最新精选2019年七年级下册数学期中测试题库(含标准答案)
2019-2020年七年级下学期期中考试数学试题 Word版含答案(II)
xx 学年度宜兴市周铁学区期中考试试卷 2019-2020年七年级下学期期中考试数学试题 Word 版含答案(II) 一、选择题:(本大题共有10小题,每小题3分,共30分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x) 3÷(-3x)=9x 2D .(-ab 2) 2=-a 2b 42. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是 ( )A.八边形B.九边形C.十边形D.十二边形3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3) 2C .x 2+2x +1=x(x +2)+1D .-18x 4y 3=-6x 2y 2•3x 2y4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C . 60°D .72°5. 若x 、y 满足0)2(12=++++-y x y x ,则 ( )A .1B .2C .–1D .–26.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有… ( )A .1B .2C .3D .47. 如果a =(-xx) 0、b =(-110)-1、c =(-53)2,那么a 、b 、c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数 ( )A .88°B .92°C .98°D .112°9. 若a m =2,a n =3,则a 2m-n 的值是 ( )A .1B .12C .34D .4310.为求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S=2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+3+32+33+…+3xx 的值是( )A .3xx -1B . 3xx -1C .D .二、填空题:(本大题共8小题,每空2分,共18分.)(第4题) (第8题)(第6题)第16题 第15题11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示 米.12. 因式分解:m 2-16= ;2x 2-8xy +8y 2= .13.一个三角形的两边长分别为3 cm 、5 cm ,且第三边为偶数,则这个三角形的周长为______________ cm .14.若,,则15. 如图,BC ⊥ED 于O ,∠A =45°,∠D =20°,则∠B =________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。
人教版初中数学七年级下册期中试卷(2019-2020学年湖北省武汉市东湖高新区
2019-2020学年湖北省武汉市东湖高新区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题平台上勾选.1.(3分)100的平方根是()A.±50B.50C.±10D.102.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠44.(3分)如图,数轴上点A表示的数可能是()A.B.C.D.π5.(3分)下列六个实数:0,,,,,,3.14159265,0.101001000100001…,其中无理数的个数是()A.2 个B.3 个C.4 个D.5 个6.(3分)下列各式中正确的是()A.=±6B.=﹣3C.=4D.()3=﹣8 7.(3分)如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=20°,那么∠2的度数是()A.100°B.105°C.110°D.120°8.(3分)A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km9.(3分)下列命题中:①若mn=0,则点A(m,n)在原点处;②点(2,﹣m2)一定在第四象限;③已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴;④已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,4),是真命题的有()A.1个B.2个C.3个D.4个10.(3分)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.(3分)比较大小:8(填<,=或>).12.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为.13.(3分)已知点P在第四象限,距离x轴4个单位,距离y轴3个单位,则点P的坐标为.14.(3分)如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P 用坐标表示为.15.(3分)已知等式y=ax2+bx+c,a≠0,当x=﹣3时,y=0;当x=4时,y=0,则关于x的式子a(x﹣1)2=﹣4b﹣c中x的值为.16.(3分)已知m为整数,方程组有正整数解,则m=.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程13 17.(8分)计算:(1)+﹣(2)(+)18.(8分)计算:(1)(2)19.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,且∠2=∠3,求证:BC∥AD.20.(8分)已知正实数x的平方根是a和a+b.(1)当b=6时,求a;(2)若a2x+(a+b)2x=6,求x的值.21.(8分)如图,△ABC中任意一点P(x0,y0)经平移后对应点为P′(x0+3,y0+4),将△ABC作同样的平移得到△DEF,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)直接写出点D、E、F的坐标;(2)画出△DEF,若AB=2,AC=BC=,AD=5,DF=,CF=.(3)若将线段BC沿某个方向进行平移得到线段MN,点B(﹣1,﹣2)的对应点为M (m,0),则点C(0,1)的对应点N的坐标为.(用含m的式子表示)22.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?23.(10分)已知:两直线l1,l2满足l1∥l2,点C,点D在直线l1上,点A,点B在直线l2上,点P是平面内一动点,连接CP,BP,(1)如图1,若点P在l1、l2外部,则∠DCP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(2)如图2,若点P在l1、l2外部,连AC,则∠CAB、∠ACP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(不能用三角形内角和为180°)(3)若点P在l1、l2内部,且在AC的右侧,则∠ACP、∠ABP、∠CAB、∠CPB之间满足什么数量关系?(不需证明)24.(12分)如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.2019-2020学年湖北省武汉市东湖高新区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题平台上勾选.1.(3分)100的平方根是()A.±50B.50C.±10D.10【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:100的平方根是±10.故选:C.【点评】本题考查了平方根的定义.解题的关键是掌握平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.(3分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】熟悉平行线的性质,能够根据已知的平行线找到构成的内错角.【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.【点评】正确运用平行线的性质.这里特别注意AD和BC的位置关系不确定.4.(3分)如图,数轴上点A表示的数可能是()A.B.C.D.π【分析】设A点表示的数为x,则1<x<2,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则1<x<2,∵1<<1.5,1.5<<2,2<<3,3<π<4,∴符合x取值范围的数为.故选:A.【点评】本题考查了实数与数轴的对应关系.关键是明确数轴上的点表示的数的大小,估计无理数的取值范围.5.(3分)下列六个实数:0,,,,,,3.14159265,0.101001000100001…,其中无理数的个数是()A.2 个B.3 个C.4 个D.5 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0、、是整数,属于有理数;是分数,属于有理数;3.14159265是有限小数,属于有理数,∴无理数有:、和0.101001000100001…共3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.(3分)下列各式中正确的是()A.=±6B.=﹣3C.=4D.()3=﹣8【分析】根据二次根式的性质:=|a|进行化简即可.【解答】解:A、=6,故原题计算错误;B、=3,故原题计算错误;C、=2,故原题计算错误;D、()3=﹣8,故原题计算正确;故选:D.【点评】此题主要考查了二次根式的性质与化简,关键是掌握二次根式的性质.7.(3分)如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=20°,那么∠2的度数是()A.100°B.105°C.110°D.120°【分析】根据矩形性质得出AD∥BC,推出∠2=∠DEF,求出∠DEF即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEF,∵∠1=20°,∠GEF=90°,∴∠2=20°+90°=110°,故选:C.【点评】本题考查了矩形的性质和平行线的性质的应用,关键是运用:两直线平行,内错角相等.8.(3分)A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km【分析】根据题意可知,顺风的速度为飞机无风时的速度与风速之和,逆风的速度为飞机无风时的速度与风速之差,然后即可列出相应的方程组,从而可以求得飞机无风时的平均速度.【解答】解:设飞机无风时的平均速度是akm/h,风速为bkm/h,,解得,,即飞机无风时的速度为750km/h,故选:B.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组.9.(3分)下列命题中:①若mn=0,则点A(m,n)在原点处;②点(2,﹣m2)一定在第四象限;③已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴;④已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,4),是真命题的有()A.1个B.2个C.3个D.4个【分析】利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用m=0或m ≠0可对②进行判断;利用A、B点的纵坐标相同可对③进行判断;通过把A点坐标向上或向下平移5个单位得到B点坐标可对④进行判断.【解答】解:若mn=0,则m=0或n=0,所以点A(m,n)坐标轴上,所以①为假命题;点(2,﹣m2)在第四象限或x轴,所以②为假命题;已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴,所以③为真命题;已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,2)或(2,﹣8),所以④为假命题.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.(3分)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)【分析】根据f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),可得答案.【解答】解:g(f(3,﹣4))=g(﹣3,﹣4)=(﹣3,4),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b),g(m,n)=(m,﹣n)是解题关键.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.(3分)比较大小:>8(填<,=或>).【分析】比较出两个数的平方的大小关系,即可判断出原来两个数的大小关系.【解答】解:=65,82=64,∵65>64,∴>8.故答案为:>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是比较出两个数的平方的大小关系.12.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为145°.【分析】根据垂直定义可得∠EOC=90°,然后求出∠AOC的度数,再利用对顶角相等可得答案.【解答】解:∵EO⊥CD,∴∠EOC=90°,∵∠AOE=55°,∴∠AOC=145°,∴∠BOD=145°.故答案为:145°.【点评】此题主要考查了垂线,关键是掌握对顶角相等.13.(3分)已知点P在第四象限,距离x轴4个单位,距离y轴3个单位,则点P的坐标为(3,﹣4).【分析】根据到x轴的距离即为纵坐标的绝对值、到y轴的距离即为横坐标的绝对值,再由第四象限点的坐标符号特点可得答案.【解答】解:∵点P位于第四象限,且距离x轴4个单位长度,距离y轴3个单位长度,∴点P的纵坐标为﹣4,横坐标为3,即点P的坐标为(3,﹣4),故答案为:(3,﹣4).【点评】本题主要考查点的坐标,解题的关键是掌握到x轴的距离即为纵坐标的绝对值、到y轴的距离即为横坐标的绝对值及四个象限内点的坐标的符号特点.14.(3分)如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P 用坐标表示为(6,6).【分析】由猴山M,狮虎山N的位置确定x轴和y轴的位置,由猴山M(2,1)可知M 的下一横线为x轴,左第二个列是y轴,据此即可用数对表示出熊猫馆P的位置.【解答】解:如图所示,点P的坐标为(6,6)故答案为:(6,6).【点评】解答此题的关键是根据已知条件弄清x轴和y轴的位置,从而确定P的坐标.15.(3分)已知等式y=ax2+bx+c,a≠0,当x=﹣3时,y=0;当x=4时,y=0,则关于x的式子a(x﹣1)2=﹣4b﹣c中x的值为5或﹣3.【分析】把x=﹣3时,y=0;x=4时,y=0代入y=ax2+bx+c求得b=﹣a,c=﹣12a,然后代入a(x﹣1)2=﹣4b﹣c,解方程即可得到结论.【解答】解:当x=﹣3时,y=0;当x=4时,y=0,∴,解得:b=﹣a,c=﹣12a,∵a(x﹣1)2=﹣4b﹣c,∴a(x﹣1)2=﹣4(﹣a)﹣(﹣12a)=16a,∵a≠0,∴(x﹣1)2=16,∴x=5或﹣3,故答案为:5或﹣3.【点评】本题考查了解二元一次方程组,一元二次方程,正确的理解题意是解题的关键.16.(3分)已知m为整数,方程组有正整数解,则m=4或﹣4.【分析】首先将m看作已知量,解二元一次方程组,用m表示出x与y,根据方程组有正整数解即可求出m的值.【解答】解:,②×2﹣①×3得:(2m+9)y=34,解得:y=,将y=代入①得:x=(+6)=,∵方程组有正整数解,∴2m+9=1,2,17,34,解得:m=﹣4,﹣3.5,4,12.5,代入x=中,检验,得到m的值为4或﹣4.故答案为:4或﹣4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程13 17.(8分)计算:(1)+﹣(2)(+)【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式乘法法则计算即可求出值.【解答】解:(1)原式=﹣2+4﹣=;(2)原式=3+1=4.【点评】此题考查了实数的运算,熟练掌握各自的性质是解本题的关键.18.(8分)计算:(1)(2)【分析】(1)方程组利用加减消元法求出解即可.(2)首先化简方程组,然后方程组利用加减消元法求出解即可.【解答】解:(1),①×4+②得,11x=22,∴x=2,把x=2代入①得,4﹣y=5,∴y=﹣1,∴;(2)原方程组可化为:,①×3﹣②得,2v=4,∴v=2,把v=2代入①得,u=﹣,∴.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,且∠2=∠3,求证:BC∥AD.【分析】欲证明BC∥AD,只要证明∠1=∠3即可.【解答】证明:∵BE、DF分别是∠ABC和∠ADC的平分线,∴∠1=∠ABC,∠2=∠ADC,∵∠ABC=∠ADC,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∴BC∥AD.【点评】本题考查平行线的性质和判定,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(8分)已知正实数x的平方根是a和a+b.(1)当b=6时,求a;(2)若a2x+(a+b)2x=6,求x的值.【分析】(1)利用正实数平方根互为相反数即可求出a的值;(2)利用平方根的定义得到(a+b)2=x,a2=x,代入式子a2x+(a+b)2x=6即可求出x值.【解答】解:(1)∵正实数x的平方根是a和a+b,∴a+a+b=0,∵b=6,∴2a+6=0∴a=﹣3;(2)∵正实数x的平方根是a和a+b,∴(a+b)2=x,a2=x,∵a2x+(a+b)2x=6,∴x2+x2=6,∴x2=3,∵x>0,∴x=.【点评】本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.21.(8分)如图,△ABC中任意一点P(x0,y0)经平移后对应点为P′(x0+3,y0+4),将△ABC作同样的平移得到△DEF,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)直接写出点D、E、F的坐标;(2)画出△DEF,若AB=2,AC=BC=,AD=5,DF=,CF=5.(3)若将线段BC沿某个方向进行平移得到线段MN,点B(﹣1,﹣2)的对应点为M (m,0),则点C(0,1)的对应点N的坐标为(m+1,3).(用含m的式子表示)【分析】(1)根据平面直角坐标系中点的坐标的平移规律“右加左减,上加下减”求解可得;(2)画出平移后的对应点,首尾顺次连接可得△DEF,再根据平移变换的性质可得DF 和CF的长;(3)由点B(﹣1,﹣2)的对应点为M(m,0)知平移的方式为右移m+1个单位,上移2个单位,据此利用点的坐标的平移规律【解答】解:(1)点D的坐标是(﹣3+3,0+4),即(0,4),点E的坐标是(﹣1+3,﹣2+4),即(2,2),点F的坐标为(0+3,1+4),即(3,5);(2)△DEF即为所求,DF=AC=,CF=AD=5,故答案为:,5;(3)由点B(﹣1,﹣2)的对应点为M(m,0)知平移的方式为右移m+1个单位,上移2个单位,∴点C(0,1)的对应点N的坐标为(0+m+1,1+2),即(m+1,3),故答案为:(m+1,3).【点评】本题主要考查作图﹣平移变换,解题的关键是掌握平移变换的定义与性质及点的坐标的平移规律.22.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据“这两次运输共支出公路运输费14000元,铁路运输费87000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售款比原料费与运输费的和多的钱数=销售收入﹣进货成本﹣运输费,即可求出结论.【解答】解:(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:.答:该工厂从A地购买了300吨原料,制成运往B地的产品200吨.(2)5000×200﹣2000×300﹣14000﹣87000=299000(元).答:这批产品的销售款比原料费与运输费的和多299000元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(10分)已知:两直线l1,l2满足l1∥l2,点C,点D在直线l1上,点A,点B在直线l2上,点P是平面内一动点,连接CP,BP,(1)如图1,若点P在l1、l2外部,则∠DCP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(2)如图2,若点P在l1、l2外部,连AC,则∠CAB、∠ACP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(不能用三角形内角和为180°)(3)若点P在l1、l2内部,且在AC的右侧,则∠ACP、∠ABP、∠CAB、∠CPB之间满足什么数量关系?(不需证明)【分析】(1)过P作PM∥AB,根据平行线的性质可得∠ABP=∠2,∠3=∠CPM,再利用等量代换可得答案;(2)过A作AE∥PB,过C作CF∥BP,根据平行线的性质可得∠1=∠2,∠3=∠P,∠ABP=∠1+∠4,再利用等量代换可得答案;(3)分别画出图形,再利用平行线的性质进行推理即可.【解答】解:(1)如图1,数量关系:∠DCP=∠CPB+∠ABP,理由:过P作PM∥AB,∴∠ABP=∠2,∠3=∠CPM,∵∠3=∠2+∠CPB,∴∠3=∠CPB+∠ABP,∵CD∥AB,∴∠1=∠3,∴∠DCP=∠CPB+∠ABP;(2)数量关系:∠CAB+∠ACP=∠CPB+∠ABP,理由:过A作AE∥PB,过C作CF∥BP,∴AE∥CF∥BP,∴∠1=∠2,∠3=∠P,∠ABP=∠1+∠4,∴∠CAB+∠ACP=∠4+∠2+∠3,∴∠CPB+∠ABP=∠3+∠1+∠4=∠3+∠2+∠4,∴∠CAB+∠ACP=∠CPB+∠ABP;(3)如图3,数量关系:∠CPB=∠CAB+∠ACP+∠ABP;理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠DCA=∠CAB,∠DCP=∠CPM,∠MPB=∠PBA,∴∠CPB=∠DCA+∠ACP=∠CAB+∠ACP,∵∠CPB=∠CPM+∠MPB,∴∠CPB=∠CAB+∠ACP+∠ABP;如图4,数量关系:∠CAB+∠ACP+∠CPB+∠ABP=360°,理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠CAB=∠DCA,∠DCP+∠CPM=180°,∠ABP+∠MPB=180°,∴∠CAB+∠ACP+∠CPB+∠ABP=∠DCA+∠ACP+∠CPM+∠MPB+∠ABP=360°.【点评】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握平行线的性质.24.(12分)如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.【分析】(1)由立方根及算术平方根的定义求出a,b的值,得出A,B两点的坐标,连接OC,设OD=x,根据三角形AOC的面积可求出x的值,则答案可求出;(2)求出三角形ABC的面积为35,设点P的坐标为(0,y),根据S△ACP=S△ADP+S△CDP,可求出y的值,则点P的坐标可求出;(3)当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,由△QBC 的面积为20可得出7m+3n的值;当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,根据△QBC的面积为20,可得出答案.【解答】解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC=S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP=S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC=S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC=S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.【点评】本题是三角形综合题,考查了立方根及算术平方根,三角形的面积,坐标与图形的性质,正确进行分类讨论是解题的关键.。
2019年春季学期七年级下册期中教学质量检测数学试题(有答案和解析)
2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(本大题共14小题,共28.0分)1.下列哪个图形是由如图平移得到的()A. B. C. D.2.下列命题中,是真命题的是()A. 同位角相等B. 有且只有一条直线与已知直线垂直C. 相等的角是对顶角D. 邻补角一定互补3.在实数,,0.121221221…,3.1415926,,-中,无理数有()A. 2个B. 3个C. 4个D. 5个4.在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A. B. C. D.6.下列各式正确的是()A. B. C. D.7.若方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,则a的值是()A. B. C. 1 D. 28.下列图形中,∠1与∠2是对顶角的是()A. B.C. D.9.下列方程组中,是二元一次方程组的有()①②③④⑤⑥A. ①③⑤B. ①③④C. ①②③D. ③④10.介于()之间.A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间11.如图,a1∥a2,∠1=56°,则∠2的度数是()A.B.C.D.12.如图,把一块直角三角形的直角顶点放在直尺的一边上,如果∠1=67°,那么∠2等于()A.B.C.D.13.如图,AB∥CD,PF⊥CD于F,∠AEP=40°,则∠EPF的度数是()A.B.C.D.14.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC的周长为16cm,则四边形ABFD的周长为()A. 22cmB. 20cmC. 18cmD. 16cm二、填空题(本大题共6小题,共18.0分)15.把命题“邻补角互补”写成如果…那么…的形式为______,它是一个______(填“真”或“假”)命题.16.到原点距离等于的数是______,的相反数是______,它的绝对值是______.17.把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为______.18.一个数的平方根是a+4和2a+5,则a=______,这个正数是______.19.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______.20.我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[-0.56]=-1,则按这个规律[-]=______.三、计算题(本大题共2小题,共26.0分)21.计算:(1)(2)(3)4y2-36=0(4)+-()222.化简.(1)=______,=______,=______,=______.(2)=______,=______.=______,=______.(3)根据以上信息,观察a,b所在位置,完成化简.+-四、解答题(本大题共4小题,共28.0分)23.如图,已知∠1+∠2=180°,∠3=∠B,则DE∥BC?下面是王冠同学的部分推导过程,请你帮他在括号内填上推导依据或内容.解:∵∠1+∠2=180°,(已知)∠1=∠4,(______)∴∠2+______=180°∴EH∥AB.(______)∴∠B=∠EHC.(______)∵∠3=∠B,(已知)∴∠3=∠EHC.(______)∴DE∥BC.(______)24.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.25.在平面直角坐标系中,线段AB的两端点的坐标分别为A(-1,3),B(-3,1),将线段AB向下平移2个单位,再向右平移4个单位得线段CD(A与D对应,B与C对应).(1)画出线段AB与线段CD,并求点C、点D的坐标.(2)求四边形ABCD的面积26.(1)将直角三角形ACB按如图①放置,使得坐标原点与点C重合,已知A(a,3)B(b,-3),且a+b=8,求三角形ACB的面积.(2)将直角三角形ACB按如图②方式放置,使得点O在边AC上,D是y轴上一点,过D作DF‖x轴,交AB于点F,AB交x轴于G点,BC交DF于E点,若∠AOG=50°,求∠BEF的度数.(CM平行于x轴)(3)将直角三角形ACB按照如图③方式放置,使得∠C在x轴与DF之间,N为AC边上一点,且∠NEC+∠CEF=180°,写出∠NEF与∠AOG之间的数量关系,并证明你的结论.答案和解析1.【答案】C【解析】解:A、图形属于旋转得到,故错误;B、图形属于旋转得到,故错误;C、图形的形状和大小没的变化,符合平移性质,故正确;D、图形属于旋转得到,故错误.故选:C.根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.【答案】D【解析】解:A、只有两直线平行同位角才相等,故错误,是假命题;B、过直线外一点有且只有一条直线与已知直线垂直,故错误,是假命题;C、相等的角是对顶角,错误,是假命题;D、邻补角一定互补,正确,是真命题,故选:D.利用平行线的性质、对顶角的性质及邻补角的定义分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及邻补角的定义等知识,难度不大.3.【答案】A【解析】解:无理数有,,共2个.故选:A.根据无理数的定义选出即可.本题考查了对无理数的应用,注意:无理数是指无限不循环小数.4.【答案】B【解析】解:因为点P(-1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.【答案】A【解析】解:∵点P位于第二象限,距离x轴4个单位长度,∴点P的纵坐标为4,∵距离y轴3个单位长度,∴点P的横坐标为-3,∴点P的坐标是(-3,4).故选:A.根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.【答案】D【解析】解:A、=4,故本选项错误;B、=±4,故本选项错误;C、=4,故本选项错误;D、正确;故选:D.根据平方根、算术平方根、立方根,即可解答.本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根.7.【答案】B【解析】解:∵方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,∴a-2≠0且|a|-1=1,解得:a=-2,故选:B.根据二元一次方程的定义得出a-2≠0且|a|-1=1,求出即可.本题考查了二元一次方程的定义,能根据二元一次方程的定义得出a-2≠0且|a|-1=1是解此题的关键.8.【答案】C【解析】解:∠1与∠2是对顶角的是C,故选:C.根据对顶角的定义进行选择即可.本题考查了对顶角,掌握对顶角的定义是解题的关键.9.【答案】D【解析】解:①中有3个未知数x,y,z.