数据挖掘论文

合集下载

《数据挖掘的算法》论文

《数据挖掘的算法》论文

写一篇《数据挖掘的算法》论文
数据挖掘是一种采用计算机技术来从大量数据中发掘有用信息的过程。

它的目的是为了从海量的数据中发现新的信息、规律,并将其应用于商业、管理、工程和社会等领域,从而进行决策和控制。

数据挖掘的算法是数据挖掘的核心,它们具有非常重要的意义。

现在,有三种常见的数据挖掘算法,即关联法、分类法和聚类法。

关联法是指利用统计技术,从大量数据中发现不同事物之间的关联性,从而进行复杂数据集的分析和探索。

它具有快速、精准、可靠等优点,可以帮助我们找出特定的数据属性之间的关联关系,帮助决策者做出正确的判断。

分类法是指基于特征值,将目标对象归类到特定的类别或群体中,常见的分类算法包括逻辑回归、决策树和支持向量机等。

它可以帮助我们快速地划分类别和数据,使我们了解特定类别数据的分布情况,以便进行更好的分析和挖掘。

聚类法是指根据目标对象的特征值,将其分为不同的聚类,从而获得聚类之间的相似性和差异性。

层次聚类分析、K-均值
聚类等是常见的聚类方法。

通过这种方式,我们可以有效地发现数据集中的隐藏规律和特征,它有助于我们掌握数据的空间构成和特征分布,从而为后续的操作提供备选方案或策略。

以上就是数据挖掘的三种算法的基本介绍。

它们在数据挖掘中
扮演着重要的角色,我们可以根据实际需要,利用合适的方法,从海量数据中获取有用的信息,为后续决策提供可靠的支持。

数据挖掘技术应用论文

数据挖掘技术应用论文

数据挖掘技术应用论文随着互联网和信息技术的高速发展,各种数据量急剧增长,数据分析和挖掘技术成为了企业做出战略决策必不可少的技术手段。

相对于传统的数据分析方法,数据挖掘技术不仅可以更加高效地处理海量的复杂数据,更可以从中挖掘出更多的潜在价值和商业价值。

而在数据挖掘技术的应用中,论文是一种重要的研究形式,可以帮助企业、学术机构或个人更加深入地了解数据挖掘技术。

I. 引言数据挖掘技术是一种通过各种算法和技术来发掘、分析、提炼和挖掘隐藏在数据中的模式或关系的计算机技术。

相对于传统的数据采集、清洗和存储方法,数据挖掘技术可以更加高效地处理大型数据,更能够在数据中发掘出潜在的商业价值和预测性信息。

在企业决策、市场分析、社会调查等各个领域,数据挖掘技术都发挥着重要的作用。

本文旨在介绍数据挖掘技术应用论文的相关内容。

II. 数据挖掘技术应用论文在数据挖掘技术的应用中,论文是一种重要的研究形式,可以帮助企业、学术机构或个人更加深入地了解数据挖掘技术。

数据挖掘技术应用论文主要包括以下几方面:1. 研究目的在数据挖掘技术应用论文中,研究目的是非常重要的。

研究目的可以针对具体的问题或挑战,也可以是为了增加知识积累或业务拓展。

研究目的的明确不仅有助于论文的撰写,还可以帮助读者更好地理解和应用论文中介绍的技术方法。

2. 数据来源作为数据挖掘技术的应用者,数据源的选择和获取是至关重要的。

数据来源可以来自多种渠道,例如公共数据、知识库、社交媒体、企业自有数据等。

对于企业来说,自有数据是最宝贵的资源之一。

论文应该详细介绍数据来源、数据采集和预处理的方法和步骤。

3. 数据分析和挖掘方法在数据挖掘技术的应用论文中,数据分析和挖掘方法往往是关键的内容。

这些方法可以是基本的统计方法、机器学习方法、神经网络方法等等。

研究者不仅需要准确、详尽地介绍各种方法的理论和应用,还需要说明这些方法的优缺点及适应范围等内容。

同时,还需要说明对于不同的研究目的和数据集,如何根据不同的问题进行合理的选择和运用。

数据挖掘论文

数据挖掘论文

数据挖掘论文数据挖掘是一种通过自动化方法从大量数据中提取有价值的信息和知识的过程。

这些信息和知识能够用于描述、识别和预测数据模式,以便用于决策制定、数据分析和预测等领域。

在现代的信息技术时代,数据挖掘技术已经成为人们对于大数据处理和分析中不可或缺的工具之一。

本篇论文将从以下几个方面开始介绍数据挖掘:1. 数据挖掘的定义和重要性数据挖掘是在处理具有多个属性的数据时提取有用信息的一个过程。

其目标是发现与一定参数相关的特征或规律性,同时也需要避免对噪声的敏感。

数据挖掘的过程包括以下几个方面:•数据清理:删除和修改不相关、重复或不完整的数据。

•数据集成:将多个来源的数据整合到一个数据库中。

•数据转换:将数据从原始格式转换为可处理的格式。

•数据挖掘:使用机器学习算法等工具发现模式和规律。

数据挖掘对于企业和商业来说非常重要,因为数据挖掘可以帮助企业从庞大的数据中发现并利用有价值的信息和知识,这些信息和知识可以用于提高产品和服务质量、提高客户满意度、优化业务流程等方面。

