平面解析几何初步知识要点

合集下载

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳平面解析几何是研究平面上点、直线、圆及其相关性质和相互关系的数学分支。

在平面解析几何中,我们通过坐标系的建立和运用向量的概念,可以方便地描述和研究平面上的各种几何图形和问题。

本文将对平面解析几何中的一些重要知识点进行归纳,以帮助读者更好地理解和掌握这些知识。

1. 坐标系的建立平面解析几何中,坐标系是最基本的工具之一。

一般来说,我们可以建立直角坐标系、极坐标系或其他特定的坐标系来描述平面上的点。

以直角坐标系为例,我们用x轴和y轴分别表示水平和垂直方向,将一个点P的位置用有序数对(x, y)表示,其中x称为点P的横坐标,y称为点P的纵坐标。

2. 点的坐标计算对于已知坐标系的平面上的点P(x, y),我们可以通过给定的信息计算出点的坐标。

例如,已知点A和点B的坐标,我们可以通过运用向量的加法和数乘运算,求得点P的坐标。

设向量OA的坐标为A(x1,y1),向量OB的坐标为B(x2, y2),则向量OP的坐标为P(x, y),其中P 的坐标满足向量OP = 向量OA + 向量OB。

3. 向量的定义和运算在平面解析几何中,向量是重要的概念之一。

向量可以表示有大小和方向的量,并且可以与点一一对应。

向量的表示方法有很多种,常见的有坐标表示和位置向量表示。

在坐标表示中,向量通常用有序数对(x, y)表示。

在位置向量表示中,我们用一个固定点O与向量表示的点P的坐标差,来表示向量OP。

向量的运算包括加法、减法和数乘。

设向量u = (x1, y1),向量v = (x2, y2),实数k,向量u与v的加法定义为:u + v = (x1 + x2, y1 + y2);向量u与v的减法定义为:u - v = (x1 - x2, y1 - y2);向量u的数乘定义为:k * u = (kx1, ky1)。

4. 直线的方程直线是平面几何中的基本要素之一。

在平面解析几何中,我们可以通过直线上的点和直线的斜率来确定直线的方程。

平面解析几何知识点总结

平面解析几何知识点总结

平面解析几何知识点总结直线方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.说明:k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合. 5.利用一般式方程系数判断平行与垂直设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0. l 1⊥l 2⇔A 1A 2+B 1B 2=0. 6.三种距离公式 (1)两点间距离公式点A (x 1,y 1),B (x 2,y 2)间的距离:|AB |= (x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.说明:求解点到直线的距离时,直线方程要化为一般式. (3)两平行线间距离公式两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2. 说明:求解两平行线间距离公式时,两直线x ,y 前系数要化为相同.圆的方程1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2;(3) 当D2+E2-4F<0时,该方程不表示任何图形.4. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.5.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2].注意:常用几何法研究圆的弦的有关问题.椭圆1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.椭圆定义用集合语言表示如下:P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数.在椭圆定义中,特别强调到两定点的距离之和要大于|F 1F 2|.当到两定点的距离之和等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当到两定点的距离之和小于|F 1F 2|时,动点的轨迹不存在. 2.椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 说明:当焦点的位置不能确定时,椭圆方程可设成Ax 2+By 2=1的形式,其中A ,B 是不相等的正常数,或设成x 2m 2+y 2n2=1(m 2≠n 2)的形式.3.椭圆中的弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a .双曲线1.双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用集合语言表示为:P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离非常重要.令平面内一点到两定点F1,F2的距离的差的绝对值为2a(a为常数),则只有当2a<|F1F2|且2a≠0时,点的轨迹才是双曲线;若2a=|F1F2|,则点的轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a焦点在x轴上,若y2的系数为正,则焦点在y轴上.3.双曲线与椭圆的区别(1) 定义表达式不同:在椭圆中|PF1|+|PF2|=2a,而在双曲线中||PF1|-|PF2||=2a;(2) 离心率范围不同:椭圆的离心率e∈(0,1),而双曲线的离心率e∈(1,+∞);(3) a,b,c的关系不同:在椭圆中a2=b2+c2,a>c;而在双曲线中c2=a2+b2,c>a.抛物线1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.这个定点F 叫作抛物线的焦点,这条定直线l 叫作抛物线的准线. 用集合语言描述:P ={M ||MF |d=1},即P ={M ||MF |=d }.注意:抛物线的定义中不可忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线. 2.抛物线的标准方程与几何性质。