不符合二元一次方程组的定义,故错误;②、⑥中未知数项的最高次数是2,不符合二元一次方程组的定义,故错误;③、④符合二元一次方程组的定义,故正确;⑤,此方程组中第二个方程不是整式方程,不符合二元一次方程组的定义,故错误;故选:D.分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.10.【答案】B【解析】解:∵<<,∴3<<4,故选:B.求出的范围即可.本题考查了估算无理数的大小的应用,关键是确定的范围.11.【答案】B【解析】解:∵a1∥a2,∠1=56°,∴∠3=∠1=56°.∴∠2=180°-56°=124°,故选:B.根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,熟记性质是解题的关键.12.【答案】B【解析】解:如图,∵直尺两边平行,∠1=67°,∴∠3=∠1=67°,∴∠2=90°-∠3=90°-67°=23°.故选:B.先根据两直线平行,同位角相等求出∠1的同位角,再根据直角为90°列式进行计算即可得解.本题主要利用了两直线平行,同位角相等的性质,熟记性质是解题的关键.13.【答案】B【解析】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°.∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90°,∴∠EPF=∠EPN+∠NPF=40°+90°=130°.故选:B.如图,过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.本题考查平行线的判定定理以及平行线的性质.注意如果两条直线都和第三条直线平行,那么这两条直线也互相平行的运用.14.【答案】B【解析】解:∵将三角形ABC沿BC方向平移2cm得到三角形DEF,∴AD=CF=2cm,∵三角形ABC的周长为16cm,∴AB+BC+AC=AB+BC+DF=16cm,∴四边形ABFD的周长为:16+2+2=20(cm).故选:B.利用平移的性质得出AD=CF=2cm,AC=DF,进而求出答案.此题主要考查了平移的性质,正确利用平移的性质得出对应线段是解题关键.15.【答案】如果两个角是邻补角,那么这两个角互补;真【解析】解:命题“邻补角互补”写成如果…那么…的形式为:如果两个角是邻补角,那么这两个角互补,它是一个真命题,故答案为:如果两个角是邻补角,那么这两个角互补;真.根据命题的概念、邻补角的概念解答.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.【答案】;-;【解析】解:到原点距离等于的数是,的相反数是-,它的绝对值是,故答案为:,-,.根据绝对值的意义,相反数的意义,可得答案.本题考查了实数的性质,利用绝对值的意义,相反数的意义是解题关键.17.【答案】(4,3)【解析】解:根据题意知,平移后点的坐标为(1+3,1+2),即(4,3),故答案为:(4,3).根据坐标的平移规律:左减右加、下减上加可得.本题主要考查坐标与图形的变化-平移,熟练掌握点的坐标的平移规律:左减右加、下减上加是解题的关键.18.【答案】-3;1【解析】解:∵一个数的平方根是a+4和2a+5,∴a+4+2a+5=0,∴a=-3,∴这个数的平方根是±1,这个数是1,故答案为-3,1.根据平方根的定义构建方程即可解决问题.本题考查平方根的定义、一元一次方程等知识,解题的关键是记住平方根的定义,学会构建方程解决问题.19.【答案】连接直线外一点与直线上所有点的连线中,垂线段最短【解析】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.20.【答案】-4【解析】解:∵2<<3,∴-4<--1<-3,∴[-]=-4.故答案为:-4.直接利用的取值范围得出-4<--1<-3,进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.21.【答案】解:(1)①②,由②,得:y=3x+1 ③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入③,得:y=4,所以方程组的解为;(2)原方程组整理可得:①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为;(3)∵4y2-36=0,∴4y2=36,则y2=9,∴y=±3;(4)原式=-2-=-1.【解析】(1)利用代入消元法求解可得;(2)方程组整理为一般式后,利用加减消元法求解可得;(3)利用平方根的定义求解可得;(4)根据实数的混合运算顺序和运算法则计算可得.此题考查了解二元一次方程组和实数的混合运算,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】2;2;0;|a|;3;-3;0;a【解析】解:(1)=2,=2,=0,=|a|,故答案为:2、2、0、|a|;(2)=3,=-3.=0,=a,故答案为:3、-3、0、a;(3)由图可得,a<0<b,|a|<|b|,∴=b+b-a-(a-b)=b+b-a+b=3b-a.(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a、b的大小与正负,从而可以化简题目中的式子.本题考查立方根、算术平方根、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】对顶角相等∠4 同旁内角互补,两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行【解析】解:∵∠1+∠2=180°,(已知)∠1=∠4,(对顶角相等)∴∠2+∠4=180°,∴EH∥AB,(同旁内角互补,两直线平行)∴∠B=∠EHC,(两直线平行,同位角相等)∵∠3=∠B,(已知)∴∠3=∠EHC,(等量代换)∴DE∥BC,(内错角相等,两直线平行)故答案为:对顶角相等,同旁内角互补,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,有等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.本题主要考查了利用平行线的性质和平行线的判定解答,命题意图在于训练学生的证明书写过程,难度适中.24.【答案】解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3∴DG∥AB,∴∠BAC+∠AGD=180°,∴∠AGD=110°【解析】根据平行线的性质与判定即可求出答案本题考查平行线的性质,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.25.【答案】解:(1)如图所示:点C的坐标为(3,1),点D的坐标为(1,-1);(2)四边形ABCD的面积=.【解析】(1)利用平移的性质得出对应点位置进而得出答案.(2)利用面积公式解答即可.此题主要考查了平移变换,正确根据题意得出的对应点位置是解题关键.26.【答案】解:(1)如图①中,过点A作AM⊥y轴于M,过点B作BN⊥y轴于N.∵A(a,3),B(b,-3),∴AM=a,OM=3,BN=b,ON=3,∴MN=3+3=6,△ABC的面积=(a+b)×6-×3a-×3b,=(a+b),∵a+b-8=0,∴a+b=8∴△ABC的面积=×8=12;(2)如图②中,作CM∥OG.∵∠AOG=50°,CM∥OG,∴∠ACM=50°,∵∠ACB=90°∴∠BCM=40°,∵DF∥OG,∴DF∥CM,∴∠BEF=∠BCM=40(3)如图③中,∵∠NEC+∠CEF=180°,∠CEF+∠CED=180°,∴∠NEC=∠CED,∵∠CED+∠NEC+∠NEF=180°,∴∠NEF+2∠CED=180°,∴∠NEF=2(90°-∠CED),∵∠CED=∠COD=90°-∠AOG,∴∠AOG=90°-CED,∴∠NEF=2∠AOG.【解析】(1)过点A作AM⊥y轴于M,过点B作BN⊥y轴于N,根据△ABC的面积等于梯形AMNB的面积减去两个直角三角形的面积列式计算即可得解;(2)如图②中,作CM∥OG.利用平行线的性质即可解决问题;(3))首先证明∠NEC=∠CED,由∠NEF=2(90°-∠CED),∠CED=∠COD=90°-∠AOG,推出∠AOG=90°-CED,即可推出∠NEF=2∠AOG;本题考查三角形综合题、直角三角形的性质、平行线的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线,利用平行线的性质解决问题,属于中考压轴题.。
2018-2019学年度七年级下册期中数学试卷(含答案和解析)
2018-2019学年度七年级下册期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.下列运算结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3÷a2=a D.(a2)3=a52.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A.内错角B.同旁内角C.同位角D.对顶角3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6B.ax﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°5.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)6.多边形剪去一个角后,多边形的外角和将()A.减少180°B.不变C.增大180°D.以上都有可能7.若a m=2,a n=3,则a m+n等于()A.5B.6C.8D.98.如图,△ABC中,∠A=60°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于()A.60°B.90°C.120°D.150°二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式:2x2﹣x=.10.一种细菌的半径是0.0000076厘米,用科学记数法表示为厘米.11.如图,直线a,b被直线c所截,且a∥b,如果∠1=65°,那么∠2=度.12.一个多边形的内角和为900°,则这个多边形的边数为.13.如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为cm.14.314×(﹣)7=.15.若等腰三角形有两边长为2cm、5cm,则第三边长为cm.16.若x2+mx+16可以用完全平方公式进行分解因式,则m的值等于.17.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为.18.对于任何实数,我们规定符号的意义是=ad﹣bc,按照这个规定,请你计算:当x2﹣3x+1=0时,的值为.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:(﹣2)2﹣()﹣1+2018020.计算:a(2﹣a)+(a+1)(a﹣1)21.因式分解:9x2﹣6x+1.22.分解因式:x3﹣x四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:(3﹣5y)(3+5y)+(3+5y)2,其中.y=0.424.已知:x+y=5,xy=﹣3,求:(1)x2+y2的值(2)(1﹣x)(1﹣y)的值五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q共有个.26.如图:已知∠1=∠2,∠3=∠B,FG⊥AB于G,猜想CD与AB的位置关系,并写出合适的理由.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“a(a﹣2b)+2b(a﹣2b)”,小丽使“做减法”,列式为“a2﹣4b2”.(1)请你把上述两式都分解因式;(2)当a=63.5m、b=18.25m时,求这块草坪的面积.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.)1.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断即可得解.【解答】解:A、a2与a3是加,不是乘,不能运算,故本选项错误;B、a2•a3=a2+3=a5,故本选项错误;C、a3÷a2=a3﹣2=a,故本选项正确;D、(a2)3=a2×3=a6,故本选项错误.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.【解答】解:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选:A.【点评】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.3.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.4.【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.5.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.6.【分析】多边形的内角和与边数相关,随着边数的不同而不同,而外角和是固定的360°,从而可得到答案.【解答】解:根据多边形的外角和为360°,可得:多边形剪去一个角后,多边形的外角和还是360°,故选:B.【点评】此题主要考查了多边形的外角和定理,题目比较简单,只要掌握住定理即可.7.【分析】根据a m•a n=a m+n,将a m=2,a n=3,代入即可.【解答】解:∵a m•a n=a m+n,a m=2,a n=3,∴a m+n=2×3=6.故选:B.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则,难度一般.8.【分析】根据三角形的内角和等于180°求出∠AEF+∠AFE的度数,再根据折叠的性质求出∠AED+∠AFD的度数,然后根据平角等于180°解答.【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∵沿EF向内折叠△AEF,得△DEF,∴∠AED+∠AFD=2(∠AEF+∠AFE)=2×120°=240°,∴∠1+∠2=180°×2﹣240°=360°﹣240°=120°.故选:C.【点评】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.【分析】首先找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:2x2﹣x=2x•x﹣x•1=x(2x﹣1).故答案为:x(2x﹣1).【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一种细菌的半径是0.0000076厘米,用科学记数法表示为7.6×10﹣6厘米.故答案为:7.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】直接根据两直线平行,同旁内角互补可以求出∠2的度数.【解答】解:∵a∥b,∠1=65°,∴∠2=180°﹣65°=115°.故应填:115.【点评】本题主要利用两直线平行,同旁内角互补的性质求值.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.【分析】运用幂的乘方法则以及积的乘方法则的逆运算,即可得到计算结果.【解答】解:314×(﹣)7=(32)7×(﹣)7=(﹣×9)7=(﹣1)7=﹣1,故答案为:﹣1.【点评】本题主要考查了幂的乘方法则以及积的乘方法则,积的乘方,把每一个因式分别乘方,再把所得的幂相乘.15.【分析】分2cm是腰长与底边两种情况,利用三角形的三边关系判定即可得解.【解答】解:①2cm是腰长时,三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴此时不能组成三角形;②2cm是底边时,三角形的三边分别为2cm、5cm、5cm,能够组成三角形,所以,第三边长为5cm,综上所述,第三边长为5cm.故答案为:5.【点评】本题考查了等腰三角形两腰相等的性质,三角形的三边关系,注意分情况讨论并利用三角形三边关系作出判断.16.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:∵x2+mx+16可以用完全平方公式进行分解因式,∴m的值等于:±8.故答案为:±8.【点评】此题主要考查了公式法分解因式,正确运用公式是解题关键.17.【分析】根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.【解答】解:∵∠ACB=90°,∴∠MCD=90°,∵∠D=60°,∴∠DMC=30°,∴∠AMF=∠DMC=30°,∵∠A=45°,∴∠1=∠A+∠AMF=45°+30°=75°,故答案为75°.【点评】本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF 的度数.18.【分析】根据题中的新定义将所求式子化为普通运算,整理后将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣3x+1=0,x2﹣3x=﹣1,∴=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1=2﹣1=1.故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,弄清题中的新定义是解本题的关键.三、解答题:(本大题共4小题,每题各6分,共24分.解答时应写出必要的文字说明、计算过程或演算步骤)19.【分析】直接利用负指数幂的性质以及零指数幂的性质化简进而得出答案.【解答】解:原式=4+2﹣1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】直接利用单项式乘以多项式以及平方差公式计算得出答案.【解答】解:原式=2a﹣a2+a2﹣1=2a﹣1.【点评】此题主要考查了平方差公式以及单项式乘以多项式,正确运用公式是解题关键.21.【分析】原式利用完全平方公式分解即可.【解答】解:原式=(3x﹣1)2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.22.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.四、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)23.【分析】直接利用乘法公式计算进而合并同类项,再把已知代入求出答案.【解答】解:原式=9﹣25y2+9+30y+25y2=30y+18,把y=0.4代入得:原式=30×0.4+18=30.【点评】此题主要考查了整式的混合运算,正确掌握基本运算法则是解题关键.24.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=﹣3代入求解即可;(2)将所求式子展开整理成x+y与xy的值代入计算,即可得到所求式子的值.【解答】解(1)∵x+y=5,xy=﹣3,∴原式=(x+y)2﹣2xy=25﹣2×(﹣3)=31;(2)∵x+y=5,xy=﹣3,∴原式=1﹣y﹣x+xy=1﹣(x +y )+xy=1﹣5+(﹣3)=﹣7.【点评】本题考查了完全平方公式,解答本题的关键在于熟练掌握完全平方公式:(a ±b )2=a 2±2ab +b 2五、解答题:(本大题共2小题,每小题8分,共16分.解答时应写出必要的文字说明、计算过程或演算步骤)25.【分析】(1)根据中线的定义得出AB 的中点即可得出△ABC 的AB 边上的中线CD ; (2)平移A ,B ,C 各点,得出各对应点,连接得出△A 1B 1C 1;(3)利用平移的性质得出AC 与A 1C 1的关系;(4)首先求出S △ABC 的面积,进而得出Q 点的个数.【解答】解:(1)AB 边上的中线CD 如图所示:;(2)△A 1B 1C 1如图所示:;(3)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;故答案为:平行且相等;(4)如图所示:能使S △ABQ =S △ABC 的格点Q ,共有4个.故答案为:4.【点评】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC 的面积进而得出Q点位置是解题关键.26.【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.【解答】解:CD⊥AB.∵∠3=∠B.∴DE∥BC,∴∠1=∠4,又∵∠1=∠2,∴∠2=∠4,∴GF∥CD,∴∠CDB=∠BGF,又∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,即CD⊥AB.【点评】本题考查了平行线的判定与性质.根据平行线的判定和性质,通过等量代换求证CD与AB的位置关系.六、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)27.【分析】(1)直接利用提取公因式法以及平方差公式分解因式,进而得出答案;(2)直接把已知数据代入进而得出答案.【解答】解:(1)a(a﹣2b)+2b(a﹣2b)=(a﹣2b)(a+2b);a2﹣4b2=(a﹣2b)(a+2b)(2)(a﹣2b)(a+2b)当a=63.5m、b=18.25m时,原式=(63.5﹣2×18.25)×(63.5+2×18.25)=(63.5﹣36.5)×(63.5+36.5)=2700.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确分解因式是解题关键.七、解答题:(本题10分.解答时应写出必要的文字说明、计算过程或演算步骤)28.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.。
人教版数学七年级下册《期中测试卷》(含答案)
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定3.如图,已知:∠1=∠2,那么下列结论正确的是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠44.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C 20° D. 15°5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( )A. 1B. 2C. 3D. 46.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7.下列从左到右的变形中,正确的是( ) A. 81=9± B. 3.60.6-=- C. 21010-=-() D. 3355-=- 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)9.既是方程1x y -=,又是方程25x y +=解是( )A. 12x y =-⎧⎨=⎩B. 21x y =⎧⎨=-⎩C. 12x y =⎧⎨=⎩D. 21x y =⎧⎨=⎩ 10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为( )A. 4.512x y y x +=⎧⎪⎨+=⎪⎩B. 4.512x y y x =+⎧⎪⎨+=⎪⎩C. 4.512x y x y =+⎧⎪⎨=+⎪⎩D. 4.512x y y x +=⎧⎪⎨=-⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.12.如图所示,OA ⊥OC 于点O ,∠1=∠2,则∠BOD 的度数是_____.32-的相反数是__________.14.16的算术平方根是____,﹣8的立方根是____.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +=_____.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-22.解方程组(1)5293411x y x y +=⎧⎨+=⎩; (2)2431y x x y =-⎧⎨+=⎩. 23.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( , )、B ( , );(2)求△ABC 的面积;(3)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′,写出A′、B′、C′三个点坐标.24.完成下面证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.26.已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.答案与解析一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.[答案]D[解析][详解]解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定[答案]B[解析]点到直线的距离,所以他的跳远成绩是BN,故选B.3.如图,已知:∠1=∠2,那么下列结论正确是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠4[答案]B[解析][分析]∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.[详解]解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选B .[点睛]正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°[答案]B[解析] 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( ) A. 1B. 2C. 3D. 4 [答案]D[解析][分析]根据无理数的定义,可得到无理数的个数.[详解]﹣23是分数,8=2238=2是有理数,﹣0.518是有理数;3π是无理数;37-|2是无理数 83π,37-|,2是无理数 故选:D[点睛]本题考查了无理数的定义,无限不循环小数叫做无理数.无理数是实数中不能精确地表示为两个整数之比的数,2等开不尽方的数都是无理数.6.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间 [答案]C[解析][分析]<<5<<6,即可解出.[详解]<<∴5<<6,故选C.[点睛]此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.7.下列从左到右的变形中,正确的是( )A. 9±B. 0.6=-C. 10=-D. =[答案]D[解析]选项A ,原式=9;选项B ,原式 ;选项C ,原式=10;选项D ,原式=故选D. 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)[答案]C[解析]因点P 在第三象限,可得P 点的横坐标为负,纵坐标为负,又因到x 轴的距离是4,所以纵坐标为-4,再由到y 轴的距离是3,可得横坐标为-3,即可得P(-3,-4),故选C.9.既是方程1x y -=,又是方程25x y +=的解是( ) A. 12x y =-⎧⎨=⎩ B. 21x y =⎧⎨=-⎩ C. 12x y =⎧⎨=⎩ D. 21x y =⎧⎨=⎩ [答案]D[解析]两方程的解相同,可联立两个方程,形成一个二元一次方程组,解方程组即可求得.解:根据题意,得:()()11252x y x y ⎧-=⎪⎨+=⎪⎩,①+②,得:3x=6,解得:x=2,x=2代入②,得:4+y=5,解得:y=1,∴21x y =⎧⎨=⎩,故选D.10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为()A.4.512x yyx+=⎧⎪⎨+=⎪⎩B.4.512x yyx=+⎧⎪⎨+=⎪⎩C.4.512x yxy=+⎧⎪⎨=+⎪⎩D.4.512x yyx+=⎧⎪⎨=-⎪⎩[答案]A [解析][详解]4.512x yyx+=⎧⎪⎨+=⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.[答案]对顶角相等[解析]试题分析:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.考点:对顶角、邻补角.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是_____.[答案]90°.[解析][分析]根据垂直求出∠AOC =90°,根据∠1=∠2求出∠BOD =∠AOC ,即可得出答案.[详解]∵OA ⊥OC ,∴∠AOC =90°,∵∠1=∠2,∴∠BOD =∠2+∠BOC =∠1+∠BOC =∠AOC =90°,故答案为:90°.[点睛]此题考查垂直定义和角的计算,能求出∠BOD=∠AOC 是解题的关键.-的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数叫做互为相反数进行解答.[详解[点睛]此题考查相反数,解题关键在于掌握其定义.14.16的算术平方根是____,﹣8的立方根是____.[答案]4,-2[解析]试题分析:164=,-82=-.考点:1.算术平方根;2. 立方根.15.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.[答案]0.[解析][分析]根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.[详解]∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴31ab c d -+++=﹣1+0+1=0.故答案为:0.[点睛]此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.[答案]2.[解析][分析]根据x 轴上的点的纵坐标等于0列式计算即可得解.[详解]∵点P (m +3,m ﹣2)x 轴上,∴m ﹣2=0,解得m =2.故答案为:2.[点睛]此题考查点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.[答案](3,3)[解析][分析]根据已知两点的坐标建立坐标系,然后确定其它点的坐标.[详解]由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)故答案:(3,3).18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.[答案]11.[解析][分析]利用相反数的性质及非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.[详解]∵|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,∴|x +y ﹣3|+(2x +3y ﹣8)2=0,∴=323=8x yx y+⎧⎨+⎩①②,①×3﹣②得:x=1,把x=1代入①得:y=2,则3x+4y=3+8=11.故答案为:11.[点睛]此题考查解二元一次方程组,非负数的性质,熟练掌握方程组的解法是解题的关键.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为_____.[答案]27cm2.