2. 数据挖掘的应用领域数据挖掘广泛应用于以下领域:•金融:在金融领域,数据挖掘技术可以帮助银行发现欺诈行为、评估信用风险、建立预测模型等。

•零售:在零售领域,数据挖掘技术可以帮助商家理解顾客行为、提高产品销量、发现新兴市场等。

•健康:在医疗保健领域,数据挖掘技术可以帮助医师发现疾病早期症状、制定更准确的治疗方案等。

•电信:在电信领域,数据挖掘技术可以帮助运营商优化网络性能、提高客户满意度、预测客户流失率等。

3. 数据挖掘的方法和技术数据挖掘的方法和技术可以分为以下几类:•分类:根据已知变量推测未知变量的值,通常用于分类和预测分析。

•聚类:将数据分组,使得同一组内的数据相似性较大,不同组之间距离较远。

•关联规则挖掘:从数据中发现频繁出现的组合或关联的模式。

•异常检测:通过发现不正常的模式或行为,帮助识别异常或故障现象。

常用的数据挖掘工具包括Python、R、SAS、Weka等。

数据挖掘毕业论文

数据挖掘毕业论文

数据挖掘毕业论文数据挖掘毕业论文随着信息时代的到来,数据的产生和积累呈现出爆炸式增长的趋势。

如何从这些海量数据中提取有价值的信息,成为了当今科学研究和商业应用领域亟待解决的问题。

数据挖掘作为一门交叉学科,旨在通过运用统计学、机器学习、人工智能等技术,从大规模数据集中发现隐藏的模式、规律和知识,以支持决策和预测。

在我的毕业论文中,我选择了数据挖掘作为研究的主题。

我将从以下几个方面展开论述。

首先,我将介绍数据挖掘的基本概念和方法。

数据挖掘包括数据预处理、特征选择、模型构建和模型评估等步骤。

其中,数据预处理是数据挖掘的关键环节,它包括数据清洗、数据集成、数据变换和数据规约等过程。

特征选择是从原始数据中选择最具代表性的特征,以提高模型的准确性和可解释性。

模型构建是指选择合适的算法和模型来进行数据挖掘任务,如分类、聚类、关联规则挖掘等。

模型评估是对构建的模型进行性能评估和优化,以确保模型的有效性和可靠性。

其次,我将介绍数据挖掘在实际应用中的案例研究。

数据挖掘在各个领域都有广泛的应用,如金融、医疗、电商等。

以金融领域为例,数据挖掘可以用于信用评估、风险管理、欺诈检测等方面。

通过对大量的金融数据进行挖掘,可以发现客户的消费习惯、信用记录等信息,从而为银行和金融机构提供更准确的决策支持。

在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面。

通过对患者的病历、症状等数据进行挖掘,可以提高医生的诊断准确性,为患者提供更好的治疗方案。

接着,我将探讨数据挖掘的挑战和未来发展方向。

随着数据量的不断增大和数据类型的多样化,数据挖掘面临着许多挑战,如数据质量不高、算法效率低下等。

为了应对这些挑战,研究者们提出了许多解决方案,如集成多个算法、优化算法效率等。

此外,随着人工智能的快速发展,数据挖掘与机器学习、深度学习等领域的结合将成为未来的发展方向。

通过将数据挖掘与其他技术相结合,可以进一步提高模型的准确性和预测能力。

最后,我将总结我的研究成果和对数据挖掘的思考。

数据挖掘论文(最新范文6篇)

数据挖掘论文(最新范文6篇)

数据挖掘论文(最新范文6篇)数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。

希望你在阅读了以下数据挖掘论文后对这个内容有更深入的了解。

数据挖掘论文一题目:基于数据挖掘的企业营销管理应用实证摘要:随着市场竞争的日益激烈,以及信息化、移动化和智能化时代的来临,越来越多的企业开始注重借助现代数据挖掘技术,提高企业的营销效果,降低营销成本,并提升企业在市场中的竞争力。

从数据挖掘与企业营销管理的关系入手,得出数据挖掘应用给现代企业营销管理带来的优势,然后构建精确营销平台,将其应用到电信业的营销管理中,以期为数据挖掘技术在现代企业营销中的具体应用提供参考。

关键词:数据挖掘;市场细分;竞争优势随着电子商务的不断发展,使得企业通过网络即可与来自全世界的企业进行商务活动。

而企业的大量交易,也给企业积累了很多业务数据,并以此使得企业的数据信息库越来越大。

而在这些数据中,清晰地记录了企业每年的运作及效益情况。

而要想让这些数据为企业未来的战略和决策服务,就需要充分加强对这些数据的规律、暴露出的问题的分析。

因此,数据挖掘技术进入了人们的视野,并成为人们关注的重点。

通过数据挖掘工具,可以对大量的数据进行分析,并提取其中有用的信息,为企业的决策提供参考,进而提升决策的正确率,达到提升竞争力的目的。

一、数据挖掘与企业营销管理的关系在生产销售中,生产者和消费者一般存在着单一的购买销售关系,而企业营销管理就是运用各种方法将上述单一关系转变为多重关系。

这样就在生产者和消费者之间加入营销者这一角色,三种角色之间也就必然会产生多种联系,这些关系往往牵涉众多,十分复杂。

要想处理好这些关系,就需要企业营销管理人员进行分析论证,找出可以联系的关键桥梁,也就是本文所介绍的"数据挖掘";.数据挖掘是企业营销管理中常用的一种方法,也越来越得到人们的认可。

《2024年数据挖掘研究现状及发展趋势》范文

《2024年数据挖掘研究现状及发展趋势》范文

《数据挖掘研究现状及发展趋势》篇一一、引言随着信息技术的高速发展,大数据已经成为了新时代的基石。

数据挖掘技术作为从海量数据中提取有价值信息的重要手段,其在各行各业的应用愈发广泛。

本文旨在探讨数据挖掘的当前研究现状以及其未来的发展趋势。

二、数据挖掘研究现状1. 技术发展数据挖掘技术已经历了多年的发展,从传统的统计方法、机器学习算法,到现今的深度学习、人工智能算法,其技术手段不断更新迭代。

目前,数据挖掘技术已经能够处理结构化、半结构化乃至非结构化的数据,为各行业提供了强大的数据支持。

2. 应用领域数据挖掘的应用领域十分广泛,包括但不限于金融、医疗、教育、商业等领域。

在金融领域,数据挖掘被用于风险评估、股票预测等;在医疗领域,数据挖掘帮助实现疾病预测、基因分析等;在教育领域,数据挖掘为个性化教学、学生评估等提供了有力支持。

3. 研究挑战尽管数据挖掘技术取得了显著的进步,但仍面临一些挑战。

首先是数据的质量和数量问题,大数据环境下如何保证数据的准确性和有效性是一个亟待解决的问题。

其次,算法的复杂性和计算成本也是研究者们需要面对的挑战。

此外,数据隐私和安全问题也是阻碍数据挖掘技术发展的关键因素。

三、发展趋势1. 技术进步未来,随着人工智能、机器学习等技术的进一步发展,数据挖掘技术将更加成熟。

深度学习、强化学习等新兴算法将更深入地应用于数据挖掘中,使得数据处理的速度和准确性得到进一步提升。

2. 多源异构数据处理随着物联网、传感器等技术的发展,多源异构数据的处理将成为数据挖掘的重要方向。

如何从不同来源、不同格式的数据中提取有价值的信息,将是未来研究的重点。

3. 隐私保护与安全随着数据安全意识的提高,如何在保护个人隐私的前提下进行数据挖掘将是未来的一个重要发展方向。

通过采用加密技术、隐私保护算法等手段,实现数据的匿名化和加密处理,同时确保数据的完整性和准确性。

4. 跨界融合与应用创新随着各行业的数字化转型,数据挖掘将与其他领域的技术进行深度融合,如与区块链、云计算等技术的结合,将进一步推动各行业的创新发展。

基于数据挖掘的高校教务系统设计论文(五篇模版)

