ZW压缩机课程设计说明书DOC
ZW-0.8-16-24氨气循环使用说明书资料
ZW系列氨气循环压缩机使用说明书蚌埠市中通压缩机制造有限公司使用说明书蚌埠中通压缩机制造有限公司目 录第一章、概述 (1)第二章、Z W系列氨气循环压缩机技术参数 (2)第三章、设备安装示意图 (3)第四章、工艺流程示意图和作业原理 (4)第五章、使用保养及故障排除 (5)使用说明书蚌埠中通压缩机制造有限公司第一章概述一、ZW氨气系列压缩机工作介质、用途、特点:Z W氨气系列压缩机是立式、双缸、单作用、风冷无油润滑往复式结构。
排气量为0.6~4.0m3/min,进气压为1.6MP a,排气压力为2.4MP a,驱动功率为11~55KW。
该系列产品可最大限度在按照用户的需要进行技术改进。
其工作介质主要为70%丙烷(C3H8),30%丁烷(C4H10)以及与之相类似的介质如氨气等。
该系列产品具有功能多、占地面积小、耗能低、运行平稳、维修方便、使用安全等特点。
它集压缩机、过滤器、气液分离器、四通阀、防爆电机等为一体,可为用户最大限度地创造经济效益。
本系列产品填料、气缸等部件为无油润滑,曲轴、连杆、十字头等部件为飞溅式润滑,便于使用和维护。
该系列压缩机适用于液化气站、LGP汽车加气站、混气站、灌装厂、储备站的卸车、倒罐、灌瓶、抽真空、倒残液等。
二、工作原理:压缩机运转时,通过曲轴、连轩及十字头,将回转运动变为活塞在气缸内的往复运动,并由此使工作容积作周期性变化,完成吸气、压缩、排气和膨胀四个过程。
当活塞由外止点向内止点运动时,进气阀开启,氨气进入气缸,吸气开始;当到达内止点时,吸气结束;当活塞由内止点向外止点运动时;氨气被压缩,当气缸内压力超过其排气管中背压时,排气阀开启,即排气开始活塞到外止点时,排气结束。
活塞再从外止点向内止点运动,气缸余隙中的高压气体膨胀,当吸入管中压力大于在缸中膨胀的气体压力,并能克服进气阀弹簧力时,进气阀开启,在此瞬时,膨胀结束,压缩机就完成了一个工作循环。
三、使用环境条件:本系列压缩机安装应符合国家设计规范,安全管理规范并符合消防法规的要求,机房内所有电器必须具有防爆功能,并有良好的接地线,机房内的所有的管线及阀门密封性要保证,不允许泄漏。
【规格书】广顺ZW系列无油润滑压缩机说明书
连杆
偏心轮
电机轴
三、典型的压缩机结构及外形
四、使用说明
1.将空压机尽可能地放在通风好、灰尘小、湿度小的位置。 2.使用的电源应有足够的容量,确认使用的电压符合产品要求。 3.按照接线要求接好电源线与电容线。 4.检查空压机各元件无异常后,将电源线插头插到符合要求的电源 插座上(电源插座必须接地良好),空压机开始工作。 5.调节调压阀使压力表指示所需压力并稳定。 6.空压机不使用时,调节调压阀排空空气后,再切断电源。 7.出厂时引线位置已经准确联接,若有变动将严重影响压缩机运行 性能,非专业人士不允许随意拆卸。 8.严禁随意拉扯引出线,以免造成损坏或造成产品故障。
公司拥有11台先进的CNC加工中心和多台数控车床、数显铣床, 有三坐标测量仪、ROSH检测仪、电机磁滞测功机、高精度的电子高 度测量仪、轴承游隙测量仪和二次元电子测量仪等高精密的检测检 验设备。建立了8条装配流水线满足大批量生产,建立了一套严密的 公司管理制度和质量管理保证体系。
二、工作原理点
压缩机的结构原理如图所示,电机的转轴上安装有偏心轮,连 杆通过轴承连接在偏心轮上。由于转轴的旋转,带动连杆往复运动, 从而实现空气的吸入、压缩和排出过程。与一般往复活塞式压缩机 不同,连杆上没有活塞销,所以当连杆作往复运动时,连杆顶面也 产生轻微摆动,这也是为什么称为摇摆活塞式的原因。
置的安全阀排气压力,不应小于该压力。
5.该产品使用的介质为空气,如需用于其它的介质,请咨询本公司。 6.当延长电源线时应考虑电压降。
7.引出线标识(客户要求除外):电源引线—黑色;电容引线—红 色。
七、一般故障的排除
故障现象
故障原因
解决方法
当启动时,机 1.电源未接通
器不运转
ZW压缩机课程设计说明书DOC
目录No.:00000000000000411.热力学计算 (1)2.动力计算 (5)3.结构尺寸设计 (18)4.参考文献 (30)5.实践心得 (31)1.热力学计算 已知条件有: 相对湿度φ=0.8 空气等熵指数k=1.4 第一级吸气温度Ts1=40℃ 第二级吸气温度Ts2=40℃ 额定排气量Qd=0.6m 3/min 额定进气压力Ps1=0.4MPa 额定排气压力Ps2=2 MPa压缩机转速取n=1000r/min ,活塞行程S=2r=100mm 。
活塞杆长度500mm ,曲柄长度r=50mm 。
1.1行程容积,气缸直径计算 ① 初步确定各级名义压力根据工况的需要选择计数为两级,按照等压比的分配原则,12εε===2.828但为使第一级有较高的容积系数,第一级的压力比取稍低值,各级名义压力级压力表如下:级数ⅠⅡ吸气压力p s 0/MPa 0.4 0.8 排气压力p d 0/ MPa 0.8 2 压力比ε0= p d 0/ p s 022.5② 定各级容积系数Ⅰ.确定各级容积系数。
取绝热指数为K=1.4,取各级相对余隙容积和膨胀指数如下:1α= 0.11 2α=0.13 1m =1.3 2m =1.35 得 :1/m1v11111λαε=--() λv2=0.874 =1-0.11x(21/1.3-1) =0.92Ⅱ.选取压力系数: p1λ=0.97 p2λ=0.99 Ⅲ.选取温度系数: t1λ=0.95 t2λ=0.95 Ⅳ.选取泄露系数: l1λ=0.92 l2λ=0.90 Ⅴ.确定容积效率: V v p t l ηλλλλ= 得:V1η=0.78 V2η=0.74③ 确定析水系数ϕλ第一级无水析出,故1ϕλ=1.0。
而且各级进口温度下的饱和蒸汽压sa p 由文献查的1t =t 2=40℃ P sa =7375Pa得:()2s11sa11s22sa2p p /p p ϕλϕεϕ=--()=(4 105-0.8x7375)x2/(8x105-7375) =0.98④ 确定各级行程容积s1v v1V q /n η==0.6/(1000x0.78) =0.00077 m 3s2v s122s21V2V (q p T )/(np T )ϕλη==(0.6×105×313×0.98)/(1000×8×105×313×0.74) =0.0004 m 3⑤ 确定气缸直径,行程和实际行程容积 已知转速n=1000r/min 。
压缩机课程设计说明书
安徽理工大学课程设计(论文)任务书目录一.计划任务书-----------------------------------------------------------------------------1 二.目录----------------------------------------------------------------------------------------2三.概述------------------------------------------------------------33.1压缩机的应用-------------------------------------------------33.2压缩机的分类------------------------------------------------33.3压缩机的基本结构---------------------------------------------43.4活塞压缩机的工作原理-----------------------------------------4四.总体设计-----------------------------------------------54.1 设计活塞式压缩机应符合以下基本原则--------------------------54.2已知的参数和压缩机主要结构参数的选取------------------------5五.热力计算----------------------------------------------65.1计算总压力比并选择级数--------------------------------------6 5.2确定各级压力比分配------------------------------------------6 5.3确定各级容积效率--------------------------------------------65.4确定析水系数------------------------------------------------75.5.确定各级行程容积--------------------------------------------75.6.确定各级气缸直径,行程和实际行程容积------------------------75.7计算活塞力--------------------------------------------------85.7.1计算实际吸排气压力--------------------------------------95.7.2活塞力的计算 ------------------------------------------95.8确定各级的排气温度-----------------------------------------105.9.计算轴功率并选配电机---------------------------------------10 六.动力计算-----------------------------------------------------116.1已知条件和数据---------------------------------------------116.2作各级汽缸设计示功图---------------------------------------116.3作图法绘制综合活塞力图-------------------------------------126.4计算往复惯性力---------------------------------------------126.4.1第一列往复惯性力计算-----------------------------------126.4.2第二列往复惯性力计算-----------------------------------136.5摩擦力计算-------------------------------------------------15F-------------------------------------156.5.1往复运动摩擦力s fF-----------------------------------------156.5.2旋转摩擦力fr6.6计算第I列气体力-------------------------------------------156.6.1第I级盖侧的气体力--------------------------------------156.6.2第I级轴侧的气体力--------------------------------------176.6.3计算第一列综合活塞力及切向力---------------------------186.7计算第Ⅱ列气体力-------------------------------------------196.7.1第Ⅱ级盖侧的气体力-------------------------------------196.7.2第Ⅱ级轴侧的气体力------------------------------------- 206.7.3计算第二列综合活塞力及切向力---------------------------21 七.机座部分主要零件设计---------------------------------------227.1 曲轴设计----------------------------------------------------227.1.1 曲轴设计基本原则----------------------------------------227.1.2 曲轴结构尺寸的确定--------------------------------------237.2连杆设计----------------------------------------------------237.2.1 连杆主要尺寸的确定--------------------------------------237.2.2 连杆的计算----------------------------------------------25 八.参考文献-------------------------------------------------------------------------------27三.概述3.1 压缩机的应用随着近代科学技术的不断发展,作为重要能量形式之一的压力能在工业生产上的应用已十分普遍,所占的地位相当重要。
压缩机设计说明书 主要零部件设计.