[解析][分析]设小长方形的长为xcm,宽为ycm,观察大长方形,由大长方形的对边相等及大长方形的宽为12cm,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入xy中即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:2312x x yx y=+⎧⎨+=⎩,解得:93 xy=⎧⎨=⎩,∴27xy=.故答案为:27cm2.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.[答案](2019,2)[解析][分析]分析点P 的运动规律,找到循环次数即可.[详解]分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).[点睛]本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-[答案](1)3(2)6.[解析][分析](1)直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根分别化简再合并得出答案.[详解]解:(1)原式=2+5﹣(23=2+5﹣3=3(2)原式=9﹣3=6.[点睛]本题考查了实数的运算,涉及到的知识有,立方根、二次根式的性质、绝对值的性质等知识,熟练掌握运算法则是解题的关键.22.解方程组(1)529 3411 x yx y+=⎧⎨+=⎩;(2)24 31y xx y=-⎧⎨+=⎩.[答案](1)12xy=⎧⎨=⎩;(2)12xy=⎧⎨=-⎩.[解析]分析](1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.[详解]解:(1)529 3411x yx y+=⎧⎨+=⎩①②,①×2﹣②得:7x=7,解得:x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩;(2)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1, 解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , );(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.[答案](1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).[解析][分析](1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.[详解]解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).[点睛]本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)[答案]两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等[解析][分析]首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.[详解]证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.[答案](1)一间大餐厅可供960名学生就餐,一间小餐厅可供360名学生就餐;(2)能,理由见解析.[解析][分析](1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.[详解](1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280x y x y ==+⎧⎨+⎩ 解得:960360x y ⎧⎨⎩==, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.[点睛]考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.26.已知射线AB ∥射线CD ,P 为一动点,AE 平分∠PAB ,CE 平分∠PCD ,且AE 与CE 相交于点 E.(1)在图1中,当点P 运动到线段AC 上时,∠APC=180°.①直接写出∠AEC 的度数;②求证:∠AEC=∠EAB+∠ECD ;(2)当点P 运动到图2的位置时,猜想∠AEC 与∠APC 之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC 与∠APC 之间的关系,并加以证明.[答案](1))①∠AEC=90°②见解析;(2)∠AEC=12∠APC , 理由见解析;(3)不成立,∠AEC=180∘−12∠APC ,理由见解析[解析][分析](1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC 的度数;②在图1中,过E 作EF ∥AB ,根据平行线的性质可得出∠AEF=∠EAB 、∠CEF=∠ECD ,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD ;(2)猜想:∠AEC=12∠APC,由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=12(∠PAB+∠PCD)=12∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-12∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,结合(1)的结论即可证出∠AEC=180°-12∠APC.[详解](1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB. ∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=12∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)=12∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∘−12∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°. ∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180∘.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°−∠APC. ∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)= 180°-12∠APC.[点睛]此题考查平行线的判定与性质,解题关键在于作辅助线。
初一年级数学期中下册重点试题(含答案解析)-word
2019初一年级数学期中下册重点试题(含答案解析)2019初一年级数学期中下册重点试题(含答案解析) 一、选择题(本大题共8小题,每小题 3分,共24分)1.下列计算中,不正确的是()C、-(a-b)=-a+bD、-3a+2a=-a 2.某不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )A. B.C. D.3.如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=180°4.下列命题中,真命题的是()A.不是对顶角的两个角不相等 B.两条直线被第三条直线所截,内错角相等C.若ab,则 D.垂直于同一条直线的两直线平行5.下列各式从左到右的变形,属因式分解的是()A. B. 4C. D.6.已知是同类项,则()A、 B、 C、 D、7. 如果不等式组的解集是无解,那么m的取值范围是( )A.m=2 B.m≥2 C. m D.m≤28. 某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为人,组数为组,则列方程组为()A. B. C. D.二、填空题(本大题共9小题,每空2分,共20分)9. 计算:-a(-2a+b)=10. 不等式-x-10的解集是____________11.命题“直角三角形的两个锐角互余”的逆命题是:_______________________12.若x2-2(m+3)x+4是完全平方式,则m的值是13. 已知多边形的内角和比它的外角和大720°,则多边形的边数为14.已知4x-3y=2,当时,x的取值范围为15.某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了86分,她希望自己这学期总成绩不低于95分,她在期末考试中数学至少应得多少分? 设她在期末考试中数学考了x分,可列不等式________________________16.如图,DB平分∠ADE,DE∥AB,∠ CDE=86°,则∠ABD=__ ______°,∠A=________°.17. 若关于x、y的二元一次方程组的解满足x+y≥-1,则a的取值范围为______三、解答题(本大题共8小题,共56分)18.(本题满分10分,(1)、( 2)题每题3分,(3)题4分)计算:(1) (2)(3) 先化简,再求值,其中19.(本题满分6分)因式分解:(1)(2)20.(本题满分5分)解不等式,并把解集在数轴上表示出来,再求出这个不等式的最小整数解。
2019-2020学年度七下数学期中考试试题(含答案解析)
2019-2020学年度七下数学期中考试试题一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,6)B.(﹣2,5)C.(﹣5,﹣3)D.(2,﹣1)3.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(3分)在﹣1,14,0.101001000100001L,3,3.14159,,2,这7个数中,无理数共有()A.4个B.3个C.2个D.1个5.(3分)1.下列选项中能由左图平移得到的是()A. B. C. D.6.(3分)若点P在x轴的下方,y轴的右方,到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)7.(3+1的值在哪两个整数之间()A.5和6B.6和7C.7和8D.8和98.(3分)7. 小明同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元,设1元和2元的贺卡张数分别为x 张和y 张,则下列方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.822210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩9.(3分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.4810.(3分)如图,一个质点在第一象限及x轴、y轴上运动,在第一秒时,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•••,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)二.填空题(3×6=18分)11.(3的平方根是.12.(3分)已知3x+2y=1,用含x的代数式表示y:.13.(3b=,则ab=.14.(3分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(3分).已知x3x-2111y y==⎧⎧⎨⎨==⎩⎩或都是ax+by=7的解,则a=_______,b=______.16.(3分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共72分)17.(8分)计算:(1)21(2)--;(2218.(10分)解方程(组):(1)9x2=16(2){2m+3n=1①7m+6n=8②.19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)阅读下列解题过程,然后解答后面的问题.如图①,已知AB∥CD,∠B=35°,∠D=32°,求∠BED的度数.解:过E作EF∥AB.∵AB∥CD,∴CD∥EF.∵AB∥EF,∴∠1=∠B=35°.又∵CD∥EF,∴∠2=∠D=32°,∴∠BED=∠1+∠2=35°+32°=67°.如图②、图③,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问题,请你帮他解决.(1)如图②,已知∠D=30°,∠ACD=65°,为了保证AB∥DE,∠A应多大?(2)如图③,要使GP∥HQ,则∠G,∠GFH,∠H之间有什么关系?21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC(____________)∴∠C=∠DBA(____________)又∵∠C=∠D∴∠DBA=∠D(___________)∴DF∥(_______________)∴∠A=∠F(_____________).22.(10分)如图,CD⊥AB于D,且CD平分∠BCA,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,∠3=80°,CD平分∠BCA(1)证明:∠B=∠ADG;(2)求∠2的度数.23.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如注:获利24.(12分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.2019-2020学年度七下数学期中考试试题(答案解析)一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等【分析】根据命题的定义即可求解.【解答】解:根据命题的定义可以判断A、B、C不是命题,故选:D.【点评】本题考查了命题的定义。
2018-2019学年七年级下册期中数学试卷(有答案及解析)
2018-2019学年七年级(下)期中数学试卷一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.如图:直线a、b被直线c所截,则∠1,∠2,∠3,∠4中,∠1的同位角是()A.∠3B.∠2C.∠4D.不确定2.如图:若∠1=∠2,则()A.AD∥BC B.AB∥CD C.∠A=∠C D.AB⊥BC3.如图:a∥b,若∠1=∠2,则∠2的度数为()A.30°B.90°C.120°D.150°4.已知:等腰三角形有两条边分别为2,4,则等腰三角形的周长为()A.6B.8C.10D.8或105.已知:等腰△ABC中,∠B=∠C,若该三角形有一个内角80°,则顶角为()A.80°B.20°C.80°或20°D.100°6.已知:x m=3,则x2m=()A.6B.9C.12D.187.把0.00091科学记数表示为()A.91×10﹣5B.0.91×10﹣3C.9.1×104D.9.1×10﹣48.下列多项式因式分解能用平方差公式的是()A.﹣x2+1B.﹣x2﹣1C.49﹣x3D.49+x9.在二元一次方程x+3y=10中,若x、y均为正数,则该方程的正整数解的个数为()A.1个B.2个C.3个D.4个10.从长度分别为3cm、4cm、5cm、6cm、9cm的小木棒中任取三根,能搭成三角形的组数有()A.4B.5C.6D.7二、填空题(共8小题,每小题3分,满分24分)11.已知:∠α的两条边分别平行∠β的两条边,若∠α=40°,则∠β=.12.如图AB∥CD,AE,CE分别平分∠BAC,∠ACD,那么∠AEC=度.13.已知多边形的内角和为540°,则该多边形的边数为.14.已知:a m=10,a n=2,则a2m﹣n=.15.若关于x的代数式x2+(m﹣3)x+16 是一个完全平方式,则m=.16.已知:实数a、b满足a2+b2+2a+4b+5=0,则b=.17.若是二元一次方程3x+by=5的一个解,则b=.18.已知:a2+b2+c2﹣ab﹣ac﹣ca=0,则a、b、c的大小关系为.三、解答题(56分)19.(8分)如图:点D、E在AB上,点F在BC上,点G在AC上,若∠1=∠B,∠2=∠3,∠4=70°.(1)请说明EF∥DC(2)求∠ADC的度数(要求书写完整步骤)20.(8分)已知:△ABC中,AB<AC,AH是高,AD是∠BAC的平分线.(1)若∠B=60°,∠C=40°,求∠HAD的度数;(2)若∠B=m°,∠C=n°,(m>n).求∠HAD(用mn的代数式表示)21.(8分)计算:22.(8分)先化简,后求值:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2,其中x=,y=﹣1 23.(8分)把下列各式因式分解:(1)4x2﹣64(2)4(m+n)2﹣9(m﹣n)224.(8分)解下列方程组(1)(代入法)(2)25.(8分)观察并计算(1)①1×2×3×4+1=2②3×4×5×6+1=2限填正整数(2)猜想:写出一个反应上述等量关系的等式.(3)说明你猜想的理由.(4)应用:计算:10×11×12×13+1七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分.每小题给出的四个选项中只有一个选项正确)1.【分析】根据同位角的定义即可求出答案.【解答】解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角.故选:B.【点评】本题考查同位角的定义,解题的关键是熟练理解同位角的定义,本题属于基础题型.2.【分析】∠1与∠2是直线AB、直线CD被直线BD所截形成的内错角,即∠1=∠2,所以AB ∥CD.【解答】解:∵∠1=∠2,∴AB∥CD,故选:B.【点评】此题考查平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3.【分析】根据平行线的性质解答即可.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=∠2,解得:∠2=120°,故选:C.【点评】考查了平行线的判定和性质,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.4.【分析】因为已知长度为2和4两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,∵2+2=4=4,所以不能构成三角形,故舍去,∴答案只有10.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.【分析】若80°是顶角,则可直接得出答案;若80°是底角,则设顶角是y,根据三角形内角和为180°即可求解;【解答】解:若80°是顶角,则顶角为80°;若80°是底角,则设顶角是y,∴2×80°+y=180°,解得:y=20°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,关键是注意分类讨论.6.【分析】将x m=3代入x2m=(x m)2,计算可得.【解答】解:当x m=3时,x2m=(x m)2=32=9,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00091=9.1×10﹣4.故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】根据平方差公式的特点,两平方项符号相反,对各选项分析判断后利用排除法求解.【解答】解:A、﹣x2与1符号相反,能运用平方差公式,故本选项正确;B、﹣x2与﹣1符号相同,不能运用平方差公式,故本选项错误;C、49﹣x3,不能运用平方差公式,故本选项错误;D、49+x,不能运用平方差公式,故本选项错误.故选:A.【点评】本题主要考查了平方差公式分解因式,熟记公式结构是解题的关键.9.【分析】将方程变形为x=10﹣3y,再分别求出y=1、2、3时x的值即可得.【解答】解:∵x+3y=10,∴x=10﹣3y,当y=1时,x=7;当y=2时,y=4;当y=3时,x=1;∴该方程的正整数解有3组,故选:C.【点评】本题主要考查二元一次方程的解,解题的关键是熟练将方程变形为用含一个未知数的代数式表示另一个未知数及方程的解的定义.10.【分析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故选:C.【点评】此题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.二、填空题(共8小题,每小题3分,满分24分)11.【分析】根据当两角的两边分别平行时,两角的关系可能可能相等也可能互补,即可得出答案.【解答】解:∵∠α=40°,∠α的两边分别和∠β的两边平行,∴∠β和∠α可能相等也可能互补,即∠β的度数是40°或140°,故答案为:40°或140°.【点评】本题考查了对平行线的性质的应用,注意:运用了分类思想.12.【分析】根据平行线的性质得∠BAC+∠DCA=180°,再根据角平分线的定义得∠EAC=∠BAC,∠ECA=∠DCA,则∠EAC+∠ECA=90°,然后根据三角形内角和定理可计算出∠AEC.【解答】解:∵AB∥CD,∴∠BAC+∠DCA=180°,∵AE,CE分别平分∠BAC,∠ACD,∴∠EAC=∠BAC,∠ECA=∠DCA,∴∠EAC+∠ECA=(∠BAC+∠DCA)=90°,∴∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.也考查了角平分线的定义.13.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为已知多边形的内角和为540°,所以可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=540°,解得n=5.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.14.【分析】根据同底数幂的除法法则和幂的乘方与积的乘方法则解答.【解答】解:∵a m=10,a n=2,∴a2m﹣n===50.故答案是:50.【点评】考查了同底数幂的除法和幂的乘方与积的乘方,属于基础计算题.15.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16 是一个完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故答案为:11或﹣5【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.【分析】将已知等式左边的5变为1+4,利用加法运算律变形后,再利用完全平方公式变形,根据两非负数之和为0,两非负数分别为0,即可求出a与b的值.【解答】解:∵a2+b2+2a+4b+5=0,∴a2+2a+1+b2+4b+4=0,即(a+1)2+(b+2)2=0,∴a+1=0且b+2=0,解得:a=﹣1,b=﹣2.故答案为:﹣2.【点评】此题考查了配方法的应用,以及非负数的性质:偶次方,灵活运用完全平方公式是解本题的关键.17.【分析】将x=3、y=4代入方程3x+by=5得到关于b的方程,解之可得.【解答】解:根据题意将x=3、y=4代入方程3x+by=5,得:9+4b=5,解得:b=﹣1,故答案为:﹣1.【点评】本题主要考查二元一次方程组的解,解题的关键是熟练掌握方程的解的定义.18.【分析】对a2+b2+c2﹣ab﹣bc﹣ca=0进行因式分解可得(a﹣b)2+(b﹣c)2+(c﹣a)2=0,进而解答即可.【解答】解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c【点评】本题主要考查因式分解的应用,解题的关键是把所给式子进行因式分解.三、解答题(56分)19.【分析】(1)根据平行线的判定和性质得出DG∥BC,进而得出∠2=∠DCB,利用等量代换得出∠3=∠DCB,进而证明平行即可;(2)利用平行线的性质解答即可.【解答】解:(1)∵∠1=∠B,∴DG∥BC,∴∠2=∠DCB,∵∠2=∠3,∴∠3=∠DCB,∴EF∥DC;(2)∵EF∥DC,∴∠4=∠ADC═70°.【点评】此题考查平行线的判定和性质,关键是根据平行线的判定和性质得出DG∥BC.20.【分析】(1)先利用△ABC的内角和为180°,求出∠BAC的度数,再根据AD是∠BAC的平分线,求出∠BAD的度数,在△ABH中,求出∠BAH=180°﹣∠B﹣∠AHB=30°,根据∠HAD =∠BAD﹣∠BAH,即可解答;(2)根据(1)的解题过程,即可解答.【解答】解:(1)∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=40°,∵△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=60°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=30°,∴∠HAD=∠BAD﹣∠BAH=40°﹣30°=10°,(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣∠B﹣∠C═(180﹣m﹣n)°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=(180﹣m﹣n)°,∵:△ABC中,AB<AC,AH是高,∴∠AHB=90°,∴在△ABH中,∠B=m°,∠AHB=90°,∴∠BAH=180°﹣∠B﹣∠AHB=(90﹣m)°,∴∠HAD=∠BAD﹣∠BAH=(180﹣m﹣n)°﹣(90﹣m)°=(m﹣n)°,【点评】本题考查了三角形的内角和定理和角平分线的性质,解决本题的关键是熟记三角形内角和定理.21.【分析】首先进行积的乘方运算,再利用单项式乘以多项式得出答案.【解答】解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.22.【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x﹣5y)(﹣x﹣5y)﹣(﹣x+5y)2=25y2﹣x2﹣x2+10xy﹣25y2=﹣2x2+10xy,当x=,y=﹣1,原式==﹣﹣5=﹣5.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.23.【分析】(1)首先提取公因式4,再利用平方差公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+8)(x﹣8);(2)4(m+n)2﹣9(m﹣n)2=[2(m+n)+3(m﹣n)][2(m+n)﹣3(m﹣n)]=(5m﹣n)(﹣m+5n).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.24.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:y=﹣2x+8③,把③代入①得:3x+8x﹣32=1,解得:x=3,把x=3代入②得:y=2,则方程组的解为;(2)方程组整理得:,①+②得:4x=32,解得:x=8,把x=8代入②得:y=﹣6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.【分析】(1)各式计算得到结果即可;(2)归纳总结得到一般性结论,写出即可;(3)验证得到的等式即可;(4)利用得出的规律计算即可求出值.【解答】解:(1)①1×2×3×4+1=52;②3×4×5×6+1=192;故答案为:①5;②19;(2)猜想得到:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2;(3)等式左边=(n2+n)(n2+5n+6)+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n)2+2(n2+3n)+1=n4+6n3+11n2+6n+1,左边=右边,等式成立;(4)根据题意得:原式=1312=17161.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.。
江苏省常州市北郊中学2018-2019学年七年级下期中考试数学试题(word版含答案)
北郊中学2018-2019学年度第二学期七年级期中考试数学试卷一、选择题(每题2分,共16分)1.在下列四个汽车标志图案中,可以看作由“基本图案”经过平移得到的是2.下列计算正确的是A.1243a a a =⋅B.()1243a a =C.()123462a a -=- D.a a a =÷33 3.下列运算中,正确的是(A.()222y x y x -=- B.()()6322-=-+x x x C.2224241221y xy x y x ++=⎪⎭⎫ ⎝⎛+ D.()()22422x y x y x y -=-+- 4.长为11、8、6、4的四根木条,选其中三根组成三角形,有_____种选法A.1B.2C.3D.45.若一个多边形的内角和为1080°,则这个多边形的边数为A.6B.7C.8D.96.如图,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,AB//CD ,若∠1=72°,则∠2的度数为A.54°B.59°C.72°D.108°7.下列命题中,是真命题的有①两条直线被第三条直线所截,同旁内角互补;②若a2=b2,则a=b③多边形的外角和与边数有关;④若线段a 、b 、c 满足b+c>a 则以a 、b 、c 为边一定能组成三角形;⑤如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等。
A.0个B.1个C.2个D.3个8.如图a 是长方形纸带,∠DEF=26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是A.102°B.108°C.124°D.128°二、填空题(每题2分,共20分)9.计算:()()=-÷-36x x _______. 10.DMA 是遗传物质脱氧核糖核酸的英文简称,DMA 分子的直径只有0.0000007cm ,则0.0000007用科学记数法表示是____________.11.写出命题“直角三角形的两个锐角互余”的逆命题:_________________________.12.()().____206204205____25.042100100=⨯-=-⨯-; 13.已知,,23==n m a a 则=-n m a2________. 14.若()(),q px x x x ++=+-225则=-q p ______.15.若2542+-kx x 是一个完全平方式,则=k _______.16.如图,将△ABC 沿着AB 方向,向右平移得到△DEF ,若AE=8,DB=2,则CF=______.17.如图,在Rt △ABC 中,∠B=90°,∠ACB=59°,EF//GH ,若∠1=58°,则∠2=_____°.18.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题19.计算(每题4分,共24分)(1)()12024311--⨯+⎪⎭⎫ ⎝⎛--- (2)()28422222a a a a a ÷-⋅+-(3)()()()b a b a b a 2222+--+ (4)()()c b a c b a -+--(5)()()232323-+x x (6)()()()3932++-x x x20.(本题5分)求代数式()()()()232121-+-+-x x x x 的值,其中.21=x21.(本题5分)已知:()().12225=++=+y x y x ,(1)求xy 的值;(2)求xy y x 322-+的值。
