洁净钢生产工艺及技术概述.pptx

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图8.表面缺陷与结晶器中T[O]之间的 关系
图9.宏观夹杂物数量与T[O]之间的 关系
23
二次氧化
• 渣中FeO含量和厚度的检测
Mo/Cr+Cr2O3//ZrO2//aO渣/Fe(钢液)
图10.Quick-Slag原电池示意图
图11.化学分析检测渣中FeO含量
与原电池检测值的比较
24
二次氧化
• 渣脱氧减少二次氧化 RH操作中最普遍的方法
加了卷渣和二次氧化。 – 长时间小气量吹氩促进夹
杂物上浮。 – 能精确控制钢液成分、钢
液洁净度和温度。
图5.钢包炉
11
钢包操作
• 真空电弧加热脱气
图6.真空电弧加热(VAD)
✓ 真空、搅拌、加热和合成渣利 于脱氢、脱硫、去除夹杂物。
✓ 真空加合金调节钢液成分,提 高收得率。
✓ 喂钙变性夹杂。 ✓ 连铸前精确控制钢水温度。 ✓ 促进渣钢间的反应,利于去除
– 临界速度随着黏度的增大和渣层厚度的减小而增加。 – 增大保护渣黏度可减少保护渣卷入,减少缺陷。 – 保护渣密度和表面张力等亦对卷渣行为有所影响,不能仅
仅靠改变保护渣成分实现。
18
炉渣乳化
✓ 渣钢的物理化学性能 ✓ 流动行为 ✓ 系统的几何尺寸 ✓ 浸入式水口的浸入深度 ✓ 拉速
✓ 氩气流量 ✓ 结晶器尺寸 ✓ 水口外形 ✓ 流动控制机制 ✓ 堵塞程度
14
炉渣乳化
• 乳化渣产生机制
– 出钢铸流冲击渣层 – 渣钢界面气泡引起的搅动 – 钢流速度和方向变化引起渣钢界面之间的漩涡和剪切

弥散在连铸结晶器钢液表面的渣滴最容易引起铸坯缺陷
15
炉渣乳化
• 连铸结晶器内的卷渣机理
– 通过连铸结晶器窄边的上升回流流股。
与过大的氩气流量 有关,塞棒系统
– 不稳定的回流产生的高剪切应力。
1.9L/min,滑板系统 最大6L/min。
– 定期在SEN后方卡门漩涡区产生的下排流。
– 从SEN出口到表面的大的氩气泡。
– SEN出口布流不均匀引起
– 在较高钢通量的情况下,钢水和保护渣之间聚集的泡 沫。
16
炉渣乳化
• 影响卷渣的参数
– Kelvin-Helmholtz不稳定性标准(不同层流之间相对运动波动性)
21
炉渣乳化
• 限制涡流的方法
➢ 在水口附近设置流体障碍物 ➢ 吹气可延缓涡流产生 ➢ 改变水口形状或暂时关闭水口效果不明显
22
二次氧化
• 钢液二次氧化的原因
– 被合金中的氧化物污染 – 在钢包和中间包中与渣的反应 – 上一炉附着在钢包内壁或者RH浸渍管内的渣瘤污染钢液 – 钢液与空气之间的反应(出钢、精炼、中间包内) – 钢液与不同容器或长水口耐火材料内衬之间的反应
– 深度脱氧,出钢时确保稳定的、低的氧化性 – 保护性气氛,防止二次氧化 – 改良覆盖剂、保护渣和耐材,防止卷渣和大颗粒夹杂 – 氩气或电磁搅拌促进及杂物的上浮 – 合理改进、选取生产设备
7
洁净钢生产工艺及技术
图1.钢铁生产工艺流程图
8
• 气体搅拌
钢包操作
• 真空脱气
– RH、RD、REDA、钢包脱气、V-KIP
• 炼钢过程中,由于钢液或渣对耐火材料的化学或热侵 蚀作用以及固态耐火材料颗粒脱落进入钢液。
• 卷渣产生的夹杂物,渣钢界面上钢水流速较大以及渣 的乳化使液态渣滴卷入钢液。
6
钢中的夹杂物---控制/去除
• 避免生产过程中夹杂物的生成。 • 促使夹杂物向渣/气、钢/渣或钢液/耐火材料界面移
动,使其进一步脱离钢液进入界面并从界面分离。
WWH
• 什么是洁净钢? • 钢为什么不洁净? • 如何生产洁净钢?