3 主要零部件设计3.1 活塞环的设计3.1.1活塞环的结构设计及材料选择在活塞式有油润滑压缩机中,活塞环是关键的零件之一,活塞环是密封气缸镜面和活塞间的缝隙用的零件它设计质量的好坏直接影响到压缩机的排气量、功率、密封性及可靠性,从而影响到压缩机的使用成本。
活塞环的材料及结构尺寸的选择对其寿命起至关重要的作用。
活塞环的材料通常有灰铸铁、合金铸铁。
本设计选用灰铸铁。
常用的活塞环的结构有4种:直切口式、斜切口式、搭接口式、组合式。
1)直切口式。
该结构加工简单,但压缩机气体泄漏量大,但易于满足工艺要求。
2)斜切口式。
该结构压缩机气体泄漏量及加工难易程度介于直切口式与搭接口式之间,使用最为广泛。
大部分进口压缩机及国产压缩机的活塞环均采用该结构。
3)搭接口式。
该结构压缩机气体泄漏量很少,加工最复杂,一般用于压力较大的场合[6]。
4)组合式。
直口环和斜切口式组合使用。
本课题采用直切口式3.1.2 活塞环数的确定活塞环的环数可按以下式[7]计算:n (3-1)式中:n ―活塞环的环数;∆p―活塞两边最大压差,MPa。
则:一级活塞环:n==1.48;二级活塞环:n=3.54。
考虑到要减小活塞尺寸,活塞环不应取太大,且据实际应用经验,取n=2就能保证其寿命,同时考虑到一、二级活塞环数相等因此取两级环数n=2。
3.1.3 活塞环主要尺寸的确定外径径向厚度轴向高度推荐热间隙自由开口径向弹力重量D(mm) 工称尺寸80 3.2 公差 h(mm) 直口δ(mm) A(mm) Q(N) G(kg) ±0.125 3 0.50 ~0.70 10.0 4.1 0.017065 2.8 ±0.125 2.5 0.40 ~0.55 7.00 2.8 0.00923.2 刮油环的设计刮油环的材料通常选用 VTi合金铸铁。
一级刮油环[14]:外径取一级缸径尺寸D为80mm,径向厚度t取为3.2,轴向高度h取为4mm,开口热间隙δ取为0.4mm,自由开口宽度A取为10mm;二级刮油环:外径取二级缸径尺寸D为65mm,径向厚度t取为2.8,轴向高度h取为4mm,开口热间隙δ取为0.4mm,自由开口宽度A取为10mm;3.3 活塞的设计3.3.1 活塞的结构形式活塞的基本结构型式有:筒形、盘型、级差式、组合式等。
ZW压缩机
ZW-1/1-15油田套管气回收专用压缩机设计一. 已知的参数和压缩机主要结构参数的选取套管气的主要成分是甲烷,所以一些参数可按甲烷来查由ZW-0.55/1-15型可知,本次设计的是立式、无油润滑压缩机。
其已知参数为:相对湿度 0.8ϕ= 绝热指数 1.32k = 第一级吸气温度1293s T k = 第二级吸气温度2303s T k = 额定排气量31/min Qd m = 额定进气压51110s P Pa =⨯额定排气压51510d P Pa =⨯在进行热力计算前先要选定主要结构参数,包括转速n 和行程S 。
转数和行程的选取对机器的尺寸、重量、制造难易和成本有重大影响,并且还直接影响机器的效率、寿命和动力性。
本次设计中已知额定排气量为13/min m 等于1,额定排气压为1.5MPa ,根据郁永章《活塞式压缩机》可知此压缩机为微型中压压缩机。
由《活塞式压缩机设计》可查得微型和小型压缩机的转数n=1000~3000转/分,在次设计中取n=750转/分。
在常压进气时,一般当转数高于500转/分时,1SD = 0.32~0.45 。
二. 热力计算1.活塞式压缩机级的确定由额定排气压力和额定进气压力(均是表压)可知其总压力比为21 1.5150.1P P ===ε下表是目前所使用的从常压进气的一些压缩机的级数,这些压缩机基本上具已知终压为1.5MPa,根据表2.1可初步选定该压缩机的级数Z=2. 2. 压力比的分配理论推导表明,对于理想气体,各级回冷完全时,按等压力比分配总压力比t ε,等温指示效率最高。
对于实际气体,各级消耗相等时,等温指示效率最高,故按各级功耗相等的原则分配压力比。
已知总压力比15=ε,按等压力比分配如下:1 3.872ε=ε=一般第一级的压力比取小一些以保证第一级有较高的容积系数,所以取1ε=3.7 则2ε=4.053.初步确定各级名义压力由第一级进气压力和压力比可求得第一级排气压力I1P :I11P =P 1⨯ε即I1P =0.1⨯3.7=0.37表2.24.各级的排气温度取压缩过程指数n = 1.11n nd s T T -=ε1 1.11111293 3.7334n n d s T T k --1=ε=⨯= 1 1.11122303348.5n nd s T T k --2=ε=⨯4.05=5.确定各级容积效率⑴确定各级容积系数 取各级相对余隙容积和膨胀指数如下。
谷轮ZW系列(中间补气涡旋)压缩机应用指南
AE4-1381May 2011ZW21 to ZW61KAE and ZW30 to ZW61KSECopeland Scroll® Water Heating CompressorsTABLE OF CONTENTSSection Page Section PageIntroduction (2)ZW**KA Application (2)ZW**KS ApplicationVapour Injection - Theory of Operation (2)Heat Exchanger and Expansion Device Sizing (3)Flash Tank Application (3)Intermediate Pressure and Vapour Injection Superheat (3)Application ConsiderationsHigh Pressure Cut-Out (4)Low Pressure Cut-Out (4)Discharge Temperature Protection (4)Discharge Temperature Control (4)Discharge Mufflers (4)Oil Dilution and Compressor Cooling (4)Electrical Considerations (5)Brazing and Vapour Injection Line (5)Low Ambient Cut-Out (5)Internal Pressure Relief Valve (5)Internal Temperature Protection (5)Quiet Shutdown (5)Discharge Check Valve (5)Motor Protector (5)Accumulators (5)Screens (6)Crankcase Heat-Single Phase (6)Crankcase Heat-Three Phase (6)Pump Down Cycle (6)Minimum Run Time (6)Reversing Valves (6)Oil Type (7)System Noise & Vibration (7)Single Phase Starting Characteristics (7)PTC Start Components (7)Electrical Connections (7)Deep Vacuum Operation (7)Shell Temperature (7)Suction & Discharge Fittings (7)Three Phase Scroll Compressors (8)Brief Power Interruptions ..........................................8Assembly Line ProceduresInstalling the Compressor (8)Assembly Line Brazing Procedure (8)Pressure Testing (8)Assembly Line System Charging Procedure (8)High Potential (AC Hipot) Testing (9)Unbrazing System Components (9)Service ProceduresCopeland Scroll Functional Check (9)Compressor Replacement After Motor Burn (10)Start Up of a New or Replacement Compressor (10)FiguresBrief Product Overview (11)ZW21KAE Envelope (R-134a) (11)ZWKAE Envelope (R-407C, Dew Point) (12)ZWKA Envelope (R-22) (12)ZWKS Envelope (R-22) (13)ZWKSE Envelope (R-407C, Dew Point) (13)Heat Pump with Vapour Injection – EXV Control (14)Heat Exchanger Schematic (14)Heat Pump with Flash Tank (15)Possible Flash Tank Configuration (15)Oil Dilution Chart (16)Crankcase Heater (17)Compressor Electrical Connection (17)Scroll Tube Brazing (17)How a Scroll Works (18)IntroductionThe ZW**KA and ZW**KS Copeland Scroll®compressors are designed for use in vapour compression heat pump water heating applications. Typical model numbers include ZW30KA-PFS and ZW61KSE-TFP. This bulletin addresses the specifics of water heating in the early part and deals with the common characteristics and general application guidelines for Copeland Scroll compressors in the later sections. Operating principles of the scroll compressor are described in Figure 15 at the end of this bulletin.As the drive for energy efficiency intensifies, water heating by fossil-fueled boilers and electric elements is being displaced by vapour compression heat pumps. Emerson Climate Technologies has developed two lines of special water heater compressors to meet the requirements of this demanding application. ZW**KA compressors are designed for lighter duty applications where the ambient temperature does not fall below 0°C and where lower water temperatures can be accepted as the ambient temperature falls. ZW**KS compressors are equipped with a vapour injection cycle which allows reliable operation in cold climates with significantly enhanced heating capacity, higher efficiency, and minimal requirement to reduce water outlet temperatures. Figure 1gives a brief product overview.Water heating is characterized by long operating hours at both high load and high compression ratios. Demand for hot water is at its highest when ambients are low and when conventional heat pump capacity falls off. On the positive side, the system refrigerant charge is usually small, so the risk to the compressor from dilution and flooded starts will usually be lower than in split type air-to-air heat pumps.Water heaters must operate in a wide range of ambient temperatures, and many systems will require some method of defrost. Some systems such as Direct Heating, Top Down Heating or Single Pass Heating operate at a constant water outlet temperature with variable water flow. Others such as Recirculation Heating, Cyclic Heating or Multipass Heating use constant water flow with the water outlet and inlet temperatures both rising slowly as the storage tank heats up. Both system types need to cope with reheating a tank where the hot water has been partially used, and reheating to the setpoint temperature is required. More complex systems deliver water at relatively low temperatures for under-floor heating circuits and are switched over to sanitary water heating a few times per day to provide higher temperature water