2018-2019学年福建省泉州市惠安县七年级(下)期中数学试卷(附答案详解)
2018-2019学年福建省泉州市惠安县七年级(下)期中数学试卷一、选择题(本大题共5小题,共25.0分) 1.123−4.5−12×1.3⋅−(1−2)2|−523|=( )A. −720B. −12245C. −17720D. −292452. 已知x 和y 满足2x +3y =5,则当x =4时,代数式3x 2+12xy +y 2的值是( )A. 4B. 3C. 2D. 13. 图中的大,小正方形的边长均为整数,它们面积之和等于74cm 2,则阴影三角形的面积是( )A. 6cm 2B. 7cm 2C. 8cm 2D. 9cm 24. 有理数a 、b 、c 的大小关系如图所示,则下列式子中一定成立的是( )A. a +b +c >0B. |a +b|<cC. |a −c|=|a|+cD. |b −c|>|c −a|5. “希望杯”四校足球邀请赛规定:(1)比赛将采用单循环赛形式;(2)有胜负时,胜队得3分,负队得0分; (3)踢平时每队各得1分.比赛结束后,四个队各自的总得分中不能出现( )A. 8分B. 7分C. 6分D. 5分二、填空题(本大题共5小题,共25.0分)6. 2002年8月,在北京召开了国际数学家大会,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,则两条直角三角形的两条边的立方和等于______.7. 关于x ,y 的方程组{3x +4y =32mx +3y =2的解x ,y 的和等于1.则m 的值是______.8. 若k45k9−是能被3整除的五位数,则k 的可能取值有______个;这样的五位数中能被9整除的是______.9. 如图,甲乙两车分别自A 、B 两城同时相向行驶,在C地相遇继续行驶分别达到B 、A 两城后,立即返回,在D处再次相遇.已知AC =30千米,AD =40千米,则AB =______千米,甲的速度:乙的速度=______. 10. For real number a ,let[a]denote tℎe maximum integer wℎicℎ does not exceed a.For example ,[3.1]=3,[−1.5]=−2,[0.7]=0 Now let f(x)=(x +1)/(x −1),tℎen[f(2)]+[f(3)]+⋯+[f(100)]=______.(英汉小词典real number :实数;tℎe maximum integer wℎicℎ does not exceed a :不超过a 的最大整数) 三、解答题(本大题共4小题,共50.0分)11. 1只猴子摘了一堆桃子,第一天吃了这堆桃子的17,第二天吃了余下桃子的16,第三天吃了余下桃子的15,第四天吃了余下桃子的14,第五天吃了余下桃子的13,第六天吃了余下桃子的12,这时还剩下桃子12个,那么第一天和第二天所吃桃子的总数是多少?12. 观察下面的等式:2×2=4,2+2=4,32×3=412,32+3=412,43×4=513,43+4=513,54×5=614,54+5=614,小明归纳上面各式得出一个猜想:“两个有理数的积等于这两个有理数的和”,小明的猜想正确吗?为什么?请你观察上面各式的结构特点,归纳出一个猜想,并证明你的猜想.13. 平时在顺风情况下,一帆船由甲地经3小时到达乙地.今天这艘帆船照例在顺风情况下从甲地出发,行驶了全程的13;由于风向骤变,船因而以顺风时速度的25行驶8千米,接着风向又变得顺起来,且风力加大了,这时船以顺风时速度的2倍行驶,到达乙地时比往常迟36分钟.求甲、乙两地相距多少千米.14. 规定:正整数n 的“H 运算”是①当n 为奇数时,H =3n +13;②当n 为偶数时,H =n ×12×12×…(其中H 为奇数).如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果是11,经过3次“H 运算”的结果是46.请解答:(1)数257经过257次“H 运算”得到的结果. (2)若“H 运算”②的结果总是常数a ,求a 的值.答案和解析1.【答案】A【解析】解:原式=(53−92)÷(−12×43)−1÷(523),=−176×(−32)−1×235,=174−235,=−720.故选:A.把小数转化为分数通分,计算乘方和绝对值,再把分数按照除法计算.本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.2.【答案】D【解析】解:把x=4代入2x+3y=5得:y=−1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(−1)+1=1,故选:D.根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+ 12xy+y2即可求得.本题考查了二元一次方程的解法,主要运用了代入法,难度适中.3.【答案】B【解析】解:∵大、小正方形的边长均为整数(cm),它们面积之和等于74cm2,∴大正方形的边长是7cm,小正方形的边长是5cm,∴阴影部分的面积=12×(7−5)×7=7(cm2).故选:B.根据大、小正方形的边长均为整数,它们面积之和等于74cm2,则可以分析求得两个正方形的边长分别是5cm和7cm,再进一步求得阴影部分的面积即可.此题考查三角形的面积计算,关键是能够根据已知条件把74分成两个完全平方数,即74=25+49.4.【答案】C【解析】解:根据数轴可知,A、a+b+c<0,本选项错误;B、|a+b|>c,本选项错误;C、|a−c|表示数a的点与数c的点之间的距离,可以用|a|+c表示,本选项正确;D、|b−c|<|c−a|,本选项错误.故选:C.由数轴可知a、b为负数,c为正数,根据绝对值的意义,逐一判断.本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【答案】A【解析】解:因为四校进行单循环赛,则每队能赛3场,则每队比赛结果可能有:3胜,2胜1负,2胜1平,1胜2负,1胜1负1平,1胜2平,3负,2负1平,1负2平,3平,则每队比赛得分可能有:9分,7分,6分,5分,4分,3分,2分,1分,0分.故选:A.四校足球邀请赛采用单循环赛形式,四个队中每队将比赛3场,则每队比赛结果可能有:3胜,2胜1负,2胜1平,1胜2负,1胜1负1平,1胜2平,3负,2负1平,1负2平,3平,计算即可得出得分出现的情况,从而作答.本题考查了比赛积分问题,了解单循环赛的规则及积分规定,是此题的关键.6.【答案】35【解析】解:设每个直角三角形的两条直角边分别是a、b(a>b),小正方形面积为1,大正方形面积为13,即a2+b2=13,a−b=1,解得a=3,b=2,∴a 3+b 3=35,故两条直角三角形的两条边的立方和=a 3+b 3=35 故答案为35.设每个直角三角形的两条直角边分别是a 、b(a >b),则根据小正方形、大正方形的面积可以列出方程组,解方程组即可求得a 、b ,求a 3+b 3即可.本题考查了勾股定理在直角三角形中的灵活运用,考查了正方形面积的计算,本题中列出方程组并求解是解题的关键.7.【答案】1【解析】解:解方程组{3x +4y =3x +y =1,得{x =1y =0. 把x =1,y =0代入2mx +3y =2, 得2m +0=2, ∴m =1. 故答案为1.先解二元一次方程组{3x +4y =3x +y =1,把x 、y 的值代入2mx +3y =2,即可求出m 的值.本题考查了一次方程组的解法.先求解二元一次方程组{3x +4y =3x +y =1,可使问题比较简便.本题还可以将x +y =1加入已知方程组中,解二元一次方程组.8.【答案】3 94599【解析】解:已知,五位数k 45k 9能被3整除, 所以(k +4+5+k +9)是3的倍数, 即2k +18是3的倍数, 18是3的倍数, 则2k 是3的倍数,3,6,9,12,15,18…是3的倍数,又K 是1、2、3、4、5、6、7、8、9,其中的数, 如果k =1,2,4,5,7,8时,2k 不是3的倍数, 当k =3,6,9时,2k 是3的倍数, 所以k =3或6或9,得到3个五位数即34539,64569,94599,而这三个五位数中只有94599的5个数的和是9的倍数. 所以这样的五位数中能被9整除的是94599. 故答案分别为:3,94599.由已知,若k 45k 9能被3整除,则(k +4+5+k +9)是3的倍数,即2k +18是3的倍数,由此可求出k ,然后用求得k 的数组成的五位数的5个数的和那个是9的倍数即得答案.此题是考查数的整除性问题,解答的关键是这个五位数能被3或9整除,则有它们5个数的和是3或9的倍数.9.【答案】65 67【解析】解:设甲速度为a ,乙速度为b ,BD 为x 千米,根据题意得:{30a=x+10b40+2xa=2×40+x b, 解方程得x =25,ab =67. 则AB =AD +BD =65(千米). 故答案两空分别填:65、67.设甲速度为a ,乙速度为b ,BD 为x 千米,根据到C 点时甲乙用时相同可列一个方程,再根据到达D 时两人用时也相同可得第二个方程,求方程组的解即可.本题考查了二元一次方程组的应用,解题关键是要读懂题意,看懂图意,根据题目给出的条件找出等量关系,列出方程组再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.10.【答案】102【解析】解:∵f(x)=x+1x−1, ∴f(2)=2+12−1=3,f(3)=3+13−1=2,f(4)=4+14−1=53,f(5)=5+15−1=32,…f(100)=100+1100−1=10199,∴[f(2)]=3,[f(3)]=2,[f(4)]=[f(5)]=⋯[f(100)]=1,∴[f(2)]+[f(3)]+⋯+[f(100)],=3+2+1+⋯+1,=5+1×97,=102.故答案为:102.利用函数f(x)=x+1x−1,可得出f(2)…f(100)代表的数据,从而得出[f(2)]=3,[f(3)]=2,[f(4)]=[f(5)]=⋯[f(100)]=1,的值,进而求出结果.此题主要考查了取整函数的性质,以及由已知得出[f(2)]…[f(100)]代表的数据,这是解决问题的关键.11.【答案】解:设这堆桃子共有x个,则第一天吃了17x个,第二天吃了(1−17)×16x=17x个,第三天吃了(1−17−17)×15x=17x个,第四天吃了(1−17−17−17)×14x=17x,第五天吃了(1−17−17−17−17)×13x=17x个,第六天吃了(1−17−17−17−17−17)×12x=17x个,依题意得:x−17x−17x−17x−17x−17x−17x=12,解得:x=84,∴17x+17x=17×84+17×84=12+12=24.答:第一天和第二天所吃桃子的总数是24个.【解析】设这堆桃子共有x个,则第一天吃了17x个,第二天吃了17x个,第三天吃了17x个,第四天吃了17x,第五天吃了17x个,第六天吃了17x个,根据最后剩下桃子12个,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入(17x+17x)中即可求出第一天和第二天所吃桃子的总数.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.【答案】解:(1)小明的猜想显然是不正确的,易举出反例;如1×3≠1+3;(2)将第一组等式变形为:21×2=4,21+2=4, 得出如下猜想:“若n 是正整数,则n+1n×(n +1)=n+1n+(n +1)”,证法1:左边=(1+1n )(n +1)=(n +1)+n+1n=右边,所以猜想是正确的, 证法2:右边=n+1n+n(n+1)n=(n+1)2n=左边,所以猜想是正确的.【解析】(1)可通过实际例子来验证小明的猜想是否正确;(2)通过观察各个算式,归纳出规律,然后用字母表示数并进行进一步的验证. 本题考查了有理数的混合运算,更重要的是考查同学们阅读信息、加工信息、应用信息的能力,是一道综合考查学生学习能力的题目.13.【答案】解:设平时在顺风情况下帆船的速度为v 千米/时,则甲、乙两地相距3v千米,风向骤变后帆船的速度为25v 千米/时,风向又变得顺起来时帆船的速度为2v 千米/时, 依题意得:13×3v v+825v+(1−13)×3v−82v−3=3660,即16v =85, 解得:v =10,经检验,v =10是原方程的解,且符合题意, ∴3v =3×10=30. 答:甲、乙两地相距30千米.【解析】设平时在顺风情况下帆船的速度为v 千米/时,则甲、乙两地相距3v 千米,风向骤变后帆船的速度为25v 千米/时,风向又变得顺起来时帆船的速度为2v 千米/时,利用时间=路程÷速度,结合到达乙地时比往常迟36分钟,即可得出关于v 的分式方程,解之经检验后即可得出v 的值,再将其代入3v 中即可求出甲、乙两地间的距离. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.14.【答案】解:(1)1次=3×257+13=7842次=784×0.5×0.5×0.5×0.5=493次=3×49+13=1604次=160×0.5×0.5×0.5×0.5×0.5=55次=3×5+13=286次=28×0.5×0.5=77次=3×7+13=348次=34×0.5=179次=3×17+13=6410次=64×0.5×0.5×0.5×0.5×0.5×0.5=111次=3×1+13=1612次=16×0.5×0.5×0.5×0.5=1=第10次所以从第10次开始偶数次等于1奇数次等于16257是奇数所以第257次是16.(2)若对一个正整数进行若干次“H操作”后出现循环,此时‘H’运算的结果总是a,则a一定是个奇数.那么,对a进行H运算的结果a×3+13是偶数,再对a×3+13进行“H运算”,即:a×3+13乘以1的结果仍是a2k=A于是(a×3+13)×12k也即a×3+13=A×2k即a(2k−3)=13=1×13因为a是正整数所以2k−3=1或2k−3=13解得k=2或k=4当k=2时,a=13;当k=4时,a=1,所以a为1或13.【解析】(1)按照①②运算一次一次的输入,得出它们的结果,从中发现规律,从第10次开始偶数次等于1,奇数次等于16.从而求数257经过257次“H运算”得到的结果.(2)对a的值分析可得a一定是个奇数,然后按照运算①计算,并变成幂的形式即可得a的值.本题难度较大,考出了学生的水平,学生一定要仔细应对.第11页,共11页。
【精选】2019-2020学年湖北省武汉市青山区七年级下期中考试数学试卷(含答案解析).doc
2019-2020学年湖北省武汉市青山区七年级(下)期中数学试卷一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.(3分)下列各数中是无理数的是()A.3.14 B.C.D.2.(3分)平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)的相反数是()A.B.﹣C.﹣D.4.(3分)如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角5.(3分)如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()A.∠3=∠4 B.∠C=∠CDEC.∠1=∠2 D.∠C+∠ADC=180°6.(3分)下列各式正确的是()A.B.C.D.7.(3分)如图,∠1=∠2,且∠3=108°,则∠4的度数为()A.72°B.62°C.82°D.80°8.(3分)下列各数中,介于6和7之间的数是()A.B.C.D.9.(3分)下列命题中,是真命题的是()A.无理数是开方开不尽的数B.y轴上的点,纵坐标为 0C.邻补角一定互补D.有且只有一条直线与已知直线垂直10.(3分)如图,AB∥CD,∠MBN=3∠ABM,∠MDN=3∠CDM,∠N=160°,则∠M为()A.45°B.50°C.60°D.65°二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置.11.(3分)4是的算术平方根.12.(3分)把点P(1,1)向右平移3个单位长度后的坐标为.13.(3分)已知,则.14.(3分)正方形木块的面积为5m2,则它的周长为m.15.(3分)如图,B岛在A岛的北偏东60°方向,在C岛的北偏西45°方向,则∠ABC=.16.(3分)把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD的度数为.三、解下列各题(本大题共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1)(2)18.(8分)如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.19.(8分)自由下落物体的高h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.如果有一个物体从14.7m高的建筑物上自由落下,到达地面需要多长时间?20.(8分)已知,如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB ∥DC.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF、DE分别平分∠ABC与∠ADC,∴∠1=∠ABC,∠2=.()∵∠ABC=∠ADC,∵∠=∠.∵∠1=∠3,∴∠2=.(等量代换)∴∥.()21.(8分)已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,AQ=3,求Q点的坐标.22.(10分)在平面直角坐标系中,A(﹣4,0),B(2,4),BC∥y轴,与x轴相交于点C,BD∥x 轴,与y轴相交于点D.(1)如图1,直接写出①C点坐标,②D点坐标;(2)在图1中,平移△ABD,使点D的对应点为原点O,点A、B的对应点分别为点A′、B′,请画出图形,并解答下列问题:①AB与A′B′的关系是:,②四边形AA′OD的面积为;(3)如图2,F(﹣2,2)是AD的中点,平移四边形ACBD使点D的对应点为DO的中点E,①E点的坐标;②图中阴影部分的面积是.23.(10分)已知:E,F分别为AB,CD上任意一点.M,N为AB和CD之间任意两点.连接EM,MN,NF,∠AEM=∠DFN=a,∠EMN=∠MNF=b.(1)如图1,若a=b,求证:ME∥NF,AB∥CD;(2)当a≠b时①如图2,求证:AB∥CD;②如图3,分别过点E,点N引射线EP,NP.EP交MN于Q,交NP于P,∠PEM=∠AEM,∠MNP=∠FNP.∠BEP和∠NFD两角的角平分线交于点I.当∠P=∠I时,a和b的数量关系为:(用含有b的式子表示a).24.(12分)在平面直角坐标系中,有点A(m,0),B(0,n),且m,n满足m=.(1)求A、B两点坐标;(2)如图1,直线lx轴,垂足为点Q(1,0).点P为l上一点,且点P在第四象限,若△PAB的面积为3.5,求点P的坐标;(3)如图2,点D为y轴负半轴上一点,过点D作CD∥AB,E为线段AB上任意一点,以O为顶点作∠EOF,使∠EOF=90°,OF交CD于F.点G为线段AB与线段CD之间一点,连接GE,GF,且∠AEG=∠AEO.当点E在线段AB上运动时,EG始终垂直于GF,试写出∠CFG与∠GFO之间的数量关系,并证明你的结论.2019-2020学年湖北省武汉市青山区七年级(下)期中数学试卷参考答案与试题解析一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.(3分)下列各数中是无理数的是()A.3.14 B.C.D.【解答】解:3.14,﹣,是有理数,是无理数,故选:D.2.(3分)平面直角坐标系中,点(1,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(1,﹣2)在第四象限.故选:D.3.(3分)的相反数是()A.B.﹣C.﹣D.【解答】解:的相反数是﹣.故选:B.4.(3分)如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角【解答】解:∠1和∠2是一对内错角,故选:B.5.(3分)如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是()A.∠3=∠4 B.∠C=∠CDEC.∠1=∠2 D.∠C+∠ADC=180°【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.6.(3分)下列各式正确的是()A.B.C.D.【解答】解:A、=5,故错误;B、﹣=﹣15,故正确;C、=5,故错误;D、=,故错误.故选:B.7.(3分)如图,∠1=∠2,且∠3=108°,则∠4的度数为()A.72°B.62°C.82°D.80°【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠3=108°,∴∠5=180°﹣108°=72°,∴∠4=72°,故选:A.8.(3分)下列各数中,介于6和7之间的数是()A.B.C.D.【解答】解:∵5<<6,6<7,7<<8,3<<4,∴在6和7之间的数是,故选:B.9.(3分)下列命题中,是真命题的是()A.无理数是开方开不尽的数B.y轴上的点,纵坐标为 0C.邻补角一定互补D.有且只有一条直线与已知直线垂直【解答】解:A、开方开不尽的数是无理数,但无理数包括开方开不尽的数,是假命题;B、y轴上的点,横坐标为 0,是假命题;C、邻补角一定互补,是真命题;D、在同一平面内,过一点有且只有一条直线与已知直线垂直,是假命题;故选:C.10.(3分)如图,AB∥CD,∠MBN=3∠ABM,∠MDN=3∠CDM,∠N=160°,则∠M为()A.45°B.50°C.60°D.65°【解答】解:如图所示,过N作NE∥AB,则∵AB∥CD,∴AB∥NE∥CD,∴∠ABN+∠BND+∠CDN=180°×2=360°,又∵∠BND=160°,∴∠ABN+∠CDN=200°,又∵∠MBN=3∠ABM,∠MDN=3∠CDM,∴∠MBN+∠MDN=×200°=150°,∴四边形BMDN中,∠M=360°﹣150°﹣160°=50°,故选:B.二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置.11.(3分)4是16 的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)把点P(1,1)向右平移3个单位长度后的坐标为(4,1).【解答】解:点P(1,1)向右平移3个单位长度,横坐标变为1+3=4,故答案为:(4,1)13.(3分)已知,则 1.01 .【解答】解:∵,∴ 1.01;故答案为:1.01.14.(3分)正方形木块的面积为5m2,则它的周长为4m.【解答】解:设正方形的边长为xm,则x2=5,所以x=或x=﹣(舍),即正方形的边长为m,所以周长为4cm故答案为:4.15.(3分)如图,B岛在A岛的北偏东60°方向,在C岛的北偏西45°方向,则∠ABC=105°.【解答】解:作BD∥AE∥CF,如图,∵BD∥AE∥CF,∴∠1=∠BAE=60°,∠2=∠BCF=45°.∵∠ABC=∠1+∠2=60°+45°=105°,故答案为:105°.16.(3分)把一张对边互相平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则∠D′FD的度数为64°.【解答】解:∵EF是折痕,∠EFB=32°,AC′∥BD′,∴∠C′EF=∠GEG=32°,∴∠C′EG=64°,∵CE∥FD,∴∠D′FD=∠EGB=64°.故答案为:64°.三、解下列各题(本大题共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1)(2)【解答】解:(1)原式=5;(2)原式=﹣2﹣=﹣1.18.(8分)如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.【解答】解:(1)∠AOC 的对顶角为∠BOD ,∠BOE 的邻补角为∠AOE ;(2)∵∠DOB =∠AOC =70°,∠DOB =∠BOE +∠EOD 及∠BOE :∠EOD =2:3,∴得,∴,∴∠BOE =28°,∴∠AOE =180°﹣∠BOE =152°.19.(8分)自由下落物体的高h (单位:m )与下落时间t (单位:s )的关系是h =4.9t 2.如果有一个物体从14.7m 高的建筑物上自由落下,到达地面需要多长时间?【解答】解:当h =14.7m 时,14.7=4.9t 2,解得,t 1=,t 2=﹣(舍去),答:物体从14.7m 高的建筑物上自由落下,到达地面需要s .20.(8分)已知,如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC ,且∠1=∠3.求证:AB ∥DC .请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF 、DE 分别平分∠ABC 与∠ADC ,∴∠1=∠ABC ,∠2=.( 角平分线定义 )∵∠ABC =∠ADC ,∵∠ 1 =∠ 2 .∵∠1=∠3,∴∠2= 3 .(等量代换)∴ AB ∥ CD .( 内错角相等,两直线平行 )【解答】解∵BF 、DE 分别平分∠ABC 与∠ADC ,∴∠1=∠ABC ,∠2=.(角平分线定义 )∵∠ABC =∠ADC ,∵∠1=∠2.∵∠1=∠3,∴∠2=∠3.(等量代换)∴AB∥CD.(内错角相等,两直线平行)故答案为:角平分线定义;1;2;∠3;AB;CD;内错角相等,两直线平行.21.(8分)已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为(0,5);(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,AQ=3,求Q点的坐标.【解答】解:(1)∵点P在y轴上,∴2m﹣6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);(2)根据题意得2m﹣6+6=m+2,解得m=2,∴P点的坐标为(﹣2,4),∴点P在第二象限;(3)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,而AQ=3,∴Q点的横坐标为﹣1或5,∴Q点的坐标为(﹣1,3)或(5,3).22.(10分)在平面直角坐标系中,A(﹣4,0),B(2,4),BC∥y轴,与x轴相交于点C,BD∥x 轴,与y轴相交于点D.(1)如图1,直接写出①C点坐标(2,0),②D点坐标(0,4);(2)在图1中,平移△ABD,使点D的对应点为原点O,点A、B的对应点分别为点A′、B′,请画出图形,并解答下列问题:①AB与A′B′的关系是:AB∥A′B′,AB=A′B′,②四边形AA′OD的面积为16 ;(3)如图2,F(﹣2,2)是AD的中点,平移四边形ACBD使点D的对应点为DO的中点E,①E点的坐标(0,2);②图中阴影部分的面积是10 .【解答】解:(1)①C点坐标(2,0),②D点坐标(0,4);(2)如图;①AB与A′B′的关系是:AB∥A′B′,AB=A′B′;②四边形A A′OD的面积为4×4=16;(3)E点的坐标为(0,2),图中阴影部分的面积是:(2+6)×4×﹣(2+4)×2×=10;故答案为:(2,0);(0,4);AB∥A′B′,AB=A′B′;16;(0,2);1023.(10分)已知:E,F分别为AB,CD上任意一点.M,N为AB和CD之间任意两点.连接EM,MN,NF,∠AEM=∠DFN=a,∠EMN=∠MNF=b.(1)如图1,若a=b,求证:ME∥NF,AB∥CD;(2)当a≠b时①如图2,求证:AB∥CD;②如图3,分别过点E,点N引射线EP,NP.EP交MN于Q,交NP于P,∠PEM=∠AEM,∠MNP=∠FNP.∠BEP和∠NFD两角的角平分线交于点I.当∠P=∠I时,a和b的数量关系为:a=(用含有b的式子表示a).【解答】证明:(1)如图1,∵∠EMN=∠MNF=b,∴EM∥NF,∵∠AEM=∠NFD=a,且a=b,∴∠AEM=∠EMN=∠MNF=∠NFD,∴AB∥MN,MN∥CD,∴AB∥CD,(2)①如图2,延长FN交AB于G,∵ME∥FN,∴∠AEM=∠AGF,∵∠AEM=∠NFD,∴∠AGF=∠NFD,∴AG∥CD,即AB∥CD;②如图3,延长EN交CD于G,∵∠AEM=a,∠PEM=∠AEM=a,∴∠PEB=180°﹣∠AEP=180°﹣a﹣a=180°﹣a,∵EN平分∠PEB,∴∠BED===90°﹣,∵PI平分∠NFD,∠NFD=a,∴∠DFI=a,∵AB∥CD,∴∠BED=∠IDF=90°﹣,△FTD中,∠EIF=∠DFI+∠IDF=a+90°﹣,∵∠MNP=,∠MNF=b,∴∠MNP==b,在△EMQ和△PQN中,∵∠M+∠MEQ=∠P+∠PNQ,∴b+a=∠P+b,∴∠P=b+a﹣b,∵∠P=∠EIF,∴b+a﹣b=a+90°﹣,12b+6a﹣4b=6a+1080﹣9a,8b=1080﹣9a,9a=1080﹣8b,a=;故答案为:a=.24.(12分)在平面直角坐标系中,有点A(m,0),B(0,n),且m,n满足m=.(1)求A、B两点坐标;(2)如图1,直线lx轴,垂足为点Q(1,0).点P为l上一点,且点P在第四象限,若△PAB的面积为3.5,求点P的坐标;(3)如图2,点D为y轴负半轴上一点,过点D作CD∥AB,E为线段AB上任意一点,以O为顶点作∠EOF,使∠EOF=90°,OF交CD于F.点G为线段AB与线段CD之间一点,连接GE,GF,且∠AEG=∠AEO.当点E在线段AB上运动时,EG始终垂直于GF,试写出∠CFG与∠GFO之间的数量关系,并证明你的结论.【解答】解:(1)∵m=.又∵,∴n=±1,∵n+1≠0,∴n=1,m=﹣2,∴A(﹣2,0),B(0,1).(2)如图1中,设P(1,m),作BM⊥l于M,连接AM.∵S△PAB =S△ABM+S△AMP﹣S△PMB,∴×1×1+×(1﹣m)×3﹣×(1﹣m)×1=3.5,解得m=﹣,∴P(1,﹣).(3)结论:∠GFO=2∠GFC.理由:如图2中,设∠AEG=x,∠GFC=y,则∠GEO=2x.∵∠EGF=∠EOF=90°,∴∠GEO+∠GFO=180°,∵AB∥CD,∴∠AEG+∠GFC=∠EGF=90°,∴x+y=90°,2x+∠GOF=180°,∴∠GFO=180°﹣2(90°﹣y)=2y,∴∠GFO=2∠GFC.。
