2个C.3个D.4个
2.如图11-7,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以A为中心( ).
三、作图题
19.(1)如图
(2)能,将△ABC绕CB、C”B”延长线的交点顺时针旋转90度。
四、解答题
20.答:有。将图形 顺时针或(逆时针)旋转72°、144°、216°。
21.图①由基本图形 绕中点O顺时针(逆时针)旋转90°、180°、270°得到的.
图②由基本图形 绕中O顺时针(逆时针)旋转90°、180°、270°得到的.
那么她所旋转的牌从左起是()
A.第一张、第二张B.第二张、第三张
C.第三张、第四张D.第四张、第一张
(1)(2)
9.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().
(A) (B) (C) (D)
10.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()
15.如图23—A—7所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为________三角形,若AD=2cm,BC=8cm,则FG=____________。
16.△ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,则至少旋转____________度后能与原来图形重合.
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
11.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()
A. B. C. D.
二、填空题(每小题3分,共21分)
20.如图,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E, 旋转后能与 重合。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5㎝,求四边形AECF的面积。
21.如图11-19所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.
图11-19
A、顺时针方向500B、逆时针方向500
C、顺时针方向1900D、逆时针方向1900
9.如图23—A—3所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是( )
A.l个B.2个C.3个D.4个
10.(2005·江苏苏州)如图23—A—4,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到图23—A—4,再将图23—A—4作为“基本图形”绕着A点经过逆时针连续旋转得到图23—A—5.两次旋转的角度分别为( ).
22.如图11-17所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.
23.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1) 如图1, 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;
三、作图题(12分)
19.在图23—A—10中,把△ABC向右平移5个方格,再绕点B的对应点顺时针方向旋转90度.
(1)画出平移和旋转后的图形,并标明对
应字母;
(2)能否把两次变换合成一种变换,如
果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.
四、解答题(第20小题10分,21、22小题各12分,共34分)
四、解答题
17.△ABD与△ACE。
18.(1)A点;(2)60°;(3)AC的中点。
19.旋转角为60°,∠CAE=40°,∠E=110°,∠BAE=110°。
20.(1)A点;(2)旋转了90度;(3)由旋转的性质可知,四边形AECF是正方形,所以四边形AECF的面积为25cm2。
21.方法一:可看作整个花瓣的六分之一部分,图案为 绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.
九年级数学第二十三章旋转测试题(A)
45分钟 100分
一、选择题(每小题3分,共33分)
1.下列正确描述旋转特征的说法是( )
A.旋转后得到的图形与原图形形状与大小都发生变化.
B.旋转后得到的图形与原图形形状不变,大小发生变化.
C.旋转后得到的图形与原图形形状发生变化,大小不变.
D.旋转后得到的图形与原图形形状与大小都没有变化.
律补上,其顺序依次为()
①F R P J L G()②H I O()
③N S()④B C K E()
⑤V A T Y W U()
A.Q X Z M DB.D M Q Z X
C.Z X M D QD.Q X Z D M
8.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,
方法二:可看作是 绕中心O依次旋转60°、120°得到整个图案的.
方法三:可看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.
①△O′BO为等边三角形,且A′、O′、O、C在一条直线上.
②A′O′+O′O=AO+BO.
③A′P′+P′P=PA+PB.
④PA+PB+PC>AO+BO+CO.
A.1个B.2个C.3个D.4个
6.如图11-11,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案相互重合,其中有一个图案与其余三个图案旋转的角度不同,它是( ).
4.如图11-9,△ABC中,AD是∠BAC内的一条射线,BE⊥AD,且△CHM可由△BEM旋转而得,则下列结论中错误的是( ).
A.M是BC的中点B.
C.CF⊥AD D.FM⊥BC
5.如图11-10,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC内不同于O的另一点;△A′BO′、△A′BP′分别由△AOB、△APB旋转而得,旋转角都为60°,则下列结论中正确的有( ).
2.下列描述中心对称的特征的语句中,其中正确的是( )
A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心
B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段
C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分
D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分
15.如图11-6,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有_____________.
三、作图题
16.如图11-13,将图形绕O点按顺时针方向旋转45°,作出旋转后的图形.
四、解答题
17.如图11-14,△ABC、△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?
18.如图,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,
△ABD经过旋转后到达△ACE的位置,
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
19.如图所示,△ABP是由△ACE绕A点旋转得到的,那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,∠PAC=20°,求旋转角及∠CAE、∠E、∠BAE的度数。
13.如图11-4,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=_____________.
14.如图11-5,O是等边△ABC内一点,将△AOB绕B点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为_____________,图中除△ABC外,还有等边三形是_____________.
17.如图23—A—8,△ABC绕点A旋转后到达△ADE处,若∠BAC=120°,∠BAD=30°,则∠DAE=__________,∠CAE=__________。
18.如图23—A—9,△ABC中,∠BAC=90°,AB=AC=5cm,△ABC按逆时针方向旋转一个角度后,成为△ACD,则图中的____________是旋转中心,旋转角是___________。
12.一条线段绕其上一点旋转90°与原来的线段位置关系.
13.下列大写字母A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.