for sanitary use. In addition, some countries have specific water temperature requirements for legionella control.ZW**KA ApplicationThe application envelopes for ZW**KA compressors are shown in Figures 2 - 4.Appropriate system hardware and control logic must be employed to ensure that the compressor is always operating within the envelope. Small short-term excursions outside the envelope are acceptable at the time of defrost when the load on the compressor is low. Operation with suction superheat of 5 -10K is generally acceptable except at an evaporating tem-perature above 100C when a minimum superheat of 10K is required.ZW**KS ApplicationThe ZW**KS* vapour-injected scroll compressors differ from ZW**KA models in many important details:• Addition of vapour injection• Significantly different application envelopes• Some differences in locked rotor amps (LRA), maximum continuous current (MCC), andmaximum operating current (MOC) – seenameplatesThe application envelopes for ZW**KS compressors are shown in Figures 5 and 6.Vapour Injection – Theory of Operation Operation with vapour injection increases the capacity of the outdoor coil and in turn the capacity and efficiency of the system – especially in low ambient temperatures. A typical schematic is shown in Figure 7. A heat exchanger is added to the liquid line and is used to cool the liquid being delivered to the heating expansion device. Part of the liquid refrigerant flow is flashed through an expansion valve on the evaporator side of the heat exchanger at an intermediate pressure and used to subcool the main flow of liquid to the main expansion device. Vapour from the liquid evaporating at intermediate pressure is fed to the vapour injection port on the ZW**KS compressor. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. Heating capacity is increased, because low temperature liquid with lower specific enthalpy supplied to the outdoor coil increases the amount of heat that can be absorbed from the ambient air. Increased heat absorbed from the ambient increases the system condensing temperature and in turn the compressor power input. The increase in power inputalso contributes to the improvement in the overall heating capacity.Vapour Injection can be turned on and off by the addition of an optional solenoid valve on the vapour injection line on systems using a thermostatic expansion valve. Alternatively, an electronic expansion valve can be used to turn vapour injection on and off and to control the vapour injection superheat. A capillary tube is not suitable for controlling vapour injection.The major advantage of the electronic expansion valve is that it can be used to optimise the performance of the system and at the same time control the discharge temperature by injecting “wet vapour” at extreme operating conditions.The configurations and schematics shown are for reference only and are not applicable to every system. Please consult with your Emerson Application Engineer.Heat Exchanger and Expansion Device Sizing Various heat exchanger designs have been used successfully as subcoolers. In general they should be sized so that the liquid outlet temperature is less than 5K above the saturated injection temperature at the customer low temperature rating point. At very high ambient temperatures, it will normally be beneficial to turn vapour injection off to limit the load on the compressor motor. Application Engineering Bulletin AE4-1327 and Emerson Climate Technologies Product Selection Software can be used to help size the subcooling heat exchanger and thermal expansion valves, but selection and proper operation must be checked during development testing. Plate type subcoolers must be installed vertically with the injection expansion device connected at the bottom through a straight tube at least 150mm long to ensure good liquid distribution. See the schematic in Figure 8. Flash Tank ApplicationA possible flash tank configuration is shown in Figure9. This particular configuration is arranged to have flow through the flash tank and expansion devices in heating, and it bypasses the tank in defrost mode. The flash tank system works by taking liquid from the condenser and metering it into a vessel through a high-to-medium pressure expansion device. Part of the liquid boils off and is directed to the compressor vapour injection port. This refrigerant is injected into the mid-compression cycle of the scroll compressor and compressed to discharge pressure. The remaining liquid is cooled, exits from the bottom of the tank at intermediate pressure, and flows to the medium-to-low pressure expansion device which feeds the outdoor coil. Low temperature liquid with lower specific enthalpy increases the capacity of the evaporator without increasing mass flow and system pressure drops.Recommended tank sizing for single compressor application in this size range is a minimum of 200 mm high by 75 mm in diameter with 3/8 in. (9.5mm) tubing connections, although it is possible to use a larger tank to combine the liquid/vapour separation and receiver functions in one vessel. A sight tube (liquid level gauge) should be added to the tank for observation of liquid levels during lab testing. See schematic diagram Figure 10 for clarification.It is important to maintain a visible liquid refrigerant level in the tank under all operating conditions. Ideally the liquid level should be maintained in the 1/3 to 2/3 full range.Under no circumstances should the level drop to empty or rise to a full tank. As the tank level rises, liquid droplets tend to be swept into the vapour line leading to “wet” vapour injection. Although this can be useful for cooling a hot compressor, the liquid quantity cannot be easily controlled. Compressor damage is possible if the tank overflows. If liquid injection is required for any reason, it can be arranged as shown in Figures 7 and 9.Since liquid leaves the tank in a saturated state, any pressure drop or temperature rise in the line to the medium-to-low pressure expansion device will lead to bubble formation. Design or selection of the medium-to-low pressure expansion device requires careful attention due to the possible presence of bubbles at the inlet and the low pressure difference available to drive the liquid into the evaporator. An electronic expansion valve is the preferred choice. Intermediate Pressure and Vapour Injection SuperheatPressure in the flash tank cannot be set and is a complex function of the compressor inlet condition and liquid condition at the inlet of the high-to-medium pressure expansion device. However, liquid level