人教版数学七年级下册《期中检测试卷》含答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± 2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A. B. C. D. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 下列计算正确的是( )A. 9=±3B. 38-=﹣2C. 2(3)-=﹣3D. 235+=5. 在311.414283π-,,,,中,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个 6. 若230x y -++=,则的值为( ) A. -8 B. -6 C. 5 D. 67. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4 C ∠B =∠DCE D. ∠D +∠DAB =180°8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A 523220x y x y +=⎧⎨+=⎩B. 522320x y x y +=⎧⎨+=⎩ C 202352x y x y +=⎧⎨+=⎩ D. 203252x y x y +=⎧⎨+=⎩ 9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)二、填空题(每小题3分,共18分) 11. 81的算术平方根是________,33128+ = ________. 12. 已知a ,b 为两个连续的整数,且a <57<b ,则a +b =___________.13. 点P(m−1,m+3)在平面直角坐标系的y 轴上,则P 点坐标为_______.14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__.三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ 19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)20. 若5a+1和a ﹣19是数m 的平方根.求a 和m 的值.21. 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1;(2)求△A 1B 1C 1的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.答案与解析一、选择题(每小题3分,共30分) 1. 14 的平方根是 A. 12 B. 12± C. 12- D. 116± [答案]B[解析][分析]根据平方根的定义求解. [详解]∵211()24±=, ∴14的平方根是12±. 故选B.[点睛]考查了平方根的概念,解题关键是熟记平方根的定义.2. 如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A.B. C. D.[答案]D[解析][分析] 根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.[详解]通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.[点睛]本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象. 3. 在平面直角坐标系中,点(-2,5)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[解析][分析]根据各象限内点P (a ,b )坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0进行判断即可.[详解]∵第二象限内点横坐标<0,纵坐标>0,∴点(-2,5)所在的象限是第二象限.故选B .[点睛]此题主要考查了平面内坐标点的特征,关键是熟记各象限内坐标点的特征.4. 下列计算正确的是( )3 2 3 =[答案]B[解析][分析]根据算术平方根与立方根的定义即可求出答案.[详解]解:(A )原式=3,故A 错误;(B )原式=﹣2,故B 正确;(C )3,故C 错误;(D ,故D 错误;故选B .[点睛]本题考查算术平方根与立方根,熟练掌握算术平方根与立方根的性质是解题关键.5. 在11.4143π,,,无理数的个数有( ) A. 1个B. 2个C. 3个D. 4个[答案]B[解析][分析] 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:13,1.414,,和π这两个数是无理数.[点睛]本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6. 若230x y -++=,则的值为( ) A. -8B. -6C. 5D. 6[答案]B[解析][分析]根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可. [详解]根据题意得:2030x y -=⎧⎨+=⎩,解得:23x y =⎧⎨=-⎩,则xy =﹣6. 故选B .[点睛]本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7. 如图,点E 在BC 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠B =∠DCED. ∠D +∠DAB =180°[答案]B[解析][分析] 结合图形根据平行线的判定定理对选项逐一判断即可求解.[详解]解:A. ∠1=∠2,根据内错角相等,两直线平行,得到AB ∥CD ,不合题意;B. ∠3=∠4,根据内错角相等,两直线平行,得到AD ∥BC ,符合题意;C. ∠B =∠DCE ,根据同位角相等,两直线平行,得到AB ∥CD ,不合题意;D. ∠D +∠DAB =180°,根据同旁内角互补,两直线平行,得到AB ∥CD ,不合题意.故选:B[点睛]本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题关键.8. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩[答案]D[解析]试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:20 3252 x yx y+=⎧⎨+=⎩.故选D.考点:由实际问题抽象出二元一次方程组.9. 如图,现将一块三角板含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为( ).A. 50°;B. 60°;C. 70°;D. 80°.[答案]D[解析]分析:如下图,由平行线的性质可得∠3=∠2,结合∠1=2∠2,∠4=60°,∠1+∠4+∠3=180°即可求得∠1的度数. 详解:∵直尺相对的两边是平行的,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∵∠1+∠4+∠3=180°,∠4=60°,∴3160180 2∠+=,∴∠1=80°.故选D.点睛:本题是一道考查平行线的性质和平角定义的题目,对于“两直线平行,同位角相等”和“平角的度数为180°”的正确应用是解题的关键.10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为( )A. (45,10)B. (45,6)C. (45,22)D. (45,0)[答案]B[解析][分析]将其左侧相连,看作正方形边上的点.分析边上点的个数得出规律“边长为n的正方形边上有2n+1个点”,将边长为n的正方形边上点与内部点相加得出共有(n+1)2个点,由此规律结合图形的特点可以找出第2019个点的坐标.[详解]解:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n的正方形有2n+1个点,∴边长为n的正方形边上与内部共有1+3+5+…+2n+1=(n+1)2个点.∵2019=45×45-6,结合图形即可得知第2019个点的坐标为(45,6).故选B.[点睛]本题考查了规律型中的点的坐标,解题的规律是找出“边长为n的正方形边上点与内部点相加得出共有(n+1)2个点”.本题属于中档题,有点难度,解决该题型题目时,补充完整图形,将其当成正方形边上的点来看待,本题的难点在于寻找第2019个点所在的正方形的边是平行于x轴的还是平行y轴的.二、填空题(每小题3分,共18分)11.= ________.[答案](1). 3 (2). 3 2[解析][分析]根据算术平方根和立方根的定义,分别进行计算,即可得到答案.[详解]9=,3;32==;故答案为:3;32.[点睛]本题考查了算术平方根和立方根,解题的关键是掌握定义进行计算.12. 已知a,b为两个连续的整数,且a<b,则a+b=___________.[答案]15[解析][分析]估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可. [详解]∵72<57<82,∴<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.[点睛]此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13. 点P(m−1,m+3)在平面直角坐标系的y轴上,则P点坐标为_______.[答案](0,4)[解析]分析:根据y轴上点的横坐标为0,可得m的值,根据m的值,可得点的坐标.详解:由P(m−1,m+3)在直角坐标系的y轴上,得m−1=0,解得m=1.m+3=4,P点坐标为()0,4.故答案为()0,4.点睛:考查平面直角坐标系轴的点的坐标特征,横坐标为零.14. 如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.[答案]30°[解析][分析]先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.[详解]解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA平分∠EOC,∴∠AOC=12∠EOC=30°(角平分线定义),∴∠BOD=30°(对顶角相等).故答案为:30.[点睛]本题考查由角平分线定义,结合补角的性质,易求该角的度数.15. 已知方程2x+y =3,用含x 的代数式表示y ,则y =______.[答案]32x -[解析][分析]把方程2x y 1-=写成用含x 的代数式表示y ,需要进行移项即得.[详解]解:移项得:y 32x =-,故答案为y 32x =-.[点睛]考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的左边,其它的项移到另一边.16. 用“*”定义新运算:对于任意实数a b 、,都有2*2a b a b =+,如23*423422=⨯+=,那么3*2=__. [答案]8 [解析] 由题意得:3※2=2×(3)²+2=6+2=8,故答案为8. 三、解答下列各题:(共72分)17. 计算(1)31984-+-- (2)21(1)4x -= (3)()()222121-+--+ (4)()334375x -=- [答案](1)12 ;(2)x 1=32,x 2=12;(3)0;(4)x=-1. [解析][分析] (1)根据绝对值、立方根、算术平方根的定义进行计算,即可得到答案;(2)利用直接开平方法,即可得到x 的值;(3)由绝对值、算术平方根的定义进行计算,即可得到答案;(4)先化简,然后开立方,即可得到答案.[详解]解:(1) =13(2)2+--=12; (2)21(1)4x -= ∴112x -=±, ∴132x =,212x =; (3)11-=211+-=0;(4)()334375x -=-,∴()34125x -=-,∴45x -=-,∴1x =-;[点睛]本题考查了平方根、立方根,绝对值、以及算术平方根的运算法则,解题的关键是掌握运算法则进行解题. 18. 解方程:(1)3? 42x y x y -=⎧⎨+=⎩(2)10216x y x y +=⎧⎨+=⎩ [答案](1)12x y =⎧⎨=-⎩ ;(2)64x y =⎧⎨=⎩. [解析][分析](1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;[详解]解:(1)342x y x y -=⎧⎨+=⎩①②,由①+②,得:55=x ,∴1x =,把1x =代入①,得:2y =-;∴方程组的解为:12x y =⎧⎨=-⎩; (2)10216x y x y +=⎧⎨+=⎩, 由②①,得:6x =,把6x =代入①,得:4y =,∴方程组的解为:64x y =⎧⎨=⎩; [点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.19. 如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .请完成解答过程:解:∵AD ∥BE (已知)∠A =∠______(_________________)又∵1=∠2(已知)∴AC ∥_____(________________)∴∠3=∠_____(两直线平行,内错角相等)∴∠A =∠E (_________)[答案]3,两直线平行,同位角相等;DE,内错角相等,两直线平行;E ;等量代换.[解析][分析]由于AD ∥BE 可以得到∠A=∠3,又∠1=∠2可以得到DE ∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.[详解]解:∵AD ∥BE(已知)∠A=∠3 (两直线平行,同位角相等)又∵1=∠2(已知)∴AC∥DE (内错角相等,两直线平行)∴∠3=∠E (两直线平行,内错角相等)∴∠A=∠E(等量代换)[点睛]本题考查平行线的判定和性质,熟练掌握基础知识进行推理是解题关键.20. 若5a+1和a﹣19是数m的平方根.求a和m的值.[答案]a=3,m=256.[解析][分析]根据数m的平方根分别是5a+1和a﹣19一定互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.[详解]解:根据题意得:(5a+1)+(a﹣19)=0,解得:a=3,则m=(5a+1)2=162=256.[点睛]本题考查平方根的概念,掌握概念正确计算是解题关键.21. 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC向下平移4个单位长度得到△A1B1C1;(2)求△A1B1C1的面积.[答案](1)见解析;(2)2.5.[解析][分析](1)将ABC的每个定点向下平移4个单位长度再将其相连即可得到的△A1B1C1,如图所示. (2)用△A1B1C1所在的长方形面积减去其余部分的三个小三角形面积即可得到S△A1B1C1. [详解]解:(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:2×3﹣12×1×3﹣12×1×2﹣12×1×2=2.5.[点睛]本题考查图形的变换-平移以及在平面直角坐标系中求三角形的面积.22. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雏兔同笼,上有二十五头,下有七十六足,问雏兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有25个头;从下面数,有76条腿,问笼中各有几只鸡和兔?[答案]笼中有12只鸡,13只兔[解析][分析]根据“上有二十五头,下有七十六足”,得出关于,的二元一次方程组,解之即得.[详解]设笼中有只鸡,只兔.由题意得:25 2476 x yx y+=⎧⎨+=⎩解得:1213 xy=⎧⎨=⎩答:笼中有12只鸡,13只兔.[点睛]本题考查二元一次方程组的鸡兔同笼问题,找出等量关系并根据生活常识列出方程组是解题关键.23. 如图,∠1=80°,∠2=100°∠C=∠D.(1)判断AC与DF的位置关系,并说明理由;(2)若∠C比∠A大20°,求∠F的度数.[答案](1)AC∥DF,理由见解析;(2)40°.[解析][分析](1)根据平行线的性质得出∠ABD=∠C,求出∠D=∠ABD,根据平行线的判定得出AC∥DF;(2)根据平行线的性质和三角形内角和解答即可;[详解]解:(1)AC∥DF,理由如下:∵∠1=80°,∠2=100°,∴∠1+∠2=180°,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF;(2)∵AC∥DF,∴∠A=∠F,∠ABD=∠D,∵∠C=∠D,∠1=80°,∴∠A+∠ABD=180°﹣80°=100°,即∠A+∠C=100°,∵∠C比∠A大20°,∴∠A=40°,∴∠F=40°.[点睛]本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.24. 如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC 边与点P(1)操作:画出满足题意的图形.(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.[答案]见解析[解析][分析]先根据题意画出图形,再根据平行线的性质进行解答即可.[详解]∠ABC与∠DEF的数量关系是相等或互补,理由如下:①如图,∵DE∥AB,∴∠ABC=∠DPC,又∵EF∥BC,∴∠DEF=∠DPC,∴∠ABC=∠DEF;②如图,因为DE∥AB,∴∠ABC+∠DPB=180°,又∵EF∥BC,∴∠DEF=∠DPB.∴∠ABC+∠DEF=180°.[点睛]本题考查了平行线的性质,根据题意画出图形是解答此题的关键,解答此题时要注意分两种情况讨论,否则会造成漏解.25. 如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的13?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.[答案](1)B(﹣8,﹣8),D(2,4),120;(2)∠MPO=∠AMP+∠PON;∠MPO=∠AMP-∠PON;(3)存在,P点坐标为(﹣8,﹣6).[解析][分析](1)利用点A、C的坐标和长方形的性质易得B(﹣8,﹣8),D(2,4),然后根据长方形的面积公式即可计算长方形ABCD的面积;(2)分点P在线段AN上和点P在线段NB上两种情况进行讨论即可得;(3)由于AM=8,AP=12t,根据三角形面积公式可得S△AMP =t,再利用三角形AMP的面积等于长方形面积的13,即可计算出t=20,从而可得AP=10,再根据点的坐标的表示方法即可写出点P的坐标. [详解](1)∵点A、C坐标分别为(﹣8,4)、(2,﹣8),∴B(﹣8,﹣8),D(2,4),长方形ABCD的面积=(2+8)×(4+8)=120;(2)当点P在线段AN上时,作PQ∥AM,如图,∵AM∥ON,∴AM∥PQ∥ON,∴∠QPM=∠AMP,∠QPO=∠PON,∴∠QPM+∠QPO=∠AMP+∠PON,即∠MPO=∠AMP+∠PON;当点P 在线段NB 上时,作PQ ∥AM ,如图,∵AM ∥ON ,∴AM ∥PQ ∥ON ,∴∠QPM=∠AMP ,∠QPO=∠PON , ∴∠QPM-∠QPO=∠AMP-∠PON ,即∠MPO=∠AMP-∠PON ;(3)存在,∵AM=8,AP=12t ,∴S △AMP =12×8×12t=2t , ∵三角形AMP 的面积等于长方形面积的13, ∴2t=120×13=40,∴t=20,AP=12×20=10, ∵AN=4,∴PN=6∴P 点坐标为(﹣8,﹣6).[点睛]本题考查了坐标与图形性质,结合图形、运用分类讨论思想进行解答是关键.。
精编新版2019七年级下册数学期中模拟考试(含标准答案)
2019年七年级下册数学期中考试模拟试题一、选择题1. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( ) A .一个篮球场的周长 B .一张乒乓球台台面的周长 C .《中国日报》的一个版面的周长D .《数学》课本封面的周长答案:C2.如图,∠B=∠C ,BF=CD ,BD=CE ,则∠α 与∠A 的关系是( ) A .2∠α+∠A= 180° B .∠α+∠A= 180° C . ∠α+∠A= 90°D .2∠α+∠A= 90°答案:A3.下列字母中,不是轴对称图形的是 ( ) A .XB .YC .ZD .T答案:C4.如图,将平行四边形AEFG 变换到平行四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是( ) A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍答案:D5.如图,一块三边形绿化园地,三角都做有半径为R 的圆形喷水池,则这三个喷水池占去的绿化园地(阴影部分)的面积为( ) A .212R πB .2R πC .22R πD .不能确定解析:A 6.方程组⎩⎨⎧=-=+134723y x y x 的解是( )A . ⎩⎨⎧=-=31y x B .⎩⎨⎧-==13y x C .⎩⎨⎧-=-=13y x D .⎩⎨⎧-=-=31y x 答案:B7.若)3)(1(+-x x =n mx x ++2 ,则m 、n 的值分别为 ( ) A .m=1,n=3B .m=4 ,n=5C .m=2 ,n= —3D .m= —2 ,n=3答案:C8.已知2x y m =⎧⎨=⎩是二元一次方程5x+3y=1的一组解,则m 的值是( )A .3B .3-C .113D .113-答案:B9.在等式(-a-b )( )=a 2-b 2中,括号里应填的多项式是( ) A .a-bB .a+bC .-a-bD .b-a答案:D10.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为( ) A .4 种B . 6 种C . 10 种D . 12 种答案:B11. 在△ABC 中,如果∠A —∠B= 90°,那么△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .锐角三角形或钝角三角形答案:B12.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( ) A .1个B .2个C .3个D .4个答案:B13.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断答案:B14.下列长度的三条线段能组成三角形的是( ) A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm答案:D15.下列图案中是轴对称图形的是( )A.B.C. D.答案:D16.已知某种植物花粉的直径约为 0.000 35米,用科学记数法表示是()A.4⨯米D.63.510-3.510-⨯米3.510-⨯米C.53.510⨯米B.4答案:B17.如图,从图(1)到图(2)的变换是()A.轴对称变换B.平移变换C.旋转变换D.相似变换答案:D18.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带()A.①B.②C.③D.①和②答案:C19.计算3223-÷所得的结果是()[()]()x xB.-1 B.10x-C.0 D.12x-答案:A20.下列各图中,正确画出△ABC的AC边上的高的是()A.B.C.D.答案:C21.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定答案:C22.如图,将△ABC沿水平向右的方向平移,平移的距离为线段 CA的长,得到△EFA,若△ABC的面积为 3cm2,则四边形 BCEF的面积是()A.12cm2 B.10 cm2C.9 cm2D.8 cm2答案:C二、填空题23.有一个两位数,数字之和为 11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,则原两位数为 .解析:2924.从-2,-1,0中任意取两个数分别作为一个幂的指数和底数,那么其中计算结果最小的幂是 .解析:12-25.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后各花 800元购买该商品,两人所购的件数相差10件,则该商品原售价是上元.解析:1626.观察下列顺序排列的等式:11 13a=-,211 24a=-,311 35a=-,411 46a=-,….试猜想第n个等式(n为正整数): .解析:112 n n-+27.如图,将△ABC绕着点A 按逆时针方向旋转70°后与△ADE重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.解析:2528.请写出二元一次方程112x y-=的一组解 .解析:略29. 如图,△ABD ≌△ACE ,点B 和点C 是对应顶点,AB=8 cm ,BD=7cm ,AD=3 cm ,则DC= cm.解析:530.数式x 2―4x ―2 的值为0,则x =___________.解析:-231.在如图方格纸中,△ABC 向右平移_______格后得到△A 1B 1C 1. 解析:432.如图,在△ABC 中,∠BAC=45°,现将△ABC 绕点A 逆时针旋转30°至△ADE 的位置.则∠DAC= .解析:1533.长方形是轴对称图形,它有 条对称轴. 解析:234.如图,BD 是△ABC 的一条角平分线,AB =10,BC =8,且S △ABD =25,则△BCD 的面积是__________. 解析:2035.一只口袋里共有 3个红球,2 个黑球,1个黄球,现在小明任意模出两个球,则摸出一个红球和一个黑球的概率是 .解析:25三、解答题36.如图,在四边形ABCD 中,线段AC 与 BD 互相垂直平分,垂足为点 0. (1)四边形ABCD 是轴对称图形吗?如果是,它有几条对称轴?分别是什么? (2)图中有哪些相等的线段? (3)写出图中所有的等腰三角形.(4)判断点 0到∠ABC 两边的距离大小关系,你能得到关于等腰三角形的怎样的结论?请用一句话叙述出来.解析:37.(1)解方程1211x -=-. (2)利用(1)的结果,先化简代数式21(1)11xx x +÷--,再求值.解析:(1)满足方程1211x -=-的解是2x = (2)21(1)(1)(1)1213111x x x x x x x xx -++÷=⨯=+=+=--- 38.阅读:()()()()a b c d a c d b c d ac ad bc bd ++=+++=+++,反过来,就得到()()()()ac ad bc bd a c d b c d a b c d +++=+++=++.这样多项式 ac ad bc bd +++就变形成()()a b c d ++. 请你根据以上的材料把下列多项式分解因式:(1)2a ab ac bc -+-; (2)22x y ax ay -++解析:(1)()()a b a c -+ (2)()()x y x y a +-+ 39. 阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的一种方法:若0a b ->,则a b >; 0a b -=,则a b =;若0a b -<,则a b <. 例如:在比较21m +与2m 的大小时,小东同学的解法是:∵2222(1)110m m m m +-=+-=>,∴221m m +>.请你参考小东同学的解法,解决如下问题: (1)已知a ,b 为实数,且1ab =,设111111a b M N a b a b =+=+++++,,试比较M ,N 的大小;(2)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大5岁,爸爸 同事的年龄是小明年龄的 4倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”?解析:(1)M=N (2)设小明的年龄x 岁,则254x x +-2(2)10x =-+>,∴小明称呼爸爸的这位同事为“叔叔” 40. 解下列方程组: (1)3213325x y x y +=⎧⎨-=⎩; (2)3262317x y x y -=⎧⎨+=⎩解析:(1) 32x y =⎧⎨=⎩ (2)43x y =⎧⎨=⎩41.发生在2008年 5 月 12 日 14时28分的汶川大地震在北川县唐家山形成了堰塞湖. 堰塞湖的险情十分严峻,威胁下游百万人生命的巨大危机.根据堰塞湖抢险指挥部的决定,将实施机械施工与人工爆破“双管齐下”的泄水方案.现在堰塞湖的水位已超过安全线,上游的河水仍以一个不变的速度流入堰塞湖. 抢险指 挥部决定炸开 10个流量相同的泄水通道.5月 26 日上午炸开了一个泄水通道,在 2小 时内水位继续上升了0.06米;下午再炸开了 2 个泄水通道后,在 2 小时内水位下降了 0.1米. 目前水位仍超过安全线 1.2米.(1)问:上游流人的河水每小时使水位上升多少米?一个泄水通道每小时使水位下降多 少米?(2)如果;第三次炸开 5个泄水通道,还需几小时水位才能降到安全线?解析:(1)上游流人的河水每小时使水位上升0.07米,一个泄水通道每小时使水位下降0.04米 (2)4.8小时42.如图,E 是BC 的中点,∠1=∠2,AE=DE . 求证:AB=DC .解析:证明:∵ E 是BC 的中点 ,∴ BE=CE 在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE∴ △ABE ≌△DCE ,∴AB=DC . 证明:∵ E 是BC 的中点 ,∴ BE=CE 在△ABE 和△DCE 中,∵ BE=CE ,∠1=∠2,AE=DE43.有8张卡片,每张卡片上分别写有不同的从1到8的一个自然数.从中任意抽出一张卡片,请计算下列事件发生的概率: (1)卡片上的数是偶数; (2)卡片上的数是3的倍数.解析:(1)21=P ;(2)41=P .44.某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x 元,一名小学生的学习需要y 元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:(1(2) 已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).解析:(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600800y x ;(2)7400,7.45.如图,已知∠EFD=∠BCA ,BC=EF ,AF=DC.则AB=DE.请说明理由. (填空)解:∵AF=DC(已知) ∴AF+ =DC+ 即 在△ABC和△ 中 BC=EF( )∠ =∠( )∴△ABC≌△ ( ) ∴AB=DE( )解析:FC ,FC ,AC=DF ,DEF ,已知,DFE ,ACB ,已知,AC=DF ,DEF ,SAS , 全等三角形的对应边相等.46.如图是2002 年 8 月在北京召开的第 24 届国际数学家大会会标中的图案,其中四边形 ABCD 和 EFGH 都是正方形,试说明:△ABF ≌△DAE.解析:略47.如图,甲、乙两人蒙上眼睛投掷飞标.(1)若甲击中黄色区域,则甲胜;若击中白色区域,则乙胜,此游戏公平吗?为什么? (2)利用图中所示,请你再设计一个公平的游戏.D解析:(1)不公平,因为甲击中黄色区域的成功率小于击中白色区域的成功率;(2)公平的规则:若甲击中黄色区域,则甲胜;若击中绿色区域,则乙胜 (答案不唯一)48.解方程:113 22xx x-=---解析:无解49.先化简2(21)(31)(31)5(1)x x x x x--+-+-,再选取一个你喜欢的数代替x求值.解析:92x-+;50.解方程组278ax bycx y+=⎧⎨-=⎩时,小明正确地解出32xy=⎧⎨=-⎩,小红把c看错了,解得22xy=-⎧⎨=⎩,试求a,b,c的值.解析:4a=,5b=,2c=-。
2019年春季学期七年级下册期中教学质量检测数学试题(有答案与解析)
