运筹学实验报告一
运筹学实验报告
实验报告运筹学学号:100103155姓名:周李斌专业:工业工程指导教师:周三玲二○一一年六月运筹学(一)实验报告一、实验目的:1)熟练掌握运筹学软件的相关操作2)学会使用软件求解运筹学中常见的数学模型,如线性规划问题、运输问题、目标规划问题、最短路问题、最大流问题等等3)了解线性规划问题在Excel中如何建立,主要是数据单元格、输出单元格、可变单元格和目标单元格的定义以及规划求解宏定义应用设置。
4)熟练掌握Excel规划求解宏定义模块使用。
二、实验仪器设备及材料计算机、Excel软件三、实验任务:Ⅰ、线性规划Ⅱ、目标规划Ⅲ、运输问题Ⅳ、最短路问题Ⅴ、最大流问题四、实验内容记录:问题1模型:Min z = -2X1-X2+3X3-5X4s.t. X1+2X2+4X3-X4<=62X1+3X2-X3+X4<=12X1+ X3+X4<=4X1,X2,X3,X4>=0实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析:问题2模型:min z= P1d1-+P2d2++P3(5d3-+3d4-)+P4d1+ s.t. x1+x2+d1--d1+=80x1+x2+d2--d2+=90x1+x2+d3--d3+=70x1+x2+d4--d4+=45x1,x2,d i-,d i+≥0,i=1,2,3,4 实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析问题3模型:求运输问题最优解实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析问题4模型:求V1到各点的最短路2V2 V32 3 4 61 6V1 V5 V6 V43 4 3 7V7 V81实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析得到f(v1,v8)=10,其余结果,方法同上。
问题5:求网络最大流V1 (1,1) V4(4,3) (3,2) (4,3 ) (7,6)Vs (3,2) V3 (2,2) Vt (10,4) (3,2) (5,3) (8,3)V2 (4,2) V5实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析得最大流为V(f)=11,此时S=(Vs,V2),S=(V1,V3,V4,V5,Vf)实验总结(或心得体会)“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。
运筹学实验报告
运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。
二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。
2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。
3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。
4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。
5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。
三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。
将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。
四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。
通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。
因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。
五、实验心得:通过本次实验,我对运筹学有了更深入的了解。
通过实践应用运筹学方法,我明白了运筹学的实用性和价值。
在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。
本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。
我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。
运筹学实践教学报告范文(3篇)
第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
运筹学实验报告
《运筹学》实验报告河南理工大学经管学院班级:人力11—1班姓名:陈浩学号:311110030120实验一线性规划1.某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D,已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表1产品名称规格要求单价(元/kg)原材料C不少于50%50A原材料P不超过25%原材料C不少于25%35B原材料P不超过50%D不限25表2原材料名称每天最多供应量(kg)单价(元/kg)C100 65P 100 25H 60 35解:(1)依题意得到模型:260260150125253550max 321321321≤++≤≤≤++=x x x x x x x x x z(2)建立新问题:(3)解得:实验二运输问题2.设有三个化肥厂(A, B, C)供应四个地区(I, II, III, IV)的农用化肥。
假定等量的化肥在这些地区使用效果相同。
各化肥厂年产量,各地区年需要量及从各化肥厂到各地区运送单位化肥的运价表如下表所示。
试求出总的运费最节省的化肥调拨方案。
需求地区化肥厂I II III IV 产量A B C 1614191313202219231715—506050最低需求最高需求305070703010不限注意:表格中的运价可以填入M(任意大正数)。
解:(1)建立新问题:得:(2)求解问题,观察求解结果:3.人事部门欲安排四人到四个不同岗位工作,每个岗位一个人。
经考核五人在不同岗位的成绩(百分制)如下表所示,如何安排他们的工作使总成绩最好,应淘汰哪一位。
工作人员人力资源物流管理市场营销信息管理甲乙丙丁戊8595828676928783908573787980929095908893解:(1)建立新问题(2)修改各个人名和任务名:(3)得:(4)解得:实验三整数规划4.某厂拟建两种不同类型的冶炼炉。