基于数据挖掘的高校教务系统设计论文(五篇模版)

基于数据挖掘的高校教务系统设计论文(五篇模版)第一篇:基于数据挖掘的高校教务系统设计论文摘要:笔者对现有高校所采用的教务系统进行研究,以联机分析与数据仓库技术为依托来构建决策支持系统。

针对数据仓库构建中采用的逻辑模型及其构建策略等进行深入分析,并对基于四层架构的教学决策支持系统进行了设计,充分展示了决策支持系统在高校教务管理中的应用前景。

关键词:关键词:决策支持系统;数据仓库;多维分析在现有的教学信息化系统中,存储了包括学生的学籍信息、学生的选课数据、各科成绩数据等在内的大量数据,这些数据的条数动辄上百万条,信息和数据量都比较大,同时这些数据中通常能够挖掘出有用的规律信息。

不过,通过对现有应用现状分析可以发现,人们更多的是将各种表单数据进行计算机管理,没有利用计算机的数据挖掘能力对这些数据进行分析,更没有从中找到潜在海量数据中的规律。

教学数据仓库1.1 总体结构在对现有教学管理系统的决策需求进行深入和一线调研的基础上,笔者给出了基于教学数据仓库的决策系统,并对系统中经过结构化的四层教学决策支持系统的总体结构进行了设计。

具体如图1中所示。

图1教学决策支持系统的总体结构图1.1.1 源数据层该层是构建教学系统的最低层,也是实现数据仓库的关键。

在数据仓库中所包含的数据,主要来自于学校现有的与教学相关的各种信息库。

而在这些信息数据库中,存储了学校教学过程中所积累的主要数据,也是学校在制定各项政策和决策中必须参考的主要数据。

这样设计,也更好的说明一个成熟的教学决策系统应该具备广泛的数据来源。

1.1.2 引擎数据的处理层该层的功能主要从现有的教学信息系统中实现数据的抽取,然后对抽取得到的各种数据进行清洗,最后才能够将这些数据都添加到教学数据仓库中。

所以,这就使得数据处理层成为数据仓库构建的关键层。

1.1.3 信息层信息层的作用就是为数据访问层和源数据层提供联通的桥梁,为数据提供特定处理过程,得到经过处理后的不同层次信息。

我国的数据挖掘技术现状分析论文[大全5篇]

我国的数据挖掘技术现状分析论文[大全5篇]

我国的数据挖掘技术现状分析论文[大全5篇]第一篇:我国的数据挖掘技术现状分析论文摘要:数据挖掘学科的出现, 是对计算机领域的补充, 在计算机领域的发展下发展迅速, 引起了国内的重视, 并在国家的大力促进下不断发展, 取得了阶段性的成就, 但是发展现状仍然不容乐观, 本篇文章将针对数据挖掘的定义以及国内的现状进行分析, 并对其发展趋势进行预测, 目的在于加快我国的数据挖掘技术研究进程。

关键词:数据挖掘;中国;现状;发展;0 引言随着计算机的发展与数据量的增加, 其对于数据的处理技术如生成、收集、储存数据等的水平要求越来越高, 因此新型的数据挖掘技术的出现是必然趋势, 替代了传统落后的数据处理技术。

我国对于数据挖掘技术的研究已经取得瞩目的效果, 但是应用程度不高, 提高数据挖掘技术的实际应用成为了主要的问题, 需要采取必要措施加快数据挖掘技术应用进程。

数据挖掘的定义数据挖掘(DM)是一个新兴的学科, 学名叫做数据库中发现知识(KDD), 其出现在20世纪90年代, 并在这三十年间发展迅速, 它的主要工作领域为数据库系统以及数据库应用领域, 其作用在于能够从应用数据中提取隐藏的关键信息与知识, 应用数据的范围广泛, 不管是不完整的数据, 还是受干扰的数据, 数据挖掘技术都能够通过对其数据的转换分析或者模块化处理进行识别与筛选, 并提取和处理其中的有用信息。

数据挖掘的目的在于通过对数据中信息的处理, 筛选关键数据, 发现被忽略的数据, 从而寻找数据中的规律, 为决策者提供合理科学的数据分析报告, 帮助其作出最优化的决策。

数据挖掘技术学科的本质在于加深对数据的使用层次, 挖掘数据的内在含义并进行抽象化的概括, 改变了以往数据只能简单查询的低级层次。

数据挖掘具有先知性、实用性以及科学性的特点, 同时数据挖掘的发展依赖于数据库、人工智能统计学等计算机学科的快速发展, 因此吸引了一大批专业人才加入到其的研发过程中, 加快了其的研究发展进程。

数据挖掘论文精选5篇论文

数据挖掘论文精选5篇论文

数据挖掘论⽂精选5篇论⽂数据挖掘论⽂精选5篇论⽂ 数据挖掘⼀: 题⽬:数据挖掘技术在神经根型颈椎病⽅剂研究中的优势及应⽤进展 关键词:数据挖掘技术; 神经根型颈椎病; ⽅剂; 综述; 1 数据挖掘技术简介 数据挖掘技术[1] (Knowledge Discovery in Datebase, KKD) , 是⼀种新兴的信息处理技术, 它融汇了⼈⼯智能、模式别、模糊数学、数据库、数理统计等多种技术⽅法, 专门⽤于海量数据的处理, 从⼤量的、不完全的、有噪声的、模糊的、随机的数据集中, 提取隐含在其中的、⼈们事先不知道的、但⼜是潜在的有⽤的信息和知识, 其⽬的是发现规律⽽不是验证假设。

数据挖掘技术主要适⽤于庞⼤的数据库的研究, 其特点在于:基于数据分析⽅法⾓度的分类, 其本质属于观察性研究, 数据来源于⽇常诊疗⼯作,应⽤的技术较传统研究更先进, 分析⼯具、理论模型与传统研究区别较⼤。

其操作步骤包括[2]:选择数据, 数据处理, 挖掘分析, 结果解释, 其中结果解释是数据挖掘技术研究的关键。

其⽅法包括分类、聚类、关联、序列、决策树、贝斯⽹络、因⼦、辨别等分析[3], 其结果通常表⽰为概念、规则、规律、模式、约束、可视化等形式图[4]。

当今数据挖掘技术的⽅向主要在于:特定数据挖掘, ⾼效挖掘算法, 提⾼结果的有效性、确定性和表达性, 结果的可视化, 多抽象层上的交互式数据挖掘, 多元数据挖掘及数据的安全性和保密性。