can be adjusted, which in turn will vary the amount of liquid subcooling in the condenser (water to refrigerant heat exchanger) and vary the injection pressure. Systems with low condenser subcooling will derive the biggest gains by the addition of vapour injection. Systems operating with high pressure ratios will show the largest gains when vapour injection is applied. Such systems will have higher vapour pressure and higher injectionmass flow. Intermediate pressures in flash tank and heat exchanger systems should be very similar unless the subcooling heat exchanger is undersized and there is a large temperature difference between the evaporator and the liquid sides. Vapour exiting a flash tank will be saturated and may pick up 1 - 2K superheat in the vapour line to the compressor. Vapour injection superheat cannot be adjusted on flash tank systems. Heat exchanger systems will be at their most efficient when the vapour injection superheat is maintained at approximately 5K.APPLICATION CONSIDERATIONSHigh Pressure Cut OutIf a high pressure control is used with these compressors, the recommended maximum cut out settings are listed in Figure 1. The high pressure control should have a manual reset feature for the highest level of system protection. It is not recommended to use the compressor to test the high pressure switch function during the assembly line test.Although R-407C runs with higher discharge pressure than R-22, a common setting can be used. The cutout settings for R-134a are much lower, and the switches must be selected or adjusted accordingly.Low Pressure Cut OutA low pressure cut out is an effective protection against loss of charge or partial blockage in the system. The cut out should not be set more than 3 - 5K equivalent suction pressure below the lowest operating point in the application envelope. Nuisance trips during defrost can be avoided by ignoring the switch until defrost is finished or by locating it in the line between the evaporator outlet and the reversing valve. This line will be at discharge pressure during defrost. Recommended settings are given in Figure 1. Discharge Temperature ProtectionAlthough ZW compressors have an internal bi-metal Therm-O-Disc®(TOD) on the muffler plate, external discharge temperature protection is recommended for a higher level of protection and to enable monitoring and control of vapour injection on ZW**KS* models. The protection system should shut down the compressor when the discharge line temperature reaches 125°C. In low ambient operation, the temperature difference between the scroll center and the discharge line is significantly increased, so protection at a lower discharge temperature, e.g. 120°C when the ambient is below 0°C, will enhance system safety. For the highest level of system protection, the discharge temperature control should have a manual reset feature. The discharge sensor needs to be well insulated to ensure that the line temperature is accurately read. The insulation material must not deteriorate over the expected life of the unit.Discharge Temperature ControlSome systems use an electronic expansion valve to control the vapour injection superheat and a thermistor to monitor the discharge temperature. This combination allows the system designer to inject a small quantity of liquid to keep the discharge temperature within safe limits and avoid an unnecessary trip. Liquid injection should begin at approximately 115°C and should be discontinued when the temperature falls to 105°C. Correct functioning of this system should be verified during system development. It is far preferable to use liquid injection into the vapour injection port to keep the compressor cool rather than inject liquid into the compressor suction which runs the risk of diluting the oil and washing the oil from the moving parts. If some operation mode requires liquid injection but without the added capacity associated with “wet” vapour injection, a liquid injection bypass circuit can be arranged as shown in Figures 7 and 9.Caution: Although the discharge and oil temperature are within acceptable limits, the suction and discharge pressures cannot be ignored and must also fall within the approved application envelope.Discharge MufflersDischarge mufflers are not normally required in water heaters since the refrigerant does not circulate within the occupied space.Oil Dilution and Compressor CoolingThe oil temperature diagram shown in Figure 11is commonly used to make a judgment about acceptable levels of floodback in heat pump operation. Systems operating with oil temperatures near the lower limit line are never at their most efficient. Low ambient heating capacity and efficiency will both be higher if floodback is eliminated and the system runs with 1 - 5K suction superheat. Discharge temperature can be controlled by vapour injection, “wet” vapour injection, or even liquid injection if necessary. In this situation, the oil temperature will rise well into the safe zone, and the compressor will not be at risk of failure from diluted oil. The oil circulation rate will also be reduced as crankcase foaming disappears. Special care needs to be taken at the end of defrost to ensure that the compressor oil is not unacceptably diluted. The system will resume heating very quickly and bearing loads willincrease accordingly, so proper lubrication must be ensured.Electrical ConsiderationsMotor configuration and protection are similar to those of standard Copeland Scroll compressors. In some cases, a larger motor is required in the ZW**KS* models to handle the load imposed by operating with vapour injection. Wiring and fuse sizes should be reviewed accordingly.Brazing the Vapour Injection LineThe vapour injection connection is made from copper coated steel, and the techniques used for brazing the suction and discharge fittings apply to this fitting also. Low Ambient Cut-OutA low ambient cut-out is not required to limit heat pump operation with ZW**KS compressors. Water heaters using ZW**KA compressors must not be allowed to run in low ambients since this configuration would run outside of the approved operating envelope causing overheating or excessive wear. A low ambient cut-out should be set at 0°C for ZW**KA modelsIn common with many Copeland Scroll compressors, ZW models include the features described below: Internal Pressure Relief (IPR) ValveAll ZW compressors contain an internal pressure relief valve that is located between the high side and the low side of the compressor. It is designed to open when the discharge-to-suction differential pressure exceeds 26 - 32 