解析几何的基础知识

解析几何的基础知识

解析几何的基础知识解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和关系。

通过引入坐标系,解析几何将几何问题转化为代数问题,从而使得几何问题的研究更加简洁和精确。

本文将介绍解析几何的基础知识,包括平面直角坐标系、点的坐标、直线的方程和距离公式等内容。

一、平面直角坐标系平面直角坐标系是解析几何的基础,它由两条相互垂直的坐标轴组成。

通常我们用x轴和y轴表示,x轴水平向右延伸,y轴垂直向上延伸。

坐标轴的交点称为原点,用O表示。

平面直角坐标系将平面划分为四个象限,分别记作第一象限、第二象限、第三象限和第四象限。

二、点的坐标在平面直角坐标系中,每个点都可以用一个有序数对表示,称为点的坐标。

设点P的坐标为(x, y),其中x表示点P在x轴上的投影长度,y表示点P在y轴上的投影长度。

例如,点A的坐标为(2, 3),表示点A在x轴上的投影长度为2,在y轴上的投影长度为3。

三、直线的方程在解析几何中,直线可以用方程表示。

一般来说,直线的方程有两种形式:一般式和斜截式。

1. 一般式方程一般式方程的形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

例如,直线L的一般式方程为2x + 3y - 6 = 0。

2. 斜截式方程斜截式方程的形式为y = kx + b,其中k为直线的斜率,b为直线在y轴上的截距。

斜率表示直线的倾斜程度,斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜。

例如,直线L的斜截式方程为y = 2x + 3。

四、距离公式在解析几何中,我们经常需要计算两点之间的距离。

设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则点A和点B之间的距离可以用以下公式表示:d = √((x2 - x1)^2 + (y2 - y1)^2)其中d表示点A和点B之间的距离。

例如,点A的坐标为(2, 3),点B的坐标为(5, 7),则点A和点B之间的距离为d = √((5 - 2)^2 + (7 - 3)^2) = √(3^2 +4^2) = √(9 + 16) = √25 = 5。

平面解析几何初步

平面解析几何初步

平面解析几何初步引言平面解析几何是数学中的一个重要分支,它研究了平面上点、直线、曲线的性质和相互关系。

本文将从平面上的点、直线以及曲线这三个方面,初步介绍平面解析几何的基本概念和方法。

一、平面上的点在平面解析几何中,点是最基本的概念之一。

点可以用坐标表示,常用的表示方法有直角坐标和极坐标两种。

1. 直角坐标系直角坐标系是平面上最常用的坐标系之一。

在直角坐标系中,平面被分成四个象限,每个象限有一个唯一的坐标表示。

点的坐标表示为(x, y),其中x表示横坐标,y表示纵坐标。

2. 极坐标系极坐标系是另一种常用的坐标系。

在极坐标系中,点的位置由极径和极角来确定。

极径表示点到原点的距离,极角表示点与正半轴的夹角。

二、平面上的直线直线是平面解析几何中的另一个重要概念。

直线可以用多种方式表示和描述,例如点斜式、一般式和截距式等。

1. 点斜式点斜式是一种常用的直线表示方法。

它通过给定直线上一点的坐标和直线的斜率来确定直线的方程。

点斜式的一般形式为y - y1 = k(x - x1),其中(x1, y1)为直线上的一点,k为直线的斜率。

2. 一般式一般式是另一种常用的直线表示方法。

它通过直线的一般方程来描述直线的性质。

一般式的一般形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

3. 截距式截距式是直线的另一种表示方法。

它通过直线与坐标轴的交点来确定直线的方程。

截距式的一般形式为x/a + y/b = 1,其中a和b分别表示直线与x轴和y轴的截距。

三、平面上的曲线曲线是平面解析几何中的另一个重要概念。

曲线可以通过方程或参数方程来表示和描述。

1. 方程曲线的方程是最常用的表示方法之一。

通过给定曲线上点的坐标满足的方程来确定曲线的性质。

常见的曲线方程有圆的方程、椭圆的方程、双曲线的方程等。

2. 参数方程参数方程是曲线的另一种表示方法。

通过给定曲线上点的坐标与参数之间的关系来确定曲线的性质。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。