运筹学实验报告
运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。
每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。
生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。
已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。
(2)将电子表格格式转换成标准模型。
(3)将结果复制到Excel或Word文档中。
(4)分析结果。
解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。
大学生运筹学实训报告范文
一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。
为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。
以下是本次实训的报告。
二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。
三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。
(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。
2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。
(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。
3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。
(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。
4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。
(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。
5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。
(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。
四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。
五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。
六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。
运筹学lingo实验报告(一)
运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。
•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。
实验目的•了解运筹学的基本原理和应用。
•掌握LINGO软件的使用方法。
•运用LINGO进行优化建模和求解实际问题。
实验内容1.使用LINGO进行线性规划的建模和求解。
2.使用LINGO进行整数规划的建模和求解。
3.使用LINGO进行非线性规划的建模和求解。
4.使用LINGO进行多目标规划的建模和求解。
实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行建模,设定目标函数和约束条件。
•运行LINGO求解线性规划问题。
2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。
•使用LINGO进行整数规划的建模和求解。
3. 非线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行非线性规划的建模和求解。
4. 多目标规划•确定多个目标函数和相应的权重。
•使用LINGO进行多目标规划的建模和求解。
实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。
结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。
•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。
讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。
•提出对于实验内容或方法的建议和改进方案。
参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。
致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。
以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。
实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。
运筹学实验报告1
实验报告项目名称所属课程名称运筹学项目类型实验(实训)日期3月18号班级学号姓名指导教师浙江财经学院教务处制一、实验概述(一)实验目的掌握使用Excel软件求解线性规划问题。
(二)实验要求用Excel软件完成案例求解并进行结果分析。
(三)实验工具Excel软件二、实验内容案例营养配餐问题♦有A、B两种食品,含有每天必须的营养成分C、D,每天至少需要营养成分C和D 分别为2和3个单位。
食品A、B的成分和单价如下表,试做花钱最少的食谱,并求其费用。
(一)线性规划模型♦1、确定决策变量:设A、B两种食品每天的购买量分别为x1,x2单位。
♦2、确定目标函数:min W=0.9x1+0.8x2♦3、确定约束条件:成分C约束:x1+2x2 ≥2成分D约束:3x1+x2 ≥3x1 ≥0,x2 ≥0(二)电子表格模型A购买量0.8B购买量0.6目标函数 1.2成分C约束 2成分D约束 3A购买量0.8B购买量0.6(三)结果分析Microsoft Excel 11.0 运算结果报告工作表[Book1.xls]Sheet1报告的建立: 2012/3/18 18:51:54目标单元格(最小值)单元格名字初值终值$B$5目标函数0 1.2可变单元格单元格名字初值终值$B$2A购买量00.8 $B$3B购买量00.6约束单元格名字单元格值公式状态型数值$B$7成分C约束2$B$7>=2到达限制值$B$8成分D约束3$B$8>=3到达限制值$B$10B购买量0.6$B$10>=0未到限制值0.6$B$9A购买量0.8$B$9>=0未到限制值0.8分析:由上表可知:目标函数的最小值为1.2,当产品A的购买量为0.8,产品B的购买量为0.6时取得最小值。