2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(共6题,满分18分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠52.下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=aC.(﹣a)3•a2=﹣a6D.(2a2)3=6a63.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.下列方程组中,属于二元一次方程组的是()A.B.C.D.5.如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm26.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=128°,∠BGC=114°,则∠A的度数为()A.64°B.62°C.70°D.78°二、填空题(每小题3分,共30分)7.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.8.五边形的内角和为度.9.计算:已知a m=2,a n=3,则a m﹣n=.10.计算:已知:a+b=3,ab=1,则a2+b2=.11.在方程7x﹣2y=8中,用含x的代数式表示y为:y=.12.把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.13.等腰三角形的两边长分别为3cm,6cm,则它的周长是cm.14.若代数式x2+mx+9(m为常数)是一个完全平方式,则m的值为.15.计算(x+a)(2x﹣1)的结果中不含关于字母x的一次项,则a=.16.如图,在△ABC中,E是BC上的一点,EC=3BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=16,则S1﹣S2=.三、解答题(本大题共10小题,102分)17.(10分)计算:(1)2﹣2×43﹣(﹣2)4.(2)2a3•(a2)3÷a18.(10分)把下列各式进行因式分解:(1)3x(a﹣b)﹣6y(b﹣a)(2)(x2+4)2﹣16x219.(8分)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣20.(10分)解方程组(1)(2)21.(10分)如图,∠1=75°,∠A=60°,∠B=45°,∠2=∠3,FH⊥AB于H.(1)求证:DE∥BC;(2)CD与AB有什么位置关系?证明你的猜想.22.(8分)(1)比较a2+b2与2ab的大小(用“>”、“<”或“=”填空):①当a=3,b=2时,a2+b22ab,②当a=﹣1,b=﹣1时,a2+b22ab,③当a=1,b=﹣2是,a2+b22ab.(2)猜想a2+b2与2ab有怎样的大小关系?并证明你的结论.23.(10分)某种液体每升含有1012个细菌,某种杀菌剂1滴可以杀死109个此种有害细菌,现在将3L这种液体中的有害细菌杀死,要用这种杀菌剂多少滴?若10滴这种杀菌剂为10﹣3L,要用多少升?24.(12分)如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC平移至A′的位置,使点A与A'对应,得到△A'B'C';(2)运用网格画出AB边上的高CD所在的直线,标出垂足D;(3)线段BB'与CC'的关系是;(4)如果△ABC是按照先向上4格,再向右5格的方式平移到A′,那么线段AC在运动过程中扫过的面积是.25.(12分)已知△ABC中,∠A=70°,∠ACB=30°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.26.(12分)直角△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,若点P在线段AB上,且∠α=40°,则∠1+∠2=°;(2)如图2,若点P在边AB上运动,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(3)如图3,若点P运动到边AB的延长线上,则∠α、∠1、∠2之间的关系为:;(4)如图4,若点P运动到△ABC形外,则∠α、∠1、∠2之间的关系为:.期中数学试卷参考答案与试题解析一、选择题(共6题,满分18分)1.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答】解:∠1的同位角是∠5,故选:D.【点评】此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.【分析】A、原式不能合并;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,故A错误;B、原式=a2÷a=a,故B正确;C、原式=﹣a3•a2=﹣a5,故C错误;D、原式=8a6,故D错误.故选:B.【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.3.【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.【分析】根据方程中含有两个未知数,且每个未知数的次数都是1,并且一共有两个方程,可得答案.【解答】解:A、是分式方程,故A错误;B、是二元二次方程组,故B错误;C、是二元二次方程组,故C错误;D、是二元一次方程组,故D正确;故选:D.【点评】本题考查了二元一次方程组,方程中含有两个未知数,且每个未知数的次数都是1,并且一共有两个方程.5.【分析】由于多边形的外角和为360°,则所有阴影的扇形的圆心角的和为360度,故阴影部分的面积=π×12=π.【解答】解:∵多边形的外角和为360°,=π×12=π(cm2).∴S A1+S A2+…+S An=S圆故选:A.【点评】本题考查了圆的面积公式的应用,多边形的外角和定理,比较简单.6.【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求结论.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣128°=52°①,在△BGC中,x+2y=180°﹣114°=66°②,解得:①+②:3x+3y=118°,∴∠A=180°﹣(3x+3y)=180°﹣118°=62°,故选:B.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.二、填空题(每小题3分,共30分)7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.【分析】n边形内角和公式为(n﹣2)180°,把n=5代入可求五边形内角和.【解答】解:五边形的内角和为(5﹣2)×180°=540°.故答案为:540.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.9.【分析】根据同底数幂的除法,可得答案.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.10.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.11.【分析】把x看做已知数求出y即可.【解答】解:方程7x﹣2y=8,解得:y=,故答案为:【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当y=1,x=15;y=2,x=10;y=3,x=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.13.【分析】根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3,只能为6,然后即可求得等腰三角形的周长【解答】解:①6cm 为腰,3cm 为底,此时周长为6+6+3=15cm ;②6cm 为底,3cm 为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是15cm .故答案是:15.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【解答】解:∵代数式x 2+mx +9(m 为常数)是一个完全平方式,∴m =±6,故答案为:±6【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.【分析】首先利用多项式的乘法法则计算:(x +a )(2x ﹣1),结果中不含关于字母x 的一次项,即一次项系数等于0,即可求得a 的值.【解答】解:(x +a )(2x ﹣1)=2x 2+2ax ﹣x ﹣a=x 2+(2a ﹣1)x ﹣a由题意得2a ﹣1=0则a =,故答案为:【点评】此题考查整式的化简求值,注意先化简,再进一步代入求得数值即可.16.【分析】直接利用三角形各边之间关系得出面积关系,进而得出答案.【解答】解:∵在△ABC 中,E 是BC 上的一点,EC =3BE ,∴S △ACE =3S △AEB =S △ACB =×16=12,∵点D 是AC 的中点,∴S △ABD =S △CBD =S △ACB =8,∵设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S =16,∴S1﹣S2=12﹣8=4.故答案为:4.【点评】此题主要考查了三角形的面积,正确得出各三角形面积与S之间关系是解题关键.三、解答题(本大题共10小题,102分)17.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可求出值;(2)原式利用幂的乘方运算法则,以及同底数幂的乘除法则计算即可求出值.【解答】解:(1)原式=×64+1﹣16=16+1﹣16=1;(2)原式=2a3•a6÷a=2a8.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】(1)直接提取公因式3x(a﹣b),进而分解因式即可;(2)首先利用平方差公式分解因式,再结合完全平方公式分解因式.【解答】解:(1)3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=x2﹣4xy+4x2﹣y2﹣4x2+4xy﹣y2=x2﹣2y2,当x=﹣2,y=﹣时,原式=4﹣=3.【点评】本题考查了整式的混合运算和求值,能根据整式的运算法则进行化简是解此题的关键.20.【分析】(1)利用加减消元法求解可得;(2)将方程组整理为一般式后利用加减消元法求解可得.【解答】解:(1),①×2,得:2x﹣4y=2 ③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60 ③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.21.【分析】(1)先根据三角形内角和定理计算出∠ACB=75°,则∠1=∠ACB,然后根据同位角相等,两直线平行可判断DE∥BC;(2)由DE∥BC,根据平行线的性质得∠2=∠BCD,而∠2=∠3,所以∠3=∠BCD,则可根据内错角相等,两直线平行得FH∥CD,由于FH⊥AB,根据平行线的性质得CD⊥AB.【解答】(1)证明:∵∠A+∠B+∠ACB=180°,∴∠ACB=180°﹣60°﹣45°=75°,而∠1=75°,∴∠1=∠ACB,∴DE∥BC;(2)CD⊥AB.理由如下:∵DE∥BC,∴∠2=∠BCD,∵∠2=∠3,∴∠3=∠BCD,∴FH∥CD,∵FH⊥AB,∴CD⊥AB.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.22.【分析】(1)①代入a,b的值,分别计算出a2+b2、2ab,即可解答;②代入a,b的值,分别计算出a2+b2、2ab,即可解答;③代入a,b的值,分别计算出a2+b2、2ab,即可解答;(2)将作差,即可比较大小.【解答】解:(1)①当a=3,b=2时,a2+b2=13,2ab=12,∴a2+b2>2ab;②当a=﹣1,b=﹣1时,a2+b2=2,2ab=2,∴a2+b2=2ab;③当a=1,b=2时,a2+b2=5,2ab=4,∴a2+b2>2ab;故答案为:①>,②=,③>;(2)∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.23.【分析】先求得3升含有细菌的个数3×1012个,再由题意得出杀死这些细菌所需杀毒剂的滴数为3×1012÷109,再用滴数除以每滴这种杀菌剂的升数即可3×1012÷10×10﹣3.【解答】解:根据题意知,要用这种杀菌剂3×1012÷109=3×103滴;需要3×103÷10×10﹣3=0.3升.【点评】本题主要考查同底数幂的除法及学生阅读理解题干的能力,是数学与生活相结合的好题.知识点:同底数幂的除法,底数不变指数相减.24.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格得出互相垂直的直线,进而得出答案;(3)利用平移的性质得出答案;(4)利用平行四边形的面积求法得出答案.【解答】解:(1)如图所示:△A'B'C'即为所求;(2)如图所示:EC⊥AB,则D点即为所求;(3)线段BB'与CC'的关系是:平行且相等;故答案为:平行且相等;(4)线段AC在运动过程中扫过的面积是:S平行四边形DCB″A″+S平行四边形A″B″C′A′=4×1+5×2=14.故答案为:14.【点评】此题主要考查了平移变换以及平行四边形的面积求法,正确掌握平移的性质是解题关键.25.【分析】(1)①根据三角形内角和定理可得出∠ABC的度数,由角平分线的性质可得出∠ABE =∠CBE=40°,再利用平行线的性质即可求出∠BEC的度数;②由邻补角互补可求出∠ACD的度数,由角平分线的性质可得出∠DCE的度数,再利用三角形外角的性质即可求出∠BEC的度数;(2)分CE⊥BC、CE⊥AC及CE⊥AB三种情况考虑,①当CE⊥BC时,∠DCE=90°,利用三角形外角的性质可求出∠BEC的度数;②当CE⊥AC时,∠ACE=90°,利用三角形内角和定理可求出∠BEC的度数;③当CE⊥AB时,延长CE交AB于点F,利用三角形内角和定理可求出∠BEF的度数,再根据邻补角互补即可求出∠BEC的度数.【解答】解:(1)①∵△ABC中,∠A=70°,∠ACB=30°,∴∠ABC=80°.∵BM平分∠ABC,∴∠ABE=∠CBE=∠ABC=40°.∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠ACB=30°,∴∠ACD=150°.∵CE平分∠ACD,∴∠DCE=∠ACD=75°,∴∠BEC=∠DCE﹣∠CBE=75°﹣40°=35°.(2)①当CE⊥BC时,∠DCE=90°,∴∠BEC=∠DCE﹣∠CBE=50°;②当CE⊥AC时,∠ACE=90°,∴∠BEC=180°﹣∠CBE﹣∠ACB﹣∠ACE=20°;③当CE⊥AB时,延长CE交AB于点F,如图2所示.∵∠BEF=180°﹣∠ABE﹣∠BFE=50°,∴∠BEC=180°﹣∠BEF=130°.综上所述:∠BEC的度数为50°、20°或130°.【点评】本题考查了三角形内角和定理、平行线的性质、角平分线、三角形外角的性质以及邻补角,解题的关键是:(1)①利用平行线的性质找出∠BEC=∠ABE;②利用三角形外角的性质找出∠BEC=∠DCE﹣∠CBE;(2)分CE⊥BC、CE⊥AC及CE⊥AB三种情况考虑.26.【分析】(1)如图1中,连接PC.由∠1=∠3+∠DPC,∠2=∠4+∠CPE,推出∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=∠α+90°=130°;(2)结论:∠1+∠2=90°+∠α.连接PC.由∠1=∠3+∠DPC,∠2=∠4+∠CPE,推出∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=90°+∠α;(3)如图3中,结论:∠1﹣∠2﹣∠α=90°.由∠1=∠3+∠C,∠3=∠α+∠2,推出∠1=∠α+∠2+90°,即∠1﹣∠2﹣∠α=90°;(4)如图4中,结论:∠2+∠α﹣∠1=90°.由∠1=∠α+∠3,∠3=90°﹣∠PEC,∠PEC=180°﹣∠2,推出∠1=∠α+90°﹣(180°﹣∠2),推出∠1=∠α﹣90°+∠2,可得∠2+∠α﹣∠1=90°.【解答】解:(1)如图1中,连接PC.∵∠1=∠3+∠DPC,∠2=∠4+∠CPE,∴∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=∠α+90°=130°,故答案为130;(2)如图2中,结论:∠1+∠2=90°+∠α.理由如下:连接PC.∵∠1=∠3+∠DPC,∠2=∠4+∠CPE,∴∠1+∠2=(∠DPC+∠CPE)+(∠3+∠4)=90°+∠α;(3)如图3中,结论:∠1﹣∠2﹣∠α=90°.理由:∵∠1=∠3+∠C,∠3=∠α+∠2,∴∠1=∠α+∠2+90°,∴∠1﹣∠2﹣∠α=90°.故答案为∠1﹣∠2﹣∠α=90°;(4)如图4中,结论:∠2+∠α﹣∠1=90°.理由:∵∠1=∠α+∠3,∠3=90°﹣∠PEC,∠PEC=180°﹣∠2,∴∠1=∠α+90°﹣(180°﹣∠2),∴∠1=∠α﹣90°+∠2,∴∠2+∠α﹣∠1=90°.故答案为∠2+∠α﹣∠1=90°;【点评】本题考查三角形综合题、三角形的外角的性质,三角形内角和定理等知识,解题的关键是学会添加常用辅助线,灵活运用三角形的外角等于不相邻的两个内角之和解决问题,属于中考常考题型.。
2019-2020学年江苏省镇江市丹徒区七年级下学期期中数学试卷 (解析版)
2019-2020学年江苏省镇江市丹徒区七年级第二学期期中数学试卷一、填空题1.计算:m2•m5=.2.分解因式:x2﹣9=.3.新型冠状肺炎病毒(COVID﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为.4.若a m=5,a n=3,则a m+n=.5.用简便方法计算:10.12﹣2×10.1×0.1+0.01=.6.如果等腰三角形的两边长分别是4、8,那么它的周长是.7.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=.8.若x2+mx+4是完全平方式,则m=.9.如图,直线AB∥CD,直线GE交直线AB于点E,EF平分∠AEG,若∠1=58°,则∠AEF的大小为.10.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.11.若(2x+3)x+2020=1,则x=.12.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为(用含有字母a的代数式表示).二、选择题(每题3分,共24分)13.下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6D.a6÷a3=a214.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c15.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4 16.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.17.若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a18.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形19.对于算式20203﹣2020,下列说法错误的是()A.能被2019整除B.能被2020整除C.能被2021整除D.能被2022整除20.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a三、解答题21.计算题:(1)(﹣1)23×(π﹣3)0﹣(﹣)﹣3;(2)a•a2•a3+(﹣2a3)2﹣a8÷a2;(3)(x+4)2﹣(x+2)(x﹣2);(4)(a+2b﹣3c)(a﹣2b+3c).22.(20分)因式分解:(1)ab2﹣3a2b+ab;(2)xy2﹣x;(3)3x2﹣6x+3;(4)(4m2+9)2﹣144m2.23.已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.24.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向下平移1格,请在图中画出平移后的△A'B'C';(2)利用网格线在图中画出△ABC的中线CD,高线AE;(3)△A'B'C'的面积为.25.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数.26.仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.27.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.参考答案一、填空题(每题2分,共24分)1.计算:m2•m5=m7.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.解:m2•m5=m2+5=m7.故答案为:m7.2.分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).3.新型冠状肺炎病毒(COVID﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为 1.2×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.4.若a m=5,a n=3,则a m+n=15.【分析】根据同底数幂的乘法法则求解.解:a m+n=a m•a n=5×3=15.故答案为:15.5.用简便方法计算:10.12﹣2×10.1×0.1+0.01=100.【分析】利用完全平方公式解答.解:原式=(10.1﹣0.1)2=102=100.故答案是:100.6.如果等腰三角形的两边长分别是4、8,那么它的周长是20.【分析】解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:207.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°,故答案为:105°.8.若x2+mx+4是完全平方式,则m=±4.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.解:中间一项为加上或减去x和2积的2倍,故m=±4,故填±4.9.如图,直线AB∥CD,直线GE交直线AB于点E,EF平分∠AEG,若∠1=58°,则∠AEF的大小为61°.【分析】根据平行线的性质和角平分线的定义解答即可.解:∵AB∥CD,∴∠1=∠GEB=58°,∴∠AEG=180°﹣58°=122°,∵EF平分∠AEG,∴∠AEF=61°,故答案为:61°10.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为20cm2.【分析】如图,向下平移2cm,即AE=2,再向左平移1cm,即CF=1,由重叠部分为矩形的面积为DE•DF,即可求两个正方形重叠部分的面积解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2011.若(2x+3)x+2020=1,则x=﹣2020或﹣1或﹣2.【分析】直接利用当2x+3=1时,当2x+3=﹣1时,当x+2020=0时,分别得出答案.解:当2x+3=1时,解得x=﹣1,故x+2020=2019,此时:(2x+3)x+2020=1,当2x+3=﹣1时,解得x=﹣2,故x+2020=2018,此时:(2x+3)x+2020=1,当x+2020=0时,解得x=﹣2020,此时:(2x+3)x+2020=1,综上所述,x的值为:﹣2020或﹣1或﹣2.故答案为:﹣2020或﹣1或﹣2.12.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为(用含有字母a的代数式表示).【分析】设长方形的宽为xcm,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差.解:设长方形的宽为xcm,则长方形的长为(x+a)cm,∵图(1)的正方形的周长与图(2)的长方形的周长相等,∴正方形的边长为:,∴正方形的面积与长方形的面积的差为:=.故答案为:.二、选择题(每题3分,共24分)13.下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6D.a6÷a3=a2【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.14.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误;故选:C.15.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4【分析】因为∠1与∠2是AD、BC被AC所截构成的内错角,所以结合已知,由内错角相等,两直线平行求解.解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故选:B.16.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.【分析】根据三角形的高的概念判断.解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.17.若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.解:a=0.32=0.09,b=﹣3﹣2=﹣,c=(﹣3)0=1,∴c>a>b,故选:B.18.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【分析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.解:设这个多边形的边数为n,依题意得(n﹣2)×180°=3×360°,解得n=8,∴这个多边形为八边形,故选:D.19.对于算式20203﹣2020,下列说法错误的是()A.能被2019整除B.能被2020整除C.能被2021整除D.能被2022整除【分析】将20203﹣2020化成2020×2021×2019,故能被2020、2021、2019整除,即可得到答案.解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D.20.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a【分析】分别表示出左上角阴影部分的面积S1和右下角的阴影部分的面积S2,两者求差,根据当BC的长度变化时,按照同样的放置方式,S始终保持不变,即可求得a与b的数量关系.解:设左上角阴影部分的面积为S1,右下角的阴影部分的面积为S2,S=S1﹣S2=AD•AB﹣5a•AD﹣3a•AB+15a2﹣[BC•AB﹣b(BC+AB)+b2]=BC•AB﹣5a•BC﹣3a•AB+15a2﹣BC•AB+b(BC+AB)﹣b2=(5a﹣b)BC+(b﹣3a)AB+15a2﹣b2.∵AB为定值,当BC的长度变化时,按照同样的放置方式,S始终保持不变,∴5a﹣b=0,∴b=5a.故选:A.三、解答题21.计算题:(1)(﹣1)23×(π﹣3)0﹣(﹣)﹣3;(2)a•a2•a3+(﹣2a3)2﹣a8÷a2;(3)(x+4)2﹣(x+2)(x﹣2);(4)(a+2b﹣3c)(a﹣2b+3c).【分析】(1)根据有理数的乘方、零指数幂和负整数指数幂可以解答本题;(2)根据同底数幂的乘法、积的乘方和同底数幂的除法可以解答本题;(3)根据完全平方公式、平方差公式可以解答本题;(4)根据完全平方公式、平方差公式可以解答本题.解:(1)(﹣1)23×(π﹣3)0﹣(﹣)﹣3=(﹣1)×1﹣(﹣8)=﹣1+8=7;(2)a•a2•a3+(﹣2a3)2﹣a8÷a2=a6+4a6﹣a6=4a6;(3)(x+4)2﹣(x+2)(x﹣2)=x2+8x+16﹣x2+4=8x+20;(4)(a+2b﹣3c)(a﹣2b+3c)=[a+(2b﹣3c)][a﹣(2b﹣3c)]=a2﹣(2b﹣3c)2=a2﹣4b2+12bc﹣9c2.22.(20分)因式分解:(1)ab2﹣3a2b+ab;(2)xy2﹣x;(3)3x2﹣6x+3;(4)(4m2+9)2﹣144m2.【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用平方差公式分解即可;(3)原式提取公因式,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.解:(1)原式=ab(b﹣3a+1);(2)原式=x(y2﹣1)=x(y+1)(y﹣1);(3)原式=3(x2﹣2x+1)=3(x﹣1)2;(4)原式=(4m2+9+12m)(4m2+9﹣12m)=(2m+3)2(2m﹣3)2.23.已知x2﹣3x﹣1=0,求代数式(x﹣1)(3x+1)﹣(x+2)2+5的值.【分析】根据多项式乘多项式、完全平方公式把原式化简,代入计算即可.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,(x﹣1)(3x+1)﹣(x+2)2+5=3x2﹣3x+x﹣1﹣x2﹣4x﹣4+5=2x2﹣6x,当x2﹣3x=1,原式=2(x2﹣3x)=2.24.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向下平移1格,请在图中画出平移后的△A'B'C';(2)利用网格线在图中画出△ABC的中线CD,高线AE;(3)△A'B'C'的面积为8.【分析】(1)根据平移的性质即可将△ABC向左平移4格,再向下平移1格,进而画出平移后的△A'B'C';(2)利用网格线即可在图中画出△ABC的中线CD,高线AE;(3)根据网格即可求出△A'B'C'的面积.解:(1)如图,△A'B'C'即为所求;(2)如图,中线CD,高线AE即为所求;(3)△A'B'C'的面积为:4×4=8.故答案为:8.25.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=112°,求∠1的度数.【分析】(1)欲证明AB∥CD,只要证明∠1=∠CGF即可.(2)根据∠1+∠4=90°,先求出∠4即可解决问题.【解答】(1)证明:∵FG∥AE,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥CD.(2)解:∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣∠D=68°,∵BC平分∠ABD,∴∠4=∠ABD=34°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.26.仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.【分析】(1)首先把x2﹣2xy+2y2﹣2y+1=0利用完全平方公式因式分解,利用非负数的性质求得x、y代入求得数值;(2)、(3)仿照例题和(1)的解法,利用配方法计算即可.解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.27.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【分析】(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE =ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°﹣∠ACB=140°,根据角平分线的定义得到∠CBE=ABC=40°,∠ECD=∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.解:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°﹣∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=ABC=40°,∠ECD=∠ACD=70°,∴∠BEC=∠ECD﹣∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°﹣40°﹣40°﹣90°=10°.。
盐城市盐都区2019-2020学年七年级下册数学期中考试试题-附答案(已纠错)
三、解答题(本大题共10小题,共82分.请在答案题卡指定区域内作答,解答时应写出文字说明,推理过程或演算步骤)
14.如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,光线经过镜子反射时,
∠ADC=∠ODE,则∠DEB=°.