下面我们来详细总结一下这部分的重要知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。

当倾斜角为 90°时,直线的斜率不存在。

2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。

(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。

(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。

4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。

(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

数学解析几何的基础知识

数学解析几何的基础知识

数学解析几何的基础知识数学解析几何是数学中的一个重要分支,它研究了几何图形与代数方程之间的关系。

通过运用代数和数学分析的方法,解析几何可以精确地描述和研究平面和空间中的几何性质。

本文将介绍一些数学解析几何的基础知识。

一、平面坐标系平面坐标系是解析几何的基础,用来描述平面上的点。

平面坐标系由两条互相垂直的坐标轴(通常是x轴和y轴)组成。

在平面坐标系中,每个点都可以表示为一个有序数对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。

二、距离和斜率距离和斜率是解析几何中常用的概念。

1. 距离:两点之间的距离可以通过勾股定理来计算。

设平面上两点A(x1, y1)和B(x2, y2),则点A和点B之间的距离d可以表示为d =√[(x2 - x1)² + (y2 - y1)²]。

2. 斜率:斜率用于描述平面上两点连线的倾斜程度。

设两点A(x1,y1)和B(x2, y2),则线段AB的斜率k可以表示为k = (y2 - y1) / (x2 - x1)。

当两点的x坐标相同时,斜率不存在。

三、直线方程在解析几何中,直线方程的形式可以是一般式、点斜式或截距式。

1. 一般式:一般式直线方程为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

2. 点斜式:点斜式直线方程使用直线上的一点和该直线的斜率来表示。

设点P(x1, y1)位于直线上,直线的斜率为k,则点斜式方程可以表示为y - y1 = k(x - x1)。

3. 截距式:截距式直线方程使用直线在x轴和y轴上的截距来表示。

设直线与x轴有截距a,与y轴有截距b,则截距式方程可以表示为x /a + y /b = 1。

四、圆的方程圆的方程可以有不同的表示形式,包括标准方程、一般方程和参数方程。

1. 标准方程:标准方程是描述平面上圆的一般形式,可以表示为(x- h)² + (y - k)² = r²,其中(h, k)是圆心的坐标,r是圆的半径。

平面解析几何知识总结

平面解析几何知识总结

1、直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y )2、一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:BCx B A y --=,即,直线的斜率:BAk -=. 3、两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .4、平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 5.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA C By Ax d +++=.6.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.7.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=. (2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=. (3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数. ② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.8.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . 注)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. 1、圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)2.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d3.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- . (3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =. 4.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 三、求曲线方程的步骤:(1)建立适当的坐标系,用有序实数对(,)x y 表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{}()P M p M =; (3)用坐标表示条件()p M ,列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.简言之:①建系、取点 ②列式 ③代换 ④化简 ⑤证明.四、椭圆1、椭圆的定义可用集合语言表示为:{}12122,2P M MF MF a a F F =+=>注意:当122a F F =时,表示线段12F F ;当122a F F <时,轨迹不存在. 2(e 可以刻画椭圆的扁平程度,e 越大,椭圆越扁,e 越小,椭圆越圆.)222a b c =+ 2.点P 是椭圆上任一点,F 是椭圆的一个焦点,则max PF a c =+,min PF a c =-. 3.点P 是椭圆上任一点,当点P 在短轴端点位置时,12F PF ∠取最大值.4.椭圆的第二定义:当平面内点M 到一个定点(,0)(0)F c c >的距离和它到一条定直线l :2a x c=的距离的比是常数(01)ce e a=<< 时,这个点的轨迹是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的 离心率.5直线与椭圆位置关系(1)直线与椭圆的位置关系及判定方法(2)弦长公式:设直线y kx b =+交椭圆于111222(,),(,)P x y P x y则1212||PP x =-,或1212||PP y =-(0)k ≠. .椭圆方程22221(0)x y a b a b+=>> 常用三角换元为cos ,sin x a y b θθ==五、双曲线1.双曲线的定义可用集合语言表示为:{}12122,2P M MF MF a a F F =-=<.注意:当122a F F =时,表示分别以1F 、2F 为端点的两条射线;当122a F F <时,轨迹不存在. 2.双曲线的标准方程与几何性质:(注:222c a b =+; e 越大,双曲线的张口就越大.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e =3.双曲线的第二定义:当平面内点M 到一个定点(,0)(0)F c c >的距离和它到一条定直线l :2a x c=的距离的比是常数(1)ce e a=> 时,这个点的轨迹是双曲线,定点是双曲线的焦点,定直线叫做双曲线的准线,常数e 是 双曲线的离心率.4.直线与双曲线位置关系同椭圆. 特别地,直线与双曲线有一个公共点,除相切外还有当直线与渐进线平行时,也是一个公共点.5.共渐近线的双曲线可写成2222(0)x y a b λλ-=≠ ;共焦点的双曲线可写成2222221()x y b a a b λλλ-=-<<-+. 六、抛物线抛物线的标准方程与简单几何性质:注意:1. p 的几何意义:p 表示焦点到准线的距离. 2p 表示抛物线的通径(过焦点且垂直于轴的弦).2. 若点00(,)M x y 是抛物线22(0)y px p =>上任意一点,则02p MF x =+. 3.若过焦点的直线交抛物线22(0)y px p =>于11(,)A x y 、22(,)B x y 两点,则弦长12AB x x p =++.。