bar. When the valve opens, hot discharge gas is routed back into the area of the motor protector to cause a trip.Internal Temperature ProtectionThe Therm-O-Disc® or TOD is a temperature-sensitive snap disc device located on the muffler plate between the high and low pressure sides of the compressor. It is designed to open and route excessively hot discharge gas back to the motor protector. During a situation such as loss of charge, the compressor will be protected for some time while it trips the protector. However, as refrigerant leaks out, the mass flow and the amperage draw are reduced and the scrolls will start to overheat.A low pressure control is recommended for loss of charge protection in heat pumps for the highest level of system protection. A cut out setting no lower than 2.5 bar for ZW**KA* models and 0.5 bar for ZW**KS* models is recommended. The low pressure cut-out, if installed in the suction line to the compressor, can provide additional protection against an expansion device failed in the closed position, a closed liquid line or suction line service valve, or a blocked liquid line screen, filter, orifice, or TXV. All of these can starve the compressor for refrigerant and result in compressor failure. The low pressure cut-out should have a manual reset feature for the highest level of system protection. If a compressor is allowed to cycle after a fault is detected, there is a high probability that the compressor will be damaged and the system contaminated with debris from the failed compressor and decomposed oil.If current monitoring to the compressor is available, the system controller can take advantage of the compressor TOD and internal protector operation. The controller can lock out the compressor if current draw is not coincident with the contactor energizing, implying that the compressor has shut off on its internal protector. This will prevent unnecessary compressor cycling on a fault condition until corrective action can be taken.Quiet Shut downAll scrolls in this size range have a fast acting valve in the center of the fixed scroll which provides a very quiet shutdown solution. Pressure will equalize internally very rapidly and a time delay is not required for any of the ZW compressors to restart. Also refer to the section on “Brief Power Interruption”. Discharge Check ValveA low mass, disc-type check valve in the discharge fitting of the compressor prevents the high side, high pressure discharge gas from flowing rapidly back through the compressor. This check valve was not designed to be used with recycling pump down because it is not entirely leak-proof.Motor ProtectorConventional internal line break motor protection is provided. The protector opens the common connection of a single-phase motor and the center of the Y connection on three-phase motors. The three-phase protector provides primary single-phase protection. Both types of protectors react to current and motor winding temperature.AccumulatorsThe use of accumulators is very dependent on the application. The scroll’s inherent ability to handle liquid refrigerant during occasional operating flood back situations often makes the use of an accumulator unnecessary in many designs. If flood back is excessive, it can dilute the oil to such an extent thatbearings are inadequately lubricated, and wear will occur. In such a case, an accumulator must be used to reduce flood back to a safe level that the compressor can handle.In water heaters, floodback is likely to occur when the outdoor coil frosts. The defrost test must be done at an outdoor ambient temperature of around 0°C in a high humidity environment. Liquid floodback must be monitored during reversing valve operation, especially when coming out of defrost. Excessive floodback occurs when the sump temperature drops below the safe operation line shown in Figure 11 for more than 10 seconds.If an accumulator is required, the oil return orifice should be 1 - 1.5mm in diameter depending on compressor size and compressor flood back results. Final oil return hole size should be determined through testing. ScreensScreens with a mesh size finer than 30 x 30 (0.6mm openings) should not be used anywhere in the system with these compressors. Field experience has shown that finer mesh screens used to protect thermal expansion valves, capillary tubes, or accumulators can become temporarily or permanently plugged with normal system debris and block the flow of either oil or refrigerant to the compressor. Such blockage can result in compressor failure.Crankcase Heater - Single PhaseCrankcase heaters are not required on single phase compressors when the system charge is not over 120% of the limit shown in Figure 1. A crankcase heater is required for systems containing more than 120% of the compressor refrigerant charge limit listed in Figure 1. This includes long line length systems where the extra charge will increase the standard factory charge above the 120% limit.Experience has shown that compressors may fill with liquid refrigerant under certain circumstances and system configurations, notably after longer off cycles when the compressor has cooled. This may cause excessive start-up clearing noise, or the compressor may lock up and trip on the protector several times before starting. The addition of a crankcase heater will reduce customer noise and light dimming complaints since the compressor will no longer have to clear out liquid during startup. Figure 12lists the crankcase heaters recommended for the various models and voltages.Crankcase Heat – Three-PhaseA crankcase heater is required for three-phase compressors when the system charge exceeds the compressor charge limit listed in Figure 1and an accumulator cannot be piped to provide free liquid drainage during the off cycle.Pump Down CycleA pump down cycle for control of refrigerant migration is not recommended for scroll compressors of this size. If a pump down cycle is used, a separate external check valve must be added.The scroll discharge check valve is designed to stop extended reverse rotation and prevent high-pressure gas from leaking rapidly into the low side after shut off. The check valve will in some cases leak more than reciprocating compressor discharge reeds, normally used with pump down, causing the scroll compressor to cycle more frequently. Repeated short-cycling of this nature can result in a low oil situation and consequent damage to the compressor. The low-pressure control differential has to be reviewed since a relatively large volume of gas will re-expand from the high side of the compressor