15.一个正方形的边长增加了2cm,面积相应增加了28cm2,则这个正方形的边长为cm.
∴∠ADB=180°-∠BAD-∠ABD=45° ……………………7分
(2)解:∵∠MON=90°
∴∠ABO+∠BAO=90°
∴∠CAB+∠CBA= (∠BAM+∠ABN)=135°
∴∠C=45° ………………………………9分
∴∠C EC′+∠CFC′=2(180°-∠C)=270°
∴∠BEC′+∠AFC′=360°-(∠C EC′+∠CFC′)=90° …12分
(2) ……………………………4分
左边=
所以所写等式成立……………………………………6分
(3)原式=32﹣12+52﹣32+72﹣52+……+2012﹣1992
=2012﹣12
=40400………………………………………8分
24.(本题8分)
(1)2…………………………………2分
(2)①②,③(或①③,②)…………………………………4分
(1)求一个容积为8000000cm3的氢气球所充氢气的质量;
2018-2019学年度下学期七年级(下册)期中数学试卷(有答案与解析)
2018-2019学年度下学期七年级(下册)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.化简()0的结果为()A.2B.0C.1D.2.下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2 3.下列运算正确的是()A.2a2(1﹣2a)=2a2﹣2a3B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣14.有下列长度的三条线段,其中能组成三角形的是()A.3、5、10B.10、4、6C.4、6、9D.3、1、15.如图,在△ABC中,画出AC边上的高,正确的图形是()A.B.C.D.6.五边形的内角和是()A.180°B.360°C.540°D.600°7.如图,下面判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠A=∠3.则AD∥BCC.若∠1=∠2,则AB∥CDD.若∠A+∠ADC=180°,则AD∥BC8.如图,将一张长方形纸片折叠后再展开,如果∠1=62°,那么∠2等于()A.56°B.68°C.62°D.66°二、填空题(本大题共10小题,每小题3分,共30分)9.化简:(x+2)2=.10.若3m=5,3n=6,则3m﹣n的值是.11.一种细菌半径是0.0000036厘米,用科学记数法表示为厘米.12.若x2+mx+9是一个完全平方式,则m的值是.13.计算:4﹣2=.14.计算:(﹣0.125)2017×82018=.15.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.16.如图,直线a∥直线b,将一个等腰三角板的直角顶点放在直线b上,若∠2=34°,则∠1=°.17.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.18.如图,△ABC的面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,△A3B3C3的面积为.三、解答题(本大题共9小题,共计96分)19.(20分)计算:(1)(x2y)2•(x2y)3(2)a•a2•a3+(﹣2a3)2﹣a8÷a2(3)(x+3)2﹣x(x﹣2)(4)(x+y+4)(x+y﹣4)20.(10分)分解因式(1)x2﹣25(2)2x2y﹣8xy+8y21.(10分)用简便方法计算(1)101×99;(2)9.92+9.9×0.2+0.01.22.(10分)如图,在每个小正方形边长为1的网格纸中,将格点△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′;(2)线段AA′与BB′的数量关系是,位置关系是.(3)△A′B′C′的面积为.23.(10分)已知x+y=6,xy=4,求下列各式的值:(1)x2y+xy2(2)x2+y224.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?25.(8分)如图,BD平分∠ABC,ED∥BC,∠1=30°,求∠2,∠3的度数.26.(10分)如图AD⊥BC,EG⊥BC,垂足分别为D,G,EG与AB相交于点F,且∠1=∠2,∠BAD=∠CAD相等吗?为什么?27.(10分)实验探究:(1)动手操作:①如图1,将一块直角三角板DEF放置在直角三角板ABC上,使三角板DEF的两条直角边DE、DF分别经过点B、C,且BC∥EF,已知∠A=30°,则∠ABD+∠ACD=;②如图2,若直角三角板ABC不动,改变等腰直角三角板DEF的位置,使三角板DEF的两条直角边DE、DF仍然分别经过点B、C,那么∠ABD+∠ACD=;(2)猜想证明:如图3,∠BDC与∠A、∠B、∠C之间存在着什么关系,并说明理由;(3)灵活应用:请你直接利用以上结论,解决以下列问题:①如图4,BE平分∠ABD,CE平分∠ACD,若∠BAC=40°,∠BDC=120°,求∠BEC度数.②如图5,∠ABD,∠ACD的10等分线相交于点F1、F2、…、F9,若∠BDC=120°,∠BF3C =71°,则∠A的度数为.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.【分析】根据零指数幂的概念求解即可.【解答】解:()0=1.故选:C.【点评】本题考查了零指数幂的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.2.【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.【解答】解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式合并同类项得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=2a2﹣4a3,错误;B、原式=2a2,错误;C、原式=a2+b2+2ab,正确;D、原式=4a2﹣1,错误,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.【分析】根据三角形的三边满足任意两边之和大于第三边进行判断.【解答】解:A、3+5<10,所以不能组成三角形;B、4+6=10,不能组成三角形;C、4+6>9,能组成三角形;D、1+1<3,不能组成三角形.故选:C.【点评】此题主要考查了三角形三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5.【分析】根据三角形的高的定义对各个图形观察后解答即可.【解答】解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为D,纵观各图形,A、B、C都不符合高线的定义,D符合高线的定义.故选:D.【点评】本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.6.【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:(5﹣2)•180°=540°.故选:C.【点评】本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.7.【分析】根据平行线的判定判断即可.【解答】解:A、若∠1=∠2,则DC∥AB,错误;B、若∠A+∠3+∠1=180°.则DC∥AB,错误;C、若∠1=∠2,则AB∥CD,正确;D、若∠A+∠ADC=180°,则CD∥AB,错误;故选:C.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.8.【分析】根据翻折的性质可得∠3=∠1,然后根据平角等于180°列式求出∠4,再根据两直线平行,内错角相等解答即可.【解答】解:根据翻折的性质,∠3=∠1=62°,∴∠4=180°﹣∠1﹣∠2=180°﹣62°﹣62°=56°,∵长方形纸条的对边平行,∴∠2=∠4=56°.故选:A.【点评】本题考查了两直线平行,内错角相等的性质,翻折变换的性质,熟记性质是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.【分析】(a+b)2=a2+2ab+b2,根据以上公式求出即可.【解答】解:(x+2)2=x2+4x+4,故答案为:x2+4x+4.【点评】本题考查了对完全平方公式的应用,能熟记完全平方公式是解此题的关键,注意:完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.10.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法的法则计算.11.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0036=3.6×10﹣6.故答案为:3.6×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据负整数指数幂的法则计算.【解答】解:4﹣2=.故答案为.【点评】负整数指数幂的法则:任何不等于零的数的﹣n(n为正整数)次幂,等于这个数的n次幂的倒数.14.【分析】首先把82018化为82017×8,然后再计算(﹣0.125)2017×82017,进而可得答案.【解答】解:原式=(﹣0.125)2017×82017×8=(﹣0.125×8)2017×8=﹣1×8=﹣8,故答案为:﹣8.【点评】此题主要考查了积的乘方和同底数幂的乘法,关键是掌握(ab)n=a n b n(n是正整数).15.【分析】根据公因式是每项都含有的因式,可得答案.【解答】解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.【点评】本题考查了公因式,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.16.【分析】由直角三角板的性质可知∠3=180°﹣∠2﹣90°,再根据平行线的性质即可得出结论.【解答】解:如图所示,∵∠2=34°,∴∠3=180°﹣∠2﹣90°=180°﹣34°﹣90°=56°,∵a∥b,∴∠1=∠3=56°.故答案为:56.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.17.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,推出∠A +∠ABC =2∠D +∠ABC ,得出∠A =2∠D ,即可求出答案.【解答】解:∵BD 平分∠ABC ,CD 平分∠ACE ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠ACE =2∠DCE =∠A +∠ABC ,2∠DCE =2(∠D +∠DBC )=2∠D +∠ABC ,∴∠A +∠ABC =2∠D +∠ABC ,∴∠A =2∠D ,∵∠A =45°,∴∠D =22.5°,故答案为:22.5.【点评】本题考查了三角形外角性质,角平分线定义的应用,关键是推出∠A =2∠D . 18.【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再解答即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2,∵△ABC 面积为1,∴S △A 1B 1B =2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7;同理可证△A 2B 2C 2的面积=7×△A 1B 1C 1的面积=49,第三次操作后的面积为7×49=343;故答案为:343【点评】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.三、解答题(本大题共9小题,共计96分)19.【分析】(1)先计算乘方,再计算乘法;(2)先计算乘法、乘方、除法,再合并同类项即可得;(3)先计算完全平方式、单项式乘多项式,再合并同类项即可得;(4)先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:(1)原式=x 4y 2•x 6y 3=x 10y 5;(2)原式=a6+4a6﹣a6=4a6;(3)原式=x2+6x+9﹣x2+2x=8x+9;(4)原式=(x+y)2﹣16=x2+2xy+y2﹣16.【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式混合运算顺序和运算法则.20.【分析】(1)根据平方差公式,可得答案;(2)根据提公因式、完全平方公式,可得答案.【解答】解:(1)原式=(x+5)(x﹣5);(2)原式=2y(x2﹣4x+4)=2y(y﹣2)2.【点评】本题考查了因式分解,一提,二套,三检查,分解要彻底.21.【分析】(1)根据101=100+1、99=100﹣1结合平方差公式,即可求出结论;(2)由0.2=2×0.1、0.01=0.12结合结合完全平方公式,即可求出结论.【解答】解:(1)原式=(100+1)×(100﹣1),=10000﹣1=9999;(2)原式=9.92+2×9.9×0.1+0.12,=(9.9+0.1)2,=102,=100.【点评】本题考查了平方差公式以及完全平方公式,牢记平方差公式、完全平方公式是解题的关键.22.【分析】(1)根据点B的对应点B′的位置知,需将三角形向下平移2个单位、再向左平移4个单位,据此可得画出△A′B′C′即可;(2)利用平移变换的性质可得;(3)根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)线段AA′与BB′的数量关系是相等,位置关系是平行,故答案为:相等、平行;(3)△A′B′C′的面积为×4×4=8,故答案为:8.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【分析】(1)将x+y、xy的值代入原式=xy(x+y),计算可得;(2)将x+y、xy的值代入原式=(x+y)2﹣2xy,计算可得.【解答】解:(1)当x+y=6、xy=4时,原式=xy(x+y)=4×6=24;(2)当x+y=6、xy=4时,原式=(x+y)2﹣2xy=62﹣2×4=36﹣8=28.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握因式分解和完全平方公式及整体代入思想的运用.24.【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形是关键.25.【分析】根据角平分线的定义可得∠4=∠1,再根据两直线平行,内错角相等可得∠2=∠4,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得到∠3.【解答】解:∵BD平分∠ABC,∴∠4=∠1=30°,∵ED∥BC,∴∠2=∠4=30°,∴∠3=∠1+∠2=30°+30°=60°【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.26.【分析】由条件可证明AD∥BG,结合平行线的性质可得∠1=∠CAD,∠2=∠BAD,结合条件可得∠BAD=∠CAD.【解答】解:相等.理由如下:∵AD⊥BC,EG⊥BC,∴AD∥EG,∴∠1=∠CAD,∠2=∠BAD,∵∠1=∠2,∴∠BAD=∠CAD.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.27.【分析】(1)在△DBC中,根据三角形内角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入计算即可;(2)根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,(3)应用(2)的结论即可解决问题①②.【解答】解:(1)动手操作:①如图1中,∵BC∥EF,∴∠DBC=∠E=∠F=∠DCB=45°,∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,∴∠ABD+∠ACD=60°;②如图2中,在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠A=60°.故答案为60°;60°;(2)猜想:∠A+∠B+∠C=∠BDC;证明:如图3中,连接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.(3)灵活应用:①如图4中,由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,∵∠BAC=40°,∠BDC=120°,∴∠ABD+∠ACD=120°﹣40°=80°∵BE平分∠ABD,CE平分∠ACB,∴∠ABE+∠ACE=40°,∴∠BEC=40°+40°=80°;②如图5中,由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠A+∠ABF3+∠ACF3=∠BF3C=71°,∵∠ABF3=∠ABD,∠ACF3=∠ACD,∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=71°,∴∠A+(120°﹣∠A)=71°,∴∠A=50°,故答案为50°.【点评】本题考查了三角形内角和定理:三角形内角和是180°,准确识别图性是解题的关键,学会添加常用辅助线,构造三角形解决问题,学会利用新的结论解决问题.。
北师大版2018-2019学年七年级数学下册期中测试题及答案答案
2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个4.二元一次方程组的是()A.B.C.D.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣118.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.10.方程组的解是,则方程组的解为()A.B.C.D.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第象限.12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为.14.已知+|3x+2y﹣15|=0,则的算术平方根为.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.三、解答题(共66分19.解二元一次方程组:.20.21.25(x﹣1)2﹣9=0.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)26.(8分)河大附中初一年级有350名同学去春游,已知2辆A 型车和1辆B 型车可以载学生100人;1辆A 型车和2辆B 型车可以载学生110人. (1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 需要100元,一辆B 需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD . (1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)【分析】根据x轴上点的纵坐标为0列方程求出a,再求解即可.【解答】解:∵P点坐标为(2﹣a,3a+6),且点P在x轴上,∴3a+6=0,解得a=﹣2,2﹣a=2﹣(﹣2)=4,故点P的坐标为(4,0).故选:D.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有π,﹣,0.1010010001…,共3个,故选:B.【点评】本题考查了算术平方根、立方根、无理数等知识点,能熟记无理数的定义是解此题的关键.4.二元一次方程组的是()A.B.C.D.【分析】二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.依此即可求解.【解答】解:A、有3个未知数,不是二元一次方程组,故选项错误;B、是二次方程组,故选项错误;C、是二次方程组,故选项错误;D、是二元一次方程组,故选项正确.故选:D.【点评】考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【分析】直接利用x的取值范围,进而比较各数大小.【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.【点评】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11【分析】由x与y互为相反数,得到y=﹣x,代入方程组计算即可求出m的值.【解答】解:由题意得:y=﹣x,代入方程组得:,消去x得:=,即3m+9=4m﹣2,解得:m=11,故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】根据非负整数的定义分别代入求出答案.【解答】解:当x=0时,y=10;当x=1时,y=8.5(不合题意);当x=2时,y=7;当x=3时,y=5.5(不合题意);当x=4时,y=4;当x=5时,y=2.5(不合题意);当x=6时,y=1;当x=7时,y=﹣0.5(不合题意);故方程3x+2y=20的非负整数解的个数为4个.故选:D.【点评】此题主要考查了二元一次方程的解,正确把握非负整数的定义是解题关键.9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.【分析】根据题意和表格可以列出相应的方程组,从而可以的打哪个选项是正确的.【解答】解:由题意可得,,化简,得,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10.方程组的解是,则方程组的解为()A.B.C.D.【分析】将方程组变形为,根据已知方程组的解得出,解之可得.【解答】解:由方程组,得:,由题意可得,解得:,故选:D.【点评】本题主要考察二元一次方程组的解,解题的关键是掌握整体思想的运用.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第二、四象限.【分析】根据有理数的乘法,可得横坐标与纵坐标异号,根据点的坐标特征,可得答案.【解答】解:由题意,得横坐标与纵坐标异号,点N在第二、四象限,故答案为:二、四.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=3,b=4.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为(4,2)或(﹣2,2).【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x﹣1|=3,解得:x=4或﹣2,∴点B的坐标为(4,2)或(﹣2,2).故本题答案为:(4,2)或(﹣2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.14.已知+|3x+2y﹣15|=0,则的算术平方根为.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是2﹣.【分析】设A点表示x,再根据数轴上两点间距离的定义即可得出结论.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.【点评】本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为15°或115°.【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠A比∠B的3倍小20°和∠A与∠B相等或互补,可列方程组求解.【解答】解:根据题意,得或解方程组得∠A=∠B=15°或∠A=115°,∠B=65°.故答案为:15°或115°.【点评】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的两边互相平行,那么这两个角相等或互补.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2);(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=2,b=﹣2.【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a、b的方程,通过解方程求得它们的值即可.【解答】解:(1)依题意得:f(﹣2,4)=(×(﹣2)+0,×4﹣0)=(﹣1,2).故答案是:(﹣1,2);(2)依题意得:f(4,﹣4)=(×4+a,×(﹣4)+b)=(4,﹣4).所以×4+a=4,×(﹣4)﹣b=﹣4所以a=2,b=2.故答案是:2;2.【点评】考查了坐标与图形性质.关键是掌握对有序数对(m,n)定义“f运算”法则.三、解答题(共66分19.解二元一次方程组:.【分析】直接利用加减消元法解方程得出答案.【解答】解:由①×6得:3x﹣2y=8,③由②+③得:x=3,将x=3代入到②得:y=,故原方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,正确掌握解方程的是解题关键.20.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程组化为∴3x+4y=4x+3y即x=y∴3x+4y=3x+4x=7x=84解得:x=12∴y=12∴方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.21.25(x﹣1)2﹣9=0.【分析】25(x﹣1)2﹣9=0中每个数同时除以25,得到(x﹣1)2﹣=0,利用平方差公式求出x的值.【解答】解:∵25(x﹣1)2﹣9=0∴(x﹣1)2﹣=0(x﹣1﹣)(x﹣1+)=0解得x1=x2=【点评】本题主要考查了利用平方差公式解一元二次方程,熟练掌握平方差公式是解题的关键.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.【分析】(1)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(2)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB∵AE∥CF,AD∥BC∴∠FDA=∠A=∠CBE,∠ADB=∠CBD∴∠EBC=∠CBD.∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.【分析】(1)先根据点的坐标求出AB长和点C到AB的距离,根据三角形的面积公式求出即可;(2)设P点到直线AB的距离为h,根据三角形的面积公式求出h,即可得出P点的坐标.【解答】解:(1)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB∥x轴,AB=4﹣(﹣2)=6,C到AB的距离是3﹣(﹣3)=6,∴△ABC的面积为:=18;(2)设P点到直线AB的距离为h,∵△ABP的面积为6,AB=6,∴=6,解得:h=2,∵3+2=5,3﹣2=1,∴P点的坐标为(0,5)或(0,﹣1).【点评】本题考查了三角形的面积、坐标与图形性质等知识点,能求出AB的长和分别求出点C、P到直线AB的距离是解此题的关键.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.【分析】首先估算出的范围,然后可求得m、n的值,最后即可求得(m+n)2018的值.【解答】解:∵1<3<4,∴1<<2.∴m=2+﹣3=﹣1,n=2﹣﹣0=2﹣,∴(m+n)2018=12018=1.【点评】本题主要考查的是估算无理数的大小、求得m、n的值是解题的关键.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)【分析】设小长方形的长为x厘米,宽为y厘米,根据题意和图示,列出关于x和y的二元一次方程组,解出x和y的值,即可求出矩形的AD的长度,从而求出矩形ABCD的面积,根据阴影部分的面积=矩形ABCD的面积﹣六个小长方形的面积,即可求得答案.【解答】解:设小长方形的长为x厘米,宽为y厘米,根据题意得:,解得:,即小长方形的长为8厘米,宽为2厘米,矩形ABCD的宽AD=6+2×2=10(厘米),矩形ABCD的面积为:14×10=140(平方厘米),阴影部分的面积为:140﹣6×8×2=44(平方厘米),答:图中阴影部分的总面积为44平方厘米.【点评】本题考查二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.26.(8分)河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.【分析】(1)根据载客量,可得方程组,根据解方程组,可得答案;(2)根据题意列出方程,可得答案.【解答】解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.【点评】本题考查了二元一次方程组的应用,解(1)的关键是解方程组;解(2)的关键是解方程.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得解得(6分)②当x >200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD .(1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点M 在x 轴和y 轴上两种情况,设出坐标,根据S △ACM =S 四边形ABDC 列出方程求解可得;(3)作PE ∥AB ,则PE ∥CD ,可得∠DCP =∠CPE 、∠BOP =∠OPE ,继而知∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,即可得答案.【解答】解:(1)由a =.得:a =﹣1,b =3.所以A (﹣1,0),B (3,0),C (0,2),D (4,2),∵AB =4,CO =2,∴S=AB•CO=4×2=8;四边形ABDC(2)①M在y轴上,设M坐标为(0,m),∴,∴CM=16,∴m=2+16=18或m=2﹣16=﹣14,∴M点的坐标为(0,18)或(0,﹣14);②M在x轴上,设点m的坐标为(m,0),∴,∴AM=8,∴m=﹣1+8=7或m=﹣1﹣8=﹣9,所以点M的坐标为(7,0)或(﹣9,0).综上所述M点的坐标为(0,18)或(0,﹣14)或(7,0)或(﹣9,0);(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO;当点P在线段BD的延长线上时,如图2,∠BOP﹣∠DCP=∠CPO,同理可得当点P在线段DB的延长线上时,如图3:∠DCP﹣∠BOP=∠CPO,【点评】本题主要考查非负数的性质、平行四边形的性质及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.。