取得最小值时成分C的含量与成分D的含量均达到最低要求。
Microsoft Excel 11.0 极限值报告工作表 [Book1.xls]极限值报告 1报告的建立: 2012/3/18 18:54:24目标式单元格名字值$B$5 目标函数 1.2变量下限目标式上限目标式单元格名字值极限结果极限结果$B$2 A购买量0.8 0.8 1.2 #N/A #N/A$B$3 B购买量0.6 0.6 1.2 #N/A #N/A分析:有该表可知:产品A购买量下极限为0.8单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大;产品B购买量下极限为0.6单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大。
运筹学实验心得(精选5篇)
运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。
本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。
2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。
我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。
3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。
例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。
同时,我们也收获了一些理论知识和实践经验。
我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。
4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。
例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。
因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。
总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。
运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。
以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。
关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。
它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。
然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。
实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。
理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。
运筹学实验报告(1)
运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。
二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。
先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。
在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。
A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。
否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。
另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。
若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。
四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。
运筹学实验报告
《运筹学》实验报告指派问题班级:姓名:学号:指导教师:《运筹学》实验报告(一)一.实验目的熟练的掌握整数规划,0-1规划问题的数学模型的建立于求解和数据分析二.实验要求利用EXCEL软件求解整数规划和0-1规划模型三.实验准备Pc486微机、Windows环境、Excel软件四.实验内容及步骤实验内容:某公司面临5项任务,计划派甲、乙、丙、丁、戊分别去做。
由于戊临时被公司派往国外,因此公司只有让甲、乙、丙、丁中的一个人同时担任两项任务,其他三人仍旧单独完成一项任务。
各人完成相应任务时间如下表。
请为公司制定一个总工时最小的指派方案。
实验内容分析:本题中研究的是制定一个总工时最小的工作任务分配方案即本题是一个0-1规划问题。
又本题中是四个员工五个任务的不平衡的分配任务,所以可以有增加虚拟人物的方式来解决不平衡问题也可以直接用抽屉原则来解决不平衡问题。
方法一:(虚拟人物法)建立数学模型:变量:甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A 任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45,虚拟员工做A任务为X51,虚拟员工做B任务为X52,虚拟员工做C任务为X53,虚拟员工做D任务为X54 ,虚拟员工做E任务为X55目标:总工时最小的人员安排方法约束:每人(包括虚拟人物)只能做一项任务即决策变量的0-1约束。
