中考数学压轴题翻折与旋转
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2013)年天才数学个性化辅导教案
学生姓名 性别 女 年级 初三 授课老师 学校 科目 数学 上课时段 2013春季 上课时间
课次
课次
第2次 课题
第2讲 翻折与旋转
教学目标 教学重点 教学难点
【专题剖析】
1.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1
B .
3
4
C .
2
3
D .2
2.如图,在Rt ABC △中,ACB 90∠=,°A 30∠=,°2BC =.将A B C △绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n
的大小和图中阴影部分的面积分别为(
)
A .302,
B .602,
C .3
602
, D .603,
3.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .下列结论:①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是 A .1 B .2 C .3
D .4
A ′
G D B
C A
4.如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相
切,点E ,F 分别在AD ,DC 上,现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE=2,则正方形ABCD 的边长是( )
A 、3
B 、4
C 、22+
D 、22
5.如图①为Rt △AOB ,∠AOB =900,其中OA =3,OB =4,将△AOB 沿x
轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得图②,图③,……,求旋转到图⑩时直角顶点的坐标是 .
6.如图,双曲线x
y 2
=
(x >0)经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得
△AB′C ,B′点落在OA 上,则四边形OABC 的面积是 . 7.(2012•菏泽)如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A ′B ′O . (1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;
(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.
(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出四边形PB ′A ′B 的两条性质.
8.(2012•临沂)如图,点A 在x 轴上,OA=4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
3.(2012•益阳)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.