into the low side on shut down. Minimum Run TimeThere is no set answer to how often scroll compressors can be started and stopped in an hour, since it is highly dependent on system configuration. Other than the considerations in the section on Brief Power Interruptions, there is no minimum off time. This is because scroll compressors start unloaded, even if the system has unbalanced pressures. The most critical consideration is the minimum run time required to return oil to the compressor after startup.Since water heaters are generally of compact construction, oil return and short cycling issues are rare. Oil return should not be a problem unless the accumulator oil hole is blocked.Reversing ValvesSince Copeland Scroll compressors have very high volumetric efficiency, their displacements are lower than those of comparable capacity reciprocating compressors. As a result, Emerson recommends that the capacity rating on reversing valves be no more than 2 times the nominal capacity of the compressor with which it will be used in order to ensure proper operation of the reversing valve under all operating conditions.The reversing valve solenoid should be wired so that the valve does not reverse when the system isshut off by the operating thermostat in the heating or cooling mode. If the valve is allowed to reverse at system shutoff, suction and discharge pressures are reversed to the compressor. This results in pressures equalizing through the compressor which can cause the compressor to slowly rotate until the pressures equalize. This condition does not affect compressor durability but can cause unexpected sound after the compressor is turned off.Oil TypeThe ZW**K* compressors are originally charged with mineral oil. A standard 3GS oil may be used if the addition of oil in the field is required. See the compressor nameplate for original oil charge. A complete recharge should be ~100 ml less than the nameplate value.ZW**K*E are charged with POE oil. Copeland 3MAF or Ultra 22 CC should be used if additional oil is needed in the field. Mobil Arctic EAL22CC, Emkarate RL22, Emkarate 32CF and Emkarate 3MAF are acceptable alternatives. POE oil is highly hygroscopic, and the oil should not be exposed to the atmosphere except for the very short period required to make the brazing connections to the compressor.System Noise and VibrationCopeland Scroll compressors inherently have low sound and vibration characteristics, but the characteristics differ in some respects from those of reciprocating or rotary compressors. The scroll compressor makes both a rocking and a torsional motion, and enough flexibility must be provided to prevent vibration transmission into any lines attached to the unit. This is usually achieved by having tubing runs at least 30cm long parallel to the compressor crankshaft and close to the shell. ZW compressors are delivered with rubber grommets to reduce vibration transmission to the system baseplate.Single Phase Starting CharacteristicsStart assist devices are usually not required, even if a system utilizes non-bleed expansion valves. Due to the inherent design of the Copeland Scroll, the internal compression components always start unloaded even if system pressures are not balanced. In addition, since internal compressor pressures are always balanced at startup, low voltage starting characteristics are excellent for Copeland Scroll compressors. Starting current on any compressor may result in a significant “sag” in voltage where a poor power supply is encountered. The low starting voltage reduces the starting torque of the compressor and subsequently increases the start time. This could cause light dimming or a buzzing noise where wire is pulled through conduit. If required, a start capacitor and potential relay can be added to the electrical circuit. This will substantially reduce start time and consequently the magnitude and duration of both light dimming and conduit buzzing.PTC Start ComponentsFor less severe voltage drops or as a start boost, solid state Positive Temperature Coefficient devices rated from 10 to 25 ohms may be used to facilitate starting for any of these compressors.Electrical ConnectionThe orientation of the electrical connections on the Copeland Scroll compressors is shown in Figure 13 and is also shown on the wiring diagram on the top of the terminal box cover.Deep Vacuum OperationScrolls incorporate internal low vacuum protection and will stop pumping (unload) when the pressure ratio exceeds approximately 10:1. There is an audible increase in sound when the scrolls start unloading. This feature does not prevent overheating and destruction of the scrolls, but it does protect the power terminals from internal arcing.Copeland Scroll compressors(as with any refrigerant compressor) should never be used to evacuate a refrigeration or air conditioning system. The scroll compressor can be used to pump down refrigerant in a unit as long as the pressures remain within the operating envelope. Prolonged operation at low suction pressures will result in overheating of the scrolls and permanent damage to the scroll tips, drive bearings and internal seal. (See AE24-1105 for proper system evacuation procedures.)Shell TemperatureCertain types of system failures, such as condenser or evaporator blockage or loss of charge, may cause the top shell and discharge line to briefly but repeatedly reach temperatures above 175ºC as the compressor cycles on its internal protection devices. Care must be taken to ensure that wiring or other materials, which could be damaged by these temperatures, do not come in contact with these potentially hot areas. Suction and Discharge FittingsCopeland Scroll compressors have copper plated steel suction and discharge fittings. These fittings are far more rugged and less prone to leaks than。
zw热泵热水压缩机使用说明_概述说明以及解释
zw热泵热水压缩机使用说明概述说明以及解释1. 引言1.1 概述本文旨在介绍zw热泵热水压缩机的使用说明,在这一部分我们将概述文章的内容和目的。
zw热泵热水压缩机是一种先进的设备,可通过压缩和循环过程将低温热能转化为高温热能,实现节能减排的效果。
本文中将详细介绍该压缩机的工作原理、使用注意事项以及其优势与应用范围。
1.2 zw热泵热水压缩机简介在本节中,我们将对zw热泵热水压缩机进行简要介绍。
zw热泵热水压缩机是一种采用先进技术制造的设备,它采用了高效率的压缩机和循环系统,可以高效地将低温热源转换为高温供暖或生活用水。
该压缩机具有节能、环保、稳定性好等特点,被广泛应用于工业和民用领域。
1.3 目的本文旨在向读者提供关于zw热泵热水压缩机使用方面的说明和指导。
通过深入了解该设备的工作原理和使用注意事项,读者将能更好地了解并正确操作zw热泵热水压缩机。
此外,我们还将通过对该设备优势与应用范围的介绍,展示其在节能减排和环保方面的重要作用,并对未来的发展前景进行展望。
以上是本文“1. 引言”部分的详细内容。
通过该部分的阐述,读者可以清晰地了解到文章的概述、zw热泵热水压缩机简介以及本文的目的所在。
2. zw热泵热水压缩机工作原理:2.1 原理概述zw热泵热水压缩机是一种利用压缩机工作原理和热泵循环过程来实现高效加热的设备。
它通过对低温的外部环境空气或废热进行吸收,然后通过压缩传递给高温介质,使其温度升高。
该设备采用闭式循环系统,通过不断循环运行中的蒸发、压缩、冷凝等过程,实现能量的转换和传递。
2.2 压缩机工作流程zw热泵热水压缩机的工作流程主要包括四个步骤:蒸发、压缩、冷凝和膨胀。
首先,在蒸发器中,低温的环境空气或废热进入到设备中与制冷剂进行换热。