规划模型如下:MINZ(x)=25X11+29X12+31X13+42X14+37X15+39X21+38X22+26X23+20X24 +33X25+34X31+27X32+28X33+40X34+32X35+24X41+42X42+36X43+23X44+45X45+24X51+27X52+26X53+20X54+32X55X11+ X21+ X31+ X41+ X51=1X12+ X22+ X32+ X42+ X52=1X13+ X23+ X33+ X34+ X35=1X14+ X24+ X34+ X44+ X45=1X15+ X25+ X35+ X45+ X55=1 s.t. X11+ X12+ X13+ X14+ X15=1X21+ X22+ X23+ X24+ X25=1X31+ X32+ X33+ X34+ X35=1X41+ X42+ X43+ X44+ X45=1X51+ X52+ X53+ X54+ X55=1X ij=0或1(i=0-5,j=0-5)用EXCEL求解上式,过程如下:输入效率矩阵、方案矩阵和约束条件单元格公式:求解参数对话框如图所示:最终结果为:最小总工时131甲做A任务乙做C任务和D任务丙做E任务丁做B任务方法二:(抽屉原则法)建立数学模型:设甲员工做A任务为X11,甲员工做B任务为X12,甲员工做C任务为X13,甲员工做D任务为X14,甲员工做E任务为X15,乙员工做A任务为X21,乙员工做B任务为X22,乙员工做C任务为X23,乙员工做D任务为X24,乙员工做E任务为X25,丙员工做A任务为X31,丙员工做B任务为X32,丙员工做C任务为X33,丙员工做D任务为X34,丙员工做E任务为X35,丁员工做A任务为X41,丁员工做B任务为X42,丁员工做C任务为X43,丁员工做D任务为X44,丁员工做E任务为X45。
哈工大运筹学实验报告实验
哈工大运筹学实验报告实验实验一:货物运输问题的数学建模与求解实验目的:1.了解货物运输问题的数学建模方法;2.掌握货物运输问题的线性规划求解方法;3.学会使用运筹学软件求解货物运输问题。
实验原理:货物运输问题属于线性规划问题的一种,其目标是在满足供需平衡和运输容量限制的前提下,使运输成本最小化。
实验内容:1.问题描述:公司有m个供应点和n个需求点,其中每个供应点的供应量为si (i=1,2,…,m),每个需求点的需求量为dj (j=1,2,…,n)。
公司希望通过运输将货物从供应点送到需求点,各供应点到需求点的单位运输成本为aij (i=1,2,…,m; j=1,2,…,n)。
公司希望确定每个供应点与需求点之间的货物运输量xij,以及总运输成本C,使总运输成本最小。
2.数学建模:设xij表示从第i个供应点到第j个需求点的货物运输量,C表示总运输成本,则该问题的数学模型可以描述为:min C = ∑(i=1 to m) ∑(j=1 to n) aij * xijsubject to:∑(j=1 to n) xij = si, i=1,2,…,m∑(i=1 to m) xij = dj, j=1,2,…,nxij ≥ 0, i=1,2,…,m; j=1,2,…,n3.求解方法:利用运筹学软件求解上述线性规划问题,得到最优解。
实验步骤:1.在运筹学软件中新建一个线性规划模型;2.设定决策变量、目标函数和约束条件,并输入相应参数;3.运行求解算法,得到最优解。
实验结果:根据实验步骤,通过运筹学软件求解货物运输问题,得到最优解如下:供应点1到需求点1的运输量为x11=200;供应点1到需求点2的运输量为x12=150;供应点2到需求点1的运输量为x21=100;供应点2到需求点2的运输量为x22=250;总运输成本最小为C=900。
实验总结:通过本次实验,我了解了货物运输问题的数学建模方法,并掌握了线性规划求解的基本步骤。
运筹学实验报告1
运筹学实验报告1《运筹学》课程实验报告一学院:专业:班级:姓名:学号:指导老师:实验报告班级学号姓名课程名称运筹学开课实验室实验时间实验项目名称【实验项目一】线性规划综合性实验实验性质验证性()综合性(√)设计性()成绩指导老师签名实验条件:硬件:计算机,软件:lingo11实验目的及要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。
实验内容:熟悉、了解LINGO系统菜单、工具按钮、建模窗口、求解器运行状态窗口以及结果报告窗口等的环境。
实验过程:1.选择合适的线性规划问题可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。
2.建立线性规划数学模型针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。
3.用运筹学软件求解线性规划数学模型应用运筹学软件Lingo对已建好的线性规划数学模型进行求解。
4.对求解结果进行应用分析对求解结果进行简单的应用分析。
实验习题计算:使用lingo来求解下列例题1. MAXZ=2X1+2X2X1-X2≥-1-0.5X1+X2≤2X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的解为无界解,X=(2,3)是它的一个基可行解。
2. MINZ=1000X1+800X2X1≥10.8X1+X2≥1.6X1≤2X2≤1.4X1,X2≥0解:运用软件lingo11求解线性规划例题1如下:由上述运算结果可知:该线性规划问题的最优解X=(1,0.8),目标值Z=1640实验总结:例题1可用图解法检验,从图中可以清楚的看出,该问题可行域无界,目标函数值可以增大到无穷大,该题解为无界解;但在其可行域中存在顶点X=(2,3),故X=(2,3)为该线性规划问题的基可行解。
运筹学实训实验报告
一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。
随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。
为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。
二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。
三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。
2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。
3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。
4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。
四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。
(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。
(3)求解:运用Excel规划求解器求解最优解。