因其优势和独特性被运⽤于多个领域中, 且结果运⽤后取得显着成效, 因此越来越多的中医⽅剂研究者将其运⽤于⽅剂中药物的研究。

2 数据挖掘术在神经根型颈椎病治⽅研究中的优势 中医对于神经根型颈椎病的治疗准则为辨证论治, 从古⾄今神经根型颈椎病的中医证型有很多, 其治⽅是集中医之理、法、⽅、药为⼀体的数据集合, 具有以“⽅-药-证”为核⼼的多维结构。

⽅剂配伍本质上表现为⽅与⽅、⽅与药、药与药、药与剂量, 以及⽅药与证、病、症交叉错综的关联与对应[5], ⽽中医⽅剂讲究君⾂佐使的配伍, 药物有升降沉浮, 四⽓五味及归经之别, 对于神经根型颈椎病的治疗, 治⽅中药物的种类、炮制⽅法、⽤量、⽤法等都是千变万化的, ⽽这些海量、模糊、看似随机的药物背后隐藏着对临床有⽤的信息和规律, 但这些⼤数据是⽆法在可承受的时间范围内可⽤常规软件⼯具进⾏捕捉、管理和处理的, 是需要⼀个新处理模式才能具有更强的决策⼒、洞察⼒和流程优化能⼒, ⽽数据挖掘技术有可能从这些海量的的数据中发现新知识, 揭⽰背后隐藏的关系和规则, 并且对未知的情况进⾏预测[6]。

数据挖掘技术论文(2)

数据挖掘技术论文(2)

数据挖掘技术论文(2)数据挖掘技术论文篇二数据挖掘技术研究[摘要] 本文主要介绍了数据挖掘的基本概念,以及数据挖掘的方法。

[关键词] 数据挖掘数据挖掘方法随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。

但大量的数据往往无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。

因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘(Data Mining)技术由此应运而生。

一、数据挖掘的定义数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。

它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。

数据挖掘的过程也叫知识发现的过程。

二、数据挖掘的方法1.统计方法。

传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术。

贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

2.关联规则。

关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。

关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制。

大多数关联规则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,要对这些规则要进行有效的评价,筛选有意义的关联规则。

数据挖掘技术论文

数据挖掘技术论文

随着信息技术迅速发展,数据库的规模不断扩大,产生了大量的数据。

下面是为大家精心推荐的,希望能够对您有所帮助。

篇一浅谈数据挖掘摘要:数据挖掘是从海量数据中分析发现具有特定的模式、关联规则关系以及异常信息所表达出来的特点功能等在统计学有意义的结构和事件。

该文简要分析介绍了数据挖掘的含功能、技术及其应用等。

关键词:数据挖掘技术应用中图分类号:TP311文献标识码:A文章编号:1674-098X202204c-0054-01数据挖掘是在信息的海洋中从统计学的角度分析发现有用的知识,并且能够充分利用这些信息,发挥其巨大的作用,从而创造价值,为社会生产服务。

数据挖掘工具能够扫描整个数据库,并且识别潜在的以往未知的模式。

1数据挖掘数据挖掘是与计算机科学相关,包括人工智能、数据库知识、机器学习、神经计算和统计分析等多学科领域和方法的交叉学科,是从大量信息中提取人们还不清楚的但具有对于潜在决策过程有用的信息和知识的过程[1]。

数据挖掘能够自动对数据进行分析,并归纳总结,推理,分析数据,从而帮助决策者对信息预测和决策其作用[2]。

对比数据挖掘及传统数据分析例如查询、报表,其本质区别在于:前者在没有明确假设的前提下通过挖掘信息,提取有用的资料,并提升到知识层面,从而帮助提供决策支持。

所以数据挖掘又称为知识挖掘或者知识发现。

数据挖掘通过统计学、数据库、可视化技术、机器学习和模式识别等诸多方法来实现丛大量数据中自动搜索隐藏在其中的有着特殊关联性的信息[3]。

2数据挖掘技术数据挖掘有许多挖掘分析工具,可以在大量数据中发现模型和数据间关系,常用数据挖掘技术包括:聚类分析和分类分析,偏差分析等。

分类分析和聚类分析的主要区别在于前者是已知要处理的数据对象的类,后者不清楚处理的数据对象的类。

聚类是对记录分组,把相似的记录在一个聚集里,聚集不依赖于预先定义好的类,不需要训练集。

分类分析是预先假定有给定的类,并假定数据库中的每个对象归属于这个类,并把数据分配到这个给定类中。

《2024年数据挖掘研究现状及发展趋势》范文

《2024年数据挖掘研究现状及发展趋势》范文

《数据挖掘研究现状及发展趋势》篇一一、引言数据挖掘(Data Mining)是一门综合了统计学、机器学习、数据库技术等多个学科的交叉学科,它旨在从大量数据中提取有价值的信息和知识。