平面解析几何基础

平面解析几何基础

平面解析几何基础解析几何是几何学的一个重要分支,它通过代数方法来研究几何问题。

平面解析几何是解析几何的基础,它研究平面中的点、直线、圆、椭圆等几何对象,并用代数方法对其进行描述和分析。

本文将介绍平面解析几何的基本概念、性质及应用。

一、平面直角坐标系在平面解析几何中,我们通常使用直角坐标系来描述点的位置。

直角坐标系由两条相互垂直的坐标轴构成,分别称为x轴和y轴。

我们用(x, y)表示直角坐标系中的一个点,其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。

二、平面上的点与向量在平面解析几何中,点是最基本的概念之一。

平面上的点可以通过坐标表示,也可以通过向量表示。

给定平面上两点A(x₁, y₁)和B(x₂,y₂),可以定义向量AB为从点A指向点B的有向线段。

三、平面直线的方程平面解析几何中,直线是另一个重要的概念。

平面直线可以通过方程来表示,其中最常见的是一般式和点斜式方程。

1. 一般式方程一般式方程表示为Ax + By + C = 0,其中A、B和C是常数,且A和B不同时为0。

一般式方程可以表示平面上的任意直线。

2. 点斜式方程点斜式方程表示为y - y₁ = m(x - x₁),其中m是直线的斜率,(x₁,y₁)是直线上的一个点。

点斜式方程可以通过直线的斜率和一个点来确定直线的方程。

四、平面圆的方程在平面解析几何中,圆是另一个重要的几何对象。

平面圆可以通过方程来表示,最常见的是标准方程和一般方程。

1. 标准方程标准方程表示为(x - h)² + (y - k)² = r²,其中(h, k)是圆心的坐标,r是半径的长度。

标准方程可以唯一地确定一个圆。

2. 一般方程一般方程表示为x² + y² + Dx + Ey + F = 0,其中D、E和F是常数。

一般方程可以表示一类特殊的圆,或者是退化成直线或点的情况。

五、平面解析几何的应用平面解析几何在实际中有广泛的应用,其中包括几何问题的求解、图形的变换等。

平面解析几何初步

平面解析几何初步

平面解析几何初步解析几何是几何学和代数学的交叉领域,它研究平面内的点、线、圆等形状及其相互关系,利用代数方法进行分析和计算。

在平面解析几何中,我们将重点讨论直线、圆和二次曲线及其性质。

本文将介绍平面解析几何的基本概念和常见问题,以及一些解题技巧。

一、直线的方程在平面解析几何中,直线是最基本的几何元素之一。

一条直线可以由其上的两个点确定,我们可以通过计算斜率和截距来表示直线的方程。

直线的方程有多种形式,常见的有点斜式和截距式。

1. 点斜式方程点斜式方程形如 y-y₁ = k(x-x₁),其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。

通过给定一点和斜率,我们可以轻松写出直线的方程。

例如,已知直线上的点 A(2,3) 和斜率 k=2,我们可以得到直线的点斜式方程为 y-3=2(x-2)。

点斜式方程的优点在于直接给出了直线的一般形式,但不适用于垂直于 x 轴的直线。

对于垂直于 x 轴的直线,我们可以使用斜截式。

2. 截距式方程斜截式方程形如 y=mx+b,其中 m 是直线的斜率,b 是直线在 y 轴上的截距。

斜截式方程适用于所有类型的直线,包括垂直于 x 轴的直线。

例如,有一条直线经过点 B(3,4) 且斜率为 1/2,我们可以得到直线的斜截式方程为 y=(1/2)x+2。

二、圆的方程圆是解析几何中的另一个重要概念,它由平面上与固定点的距离等于常数的点构成。

在平面解析几何中,圆的方程一般形式为 (x-a)² + (y-b)² = r²,其中 (a,b) 是圆的圆心坐标,r 是圆的半径。

根据圆的方程,我们可以计算圆心和半径,以及圆上的点。

例如,对于方程 (x-2)² + (y+3)² = 9,我们可以得到圆的圆心坐标为 (2,-3),半径为 3。

利用这些信息,我们可以描绘出圆的几何形状。

三、二次曲线的方程除了直线和圆,二次曲线也是平面解析几何中的重要对象。

[高中数学必修2]第二章 平面解析几何初步 知识梳理

[高中数学必修2]第二章  平面解析几何初步 知识梳理

第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。

数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。

记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。

可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。

(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。

从点A 到点B的向量,记作AB 。

线段AB 的长叫做向量AB 的长度,记作|AB|。

我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。

例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。

注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。

③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。

(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。

对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。

已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。

平面解析几何知识点总结

平面解析几何知识点总结

平面解析几何知识点总结在平面解析几何中,我们研究的是平面上的点、线和图形之间的关系,通过运用代数和几何的方法来解决相关问题。

本文将对平面解析几何的一些重要知识点进行总结,帮助读者更好地理解和掌握这一领域。

一、点的坐标表示平面解析几何中,用坐标表示点的位置是非常常见的。

一般情况下,我们使用直角坐标系来描述平面空间。

直角坐标系由两条相互垂直的坐标轴组成,通常记作x轴和y轴。

点在该坐标系中的位置可以通过一个有序数对(x, y)来表示,其中x是该点在x轴上的投影,y是该点在y轴上的投影。

二、直线的表示与性质1. 点斜式方程:对于已知一点P(x1, y1)和斜率k的直线L,可以使用点斜式方程y - y1 = k(x - x1)来表示该直线的方程式。

2. 截距式方程:对于已知直线L与x轴的截距a和与y轴的截距b的情况,可以使用截距式方程x/a + y/b = 1来表示该直线的方程式。

3. 斜截式方程:对于已知直线L的斜率k和与y轴的截距b的情况,可以使用斜截式方程y = kx + b来表示该直线的方程式。

4. 直线的性质:在平面解析几何中,直线有许多重要的性质,如平行、垂直、相交等。

其中,两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。

三、图形的表示与性质1. 点与点之间的距离:对于平面上的两个点A(x1, y1)和B(x2, y2),它们之间的距离可以使用勾股定理来计算,即d = √[(x2 - x1)² + (y2 -y1)²]。