在这个过程中,制冷剂从液态变为气态,并吸收外部环境的热量。
接着,在压缩器中,制冷剂被压缩成高温高压气体。
在这个过程中,制冷剂的压力和温度都明显提高。
然后,高温高压气体进入到冷凝器中,在与热水或其他介质进行换热时,制冷剂释放出吸收的热量,并转变为液态。
规格书 广顺ZW系列无油润滑压缩机说明书
置的安全阀排气压力,不应小于该压力。
5.该产品使用的介质为空气,如需用于其它的介质,请咨询本公司。 6.当延长电源线时应考虑电压降。
7.引出线标识(客户要求除外):电源引线—黑色;电容引线—红 色。
七、一般故障的排除
故障现象
故障原因
解决方法
当启动时,机 1.电源未接通
器不运转
2.产品部件故障
把接头重新插好或检查电 源;请联系本公司
原理图
连杆
偏心轮
电机轴
三、典型的压缩机结构及外形
四、使用说明
1.将空压机尽可能地放在通风好、灰尘小、湿度小的位置。 2.使用的电源应有足够的容量,确认使用的电压符合产品要求。 3.按照接线要求接好电源线与电容线。 4.检查空压机各元件无异常后,将电源线插头插到符合要求的电源 插座上(电源插座必须接地良好),空压机开始工作。 5.调节调压阀使压力表指示所需压力并稳定。 6.空压机不使用时,调节调压阀排空空气后,再切断电源。 7.出厂时引线位置已经准确联接,若有变动将严重影响压缩机运行 性能,非专业人士不允许随意拆卸。 8.严禁随意拉扯引出线,以免造成损坏或造成产品故障。
佛山市广顺电器有限公司
ZW 系列无油润滑微型空气压缩机
产品使用说明书 R
地址:广东省佛山市朝安路镇安段西边 2 号 电话:0757-82735292 传真:0757-83828996 邮编:528000
2008 年
引言
ZW 系列无油空气压缩机是本公司生产制造的高新科技产品。具 有无油重量轻、噪音低、运行平稳、寿命长的特点。适用于医疗器 械、食品机械、汽车工业、水产养殖、环保及实验室等场所,可作 为真空泵使用。
4.2
额定电压(AC)V
220V、100V、110V、 115V、230V
ZW-0.16 6-30 氮气压缩机设计
目录●【一】活塞式压缩机简介 --------------------------- 2●【二】结构选型,方案选择 ------------------------ 6●【三】行程容积,气缸直径计算 --------------------- 6●【四】活塞力的计算-------------------------------- 8●【五】指示功率、轴功率的计算以及选配电动机------------------------------------------------- 9●【一】活塞式压缩机简介活塞式压缩机的工作是气缸、气阀和在气缸中作往复运动的活塞所构成的工作容积不断变化来完成。
如果不考虑活塞式压缩机实际工作中的容积损失和能量损失(即理想工作过程),则活塞式压缩机曲轴每旋转一周所完成的工作,可分为吸气、压缩和压缩过程、排气过程。
活塞式压缩机分类按压缩级数分类,有单级压缩和两级压缩。
单级压缩机是指压缩过程中制冷剂蒸气由低压至高压只经过一次压缩。
而所谓的两级压缩机,压缩过程中制冷剂蒸气由低压至高压要连续经过两次压缩。
按作用方式分类,有单作用压缩机和双作用压缩机。
其制冷剂蒸气仅在活塞的一侧进行压缩,活塞往返一个行程,吸气排气各一次。
而双作用压缩机制冷剂蒸气轮流在活塞两侧的气缸内进行压缩,活塞往返一个行程,吸、排气各两次。
所以同样大小的气缸,双作用压缩机的吸气量较单作用的大。
但是由于双作用压缩机的结构较复杂,因而目前大都是采用单作用压缩机。
按制冷剂蒸气在气缸中的运动分类,有直流式和逆流式。
所谓直流式是指制冷剂蒸气的运动从吸气到排气都沿同一个方向进行,而逆流式,吸气与排气时制冷剂蒸气的运动方向是相反的。
从理论分析来看,直流式与逆流式相比,由于蒸气在气缸中温度及比容的变化较少,故直流式性能较好。
但是由于直流式压缩机的进汽阀需装在活塞上,这样便相对增加了活塞的长度和重量,因而功的消耗就增加、检修也麻烦,所以目前生产的压缩机大都采用逆流式。
压缩机课程设计.doc
压缩机课程设计学号:班级:姓名:专业:指导老师:二零一三年七月课程设计题目已知参数:设计任务:对活塞压缩机进行热力和动力计算。
热力计算一、 设计原始数据: 排气量:min /1530m Q =进气压力:Ps=0.5MPa(绝对压力) 进气温度:ts=293K排气压力:Pd=6.9MPa(绝对压力)二、 热力计算: 1、计算总压力比: 8.135.09.6===MPaMPaPs Pd z ε2、压力比的分配: 715.321===z εεε3、计算容积系数:查《工程热力学》(第四版)沈维道主编,得: 20℃,0.5MPa 时,天然气3195.17015.12451.211===Cv Cp k ; 30℃,1.8575MPa 时,天然气35.17015.13471.222===Cv Cp k ; 50℃,6.9MPa 时,天然气46.18231.16706.233===Cv Cp k 。
所以可以大致取值:第Ⅰ级压缩过程,绝热指数34.11=k ; 第Ⅱ级压缩过程,绝热指数46.12=k 。
查《往复活塞压缩机》郁永章主编,P31,表1-2算得: 第Ⅰ级压缩过程,膨胀指数255.11=m ; 第Ⅱ级压缩过程,膨胀指数352.12=m 。
据《往复活塞压缩机》郁永章主编,P29内容可取: 第Ⅰ级压缩过程,相对余隙容积14.01=α; 第Ⅱ级压缩过程,相对余隙容积16.02=α。
由公式: )1(11--=mv εαλ ,得:第Ⅰ级压缩过程,容积系数742.0=v λ; 第Ⅱ级压缩过程,容积系数738.0=v λ。
4、确定压力系数:由于各级因为弹簧力相对气体压力要小的多,压力系数p λ在0.98——1.0之间。
故取:第Ⅰ级压力系数99.01=p λ; 第Ⅱ级压力系数0.12=p λ。
5、确定温度系数:查《往复活塞压缩机》郁永章主编,P32,图1-23.由于所设计的压缩机为水冷式压缩机,且天然气成分多为小 绝热指数的多原子气体。
ZWF-3.0/10-15液化气压缩机使用说明书
第五章压缩机安装
当收到我公司的产品后,请及时打开包装箱,按装箱单检查压缩机的备件、文件是否齐全。
如有漏装、错装或不符合订货要求的请及时与我们联系。
压缩机应安装在基础上。
附图所给的基础图是按一般土壤情况设计的,仅供参考。
当土壤较松软时,应适当增加基础尺寸。
机器应安装在室内,并应保证足够的维修空间和良好的通风。
机身上的放气管应接到室外安全地带.集液器的排液背压应低于集液器内的压力才能使液体排出。
外管道系统的布置可根据使用要求自行设计。
这时,我们提供一个方案(图八)供参考。
流体机械课程设计说明书-压缩机设计
2.2
2.2.1
活塞行程与一级缸径比 ,是压缩机的一个重要结构参数,其值对压缩机的影响主要体现在以下几个方面。
(1)表征了压缩机外向和尺寸间的关系;
(2)影响气阀在汽缸上的安装面积;
(3)影响相对余隙和重量;
2.1.2
无十字头压缩机的特点式结构简单紧凑,但只能是单作用或级差式,与相同排量的有十字头压缩机相比,汽缸直径大且靠活塞环密封气体,因而泄漏周长及泄漏量大。无十字头压缩机的筒形活塞承受侧向力,故活塞与汽缸间的摩擦和磨损加大,机械效率也较底。除非机身传动部分也不采用润滑油,否则无十字头压缩机不能实现气体的无油压缩。故此,无十字头压缩机多用于小功率场合,尤其是要求轻便的移动式。
2.4
转速和行程的选取对机器的尺寸、质量、制造难易和成本又重大影响,并且还直接影响机器效率、寿命和动力特性。活塞式压缩机设计中在一定的参数和使用条件下,首先应考虑选择适宜的活塞平均速度。因此:
(1)活塞平均速度的高低,对运动机件中的摩擦和磨损具有直接的影响,对气缸内的工作过程也很有影响。
(2)活塞速度过高气阀在气缸上难以得到足够的安装地基,所以气阀管道中的阻力损失很大,功率的消耗及排气温度将会过高,严重的影响压缩机运转的经济性和使用的可靠性。
由于螺杆制冷压缩机单级有较大的压缩比及宽广的容量范围,故适用于高、中、低温各种工况,特别在低温工况及变工况情况下仍有较高的效率,这一优点是其它机型(如吸收式、离心式等)不具备的。因此,螺杆式制冷压缩机被广泛用于空调、冷冻、啤酒、化工、水利等各个工业、食品领域,是制冷领域特别是工业制冷领域的最佳机型[5]。
2.5
排气体积:
2013压缩机课程设计指导书(结构设计)
4结构设计结构型式、结构参数和结构设计概要结构型式:V型、W型和S型压缩机结构和结构示意图见图2.1~图2.7。
其主要特点是连杆和活塞直接连接,无十字头和活塞杆,结构紧凑。
图4.1V型压缩机Ⅰ(a)V型一级压缩(b) V型两级压缩图4.2 V型压缩机结构示意图图4.3 W 型压缩机图4.4 W 型单级压缩示意图图4.5 W型二级置于一侧结构示意图图4.6 W型二级置中式结构示意图根据设计要求,选择适当的结构型式类型,给出结构示意图。
给定参数或参考有关文献数据,或依据实习参观或市场调研收集的数据确定结构参数。
根据热力学和动力学设计有关内容,主要结构参数为: 行程:s = 转速:n =连杆径长比:λ=r /l = 连杆中心距:l =主要结构内容为活塞、连杆、曲轴、气缸、活塞销、活塞环等的结构设计。
限于时间,可选择部分零件进行结构设计。
4.1活塞环设计4.1.1 活塞环的结构形式及材料选择活塞环的切口形式有直切口、斜切口和搭接口三种,为了工艺简便,采用直切口。
活塞环的材料通常采用灰铸铁、合金铸铁。
对于小直径活塞环或高转数压缩机活塞环,可选用合金铸铁制造。
因此,参考工厂经验,活塞环的材料可选择VTi 合金铸铁。
4.1.2 活塞环数的确定活塞环的环数可按以下式计算:p z ∆10= (4.1)图4.7 S 型压缩机式中:z —活塞环的环数;p ∆—活塞两边最大压差,MPa 。
一级活塞环: 1.613z ==,取z =2;二级活塞环: 3.643z ==,取z =2。
4.1.3 主要尺寸的确定(1) 径向厚度D t )361~221(= (4.2)式中:t -活塞环径向厚度,mm ;D -气缸直径,mm 。
大直径活塞环的t 取用小值,小直径时用大值。
金属活塞环可适当取小值,如图4.8。
一级活塞环:10036 2.778t ==mm ,取t =3.0mm ;二级活塞环:7536 2.083t ==mm ,取t =2.5mm 。
压缩机题目2-10级综合课程设计任务书、指导书、说明书-2014修订版
过程装备与控制工程专业综合课程设计任务书课程设计名称:校核计算4L-20/8型石油气压缩机学院专业班级姓名指导教师2014年2月校核计算4L-20/8型石油气压缩机设计者姓名: 班级: 学号: 指导教师: 日期: 年 月 日一、设计题目校核计算4L-20/8型石油气压缩机二、设计参数和技术特性指标(1) 型式:L 型双缸二级双作用水冷式石油气压缩机。
(2) 工艺参数:Ⅰ级名义吸气压力 (绝) 10.1I P MPa = (绝) 吸气压力140I T =℃Ⅱ级名义排气压力 (绝) 20.9II P MPa =(绝) 吸气温度150II T =℃ 排气量(一级吸入状态)320/d V m min =石油气相对湿度 0.8ϕ=(3) 结构参数:活塞行程:22120240S r mm ==⨯=电机转速:400/n r min =活塞杆直径:45d mm =气缸直径:Ⅰ级 420I D mm = Ⅱ级 250II D mm =相对余隙容积: 0.095I α=, 0.098II α= 电动机: TR127-8型, 100kW电动机与压缩机的联接: 三角带传动连杆长度:500l mm =运动部件质量如下:见表1。
表1 运动部件质量(kg )(4) 石油气组成成分:见表2表2 石油气的主要成分及体积百分含量三、设计内容与要求设计是以典型过程流体机械—活塞式压缩机为研究对象,对压缩机进行校核。
主要内容包括:1.压缩机结构形式与方案的选择;2.压缩机热力性能的核算,包括压力比分配,气缸直径,排气量,功率,各级排气温度,缸内实际压力等。
3.压缩机动力性能的核算,主要包括作运动规律曲线图,计算气体力,惯性力,摩擦力,活塞力,切向力,法向力,作切向力图,求飞轮矩,分析动力平衡性能。
【注意】:动力计算所需数据必须取自热力核算的最后结果。
4.编制动力计算程序,绘制动力计算曲线。
5.编写计算说明书,进行课程设计答辩。
要求每个学生完成:1.撰写计算说明书一份,要求手写;2.计算说明书条理清楚,有图有表,数据要有根据及说明;3.提交动力计算程序。
ZW天然气压缩机之欧阳理创编
弋B稣ANHLl L^iVERSITY OF SCIENCE & TECHNOIJX;Y甌目:ZW・5/1・15夭魅%圧拓机该针院(^) /机械工程修院创作:欧阳理修号:犒导微师:2012耳6月7日安戳理工女曇锦裡覆针(^<)任务车机械工程禽院(M)第一章概述51.1层儘机的今类及命名51.2层脩机的表瑋箱构61.3活象乐馆机的优丘61.4謄家爲痞机的掀点71.5活家式层箔机的工作原理8第二章总体殺针92.1读针涪家式层循机注符合必下屍瘵原则92.2层箔机的驱瀚92.3层痞机的衿速和行程的确定102.4层循机的说计备件及要朮11第三章藝力针算123」稽构形式鸟方礫迄挥123.1.1针算总爲力比123.1.2迄荐孤赦123.1.3圧力比今紀133.2确定汽杠直役13321针篇容叙余赦133.2.2确虧爲力系赦13323确层泯度系赦13324确良泄露系赦14325确良容叙•数卑14326确层祈水系赦心143.2.7确空各綴行程客叙143.2.8确定各級汽枉直役,行程和宴嫁行程容望143.3针算涪叢力153.3.1修正各怨公爰爲力153.3.2修正后各怨郴%泯度163.3.3计尊汽枉实隊吸徘%爲力163.3.4涪家力的计算173.3.5针算轴功卑畀迄紀电机17第四章幼力针篇184.1针篇第一列的橫住力194.2计篇各列唐瘵力20421隹夏唐瘵力20422叙移唐擦力204.3计篇第I列%俸力20431第I怨盖侧的%俸力204.3.2 —級轴侧的花俸力224.3.3针篇第I列粽合活家力及切向力24第五章曲轴鸟逐杆的计篇265.1 I怨旖塞辅尺才265.2曲袖箱构尺寸的确定275.3臨杆尺寸的确定28卷考夂献29妥徽理工共燈礫程殺计(论夂丿咸债许定熬30第一*擁述圧病机是一种用于圧痞%俸,借以提宙花俸的机械。
电的种类很多,用迤广盜,圧拓机己匿怎(3氏益疥各个梆门屮的箜要通用机械。
恵化工或产申,隹夏式层循机己战怎矣被餒备,根倨爲拓机的原理,爲領机可今签“容张式"和"幼力式"鬲共类。
ZW空压机中文操作手册