随着信息技术的快速发展,数据挖掘技术已经成为了许多领域的重要研究课题。

本文将探讨数据挖掘的当前研究现状以及其未来的发展趋势。

二、数据挖掘的研究现状1. 国内外研究现状国内在数据挖掘领域的研究起步较晚,但近年来发展迅速。

国内学者在数据挖掘算法、应用领域等方面取得了许多重要成果。

同时,政府和企业对数据挖掘的重视程度不断提高,推动了相关领域的发展。

国外在数据挖掘领域的研究起步较早,已经形成了较为完善的理论体系和实际应用。

许多国际知名的学术会议和期刊都设有数据挖掘专区,为研究者提供了交流和学习的平台。

2. 主要研究方向目前,数据挖掘的主要研究方向包括分类、聚类、关联规则挖掘、时序分析等。

分类和聚类是数据挖掘中最常用的两种方法,用于对数据进行分类和分组。

关联规则挖掘则是从大量数据中找出项集之间的关联关系。

时序分析则主要用于对时间序列数据进行预测和分析。

此外,还有一些新兴的研究方向,如深度学习在数据挖掘中的应用等。

三、数据挖掘的应用领域数据挖掘的应用领域非常广泛,包括金融、医疗、电商、物流等众多领域。

在金融领域,数据挖掘可以用于风险评估、欺诈检测等;在医疗领域,可以用于疾病诊断、患者管理等方面;在电商和物流领域,可以用于推荐系统、路线规划等。

此外,数据挖掘还可以应用于能源、农业等领域。

四、数据挖掘的发展趋势1. 技术发展随着技术的不断发展,数据挖掘将更加注重人工智能和机器学习技术的应用。

深度学习等新兴技术将进一步推动数据挖掘的发展,使其能够处理更加复杂的数据和提取更加有价值的信息。

同时,随着云计算和大数据技术的发展,数据挖掘将更加注重数据的实时性和高效性。

2. 跨学科融合未来,数据挖掘将更加注重跨学科融合。

与统计学、机器学习、数据库技术等学科的交叉融合将更加紧密,形成更加完善的理论体系和实际应用。

数据挖掘毕业设计论文

数据挖掘毕业设计论文

数据挖掘毕业设计论文数据挖掘毕业设计论文近年来,随着信息技术的快速发展和大数据时代的到来,数据挖掘作为一门重要的技术和工具,受到了广泛的关注和应用。

在各个领域,数据挖掘都发挥着重要的作用,帮助人们从海量数据中发现有价值的信息和规律。

因此,作为一名数据挖掘专业的毕业生,我决定以数据挖掘为主题进行毕业设计论文的研究。

首先,我将介绍数据挖掘的基本概念和原理。

数据挖掘是一种通过发现数据中的模式、关联、异常等信息,从而提取有用知识的技术。

它主要借助于统计学、机器学习、数据库技术等方法和工具,对大规模数据进行分析和挖掘。

在研究过程中,我将详细探讨数据挖掘的各种算法和技术,如聚类分析、分类算法、关联规则挖掘等。

其次,我将介绍数据挖掘在实际应用中的一些案例和研究方向。

数据挖掘在各个领域都有广泛的应用,如金融、医疗、电商等。

我将选择一个特定领域,深入研究数据挖掘在该领域中的应用。

例如,在金融领域,数据挖掘可以用于风险评估、信用评分等方面;在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面。

通过对这些案例的研究,我将进一步了解数据挖掘在实际应用中的优势和挑战。

接着,我将进行一项具体的数据挖掘实验。

在实验中,我将选择一个适当的数据集,应用数据挖掘算法进行分析和挖掘。

通过实验,我将验证数据挖掘算法的有效性,并探索数据集中的隐藏信息和规律。

同时,我还将对实验结果进行分析和解释,从中得出结论并提出改进和优化的建议。

最后,我将总结整个毕业设计论文的研究成果和收获。

在总结中,我将回顾论文的主要内容和研究过程,总结数据挖掘在实际应用中的价值和意义。

同时,我还将提出对未来数据挖掘发展的展望,指出数据挖掘领域的研究方向和挑战。

通过这次毕业设计论文的研究,我相信我将对数据挖掘有更深入的理解,并为将来的研究和实践奠定坚实的基础。

综上所述,本篇毕业设计论文将以数据挖掘为主题,介绍数据挖掘的基本概念和原理,探讨数据挖掘在实际应用中的案例和研究方向,进行一项具体的数据挖掘实验,并总结研究成果和展望未来。