2. 中点坐标:对于平面上的两个点A(x1, y1)和B(x2, y2),它们连线的中点的坐标可以通过取x轴和y轴的平均值来计算,即中点M的坐标为[(x1 + x2) / 2, (y1 + y2) / 2]。

3. 直线与直线的交点:两条直线的交点可以通过求解它们的方程组来确定。

如果两条直线有唯一交点,则它们必定相交于一点;如果两条直线重合,则它们有无数个交点;如果两条直线平行,则它们没有交点。

高中数学知识点归纳平面解析几何的性质与运算

高中数学知识点归纳平面解析几何的性质与运算

高中数学知识点归纳平面解析几何的性质与运算高中数学知识点归纳——平面解析几何的性质与运算一、引言在高中数学学习中,平面解析几何是一门重要的数学分支,它将代数和几何相结合,通过运用坐标系的方法来研究平面上的几何性质和相互关系。

本文将对平面解析几何的性质与运算进行归纳总结。

二、平面解析几何的基本概念1. 坐标系平面解析几何中,常使用直角坐标系来描述平面上的点。

直角坐标系由两个相互垂直的轴组成,分别称为x轴和y轴。

点在坐标系中的位置可由其坐标表示,标有符号的数对(x, y)即表示点的坐标,其中x 表示横坐标,y表示纵坐标。

2. 距离公式在平面解析几何中,计算两点之间的距离是常见的操作。

根据勾股定理,可以得到点A(x₁, y₁)和点B(x₂, y₂)之间的距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 斜率公式斜率是平面解析几何中的重要概念,表示直线的倾斜程度。

对于直线上的两点A(x₁, y₁)和B(x₂, y₂),可以使用斜率公式计算斜率:斜率k = (y₂ - y₁) / (x₂ - x₁)4. 中点公式平面解析几何中,中点是指线段的中点,可以通过中点公式求得。

对于线段的两个端点A(x₁, y₁)和B(x₂, y₂),中点的坐标为:中点M(x, y) = ((x₁+ x₂)/2 , (y₁+ y₂)/2)三、平面解析几何的性质1. 平行性质平面解析几何中,两条直线平行的判断条件之一是它们的斜率相等。

若两条直线的斜率分别为k₁和k₂,则当k₁= k₂时,两条直线平行。

2. 垂直性质两条直线垂直的判断条件之一是它们的斜率之积为-1。

若两条直线的斜率分别为k₁和k₂,则当k₁ * k₂ = -1时,两条直线垂直。

3. 距离性质平面解析几何中,根据距离公式可得,点P(x, y)到直线Ax + By +C = 0的距离为:d = |Ax + By + C| / √(A² + B²)4. 判定点是否在直线上对于直线Ax + By + C = 0和点P(x₀, y₀),若Ax₀ + By₀ + C = 0,则表明点P在直线上。

平面解析几何基础知识

平面解析几何基础知识

平面解析几何基础知识平面解析几何是数学中的一个分支,研究平面上点、直线、曲线的性质及它们之间的关系。

它在几何图形的研究和数学问题的解决中起到重要的作用。

本文将介绍平面解析几何的基础知识,包括点、直线、曲线的表示方法和相关性质。

一、点的表示和性质在平面解析几何中,点被表示为坐标形式,通常用有序数对(x, y)表示。

其中,x为横坐标,y为纵坐标。

点的坐标可以用于描述点的位置和与其他点的关系。

点的性质包括:1. 对称性:对于任意点(x, y),其对称点为(-x, -y)。

即点关于原点对称。

2. 距离公式:两点之间的距离可以通过以下公式计算:d = √((x2 - x1)^2 + (y2 - y1)^2),其中(x1, y1)和(x2, y2)分别表示两点的坐标。

二、直线的表示和性质直线是平面解析几何中的重要概念,它可以通过点斜式和一般式表示。

1. 点斜式:设直线经过点P(x1, y1),斜率为k,那么直线的点斜式方程为:y - y1 = k(x - x1),其中k表示直线的斜率。

2. 一般式:直线的一般式方程可以表示为Ax + By + C = 0,其中A、B、C为常数。

直线的性质包括:1. 斜率:斜率表示直线的倾斜程度,即直线上任意两点的纵坐标之差与横坐标之差的比值。

斜率为k的直线与x轴的夹角为arctan(k)。

2. 相互关系:两条直线的位置关系可以通过斜率和截距进行判断。

如果两条直线的斜率相等且截距也相等,则它们重合;若斜率相等但截距不相等,则它们平行;若斜率乘积为-1,则它们垂直。

三、曲线的表示和性质曲线是平面解析几何中的重要概念,常见的曲线有圆、椭圆、双曲线等。

它们可以由方程表示。

1. 圆的方程:设圆的圆心为点C(a, b),半径为r,则圆的方程为:(x - a)^2 + (y - b)^2 = r^2。

2. 椭圆的方程:设椭圆的圆心为点C(a, b),长半轴为a,短半轴为b,则椭圆的方程为:(x - a)^2/a^2 + (y - b)^2/b^2 = 1。

高中数学知识点:平面解析几何初步知识点总结

高中数学知识点:平面解析几何初步知识点总结

高中数学知识点:平面解析几何初步知识点总结高中数学知识点:平面解析几何初步知识点总结
平面解析几何初步:
①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。