2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。
(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。
(3)求解:运用Lingo软件求解最优解。
3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。
(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。
运筹学实训报告范文模板
一、实习概况1. 实习时间:20XX年X月至20XX年X月2. 实习地点:[实习单位名称]3. 实习目的:通过本次运筹学实训,加深对运筹学基本理论和方法的理解,提高解决实际问题的能力,培养团队协作精神。
二、实习内容1. 实训课程概述:本次实训主要围绕运筹学的核心内容展开,包括线性规划、整数规划、网络流、非线性规划、决策分析等。
2. 实训项目:(1)线性规划问题建模与求解(2)整数规划问题建模与求解(3)网络流问题建模与求解(4)非线性规划问题建模与求解(5)决策分析案例研究三、实训过程1. 线性规划问题建模与求解(1)问题描述:以某企业生产计划问题为例,建立线性规划模型,求解最优生产方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用单纯形法进行求解。
(4)结果分析:比较不同方案的成本和产量,得出最优生产方案。
2. 整数规划问题建模与求解(1)问题描述:以某企业投资组合优化问题为例,建立整数规划模型,求解最优投资方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用分支定界法进行求解。
(4)结果分析:分析不同投资组合的风险和收益,得出最优投资方案。
3. 网络流问题建模与求解(1)问题描述:以某物流公司运输调度问题为例,建立网络流模型,求解最优运输方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用最大流最小割定理进行求解。
(4)结果分析:分析不同运输路径的成本和时间,得出最优运输方案。
4. 非线性规划问题建模与求解(1)问题描述:以某工厂生产优化问题为例,建立非线性规划模型,求解最优生产方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用拉格朗日乘数法进行求解。
(4)结果分析:分析不同生产方案的成本和产量,得出最优生产方案。
5. 决策分析案例研究(1)问题描述:以某企业新产品研发项目为例,运用决策树法进行决策分析。
南邮运筹学运输问题实验报告(一)
南邮运筹学运输问题实验报告(一)南邮运筹学运输问题实验报告1. 背景运输问题是管理科学中常见的数学问题之一。
本实验旨在通过运用运筹学的方法对南邮快递公司的运输问题进行优化,使得运输成本最小化,配送效率最大化。
2. 实验方法本实验使用了线性规划方法对运输问题进行建模,运用了Excel或MATLAB等工具进行求解。
具体步骤如下:1.收集数据,包括快递运输的起点、终点和运输量等信息;2.建立运输问题的数学模型,即线性规划模型;3.编写程序并求解;4.分析结果,得出优化的方案。
3. 实验结果通过对南邮快递公司的运输问题进行分析和优化,得出了如下方案:1.尽量选择简单线路进行配送,减少运输中转,降低运输成本;2.优先派送运输量大、运输距离小的货物,减少路途中停留和等待时间,提高配送效率;3.设立中转站,适时调整运输路线,减少空运和空驶,提高车辆使用率;4.采用信息化管理手段,通过优化物流调度系统和智能配送系统,实现物流信息实时监控、自动化配送等目的。
4. 实验总结本实验主要运用了线性规划方法对南邮快递公司的运输问题进行了分析和优化,得出了一系列优化方案。
实验结果表明,运用运筹学的方法可以有效地降低快递公司的运输成本,提高配送效率,为企业节省了大量的时间和资源。
总之,运用运筹学的方法对现代物流业的发展有着重要的意义,为企业实现可持续发展提供了强有力的技术支撑。
5. 实验心得通过本次实验,我对运筹学的方法和思想有了更深入的理解。
在实践中,我们不仅要有熟练的数学建模和编程技巧,还要注重数据的收集和分析,才能得出准确、实用的结果。
此外,实验中还提到了信息化管理手段,这也是当今物流业的发展趋势之一。
通过智能化技术和数据分析,我们可以对物流系统进行全面的优化和升级,提高物流效率,降低成本,并为企业的可持续发展保驾护航。
6. 实验意义运筹学的方法已经广泛应用于企业的生产、销售等领域,可以降低成本、提高效率、优化资源和规划未来。
运筹学实验报告
实验一:线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)在主菜单中选择线性规划模型,在屏幕上就会出现线性规划页面,如图所示。
(2)在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数及约束条件的各变量的系数和b值,并选择好“≥”、“≤”或“=”号,如图所示。
(3)当约束条件输入完毕后,请点击“解决”按钮,屏幕上将显现线性规划问题的结果,如图所示。
例题一:例题二:例题三:例题四:例题五5、试验体会或心得运筹学是一门实用的学科,学习运筹学,结合生活实际运用运筹学,我们可以将资源最大化利用。
学习理论的目的就是为了解决实际问题。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
线性规划指的是在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
所以,通过这次实验,不仅对运筹学的有关知识有了进一步的掌握,同时对在自己的计算机操作水准也有了很大的提高。
这次实验让我懂得了运筹学在电脑的应用,让我对运输与数学相结合的应用理解更深了。
实验二:整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
运筹学实验报告(一)线性规划问题的计算机求解-(1)
运筹学实验报告(一)线性规划问题的计算机求解-(1)-CAL-FENGHAI.-(YICAI)-Company One1运筹学实验报告实验课程:运筹学实验日期: 任课教师:王挺第五种方案0 3 0 0第六种方案0 1 1 3第七种方案0 0 2 1设:第i种方案需要的钢管为Xi根(其中i=1,2...6),可得:minz=X1+X2+X3+X4+X5+X6+X7解:model:min= X1+X2+X3+X4+X5+X6+X7;3*X1+2*X2+2*X3+X4>=100;X2+2*X4+3*X5+X6>=150;X3+X6+2*X7>=120;endObjective value: 135.0000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX1 0.000000 0.2500000X2 0.000000 0.1666667X3 50.00000 0.000000X4 0.000000 0.8333333E-01X5 50.00000 0.000000X6 0.000000 0.1666667X7 35.00000 0.0000004人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