论文:为什么要进行数据挖掘分析

论文:为什么要进行数据挖掘分析

论文:为什么要进行数据挖掘分析数据挖掘分析是一种通过发现和提取大量数据中的有用信息来辅助决策的方法。

在今天的信息时代,数据已经成为了一种非常宝贵的资源。

通过对数据进行挖掘和分析,我们可以揭示数据中的隐藏模式和关联,从而为决策提供有力的支持。

数据挖掘分析在许多领域都有着广泛的应用。

例如,在市场营销领域,企业可以利用数据挖掘分析来了解消费者的购买偏好和行为模式,从而优化营销策略。

在医疗领域,医生可以通过分析大量的病例数据来发现疾病的风险因素和治疗方案。

在金融领域,银行可以通过挖掘客户的交易数据来识别风险和欺诈行为。

数据挖掘分析的优势在于它可以帮助我们从海量的数据中找到有用的信息。

传统的统计分析方法往往只能处理小样本数据,而数据挖掘分析可以处理大规模的数据集。

此外,数据挖掘分析还可以自动进行模式发现,而不需要人工指定具体的规则。

这使得数据挖掘分析成为了一种高效且准确的分析方法。

尽管数据挖掘分析有着许多优势,但我们也需要注意一些潜在的限制和风险。

首先,数据的质量对于数据挖掘分析至关重要。

如果数据存在错误或者缺失,那么挖掘出来的结果可能会不准确或者无效。

其次,数据挖掘分析的结果需要经过合理的解释和验证,以确保其可信度和有效性。

同时,我们也需要关注数据挖掘分析的伦理和隐私问题,确保对数据的使用是合法和合规的。

综上所述,数据挖掘分析在今天的信息时代具有重要的意义。

通过挖掘和分析大量的数据,我们可以获得有用的信息,辅助决策并改善业务效率。

然而,我们需要注意数据质量、结果解释和伦理问题,以确保数据挖掘分析的可信度和有效性。

数据挖掘分析无疑是一个强大的工具,在合适的场景下,它将带来巨大的价值和潜力。

《2024年数据挖掘研究现状及发展趋势》范文

《2024年数据挖掘研究现状及发展趋势》范文

《数据挖掘研究现状及发展趋势》篇一一、引言随着信息技术的飞速发展,大数据时代已经来临。

数据挖掘作为处理海量数据并提取有价值信息的重要手段,其研究与应用领域日益广泛。

本文旨在探讨数据挖掘的当前研究现状以及未来发展趋势,以期为相关研究与应用提供参考。

二、数据挖掘的研究现状1. 数据挖掘技术发展数据挖掘技术经历了从传统统计方法到机器学习、深度学习等先进算法的演变。

目前,数据挖掘技术已广泛应用于各个领域,如金融、医疗、电商、科研等。

通过数据挖掘,企业可以更好地了解客户需求,优化产品服务;科研人员可以挖掘出数据背后的规律,推动科技进步。

2. 数据挖掘应用领域数据挖掘在各个领域的应用日益广泛。

在金融领域,数据挖掘可以帮助银行、保险公司等机构进行风险评估、客户细分和欺诈检测。

在医疗领域,数据挖掘可以用于疾病预测、病因分析和患者管理。

此外,在电商、交通、能源等领域,数据挖掘也发挥了重要作用。

三、数据挖掘的主要研究方法1. 统计学方法统计学方法是数据挖掘的基础。

通过描述性统计、推论性统计等方法,可以对数据进行预处理、特征提取和模型评估。

2. 机器学习方法机器学习方法在数据挖掘中占据了重要地位。

如决策树、支持向量机、神经网络等方法,可以有效地提取数据中的规律和模式。

3. 深度学习方法深度学习是近年来发展迅速的领域,其在自然语言处理、图像识别、语音识别等方面取得了显著成果。

在数据挖掘中,深度学习可以用于处理复杂的数据结构和模式。

四、数据挖掘的发展趋势1. 智能化发展随着人工智能技术的不断发展,数据挖掘将更加智能化。

通过深度学习、强化学习等方法,可以自动提取数据中的有价值信息,提高数据挖掘的效率和准确性。

2. 大数据分析与处理能力提升随着大数据技术的不断发展,数据挖掘将能够处理更大规模、更复杂的数据集。

同时,云计算、分布式存储等技术将进一步提高数据处理能力和效率。

3. 多领域交叉融合数据挖掘将与其他领域如人工智能、物联网、区块链等交叉融合,形成新的研究方向和应用领域。

数据挖掘技术课程论文

数据挖掘技术课程论文

目 录[摘 要] ..................................................................1.绪论 .................................................................1.1题目背景及目的 .......................................................1.2题目研究方法 .........................................................2.数据挖掘技术介绍 .....................................................2.1 数据挖掘与电子商务概述 ...............................................2.2 数据挖掘技术 .........................................................2.2.1 统计技术 .........................................................2.2.2 关联规则 .........................................................2.2.3 基于历史的分析MBR(Memory-based Reasoning) .................2.2.5 聚集检测 .........................................................2.2.6 连接分析 .........................................................2.2.7 决策树 ...........................................................2.2.8 神经网络 .........................................................2.2.9 粗糙集 ...........................................................2.2.10 回归分析 .........................................................3.数据挖掘阶段分析 .....................................................3.1 项目理解阶段 .........................................................3.2 数据理解和数据准备 ...................................................3.3 建立模型阶段 .........................................................3.4 模型评估阶段 .........................................................3.5 模型发布阶段 .........................................................4.数据挖掘技术在电子商务中的应用 ......................................4.1电子商务中数据挖掘技术的适用价值 ....................................4.1.1客户细分 ..........................................................4.1.2客户获得 ..........................................................4.1.3客户保持 ..........................................................4.2数据挖掘技术在电子商务推荐系统的具体应用 ............................4.2.1推荐系统在电子商务活动中的作用 ...................................4.2.2数据挖掘技术应用于推荐系统具体表现 ...............................5.结束语 ...............................................................数据挖掘技术在电子商务中的应用[摘 要] 电子商务在现代商务活动中的正变得日趋重要,随着大数据时代的到来,商务信息显得尤为重要,在电子商务中谁掌握了有利的市场信息,谁就能在这个竞争激烈电商行业中占据绝对的优势。

数据挖掘算法论文15篇(基于决策树的数据挖掘算法研究)

数据挖掘算法论文15篇(基于决策树的数据挖掘算法研究)

数据挖掘算法论文15篇基于决策树的数据挖掘算法研究数据挖掘算法论文摘要:利用基于密度的离群数据挖掘算法离群数据不在非离群数据指定的邻域内的特点,改进了原有的离群数据挖掘算法:首先判断数据是否在某个非离群数据指定的邻域内,如果不在,再判断其邻域内数据的个数。

通过对二维空间数据测试表明,改进的算法能够快速有效地挖掘出数据集中的离群数据,速度上数倍于原来的算法。

关键词数据挖掘算法数据论文数据数据挖掘算法论文:基于决策树的数据挖掘算法研究摘要:决策树(Decision Tree)曾在很长的时间里是非常流行的人工智能技术,随着数据挖掘技术的发展,决策树作为一个构建决策系统的强有力的技术在数据挖掘和数据分析过程中起到了非常重要的作用。

决策树在数据挖掘中主要用于分类、预测以及数据的预处理等。

关键词:决策树;数据挖掘;Apriori算法一、决策树数据挖掘基本概念数据分类是数据挖掘中的一个重要问题,是一种有效的KDD 分析方法。

数据分类通过分析训练集中的数据,建立分类模型,然后利用这个分类模型,把数据库中的数据项映射到给定类别中。

图1.决策树生成过程Decision tree formation process 决策树分为分类树和回归树两种,分类树针对离散数据集生成决策树,回归树则针对连续变量生成决策树。

决策树生成过程如图1所示。

决策树是一个类似于流程图的树结构,决策树通过把实例从根节点排列到某个叶子节点来分类实例,叶子节点即为实例所属的分类。

树上的每个节点说明了对实例的某个属性的测试,并且该节点的每一个后继分支对应于该属性的一个可能值。

如图2所示,给出了一个决策树的示意描述样例。

该决策树给了一个用于学生成绩分析的模型。

利用它可以分析学生成绩受什么因素影响,以及会影响到与学生成绩相关的那些属性。

决策树的中间结点通常用矩形表示,而叶子结点常用椭圆表示。

图2.决策树示意描述Decision tree motioned description二、决策树算法由于Apriori算法存在必须耗费大量时间处理规模巨大的候选项目集和必须多次扫描数据库对候选项目集进行匹配筛选的固有缺陷,针对这些缺陷Han等人提出了一种基于FP-Tree的关联规则算法FP-Growth算法。

数据仓库与数据挖掘论文(共5篇)

数据仓库与数据挖掘论文(共5篇)

数据仓库与数据挖掘论文(共5篇)第一篇:数据仓库与数据挖掘论文决策树在教学评价中的应用研究摘要决策树学习是人们广泛使用的一种归纳推理形式。

先就决策树和决策树学习算法进行介绍,然后用实例阐述决策树在教育信息处理中的应用,主要以在教学评价中的应用为例来加以介绍。

关键词决策树;数据挖掘;教育信息处理;教学评价当今社会处于一个信息爆炸的时代,海量的数据可以用来选择和发掘信息,然而有时却让人无从下手,因此数据挖掘技术受到人们的高度关注。

数据挖掘是从大量的、不完全的、有噪声的、模糊的或者随机的数据中提取人们事先不知道的但又是有用的信息和知识的过程。

它的方法很多,其中决策树是一种解决实际应用分类问题的数据挖掘方法。

在教育教学中,根据决策树算法的实际特点,它可以在教育信息处理中的信息采集上发挥很大的作用。

决策树介绍决策树学习是人们广泛使用的一种归纳推理形式。

决策树起源于概念学习系统,其思路是找出最有分辨能力的属性,把数据库划分为许多子集(对应树的一个分枝),构成一个分枝过程,然后对每一个子集递归调用分支过程,直到所有子集包含同一类的数据。

最后得到的决策树能对新的例子进行分类。

它一般是从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。

它一般需要给定一组训练例子,训练例子一般被看成用于创建模型的数据集。

由此可以看出,决策树是一个类似于流程图的树结构,其中每一个内部结点表示对一个属性的测试,每一个分支代表一个决策输出,而每个叶节点代表一个目标分类。

决策树通过把实例从根节点排列到某个叶子节点来分类实例,叶子结点即为实例所属的分类,树上每个节点说明对实例的某个属性的测试,节点的每个后继分支对应于该属性的一个可能值。