直接考查主要考查直线的倾斜角、
直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现
在高考试卷中,主要考查直线与圆锥曲线的综合问题。

②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆
的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为
圆的切线问题。

③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要
的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。

空间直角坐标系也是
解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排
除出现考查基础知识的选择题和填空题。

完整版必修二平面解析几何初步知识点及练习带答案

完整版必修二平面解析几何初步知识点及练习带答案

1.直线的倾斜角与斜率:x 轴订交的直线,若是把 x 轴绕着 (1 )直线的倾斜角:在平面直角坐标系中,对于一条与交点按逆时针方向旋转到和直线重合时所转的最小正角记为 叫做 直线的倾斜角 .倾斜角[0,180 ) ,90 斜率不存在 .(2 )直线的斜率:ky 2y 1( x 1 x 2 ), k tan .( P 1 ( x 1 , y 1 ) 、 P 2 ( x 2 , y 2 ) ) .x 2 x 12.直线方程的五种形式:( 1)点斜式: y y 1 k( x x 1 ) ( 直线 l 过点 P 1 ( x 1 , y 1 ) ,且斜率为 k ).注:当直线斜率不存在时,不能够用点斜式表示,此时方程为xx 0 .( 2)斜截式: ykx b (b 为直线 l 在 y 轴上的截距 ).y y 1xx 1( y 1 y 2 , x 1x 2 ).( 3)两点式:y 1x 2 x 1y 2注:① 不能够表示与 x 轴和 y 轴垂直的直线;② 方程形式为: (x 2 x 1 )( yy 1 ) ( y 2y 1 )( x x 1 )0 时,方程能够表示随意直线.( 4)截距式:xy 1 ( a, b 分别为 x 轴 y 轴上的截距,且 a 0,b 0 ).a b注:不能够表示与 x 轴垂直的直线, 也不能够表示与 y 轴垂直的直线, 特别是不能够表示过原点的直线.( 5)一般式: Ax ByC 0(其中 A 、 B 不一样样时为 0).一般式化为斜截式:yA x C,即,直线的斜率:kA .BBB注:( 1)已知直线纵截距b ,常设其方程为 ykx b 或 x0.已知直线横截距x 0 ,常设其方程为 x my x 0 ( 直线斜率 k 存在时, m 为 k 的倒数 )或 y 0 .已知直线过点 (x 0 , y 0 ) ,常设其方程为 y k (x x 0 ) y 0 或 x x 0 .(2)分析几何中研究两条直线地址关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩 可正,可负,也可为 0.( 1)直线在两坐标轴上的截 距相等 直线的斜率为 或直线过原点..... 1( 2)直线两截距互为相反数 直线的斜率为 1 或直线过原点........( 3)直线两截距绝对值相等直线的斜率为1 或直线过原点. ....... 4.两条直线的平行和垂直 :( 1)若 l 1 : y k 1 x b 1 , l 2 : y k 2 x b 2① l 1 // l 2k 1 k 2 , b 1 b 2 ;② l 1 l 2k 1k 21.( 2)若 l 1 : A 1 x B 1 y C 10 , l 2 : A 2 x B 2 y C 20 ,有① l 1 // l 2A 1B 2A 2B 1且 A 1C 2 A 2 C 1 .② l 1l 2A 1 A 2B 1B 2 0.5.平面两点距离公式:( P 1 ( x 1 , y 1 ) 、 P 2 (x 2 , y 2 ) ) , P 1 P 2(x 1x 2 )2 ( y 1 y 2 ) 2 . x 轴上两点间距离:AB x B x A.x0x1x 22线段P1P2的中点是 M ( x0 , y0 ) ,则.y1y 2y 026.点到直线的距离公式:点P( x0 , y0 ) 到直线 l: Ax By C 0 的距离:d Ax0By0CA2 B 2.7.两平行直线间的距离:两条平行直线 l1: Ax By C1 0, l2: Ax By C 20 距离:dC1 C2A2.B2 8.直线系方程:( 1)平行直线系方程:①直线 y kx b 中当斜率k必可是b变动时,表示平行直线系方程..②与直线 l : Ax By C0 平行的直线可表示为Ax By C10 .③过点 P( x0 , y0 ) 与直线 l : Ax By C0平行的直线可表示为:A( x x0 ) B( y y0 ) 0 .( 2)垂直直线系方程:①与直线 l : Ax By C0 垂直的直线可表示为Bx Ay C10 .②过点 P( x0 , y0 ) 与直线 l : Ax By C0垂直的直线可表示为:B( x x0 ) A( y y0 ) 0 .( 3)定点直线系方程:①经过定点 P0 ( x0 , y0 ) 的直线系方程为y y0k(x x0 ) (除直线 x x0),其中 k 是待定的系数.②经过定点 P0 ( x0 , y0 ) 的直线系方程为A(x x0 )B( y y0 )0,其中 A,B是待定的系数.( 4)共点直线系方程:经过两直线l1:A1x B1 y C10, l 2: A2 x B2 y C 20 交点的直线系方程为A1x B1 y C1( A2 x B2 y C 2 )0 (除l 2),其中λ是待定的系数.9.曲线C1: f ( x, y) 0与 C2 : g (x, y)0 的交点坐标方程组 f ( x, y)0的解.g ( x, y)0 10.圆的方程:a)2( y b) 2r 2(r( 1)圆的标准方程:( x0 ).( 2)圆的一般方程:x2y 2Dx Ey F0(D 2 E 24F0) .( 3)圆的直径式方程:若 A( x1 , y1 ),B( x2 , y2 ),以线段 AB为直径的圆的方程是:( x x1 )( x x2 ) ( y y1 )( y y2 ) 0.