班次时间所需人数班次时间所需人数1 6:00~10:00 60 4 18:00~22:00 502 10:00~14:00 70 5 22:00~2:00 203 14:00~18:00 60 6 2:00~6:00 30设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?5投资计划问题某地区在今后三年内有四种投资机会,第一种是在3年内每年年初投资,年底可获利润20%,并可将本金收回。
运筹学实训报告个人总结
一、前言运筹学作为一门研究资源优化配置的学科,在各个领域都有着广泛的应用。
为了更好地将理论知识与实践相结合,提高自身的实际操作能力,我参加了为期两周的运筹学实训。
以下是我在实训过程中的个人总结。
二、实训内容与目标1. 实训内容本次实训主要包括以下内容:(1)线性规划:掌握线性规划问题的建模、求解方法及软件应用。
(2)整数规划:了解整数规划问题的特点、建模方法及求解算法。
(3)非线性规划:掌握非线性规划问题的建模、求解方法及软件应用。
(4)动态规划:了解动态规划问题的特点、建模方法及求解算法。
(5)排队论:掌握排队论的基本概念、模型建立及求解方法。
(6)库存管理:了解库存管理的基本理论、模型建立及求解方法。
2. 实训目标(1)熟练掌握运筹学的基本理论和方法。
(2)提高运用运筹学解决实际问题的能力。
(3)培养团队协作和沟通能力。
三、实训过程与收获1. 实训过程在实训过程中,我们按照以下步骤进行:(1)学习运筹学的基本理论和方法。
(2)根据实际问题,建立数学模型。
(3)运用所学知识,求解数学模型。
(4)对求解结果进行分析和评估。
(5)撰写实训报告。
2. 实训收获(1)理论知识方面:通过实训,我对运筹学的基本理论和方法有了更深入的了解,为今后在相关领域的工作奠定了基础。
(2)实践能力方面:在实训过程中,我学会了如何将实际问题转化为数学模型,并运用运筹学方法进行求解。
这对我今后解决实际问题具有重要意义。
(3)团队协作能力:在实训过程中,我与同学们相互学习、共同进步,培养了良好的团队协作精神。
四、存在问题与不足1. 实践经验不足:虽然通过实训掌握了运筹学的基本方法,但在实际操作过程中,仍存在一些问题,如模型建立不够完善、求解方法选择不当等。
2. 理论知识掌握不够扎实:在实训过程中,发现自己在某些理论知识方面存在不足,需要进一步加强学习。
3. 沟通能力有待提高:在实训过程中,与团队成员的沟通不够充分,导致部分问题未能得到及时解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3 某家具公司制造书桌、餐桌和椅子,所用资源有三种:木料、木工和漆工。
生产数据表如表所示,若要求桌子生产量不超过5件,问如何安排三种产品的生产可使产品利润最大?
书桌 餐桌 椅子 资源总数 木料 8 6 1 48 漆工 4 2 1.5 20 木工 2 1.5 0.5 8 成品单价
60
30
20
解:假设书桌、餐桌和椅子的生产数量分别为:X1、X2和X3,依题意建立如下线性规划模型:
12312312312312123603020864842 1.520.2 1.50.585,,0Maxf x x x x x x x x x s t x x x x x x x x =++++≤⎧⎪
++≤⎪⎪
++≤⎨⎪+≤⎪⎪≥⎩且取整数
(1)在LINGO 中输入:
max 60x1+30x2+20x3
st8x1+6x2+x3<=48 4x1+2x2+1.5x3<=20 2x1+1.5x2+0.5x3<=8 x1+x2<=5 end gin3
(2)执行运行结果为:
Global optimal solution found.
Objective value: 280.0000 Objective bound: 280.0000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 3
Variable Value Reduced Cost X1 2.000000 -60.00000 X2 0.000000 -30.00000 X3 8.000000 -20.00000
Row Slack or Surplus Dual Price 1 280.0000 1.000000 2 24.00000 0.000000 3 0.000000 0.000000 4 0.000000 0.000000 5 3.000000 0.000000
(3)结果分析:得到最优解f= 280.0000,X1= 2.000000,X2 =0.000000,X3 =8.000000。
例4:有某种物资需要从3个产地运到4个销地,产量、销量及单位运费如表所示,试求总运费最少的运输方案和总运费。
(1)在LINGO 中输入:
model :
!3 Warehouse,4 Customer Transportation Problem; sets :
Warehouse/1..3/:a; Customer/1..4/:b;
Routes(Warehouse,Customer):c,x; endsets
!Here are the parameters; data :
a=30,25,21; b=15,17,22,12; c=6,2,6,7, 4,9,5,3, 8,8,1,5; enddata
! The objective;
[OBJ]min = @sum (Routes:c*x); ! The supply constraints; @for (Warehouse(i):[SUP]
@sum (Customer(j):x(i,j))<=a(i)); ! The demand constraints; @for (Customer(j):[DEM]
@sum (Warehouse(i):x(i,j))=b(j));
End
(2)执行运行结果为:
Global optimal solution found.
Objective value: 161.0000 Infeasibilities: 0.000000。