假如需要根据人员的外貌特征对人员进行分类,用于人员的外貌特征有3个,外貌列表={高度,发色,眼睛};各属性的值域分别为:高度={高,矮},发色={黑色,红色,金色},眼睛={黑色,棕色}。

分类结果有两种:种类={+,-}。

数据挖掘毕业论文

数据挖掘毕业论文

数据挖掘毕业论文本文旨在对数据挖掘的背景和意义进行简要介绍,并概述论文的目的和结构。

数据挖掘是一项涉及从大量数据中提取有用信息和模式的技术。

随着互联网和计算技术的迅猛发展,我们生活在一个数据爆炸的时代。

大量的数据被生成和积累,但如何从这些海量数据中找到有用的信息成为了一个挑战。

数据挖掘技术的出现使得从大数据中发现隐藏的信息和模式变得可能。

数据挖掘在各个领域都有着广泛的应用。

它可以帮助企业发现隐藏在数据背后的商业机会,优化运营策略,改进市场营销,提高竞争力。

在医疗领域,数据挖掘可以用于疾病的早期预测和诊断,提供个性化的治疗方案。

在社交媒体领域,数据挖掘可以帮助分析用户行为和偏好,提供个性化的推荐服务。

在金融领域,数据挖掘可以帮助银行发现欺诈行为,降低风险。

本论文的目的是探索数据挖掘技术在某个特定领域的应用,并提出相应的解决方案。

首先,我们将对相关的理论和方法进行综述,包括数据预处理、特征选择、模型构建等。

然后,我们将收集和分析一定规模的数据集,并应用数据挖掘算法进行实验和验证。

最后,我们将总结实验结果并提出未来的研究方向。

希望本论文的研究可以在特定领域的实际应用中发挥一定作用,为数据挖掘技术的发展和应用贡献一份力量。

回顾相关的文献和研究,说明当前数据挖掘领域的发展状况和存在的问题。

研究方法在我的毕业论文中,我使用了数据挖掘方法和算法来分析和探索特定问题。

这一节将详细描述我所使用的数据挖掘方法和算法,解释其原理和适用性。

数据挖掘方法是一种从大量数据中发现模式、规律和趋势的技术。

在我的研究中,我选择了以下几种常用的数据挖掘方法和算法:数据预处理:在开始数据挖掘之前,数据预处理是必不可少的步骤。

它包括数据清洗、数据集成、数据转换和数据规约等过程。

数据预处理的目的是通过消除异常值、处理缺失数据、去除噪音等操作,使得数据在后续的分析中更加准确和可靠。

关联规则挖掘:关联规则挖掘是一种在大规模数据集中发现不同项之间的关联性的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像数据挖掘相关概念和应用摘要:图像挖掘是数据挖掘领域中新兴的领域。

随着数字照相技术的发展和在多学科中的广泛应用,对大量图像数据的分析和研究越来越重要。

图像挖掘的对象、内容不同于传统数据,方法上也不同于传统技术。

本文旨在介绍图像挖掘的基本概念。

在此基础上,还介绍了近年来图像挖掘领域在卫星遥感、医学影像研究的相关应用。

关键词:数据挖掘;图像挖掘Abstract:Image mining is an emerging field in data mining.Along with the wild use of large scale digital photo technology,it becomes more and more important to devise powerful tools for analyzing tremendous image data and grasping the contents inside.there is a large gap between traditional data mining and image mining in data formation and content,and the methods and algorithms are also different.In this paper,we focus on illustrating basic concepts of image mining.At last,applications of such techniques as satellite photo,medical X-rays,are introduced.Keywords:data mining;image mining1引言随着信息技术的迅猛发展,数据库应用的规模、范围和深度不断扩大,各行业都积累了大量的数据资料,但是人们无法理解并有效地利用这些大量的数据,从而导致”数据太多而知识太少”的尴尬局面。

在这样的背景下,数据挖掘和数据库中的知识发现(Knowledge Discovery of Database)应运而生。

KDD最早是在1989年举行的第11届美国人工智能协会学术会议上提出的。

数据挖掘只是KDD的一个处理过程,但却是KDD最重要的环节。

数据挖掘是按照既定的业务目标,对大量数据进行探索,揭示隐藏其中的规律性并进一步将之模型化的先进的、有效的方法。

在实际工作中,数据挖掘和知识发现这两个词经常混用,不加区分。

如今数据挖掘思想已经开始向交通管理、医学影像诊断、城市规划、金融风险分析、图像识别等领域扩展。

数字图像处理(Digital Image Processing)起源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约采用数字压缩技术传输了第一幅数字图片。

由于CT的发明、应用以及获得了备受科技界瞩目的诺贝尔奖,使得数字图像处理技术大放异彩。

目前数字图像处理学科已经成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等众多领域的各个学科之间学习和研究的对象。

数字化时代产生大量的图像数据,如数码照片、医学图像等。

对这些图像利用图像挖掘技术进行自动分析以获取大量有用知识的需求日益增加。

图像挖掘(Image Mining)远不只是检索相关图像,更要在大图像集中发现有意义的图像模式。

由于数字图像具有一下几个特点:图像中信息是隐含的;对图像信息可有多种解释,依赖于图像表示方法和应用领域知识;图像信息中包含图像对象的空间关系信息,所以图像挖掘不同于传统的数据库挖掘技术,挖掘的是在图像数据库中隐含的、未知而潜在有用的知识和建立图像数据模型的过程。

图像挖掘是多媒体数据挖掘的一个重要组成部分,其研究内容是在图像数据集中,提取隐含的知识,包括图像之间的关系、图像与字符数据之间的关系、图像中各实体之间的相互关系以及其他模式或关系等,是涉及计算机视觉、图像处理、图像检索、数据挖掘、机器学习、数据库和人工智能等学科的交叉研究领域。

具体地说,图像挖掘是从图像中提取能代表区分该图像结构内容的特征向量,在这些特征向量所在的空间中比较、分析它们之间的距离或相似关系。

通过对图像内容的分析、索引、摘要、分类和检索等操作,进一步发现感兴趣的知识或模式。

2数据挖掘与图像挖掘由于图像数据库和传统的关系型数据库存在巨大差异,导致了很多现有的数据挖掘技术无法应用在IM领域。

第一,在关系数据库中,数据值在语义上是有意义的,例如年龄值35,这是容易理解的。

然而在图像数据库中,如同灰度值为46这种信息,没有背景资料的支持就难以理解。

第二,图像中包含的空间信息对研究图像内容至关重要,但在关系数据库中却并非如此。

比如,为了识别出图像中的某一特别形状或模式,必须考虑位相近位置上的一系列象素点,而在关系数据库中,数据挖掘更关注的是某一条记录的特征,而不是它跟上一条记录或下一条记录之间的关系。