注: (1) 在圆的一般方程中,圆心坐标和半径分别是( D ,E) , r1 D 2 E 24F .( 2)一般方程的特点:222① x 2和 y 2的系数相同且不为零;②没有 xy 项;③D2 E 24F0( 3)二元二次方程 Ax 2BxyCy 2Dx Ey F 0 表示圆的等价条件是:①AC0;②B 0;③D 2E 2 4AF0 .11.圆的弦长的求法:l ,弦心距为 d ,半径为 r ,(1)几何法:当直线和圆订交时,设弦长为则:“半弦长 2 +弦心距 2=半径 2”—— ( l)2d 2 r 2 ;(2)代数法:设2的斜率为 , 与圆交点分别为 ( , ) ( , ) l k l y 1 x 2 y 2 ,则A x 1 ,B|AB|1 k 2| x Ax B | 11| y A y B |k2(其中 | x 1x 2 |,| y 1 y 2 |的求法是将直线和圆的方程联立消去y 或 x ,利用韦达定理求解)12.点与圆的地址关系:点 P( x 0 , y 0 ) 与圆 ( x a)2( yb) 2 r 2 的地址关系有三种① P 在在圆外 dr( x 0a) 2 ( y 0 b) 2 r 2 .② P 在在圆内 dr(x 0a) 2( y 0 b) 2 r 2 .③P 在在圆上d r( x 0a) 2 ( y 0 b) 2r 2 .【P 到圆心距离d( a x 0 )2 (b y 0 )2 】13.直线与圆的地址关系:0 与 圆 ( x a) 2( y b) 2r 2 的 位 置 关 系 有 三 种直 线 Ax By C( dAa Bb CA2B2):圆心到直线距离为 d ,由直线和圆联立方程组消去 x (或 y )后,所得一元二次方程的鉴别式为.d r相离0; d r 相切0 ; d r 订交 0 .14.两圆地址关系 : 设两圆圆心分别为 O 1 ,O 2 ,半径分别为 r 1 , r 2 , O 1O 2 dd r 1 r 2 外离 4条公切线 ; d r 1 r 2 内含无公切线 ; dr 1 r 2外切3条公切线 ; dr 1 r 2内切1条公切线 ;r 1 r 2 d r 1 r 2订交 2条公切线 .15.圆系方程: x 2 y 2 Dx Ey F 0( D 2 E 2 4F0)( 1)过点 A( x 1, y 1 ) , B( x 2 , y 2 ) 的圆系方程:(x x 1)( x x 2 ) ( y y 1 )( y y 2 )[( x x 1 )( y 1 y 2 ) ( y y 1 )(x 1x 2 )] 0( x x 1)( xx 2 ) ( y y 1)( y y 2 ) (ax by c) 0 , 其中 axby c0 是直线 AB 的方程.0 与圆 C : x 2y 2(2 )过直线 l : AxBy CDxEy F 0的交点的圆系方程:x 2 y 2 Dx Ey F( Ax ByC ) 0, λ是待定的系数.(3 )过圆 C 1 : x 2y 2D 1xE 1 yF 1 0 与圆 C 2 : x 2y 2 D 2 x E 2 y F 2 0 的交点的圆系方程: x 2y 2 D 1 x E 1 yF 1(x 2y 2D 2 xE 2 yF 2 ) 0 , λ是待定的系数.特别地,当1时, x2y2D1 x E1 y F1(x2y2 D 2 x E2 y F2) 0就是( D1 D 2 )x ( E1E2 ) y (F1F2 )0 表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:( 1)过圆x2y 2r 2上的点 P(x0 , y0 ) 的切线方程为: x0 x y0 y r 2.( 2)过圆 ( x a)2( y b) 2r 2上的点P( x0, y0)的切线方程为: ( x a)( x0a)( y b)( y0b)r 2.( 3)过圆x2y 2Dx Ey F0 上的点 P( x0 , y0 ) 的切线方程为:x0 x y0 y D ( x0x)E( y0y)F0 .22(4)若 P( x0 ,y0)是圆 x2y 2r 2外一点,由P( x0,y0)向圆引两条切线,切点分别为A,B则直线 AB的方程为xx0yy0r 2(5)若 P(x0,y0)是圆 ( x a) 2( y b)2r 2外一点,由P( x0,y0)向圆引两条切线,切点分别为 A,B 则直线 AB的方程为(x0a)( x a)( y0b)( y b)r 2( 6)当点P( x0, y0)在圆外时,可设切方程为y y0k( x x0 ) ,利用圆心到直线距离等于半径,即 d r ,求出 k ;或利用0,求出 k .若求得 k 只有一值,则还有一条斜率不存在的直线 x x0.17.把两圆x2y 2D1 x E1 y F10 与 x 2y2 D 2 x E2 y F20方程相减即得订交弦所在直线方程:(D1 D 2 ) x( E1E2 ) y( F1F2 )0.18.空间两点间的距离公式 :若 A ( x1, y1, z1), B ( x2, y2, z2),则 AB(x2x1 )2(y2y1)2 ( z2 z1 )2一、选择题1.已知点A(1,2), B(3,1),则线段 AB 的垂直均分线的方程是()A .4 x 2 y 5B.4x 2 y 5C.x 2 y 5D.x 2y 52.若A(1, m) 三点共线则 m 的值为()2,3), B(3, 2), C (A.112B.C. 2D. 2 2x y23.直线 1 在 y 轴上的截距是()b2a2A .b B.b2C.b2D.b4.直线kx y 1 3k ,当k变动时,所有直线都经过定点()A .(0,0)B.(0,1)C.(3,1)D.(2,1)5.直线x cos y sin a0 与 x sin y cos b 0 的地址关系是()A .平行B.垂直C.斜交D.与a,b,的值相关6.两直线3x y 3 0 与 6x my 1 0 平行,则它们之间的距离为()A .4B.213 C .513 D .7101326207.已知点A(2,3), B( 3,2) ,若直线l过点 P(1,1)与线段 AB 订交,则直线l的斜率 k 的取值范围是()33k 23D.k 2A .k B. C .k 2或k444二、填空题1.方程x y 1 所表示的图形的面积为_________。