人教版数学七年级下册《期中检测题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 2. 已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A B. 13- C. 1 D. 53. 把不等式2x -<1的解集在数轴上表示正确的是A. B. C. D. 4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ 5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=56. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m << B. 21m m m << C. 21m m m << D. 21m m m<< 7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( )A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 09. 已知不等式组213{0x x a -≥->解集是2x ≥,则实数的取值范围是( ) A. 2a > B. 2a ≥C. 2a <D. 2a ≤ 10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.12. 不等式 4153x x +≤+ 的最大负整数解为________.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛. 15. 对于有理数,我们规定[]m 表示不大于最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. 三、解答题16. 解方程或方程组(1)331123x x+-+=(2)3131632x yx y-=-⎧⎨+=⎩17. 解不等式组()3241213x xxx⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.18. 老师在黑板上写了一道解方程的题:212134x x--=-,小明马上就举起了手,要求到黑板上去做,他是这样做的:()()421132x x-=-+①84136x x-=--②111x=-③111x=-④老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146 a a---=(2)253210 0.60.8x x+--=19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?20. 若m是整数,且关于x,y的方程组2-2,-5x y mx y+=⎧⎨=⎩的解满足x≥0,y<0,试确定m的值.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?23. 根据下面两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?答案与解析一、选择题1. 下列方程中:①470x -=;②3x y z +=;③27x x -=;④43xy =;⑤23x y x +=;⑥31x =,属于一元一次方程的个数有( )A. 0个B. 1个C. 2个D. 3个 [答案]B[解析]分析]根据一元一次方程的定义解答即可.[详解]解:①4x-7=0符合一元一次方程的定义,故正确;②3x+y=z 是三元一次方程,故错误;③x-7=x 2是一元二次方程,故错误;④4xy=3是二元二次方程,故错误; ⑤23x yx+=属于二元一次方程,故错误; ⑥31x =属于分式方程,故错误.故选:B .[点睛]本题考查了一元一次方程的概念.解答关键是根据定义解答问题.2. 已知31x y=⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. B. 13- C. 1D. 5[答案]C[解析]分析]把x 与y 的值代入方程计算即可求出m 的值.[详解]解:把31x y =⎧⎨=⎩代入方程得:3m-1=2,解得:m=1,故选C.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3. 把不等式2x -<1的解集在数轴上表示正确的是 A.B. C. D. [答案]A[解析][分析]先解不等式2x -<1得到1<x ,根据数轴表示数的方法得到解集在1的右边.[详解]由2x -<1,移项得1<x ,根据数轴表示数的方法得到解集在1的右边.故选A.[点睛]本题考查在数轴上表示不等式的解集和解一元一次不等式,解题的关键是掌握在数轴上表示不等式的解集和解一元一次不等式.4. 把方程23x y -=改写成用含的式子表示的形式,正确的是( )A. 23y x =-+B. 23y x =--C. 23y x =-D. 23y x =+ [答案]C[解析]分析]把x 看做已知数求出y 即可.[详解]方程2x−y =3,解得:y =2x−3,故选:C .[点睛]此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.5. 下列方程的变形中正确的是A. 由7x=4x-3移项得7x-4x=3B. 由2x 1x 3132--=+去分母得2(2x-1)=1+3(x-3) C. 由2(2x-1)-3(x-3)=1去括号得4x-2-3x-9=1D. 由2(x+1)=x+7解得x=5[答案]D[解析][分析]根据等式的基本性质,即可得到答案.[详解]∵由7x=4x-3移项得7x-4x=-3,∴A 错误, ∵由2x 1x 3132--=+去分母得2(2x-1)=6+3(x-3),∴B 错误, ∵由2(2x-1)-3(x-3)=1去括号得4x-2-3x+9=1,∴C 错误,∵由2(x+1)=x+7解得x=5,∴D 正确,故选D.[点睛]本题主要考查一元一次方程的移项,去分母,去括号法则,熟练掌握解一元一次方程的步骤和方法是解题的关键.6. 若01m <<,则21,,m m m 的大小关系是 ( ) A. 21m m m <<B. 21m m m <<C. 21m m m <<D. 21m m m << [答案]B[解析][分析]根据01m <<时,可得越平方越小,11m >,从而得到大小关系式.[详解]01m <<,11m> 21m m <<,1m m <, 21m m m<<, 故选:B .[点睛]本题考查了简单的实数的比较,可利用特殊值法即可比较大小,也可利用当01m <<时,的指数越大则数值越小解题.7. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余尺,问木长多少尺,现设绳长尺,木长尺,则可列二元一次方程组为( ) A. 4.5112y x y x -=⎧⎪⎨-=⎪⎩B. 4.5112x y y x -=⎧⎪⎨-=⎪⎩C. 4.5112x y x y -=⎧⎪⎨-=⎪⎩D. 4.5112y x x y -=⎧⎪⎨-=⎪⎩ [答案]B[解析][分析]本题的等量关系是:绳长木长 4.5=;木长12-绳长1=,据此可列方程组求解. [详解]设绳长尺,长木为尺, 依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B .[点睛]此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 关于的方程211x a -=+的解是12x =-,则()21a +的值是( ) A. 14 B. 4 C. 1 D. 0[答案]B[解析][分析] 把12x =-代入方程,得出一个关于的方程,求出方程的解,再代入求出答案即可. [详解]解:把12x =-代入方程211x a -=+得:111a --=+, 解得:3a =-,所以22(1)(31)4a +=-+=,故选:.[点睛]本题考查了解一元一次方程和一元一次方程的解,能得出一个关于的一元一次方程是解此题的关键.9. 已知不等式组213{0x x a -≥->的解集是2x ≥,则实数的取值范围是( ) A. 2a >B. 2a ≥C. 2a <D. 2a ≤ [答案]C[解析][分析]应先求出不等式组中两个不等式的解集,根据所给的解集进行判断.[详解]解不等式组得2x x a≥⎧⎨⎩>∵已知解集为解集是2x ≥,∴2a <.故选C .[点睛]主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向相同,数字相同时情况.(如:x >a ,x >a ,其解集也是x >a ),在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10. 利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图所示,则桌子的高度为()A. 84cmB. 85cmC. 86cmD. 87cm[答案]B[解析][分析] 设长方体长x cm ,宽y cm ,高a cm ,由图象建立方程组求出其解就可以得出结论.[详解]设长方体长x cm ,宽y cm ,高a cm ,由题意,得9080x a y y a x +=+=-⎧⎨-⎩,解得:2a =170,∴a =85.故选B.[点睛]本题考查的是三元一次方程组的应用,熟练掌握三元一次方程组是解题的关键.二、填空题11. 如果23x -和4x -互为相反数,则2020x 的值为______.[答案][解析][分析]根据相反数的定义计算出x 的值,再代入2020x 即可作答.[详解]解:(23)(4)0x x -+-=从而有1x =-,代入2020x 有:20202020(1)1x-==;故答案为:1.[点睛]本题主要考查了相反数定义以及积的乘方运算,其中根据相反数的定义计算出x 的值是解题的关键. 12. 不等式 4153x x +≤+ 的最大负整数解为________.[答案]-1[解析][分析]先根据不等式的性质求出不等式的解集,然后在不等式的解集中找出最大负整数即可.[详解]解: 4x+1≤5x+3,则4x-5x≤3-1,-x≤2,∴x≥-2.∴最大的负整数为-1.[点睛]本题主要考查了一元一次不等式的特殊解,掌握一元一次不等式的解是解题的关键.13. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大54°,则∠2=_____.[答案]18°[解析][分析]根据题意结合图形列出方程组,解方程组即可求解.[详解]解:由题意得:12901254︒︒⎧∠+∠=⎨∠-∠=⎩,解得∠1=72°,∠2=18°.故答案为18°.[点睛]此题主要考查二元一次方程组的应用,解题的关键是根据图形找到等量关系进行列式.14. 在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场扣1分.某队预计在2019-2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛.则这个队至少要胜__场才有希望进入季后赛.[答案]20[解析][分析]本题需要设未知数,设胜的场次为x ,则负的场次为32-x .根据题意列出不等式.[详解]设胜的场次为x ,则负的场次为32-x ,则根据题意可得:3(1)(32)48x x ⋅+-⋅-≥,解得不等式为20x ≥,故这个队至少要胜20场才有希望进入季后赛.[点睛]本应用题关键学会利用方程的思想解不等式.15. 对于有理数,我们规定[]m 表示不大于的最大整数,例如:[1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数的取值是__________. [答案]-17,-16,-15. [解析][分析] 根据[x]表示不大于x 的最大整数,列出不等式组,再求出不等式组的解集即可.[详解]∵[x]表示不大于x 的最大整数,∴-5≤23x +<-5+1, 解得-17≤x <-14.∵x 是整数,∴x 取-17,-16,-15.故答案为:-17,-16,-15.[点睛]本题考查的是有理数的大小比较,关键是根据[x]表示不大于x 的最大整数,列出不等式组,求出不等式组的解集.三、解答题16. 解方程或方程组(1)331123x x +-+= (2)3131632x y x y -=-⎧⎨+=⎩[答案](1)19x =-;(2)11x y . [解析][分析](1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.[详解]解:(1)去分母得:()()332316x x ++-=,去括号得:976x +=移项合并得:91x =-, 解得:19x =-; (2)3131632x y x y -=-⎧⎨+=⎩①②, ②×3-①得:22y =22, 解得:y =1,把y =1代入②得:x =-1,则方程组的解为11x y =-⎧⎨=⎩. [点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17. 解不等式组()3241213x x x x ⎧--≤-⎪⎨+>-⎪⎩①②并把解集在数轴上表示出来.[答案]14x ≤<,在数轴上表示解集见解析.[解析][分析]先分别解出各个不等式的解集,再利用‘大小小大取中间’写出不等式组的解集,然后将解集表示在数轴上即可.[详解]解:(1)解不等式①,得:1≥x ,解不等式②,得:4x <,则不等式组的解集为14x ≤<,将不等式组的解集表示在数轴上如下:[点睛]本题考查了解一元一次不等式组、用数轴表示不等式的解集,属于基础题,关键是正确解出不等式(组)的解集,注意不等号的方向.18. 老师在黑板上写了一道解方程的题:212134x x --=-,小明马上就举起了手,要求到黑板上去做,他是这样做的: ()()421132x x -=-+①84136x x -=--②111x =-③111x =-④ 老师说:小明解一元一次方程的一般步骤都掌握了,但是解题时有一步做错了.请你指出他错在第______步(填写编号),然后再细心解下面的方程,相信你一定能做对.(1)3157146a a ---= (2)2532100.60.8x x +--= [答案]小明错在第①步;(1)1a =-;(2) 2.x =[解析][分析]观察发现,第①步没有分母的项1没有乘以分母的最小公倍数,所以第①步错误;(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.[详解]解:第(1)步小明错在去分母时,等式两边各项都应该乘以公分母,但是小明等号右边的1还是1.(1)3157146a a ---= ()()63124457a a --=-186242028a a --=-22830a -=-+22a -=1a =-.(2)2532100.60.8x x +--= 2532168x x +--= ()()825632)48x x +--=1640181248x x +-+=24x -=-2x =.[点睛]此题考查了解一元一次方程,去分母时注意各项都要乘以各分母的最小公倍数.19. 2020年春节,新型冠状病毒肆虐,小明一家响应国家的号召防疫在家不出门.这天,小明和爸爸在家里玩起了“投乒乓球”的游戏,商定规则:小明投中一个得3分,爸爸投中一个得1分.结果两人一共投中了20个,经过计算,发现两人的得分恰好相同,你能知道他们两人各投中几个吗?[答案]小明和爸爸分别投中了5个和15个.[解析][分析]根据题干,设小明投进了x 个,则小明爸爸投进了(20-x )个,根据两个人的得分相等,即可列出方程解决问题.[详解]解:设小明和爸爸分别投中了个和个.由题意得:203x y x y +=⎧⎨=⎩,解得515x y =⎧⎨=⎩答:小明和爸爸分别投中了5个和15个.[点睛]本题考查了二元一次方程的应用,解题关键是找到关键描述语,得到等量关系:小明投中球的个数+爸爸投中球的个数=20,小明得分=爸爸得分.是解决此题的关键.20. 若m 是整数,且关于x,y 的方程组2-2,-5x y m x y +=⎧⎨=⎩的解满足x≥0,y<0,试确定m 的值. [答案]m=-1,0,1,2,3.[解析][分析]]把m 当作已知数,解方程组求出方程组的解(x 、y 的值)根据已知得出不等式组,求出m 的取值范围即可.[详解]2-2-5x y m x y +=⎧⎨=⎩①②,①+②,得2x=2m+3,解得x=2m32+,把x=2m32+代入②,解得y=2m-7 2,∵x≥0,y<0,∴2m32+≥0,即m≥-32,2m-72<0,即m<72,∴解集为-32≤m<72,∵m是整数,∴m=-1,0,1,2,3.[点睛]本题综合考查了解方程组和解不等式组的应用,关键是根据题意求出关于m的不等式组.21. 重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?[答案](1)200元和100元(2)至少6件[解析][分析](1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.[详解]解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得4600351100x yx y+=⎧⎨+=⎩,解得:200100xy=⎧⎨=⎩,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.22. 在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n值分别是多少?(2)正确的解应该是怎样的?[答案](1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩[解析][分析](1)将第一组解代入方程组的第一个方程求出m的值,将第二组解代入方程组的第二个方程求出n的值即可;(2)确定出正确的方程组,求出解即可.[详解](1)将7,32,3xy⎧=⎪⎪⎨⎪=⎪⎩代入方程组的第一个方程得:74633m+=,解得:m=2;将2,4.xy=-⎧⎨=⎩代入方程组的第二个方程得:−4+4n=8,解得:n=3;(2)方程组3238x yx y+=⎧⎨+=⎩①②,②−①×2得:y=2,将y=2代入①得:x=1,则方程组正确的解为12. xy=⎧⎨=⎩[点睛]考查二元一次方程组的解以及解二元一次方程组,熟练掌握加减消元法是解题的关键.23. 根据下面的两种移动电话计费方式表,解答下列问题:(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算?[答案](1) 250分钟;(2) 选择全球通比较合算[解析]试题分析:(1)从表格中可知道全球通月租25元,每打一分钟0.2元,神州行没有月租,每分钟0.3元,因此可设一个月内本地通话x分钟时,两种通讯方式的费用相同;(2)根据第一问求得数据后可知,大于这个数据,应该用全球通,小于这个数据应该用神州行.试题解析:解:(1)设一个月内本地通话x分钟时,两种通讯方式的费用相同.25+0.2x=0.3x,x=250,故一个月内本地通话250分钟时,两种通讯方式的费用相同.(2)若使用全球通时,90元可以使用的时间为:(90﹣25)÷0.2=375(分钟)若使用神州行时,90元可以使用的时间为:90÷0.3=300(分钟)因为375>300,故选择全球通合适.点睛:本题考查理解题意的能力,关键是求出两种通讯方式的费用相同时,一个月内的本地通话是多少分钟,找到此临界点,其他问题就能回答.。
2019年春季学期七年级下册期中数学试卷(有答案与解析)
2019年春季学期七年级下册期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.已知a m=5,a n=2,则a m+n的值等于()A.2.5B.7C.10D.252.下列运算运用乘法公式不正确的是()A.(x﹣y)2=x2﹣2xy+y2B.(x+y)2=x2+y2C.(x+y)(x﹣y)=x2﹣y2D.(﹣x+y)(﹣x﹣y)=x2﹣y23.下列计算正确的是()A.a2+a2=a4B.a3•a2=a6C.a6÷a2=a4D.(﹣a2b3)2=a4b94.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.下列所示的四个图形中,∠1和∠2是同位角的是()A.①②B.②③C.①③D.②④6.如图,如果∠1=∠2,那么下列说法正确的是()A.∠3=∠4B.AB∥CD C.AD∥BC D.∠ABC=∠ADC 7.下列说法正确的是()A.三角形的三条高至少有一条在三角形内B.直角三角形只有一条高C.三角形的角平分线其实就是角的平分线D.三角形的角平分线、中线、高都在三角形的内部8.如图,在△ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,则图中与∠FDB相等的角(不包含∠FDB)的个数为()A.3B.4C.5D.69.下列说法不正确的有()①一个三角形至少有2个锐角;②在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;③过n边形的一个顶点可作(n﹣3)条对角线;④n边形每增加一条边,则其内角和增加360°.A.1个B.2个C.3个D.4个10.已知:a=﹣2017x+2018,b=﹣2017x+2019,c=﹣2017x+2020,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值()A.0B.1C.2D.3二、填空题(本大题共8小题,每小题2分,共16分)11.水珠不断地滴在一块石头上,1年后石头形成了一个深为0.001m的小洞,用科学记数法表示小洞的深度为m.12.若x2+x+m是一个完全平方式,则m的值为.13.若(x+a)(3x﹣2)的结果中不含关于字母x的一次项,则a=.14.如果三角形的两边长分别是3和5,那么它的第三边x的取值范围是.15.若2x+5y﹣3=0,则4x﹣1×32y=.16.观察下列式子(1)(1+1)2=1+2+1,(2)(2+1)2=4+4+1,(3)(3+1)2=9+6+1,…探索规律,用含n的式子表示第n个等式.(n为正整数)17.如图,将长方形纸片ABCD沿EF翻折,使点C落在点C处,若∠BEC′=28°,则∠D′GF 的度数为.18.如图,线段AB、AC是两条绕点A可以自由旋转的线段(但点A、B、C始终不在同一条直线上),已知AB=5,AC=7,点D、E分别是AB、BC的中点,则四边形BEFD面积的最大值是.三、解答题(本大题共8小题,共64分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斤梨与1公斤桃子的价钱和,则购买12公斤苹果所需的钱可以购买梨 公斤.
解析:18
32.若分式
1
b2 4
无意义,
的值为 0,则 ab =
.
a3
b2
解析:-6 33.如图,将△ABC绕着点A 按逆时针方向旋转70°后与△ADE重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.
解析:25 34.如图,AE=AD,请你添加一个条件: (图形中不再增加其他字母).
或用树状图法(略);
(2)P(数字之积为奇数)= 6 1 24 4
41. 解下列方程(组):
(1)
2x y 3 4x 3y 5
;
(2) 2 x 1 2 . x3 3x
解析:(1)
x
y
7 5 1 5
;
(2) x 3 ,经检验是增根,所以原方程无解
42.为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,
10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如
下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸
,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若
干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )
cm,则△BDC 的周长为 cm.
解析:11
29. 请写出二元一次方程 x 1 y 1的一组解
.
2
解析:略
30.如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边
的长为___________.
解析:23㎝
31.7公斤桃子的价钱等于1公斤苹果与 2公斤梨的价钱和;7公斤苹果的价钱等于10公
解析:分两种情况:(1)若第一次摸出的是红球,则第二次摸球时,袋内还有6个红球和三 个白球,共9个球,摸出一个红球的概率为 6 2 ;
93 (2)若第一次摸出的是白球,则第二次摸球时,袋内还有 7个红球和 2个白球,共 9个球,摸出一个红球的概率为 7
9 39.已知某电脑公司有 A.B、C三种型号的电脑,其价格分别为 A型每台 6 000元,B 型每台4000元,C 型每台2500元. 育才学校计划将100500元钱全部都用于从该电脑公司购进其中两种不同型号的电脑共36台 ,请你设计出几种不同的购买方案,供学校选择.
数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,
用所指的两个数字作乘积,请你:
(1)列举(用列表或画树状图法)所有可能得到的数字之积;
(2)求出数字之积为奇数的概率.
解析:(1)所有可能得到的数字之积列表如下: 1 23 45 6
11 23 45 6 2 2 4 6 8 10 12 3 3 6 9 12 15 18 4 4 8 12 16 20 24
解析: 1
2
37.如图,在△ABC中,∠BAC= 45 ,现将△ABC绕点A逆时针旋转 30
至△ADE的位置.则∠DAC= . 解析:15°
三、解答题
38.一只口袋内有7个红球、3个白球,这 10个球除了颜色外都相同,先从中摸出一个球(但不知是红球还是白球),并且不放回,试 针对第一次摸球的两种情况,分别求第二次从中摸出一个红球的概率.
解析:设甲的速度为x千米每小时,乙的速度为y千米每小时.
4x 4 y 36
x 4
根据题意得:
36
6
x
2(36
6
y)
,解得:
y
5
.
48.已知∠α和线段a、b.用圆规和直尺作△ABC,使∠C=∠α,
AC=b,BC=a.(不写作法,保留作图痕迹)
a
b
解析:略. 49.解方程(组):
(1)
2x 3x
解析:假设学校购买A型和B型的电脑,设A型 x 台,则B型 y 台,列方程组,得
6000
x
x y 36 4000 y 100500
,解得设学校购A型和C型的电脑,设A型 x 台,则C型 y 台,列方程组,得
6000
x
x y 36 2500 y 100500
(2)设两个连续奇数的2n-1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数
是8的倍数吗?为什么?
(3)两个连续偶数的平方差(取正数)是奇特数吗?为什么?
解析:(1) 92 72 32, 5032 5012 2008 . (2)是,∵ (2n 1)2 (2n 1)2 8n ,∴这两个连续奇数构造的奇特数是8的倍数.
C.买一张彩票中特等奖
D.负数的绝对值是它本身
答案:B
19.甲、乙两人进行百米跑比赛,当甲离终点还有
1米时,乙离终点还有2米,那么,当甲到达终点时,乙离终点还有(假设甲、乙的速度保
持不变) ( )
A. 98 米 99
答案:B
B. 100 米 99
C. 1米
D. 99 米 9
20.在多项式 x2 2y2 , x2 y2 , x2 y2 , x2 y2 中,能用平方差公式分解的是(
建造新校舍. 拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.
计划在年内拆除旧校舍与建造新校舍共7200m2.
在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了10%,
结果恰好完成了原计划的拆、建的总面积.
(1)求原计划拆、建面积各多少m2?
(2)如果绿化1m2 需200元,那么在实际完成的拆建工程中节余的资金用来绿化大约是多少
D.90°
C.三条任意长的线段可以组成一个三角形 D.从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大
答案:D
6. 下列事件中,属于不确定事件的是( ) A.2008年奥运会在北京举行 B.太阳从西边升起 C.在 1,2,3,4 中任取一个数比 5大 D.打开数学书就翻到第10页
答案:D
(1)根据要求作图(尺规作图,仅留作图痕迹,不写画法):
①作∠BAC的平分线AD交BC于D;
②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;
③连接ED; (2)在(1)的基础上写出一对全等三角形:△ ≌△ ,并说明理由.
解析:略 45. 四张大小、质地均相同的卡片上分别标有数字1,2,3,4,5,6,现将标有数字的一面朝 下扣在桌子上,从中随机抽取一张卡片(不放回),再从桌子上剩下的5张中随机抽取第二张 卡片. (1)用画状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?
y5 2y 4
(2) 1 4 x 4 x 2 16
解析:(1)
x
y
2 1
;(2)
x
0
.
50.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”.
如:8=32-12,16=52-32,24=72-52,因此8,16,24这三个数都是奇特数.
(1)32和2008这两个数是奇特数吗?为什么?
答案:A
3.下列事件中,必然事件是( )
A.任何数都有倒数 B.明年元旦那天天晴
C.异号两数相乘积为负D.摸彩票中大奖
答案:C
4.如图,图形旋转多少度后能与自身重合( )
A.45°
B.60°
C.72°
答案:C
5.下列说法中,正确的是( )
A.买一张电影票,座位号一定是偶数
B.投掷一枚均匀的硬币,正面一定朝上
A. 3.5104 米
B. 3.5104 米
C. 3.5105 米 D. 3.5106 米
答案:B
17. 如果把分式 xy 中的 x 、 y 都扩大5倍,那么分式的值( ) 2x 3y
A.扩大5倍
B.缩小5倍
C.不变
D.扩大10倍
答案:A
18.下列事件中,属于必然事件的是( )
A.明天一定是晴天
B.异号两数相乘,积为负数
7. 将如图所示图形旋转 180。后,得到的图形是( )
A.
B.
C.
D.
答案:D
8.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为( )
A.1条
B.2条
C.3条
D.4条
答案:B
9.下列长度的三条线段,能组成三角形的是( )
A. 1,2,3
B.1,3,5
C. 2,2,4
D.2,3,4
答案:D
)
A.1个
B.2个
C.3个
D.4个
答案:B
21.己在△ABC中,∠A=55°,∠C=42°,则∠B的 数为( )
A. 42°
B.55°
C.83°
D.97°
答案:C
二、填空题
22. 如图是在镜子中看到的一个号码,它的实际号码是 .
解析:2051
23.一只口袋里共有 3个红球,2
个黑球,1个黄球,现在小明任意模出两个球,则摸出一个红球和一个黑球的概率是 .
x3 x5
A.
B.
C. D.
答案:D
15.不改变分式 1.3x 1 的值,把它的分子、分母的系数化为整数,其结果正确的是( 2x 0.7 y
) A. 13x 1
2x 7 y
B. 13x 10 2x 7 y
C. 13x 10 20x 7y
D. 13x 1 20x 7 y
答案:C
16.已知某种植物花粉的直径约为 0.000 35米,用科学记数法表示是( )
,使△ABE≌△ACD
解析:答案不唯一,如AB =AC 35.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后各花 800元购买该商品,两人所购的件数相差10件,则该商品原售价是上 元. 解析:16 36.一个盒子中有 10个完全相同的球,分别标以号码1,2,…,10,从中任意摸出一个球,则P(摸到球的标 号为偶数)= .