所以,为了在图像挖掘中使用数据挖掘的方法,挖掘器的首要工作是从图像中提取不依赖于位置属性的特征,之后再挖掘有用模式。

第三,传统的数据挖掘关联算法无法使用图像问题,所以针对挖掘图像中的有价值模式需要开发新的算法。

3图像挖掘相关技术3.1目标识别通过先验知识概括的目标模型(object models)的使用,目标识别系统可以从图像中找到知识。

这是IM的主要任务之一。

自动机器学习和智能信息提取只能在那些目标可以被计算机明确辨别出来的情况下实现。

一个目标识别系统由4部分组成,包括模型数据库,特征探测器,hypothesizer 和hypothesis verifier。

模型数据库包含所有系统已知的模型,这些模型概括了目标的重要特征。

探测器主要针对象素层面,hypothesizer标识出图像中出现目标的似然性(likelihood)。

Verifier使用模型来验证假设并改进目标的似然性。

最后,系统选择具有最高似然性的目标作为正确目标。

3.2目标检索IM要求图像能够按照一定准则被检索。

这些准则可以被归纳为三个复杂性递增的类:(1)包含颜色、材质、形状或者空间位置等特征,比如“检索那些右上角有红色长条形状的图片”;(2)包括能够检给定的种类或个体,人的逻辑特征,比如“检索内容包含桌子的图片”或,“检索Jimmy的图片”;(3)通过提炼的属性检索,包括目标或场景的高级因果关系,比如“检索足球比赛的图片”。

Kazman和Kominek提出了图像检索的三种查询方式:关联属性查询,描述查询,图像内容查询。

通过关联属性查询实最简单的,通过输入的文本找到相关图像信息,找到的图片应比较符合查询所要求的属性。

而描述查询的基础实记录下每张图片的描述性信息,这里面,图像描述又常称作标签或关键词。

这些标签通常是手动生成并在图像处理阶段加入图片的。

理想的描述应该有区分效度、具体化和明确的。

在实践中,这种方法由于“词汇问题”和非可测性而受到限制。

基于图像内容的查询对上述问题有一定的改进。

在这方向上包含了研究性和商业性的尝试。

商业应用中的IBM的QBIC system可能是最知名的图像内容检索系统。

它提供颜色、材质和形状以及其组合的文本关键字检索,使用R*-tree 作为索引以提高搜索性能。

其新版本包括更有效的检索技术,改进的交互界面和搜索灰度图片的功能。

Virage也是商用系统,它包含一系列的独立模块,让使用者能够加载自己的程序。

Excalibur依靠于其公司的模式识别技术,能够提供多种图像检索和匹配查询技术。

3.3图像索引对于不同层次的信息需求,也需要一个快速而有效的索引系统来支持图像检索。

典型的图像数据库都非常庞大,图像的特征向量维度也很高。

对于这问题,有两种解决办法:降维或对高维数据做索引。

降维的实现可以用两种著名的方法:Singular Value Decomposition(SVD)改进算法和聚类算法。

后者通过把相近特征归为一组而减少维度数。

高维索引技术包括SR-tree,TV-tree,X-tree和iMinMax。

其他的索引技术也都是基于相似的思想,试图改进针对大数据量的检索性能。

目前的图像体统检索都从相似性出发。

一个主要的方法是先执行降维之后使用恰当的多维索引技术支持相似性测量。

Guttman在Oracle平台上用多层过滤器索引开发出一套图像检索系统,该过滤器对代表图像的高维数据进行近似化并减少搜索空间,针对这样建立的子库进行计算,开销会大大减少。

3.4图像分类和图像聚类图像分类和聚类分别是监督的和非监督的图像分类。

在有监督的分类中(通常称为分类),我们给类别加以标记,解决的问题是对新遇到的对象进行类别判定。

而在无监督的分类(或叫做聚类)中,所有的图片都没有给定的类别,因而必须根据图像自身的特点进行分类。

根据内容的智能图像分类是获得有价值信息的重要手段。

这种分类模块被称为分类器。

目前,有两种主要的分类器,参数分类器和非参数分类器。

图像聚类常配置在挖掘过程的早期阶段。

最受关注的特征属性包括颜色、材质和形状。

一般的,无论三者之一还是其组合都能被加以应用。

聚类技术的丰富算法也为图像聚类提供了广阔的发展前景,当图片被聚类完成后,专家就可以根据类别加以标记。

3.5关联规则挖掘关联规则挖掘在数据挖掘中是很常用的技术。

关联规则已经被用在大规模图像数据库中。

目前主要应用两种方法,第一种是从大量独立图片中挖掘,第二种是将图片和文字数字数据结合起来。

第一种的例子包括从卫星照片中寻找美国的各个城市之间是否存在一些共同的模式。

第二种方法的例子是对医疗图像和病人记录的结合应用。

在图像数据库中,将所有图像进行人工标记,然后使用传统的关联规则挖掘方法是不可能的,只有开发自动或半自动的系统对图像内容进行分析。

这里分析和描述的基础依然是图像的颜色形状等属性。

3.6神经网络人工神经网络是由简单处理单元组成的一种大型的并行分布处理系统,神经网络的容错和模式认识以及趋势预测能力都很好。

ANN在图像方面的挖掘研究相对较晚。

Gardner and Keating使用人工神经网络的自动图像分析和即时病人分类工作,一种基于模糊ARTMAP神经网络的站点挖掘工具被提出,以上的工作为图像分析提供了一个新的发展方向。

4图像挖掘的实际应用4.1遥感图像人工神经网络挖掘方法遥感图像数据挖掘是图像数据挖掘的一个重要分支,遥感图像具有图像数据的一些主要特征,其中包括颜色、纹理、形状、空间特征等。

近几年来,逐渐成熟的人工神经网络信息处理技术,已经广泛地应用于遥感图像数据挖掘中,为遥感信息处理提供了一个崭新的技术手段。

人工神经网络用于遥感数据挖掘可以分为有导师监督和无导师自适应竞争分类;前者是特征模式输出,所获取的知识是明确的;而后者输出的是一个相对于输入信息特征的分类,所获取的知识需要结合研究对象进一步明确。

相关文档
最新文档