.一般用喷水单螺杆空气压缩机ZW OILFREE使用手册复盛公司目录1.压缩机规格 (3)1-1 产品规范 (3)1-2 外观图 (7)1-3 内部配置图 (13)1-4 电器线路图 (19)1-4-1电器配置图 (19)1-4-2 线路控制与端子接线图 (24)1-5 管路系统 (26)2. 安装须知 (30)2-1 搬运 (30)2-2 安装地点 (31)2-3 管路 (34)2-4 电器接线 (36)2-5 安装完成 (38)3. 运转操作 (39)3-1 运转前检查 (39)3-2 初次运转 (40)3-3 例行运转 (43)3-4 运转说明 (44)3-5 长期停机 (44)4. 维护保养 (45)4-1 清洁前置过滤网 (45)4-2 主要零件保养 (46)4-3 进气阀调整 (59)4-4 自动补泄水系统 (63)4-5 自动换水功能 (69)4-6 马达轴承润滑 (69)4-7 保护装置 (70)4-8 定期检查维护 (72)4-9 故障排除指南 (74)4-10 ZW型-螺旋式空压机压缩原理 (77)压缩机规格1-1 产品规范ZW375A/WZW555/755WZW905-1205W1-2 外观图ZW155/225AZW375AZW375WZW555/755WZW905~1205W1-3 内部配置图ZW155/225AZW375AZW375WZW555/755WZW905~1205W1-4 电器线路图1-4-1电器配置图ZW155/225AZW375A / WZW90~120W1-4-2 线路控制与端子接线图1-5 管路系统ZW155~375AZW375WZW555/755WZW905~1205W2. 安装须知2-1 搬运2-1-1 使用堆高机 2-1-2 使用吊钩机型总重量 (Kg) ZW155A550 ZW225A640 ZW375A750 ZW375W720 ZW555W1530 ZW755W1630 ZW905W2395 ZW1005W 2445使用护板依重量(如下表)使用强度足够的吊索,并调整长度,务必使货品保持水平。
ZW天然气压缩机
课程设计说明书题目:ZW-5/1-15天然气压缩机设计院〔部〕:机械工程学院专业班级:学号:学生XX:指导教师:2012 年6 月7 日XX理工大学课程设计〔论文〕任务书机械工程学院〔部〕过控教研室目录第一章概述41.1压缩机的分类及命名4 1.2压缩机的根本构造5 1.3活塞压缩机的优点6 1.4活塞压缩机的缺点61.5活塞式压缩机的工作原理7 第二章总体设计82.1 设计活塞式压缩机应符合以下根本原那么8 2.2压缩机的驱动82.3压缩机的转速和行程确实定8 2.4 压缩机的设计条件及要求10 第三章热力计算113.1构造形式与方案选择113.1.1计算总压力比11 3.1.2选择级数11 3.1.3压力比分配11 3.2确定汽缸直径12 3.2.1计算容积系数123.2.2确定压力系数12 3.2.3确定温度系数12 3.2.4确定泄露系数12 3.2.5确定容积效率133.2.6确定析水系数ϕλ133.2.7确定各级行程容积143.2.8确定各级汽缸直径,行程和实际行程容积14 3.3计算活塞力153.3.1修正各级公差压力15 3.3.2修正后各级排气温度16 3.3.3计算汽缸实际吸排气压力163.3.4活塞力的计算173.3.5计算轴功率并选配电机18第四章动力计算194.1计算第一列的惯性力204.2计算各列摩擦力224.2.1往复摩擦力224.2.2旋转摩擦力224.3计算第I列气体力234.3.1第I级盖侧的气体力234.3.2一级轴侧的气体力264.3.3计算第I列综合活塞力及切向力28第五章曲轴与连杆的计算335.1 I级活塞销尺寸335.2曲轴构造尺寸确实定345.3连杆尺寸确实定35参考文献37XX理工大学课程设计〔论文〕成绩评定表38第一章概述压缩机是一种用于压缩气体,借以提高气体的机械。
它的种类很多,用途广泛,压缩机已成为国民经济各个部门中的重要通用机械。
在化工生产中,往复式压缩机已成为关键设备,根据压缩机的原理,压缩机可分为“容积式〞和“动力式〞两大类。
ZW-64压缩机
ZW-64/35型氧气压缩机使用说明书6235 SM 开封空分集团公司二00四年五月目次1.概述2.主要性能参数3.各系统说明4.主机主要部件和机组辅助设备说明5.安装说明6.压缩机的拆卸与装配7.压缩机的主要装配间隙8.压缩机的运转和操作9.压缩机的计划检修10.压缩机常见故障及处理方法11.压缩机的油封和启封12.备件清单13.专用工具14.整体导向环热套规程1.概述ZW-64/35型氧气压缩机为立式、四级四列、双作用、水冷却、无润滑、活塞式氧气压缩机。
可用于大中型空分设备和石油化工等其它工业部门。
该机主要特点为:a.结构紧凑、占地面积小、重量轻。
b.动力平衡性好、运转平稳可靠。
c.振动和噪音小。
d.运行经济性好。
e.导向环、活塞环、填料磨损均匀、寿命长。
f.外形美观。
2.主要参数压缩机型式立式、四级四列、双作用、无润滑活塞式介质氧气(Φ=0)排气量标准状态3600m3/h吸入状态64m3/min大气压力0.09MPa进气压力0.015MPa排气压力 3.5MPa进气温度30℃排气温度冷却前≤160℃冷却后≤38℃轴功率635kW转速420r/min行程240mm名义活塞力120kN压缩机缸径一级Ф710二级Ф450三级Ф280四级Ф240润滑油牌号68#机械油润滑油一次充填量400L冷却水进水温度≤32℃冷却水总耗量100t/h主机重量15800㎏机组总重量33500㎏主机外形尺寸320cm×132cm×330cm 机组占地面积(长×宽)8m×7m型号Y630-14型异步电动机电动机功率710kW 电压6kV转速417r/min3.各系统说明请参阅6235LC流程图3.1 气体系统低压氧气,经吸入滤清器过滤,再经各级压缩及冷却后,送入后装置。
具体走向如下:吸入滤清器→一级气缸压缩→一级排气缓冲器→一级换热器→二级吸气缓冲器→二级气缸压缩→二级排气缓冲器→二级换热器→三级进气缓冲器→三级气缸压缩→三级排气缓冲器→三级换热器→四级进气缓冲器→四级气缸压缩→四级排气缓冲器→后续装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1.热力学计算 (1)2.动力计算 (5)3.结构尺寸设计 (18)4.参考文献 (30)5.实践心得 (31)91.热力学计算 已知条件有:相对湿度φ=0.8 空气等熵指数k=1.4 第一级吸气温度Ts1=40℃ 第二级吸气温度Ts2=40℃ 额定排气量Qd=0.6m 3/min 额定进气压力Ps1=0.4MPa 额定排气压力Ps2=2 MPa压缩机转速取n=1000r/min ,活塞行程S=2r=100mm 。
活塞杆长度500mm ,曲柄长度r=50mm 。
1.1行程容积,气缸直径计算 ① 初步确定各级名义压力根据工况的需要选择计数为两级,按照等压比的分配原则,12εε==错误!未找到引用源。
=2.828但为使第一级有较高的容积系数,第一级的压力比取稍低值,各级名义压力级压力表如下:② 定各级容积系数Ⅰ.确定各级容积系数。
取绝热指数为K=1.4,取各级相对余隙容积和膨胀指数如下:1α= 0.11 2α=0.13 1m =1.3 2m =1.35 得 :1/m1v11111λαε=--() λv2=0.874=1-0.11x(21/1.3-1) =0.92Ⅱ.选取压力系数: p1λ=0.97 p2λ=0.99 Ⅲ.选取温度系数: t1λ=0.95 t2λ=0.95 Ⅳ.选取泄露系数: l1λ=0.92 l2λ=0.90 Ⅴ.确定容积效率: V v p t l ηλλλλ=得:V1η=0.78 V2η=0.74③ 确定析水系数ϕλ第一级无水析出,故1ϕλ=1.0。
而且各级进口温度下的饱和蒸汽压sa p 由文献查的1t =t 2=40℃ P sa =7375Pa得:()2s11sa11s22sa2p p /p p ϕλϕεϕ=--()=(4 105-0.8x7375)x2/(8x105-7375) =0.98④ 确定各级行程容积s1v v1V q /n η==0.6/(1000x0.78) =0.00077 m 3s2v s122s21V2V (q p T )/(np T )ϕλη==(0.6×105×313×0.98)/(1000×8×105×313×0.74) =0.0004 m 3⑤ 确定气缸直径,行程和实际行程容积 已知转速n=1000r/min 。
取行程s=100mm 。
得活塞平均速度:m V =sn/30=3.3 m/s由于汽缸为单作用,得:1D =(4V s /πs)1/2=0.099m根据气缸直径标准,圆整的1D =100mm ,实际行程容积为s1V =0.00077 m 3 。
活塞有效面积为A ’P1=0.015 m 2 同理得:D 2= 0.051 m根据气缸直径标准,圆整的=55 mm ,实际行程容积为s2V =0.0004m 3 。
活塞有效面积为’ 21.2活塞力、指示功率、轴功率的计算以及选配电动机 1.2.1活塞力① 查表得各级进、排气相对压力损失取值:s1δ=0.04 d1δ=0.08s2δ=0.035 d2 δ=0.06因总的进排气压力损失0s d δδδ=+得: 01δ=0.12 0 2δ=0.095 计算实际吸排气压力:s1 p =105 N/m 2 d1 p =8×105 N/m 2 ’s1p =(1-0.04)×105 ’d1p =(1+0.08) ×8×105=3.84MPa =8.64MPas2p =8×105 N/m 2 d2 p =20×105 N/m 2’s2p =(1-0.035) ×8×105 ’d2p =(1+0.06) ×20×105 =7.72MPa =2.12MPa计算实际压力比:‘1ε= 2.01 2ε,= 2.45具体如下表:② 活塞力的计算首先计算盖侧和轴侧活塞工作面积见下表:由于汽缸为单作用,轴侧不作为工作面,故A w =0 止点气体力计算见下表:③ 确定各级排气温度因为排气压力不太高,所以空气可以看作理想气体,等熵指数为K=1.4,由于该压缩机采用水冷的方式,近似的认为各级压缩指数为1n =1.3 2 n =1.35 取s1T =313 K , s2T =313 K 排气温度由式n 1nd s T T ε-=得:d1T = 367K d2T =395K1.2.2指示功率、轴功率的计算以及选配电动机各级指示功率为:()()j j n -1j n ij sj vj sj sj j oj j n 1N 1-1+-160n -1V δλεδ⎧⎫⎪⎪⎡⎤=⨯⨯⨯P ⨯⨯⨯⨯⎨⎬⎣⎦⎪⎪⎩⎭得:i1 N = 3.76kW i2N = 4.2kW总的指示功率为: j=2i ij j=1==N N ∑ 7.96kW因为小型无油润滑压缩机m η=0.85~0.90 所以取机械效率m η=0.85 即轴功率为:z i mN N /η==9.4KW取机械功率余度10%,则电机功率取11kW动力计算1已知条件和数据根据第一部分热力计算的结果,得出所用数据如下所示: 活塞行程:s = 100 mm 转 速:n = 1000 r/min 压缩机各级汽缸气体力指示图设计的压缩机为单缸作用两级压缩机,各级汽缸参数及力学情况已知,则相应一些部分可以简化,作汽缸的动力计算。
现用作图法作汽缸示功图。
动力计算基本数据作图法绘制综合活塞力图(1) 将设计示功图展开在横坐标为2s 的综合活塞力图上,纵坐标与设计示功图中的力的比例尺相同。
(2) 按勃列克斯近似作图法在展开的设计示功图下方作两个半圆找出行程s 与曲柄销转角α的关系,转角每等份取15ο(3) 列出一级往复惯性力数值表由已知条件,曲柄半径与连杆长度比: 错误!未找到引用源。
曲轴旋转角速度: 错误!未找到引用源。
=104.7s -1曲柄销旋转半径: r=0.55s=50mm由热力计算数据可知最大活塞力为6.8kN ,取P =10 kN 由公式()max 21p pm r ωλ=+ 代入数据得m p max =32kg往复质量p m 在运动时产生的往复惯性力I 为:()2cos cos2p I m r ωαλα=+ (2-3)=9009错误!未找到引用源。
现将查得cos cos2αλα+与xr 和I 的值如表所示列出二级往复惯性力数值表曲柄半径与连杆长度比:同上取错误!未找到引用源。
曲轴旋转角速度: 错误!未找到引用源。
=104.7s -1曲柄销旋转半径:r=0.5s=550mm由热力计算数据可知最大活塞力为5.1 kN ,取P =8 kN 由公式()max 21p pm r ωλ=+ 代入数据 得m p max =13.2kg往复质量p m 在运动时产生的往复惯性力I 为:()2cos cos2p I m r ωαλα=+ (2-3)=7207错误!未找到引用源。
现将查得错误!未找到引用源。
与xr和I 的值如表所示(4)计算往复摩擦力f 查资料知:d1(1)600.652mi f N snη-⨯=⨯ (2-4)f s1=258错误!未找到引用源。
f s2=289N向轴行程,往复运动摩擦力为正;离轴行程,往复运动摩擦力为负。
(5)计算各级气体力 列出一级气体力数值表列出二级气体力数值表(6)综合活塞力计算每一级的惯性力,气体力和摩擦力的合力,即为该级对应的综合活塞力。
数值表如下。
表2-6 一级综合活塞力切向力图(1)第一级切向力曲线的绘制确定飞轮矩之前,需作出压缩机各列的切向力图.先求出各个曲柄转角处的切向力值,然后以曲柄转角为横坐标作出的切向力曲线称为切向力图.用作图法求得的综合活塞力通常是以行程为等分的,而切向力图是以角度为等分的,因此,在求得各点的切向力之前,需将综合活塞力图上的位移转换成相应的转角,然后在综合活塞力图上取得作用在曲柄销上的连杆力c P (c P 分解成切向力T 和径向力R x )。
sin()cos tT P αββ+=cos()cos x tR P αββ+=式中:t P ---代表活塞力按曲柄转角α求得的综合活塞力乘以因子sin()/cos αββ+,即得转角时的切向力值,根据有关资料,错误!未找到引用源。
作切向力图 以纵坐标表示切向力T ,其比例尺与活塞综合力相同,横坐标为θ按圆周长的展开得到的平滑线.取240mm 表示100π。
由于存在旋转摩擦力r F 的影响,可得:=(0.3~0.4)错误!未找到引用源。
=0.35错误!未找到引用源。
=219N选取比例尺:力比例尺:m T =1000N/mm 长度比例: m L =1.44mm/mm将横坐标向下移动相当于Fr=错误!未找到引用源。
的距离和总切向力曲线以移动后的新横坐标为计算依据。
按上公式计算各点切向力,然后根据叠加值绘制第一级总切向力图。
第一级切向力和综合活塞力如表2-8。
⑵第二级切向力曲线的绘制按⑴中公式计算各点切向力,然后根据叠加值绘制第二级总切向力图。
第二级切向力和综合活塞力如表2-9表2-9二级综合活塞力和切向力值⑸总切向力曲线的绘制将两级的切向力叠加如表2-9表2-9总切向力值下图为压缩机各级切向力及总切向力曲线图:计算飞轮矩计算飞轮矩,根据式: 223600L GD n δ= δ—— 旋转不均匀度,查阅相关资料可以取为错误!未找到引用源。
L ——L=m l m T错误!未找到引用源。
D Dd将上述数据计算代入后即可得知飞轮矩的大小。
曲轴结构1曲轴结构尺寸的确定对于曲拐轴主要尺寸初步确定如下:图18 曲柄的主要尺寸① 曲柄销直径DP 取最大值为二级压缩时的最大活塞力,P =8.311KN(4.6~(4.6~5.6) 4.6cm D ===,取D =50mm ③ 主轴颈直径D 11(1~1.1)(1~1.1)5050~55mm D D ==⨯=,取D 1=55mm③ 轴颈长度:根据选取轴承宽度略大些 ④ 曲柄厚度t :(0.7~0.6)(0.7~0.6)5030~35mm t D ==⨯=,取t =35mm⑤ 曲柄宽度h(1.2~1.6)(1.2~1.6)5060~80mm h D ==⨯=,取h =80mm连杆连杆是将作用在活塞上的推力传递给曲轴,又将曲轴的旋转运动转换为活塞的往复运动的机件。
连杆包括杆体、大头、小头三部分,如图。
本设计由于转速较高,选择工字形截面连杆。
1—小头;2—杆体;3—大头;4—连杆螺栓;5—大头盖;6—连杆螺母Ⅰ级连杆尺寸计算[3]①连杆长度L的确定图20 连杆杆体主要结构尺寸连杆长度L即连杆大小头孔中心距,由曲柄半径R与连杆长度L的比值RLλ=决定。