2
洁净钢
• 用来标志近来钢铁冶炼发展及其应用特别是针对与 氧化物夹杂相关的洁净度问题。
• 在钢中要尽可能地去除有害组元,在冶金熔体、铸 坯和钢材中要求有非常均匀的分布。
• 洁净度因钢种和用途不同而不同。
3
洁净钢
• 当钢中的非金属夹杂物直接或间接地影响产品的 生产性能或使用性能时,该钢就不是洁净钢。
图12.渣脱氧后ULC钢板表面指数降低
图13.渣脱氧后表面缺陷率降低
25
二次氧化
• 减少中间包覆盖剂引起的二次氧化
B C
产生的液态炉渣会增加对中间包耐火材料的侵蚀
图14.中间包覆盖剂采用铝酸钙代替碳 化稻壳后,缺陷率减低
• 如果非金属夹杂物的数量、尺寸或分布对产品的 性能都没有影响,那么这种钢就可以被认为是洁 净钢。
4
钢中的夹杂物---分类
• 内生夹杂物:与钢液成分处于平衡状态,自然生
成,只能减少,无法完全去除。
• 外来夹杂物:与冶炼过程相关,采用合适的冶炼
工艺可以减少或避免。
5
钢中的夹杂物---来源
• 加入脱氧剂后生成的脱氧产物、裸露的钢液被大气氧 化和被耐火材料氧化生成的二次氧化产物。
Δv约为42cm/s,适于高拉速
– Taylor-Saffman不稳定性标准(不同黏度与密度)
• 产生剪切应力,同时由于表面张力的作用产生颈缩。
– 流体不稳定性标准
• 与脉动流有关,从结晶器流入的不同流股会产生波动, 从而发生卷渣。
17
• 量纲分析法
炉渣乳化
式中,Δρ 两相之间的密度差;γ - 表面张力;μ - 黏度;L - 界面之间相互作用的距离
夹杂物。
12
钢包操作
• CAS-OB
✓ 化学方式加热钢水。 ✓ 底吹氩、脱氧、加入合金。 ✓ 吹氧加铝加热钢水→≥5min搅
拌→20min左右静置。
图7.CAS(-OB)装置
13
钢包操作
• 钢液成分 • 出钢条件 • 耐火材料 • 脱氧剂和合金的加入 • 钢包衬与钢包残留物 • 钢包渣 • 夹杂物变性 • 精炼时间
图2.顶吹氧气搅拌
图3.REDA装置
图4.钢包脱气
9
钢包操作
• 钢包加热
– 不提高出钢温度,可获得更多的精炼时间。 – 降低铸坯由于温度导致的降级处理率,有利于夹杂物
去除。 – 增加对钢水洁净度和成分的控制。 – 更容易生产低磷、碳、硫、氧、氮和氢含量的钢种。
10
钢包操作
• 钢包炉
– 合适的顶渣成分。 – 需大吹气量搅拌钢液,增
Leabharlann Baidu19
炉渣乳化
• 漩涡卷渣
✓ 漩涡下排(漩涡型漏斗)和汇流下排(非漩涡型漏斗) ✓ 稳态漩涡和非稳态漩涡 ✓ 表面微凹、表面漩涡、全面发展卷吸空气的漩涡
低流速下,漩涡随着流出速度的增加而达到最大 稳定的高流速下,随着流出速率的增加,熔池临界深度
减小
20
• 漩涡卷渣
炉渣乳化
✓ K-流动能量损失 ✓ 随着渣钢比率的增加,临界熔池深度增大
相关文档
最新文档