14.钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。
(A) (B) (C) (D)
二、填空题(每小题分,共分)
11.如图11-1所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=_____________.
12.如图11-3,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA_______PB+PC(填“>”、“<”或“=”).
(2) 若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图2为例说明理由.
第二十三章旋转(A)
一、选择题
1.D 2.D 3.D 4.C 5.D 6.B 7.B 8.A 9.B 10.A 11.D
二、填空题
12.垂直 13.O X ; H I O X 14.表盘中心 120° 15.直角6cm16.120 17.120°30°18.点A 90°
3. (2005·福建南平)
4.下列图形中即是轴对称图形,又是旋转对称图形的是( )
A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)
5.下列图形中,是中心对称的图形有( )
①正方形 ;②长方形 ;③等边三角形; ④线段; ⑤角; ⑥平行四边形。
A.5个 B.2个 C.3个 D.4个
22.①如图11一26所示
②AB与AB′,AC与AC′,BC来自百度文库BC′分别为对应边.
第二十三章旋转(B)
一、选择题
1.C 2.D 3.C 4.D 5.D 6.A 7.D 8.A 9.D 10.C
二、填空题
11.60°12.< 13.45°14.60°;△AOD 15.△CPS和△EPQ
三、作图题
16.略。
6.(2005·甘肃平凉)在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是( )
A.(2,3) B.(—2,3) C.(—2,—3) D.(—3,2)
7.将图形 按顺时针方向旋转900后的图形是( )
A B C D
8.将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()
A.顺时针旋转60°得到
B.顺时针旋转120°得到
C.逆时针旋转60°得到
D.逆时针旋转120°得到
3.如图11-8,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的三角形对数有( ).
A.1对B.2对C.3对D.4对
20.观察如图23—A—11所示的图形是否有其中一个图形,是另一个图形经旋转得到的.
21.你能分析出图23—A—12中旋转的现象吗?
22.已知如图23—A—13,△ABC是等腰直角三角形,∠C直角.
(1)画出以A为旋转中心,逆时针旋转45°后的图形.
(2)指出面ABC三边的对应线段.
九年级数学第二十三章旋转测试题(B)
45分钟 100分
一、选择题(每小题分,共分)
1.如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).
①对应点连线的中垂线必经过旋转中心.
②这两个图形大小、形状不变.
③对应线段一定相等且平行.
④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.
A.1个B.2个C.3个D.4个
2.如图11-7,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以A为中心( ).
三、作图题
19.(1)如图
(2)能,将△ABC绕CB、C”B”延长线的交点顺时针旋转90度。
四、解答题
20.答:有。将图形 顺时针或(逆时针)旋转72°、144°、216°。
21.图①由基本图形 绕中点O顺时针(逆时针)旋转90°、180°、270°得到的.
图②由基本图形 绕中O顺时针(逆时针)旋转90°、180°、270°得到的.
那么她所旋转的牌从左起是()
A.第一张、第二张B.第二张、第三张
C.第三张、第四张D.第四张、第一张
(1)(2)
9.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().
(A) (B) (C) (D)
10.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()
15.如图23—A—7所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为________三角形,若AD=2cm,BC=8cm,则FG=____________。
16.△ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,则至少旋转____________度后能与原来图形重合.
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
11.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()
A. B. C. D.
二、填空题(每小题3分,共21分)
20.如图,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E, 旋转后能与 重合。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5㎝,求四边形AECF的面积。
21.如图11-19所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.
图11-19
A、顺时针方向500B、逆时针方向500
C、顺时针方向1900D、逆时针方向1900
9.如图23—A—3所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是( )
A.l个B.2个C.3个D.4个
10.(2005·江苏苏州)如图23—A—4,ΔABC和ΔADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到图23—A—4,再将图23—A—4作为“基本图形”绕着A点经过逆时针连续旋转得到图23—A—5.两次旋转的角度分别为( ).
22.如图11-17所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.
23.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1) 如图1, 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;
三、作图题(12分)
19.在图23—A—10中,把△ABC向右平移5个方格,再绕点B的对应点顺时针方向旋转90度.
(1)画出平移和旋转后的图形,并标明对
应字母;
(2)能否把两次变换合成一种变换,如
果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.
四、解答题(第20小题10分,21、22小题各12分,共34分)
四、解答题
17.△ABD与△ACE。
18.(1)A点;(2)60°;(3)AC的中点。
19.旋转角为60°,∠CAE=40°,∠E=110°,∠BAE=110°。
20.(1)A点;(2)旋转了90度;(3)由旋转的性质可知,四边形AECF是正方形,所以四边形AECF的面积为25cm2。
21.方法一:可看作整个花瓣的六分之一部分,图案为 绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.
九年级数学第二十三章旋转测试题(A)
45分钟 100分
一、选择题(每小题3分,共33分)
1.下列正确描述旋转特征的说法是( )
A.旋转后得到的图形与原图形形状与大小都发生变化.
B.旋转后得到的图形与原图形形状不变,大小发生变化.
C.旋转后得到的图形与原图形形状发生变化,大小不变.
D.旋转后得到的图形与原图形形状与大小都没有变化.