平面解析几何

平面解析几何
管理类联考
平面解析几何
101
Contents
目录
01. 基础知识
02. 直线与圆
03. 椭圆与双曲线
04. 多边形与圆
极坐标系与参数方程
Part One
基础知识
平面解析几何的定义
解析几何:研 究几何图形的 代数性质的数
学分支
平面解析几何: 研究平面上点 的坐标、向量、 直线、圆锥曲 线等几何图形
极坐标系与参数方程的应用
曲线的表示:利用极坐标系和参 数方程可以简洁地表示曲线的形
状和位置
曲线的变换:利用极坐标系和参 数方程可以实现曲线的平移、旋
转、缩放等变换
A
B
C
D
曲线的求解:利用极坐标系和参 数方程可以方便地求解曲线的方
程和性质
曲线的拟合:利用极坐标系和参 数方程可以对实验数据进行拟合,
得到曲线的方程和性质
相贯:直线 穿过圆心, 且与圆有两 个交点
Part Three
椭圆与双曲线
椭圆的基本性质
定义:平面内到两个定点 的距离之和为常数的点的 集合
焦点:椭圆有两个焦点, 位于椭圆的长轴上
离心率:椭圆的离心率等 于椭圆的焦点到椭圆中心 的距离除以椭圆的长轴
标准方程:椭圆的标准方 程为x^2/a^2 + y^2/b^2 = 1,其中a和 b分别表示椭圆的长轴和 短轴
感谢您的观看与聆听
101
极坐标系中的点与平面解析几 何中的点之间可以相互转换。
参数方程的基本概念与性质
01
02
03
04
参数方程的定义: 用参数表示的方 程,如x=f(t), y=g(t)
参数方程的性质: 参数方程可以表 示曲线、曲面等 几何图形

平面几何基础知识

平面几何基础知识

平面几何基础知识在数学中,平面几何是研究平面上的图形、点、线、面等基本元素之间的关系和性质的一门学科。

它是数学中最基础、最重要的一个分支,对于理解和应用其他数学概念起着重要的作用。

本文将介绍平面几何的基础知识,包括点、线、面的概念以及它们之间的关系。

一、点的概念在平面几何中,点是最基本的元素。

点通常用大写拉丁字母表示,比如A、B、C等。

点在平面上没有大小,只有位置。

任意两个点之间都可以划定一条直线。

而且,任意三个点不共线,可以确定一个平面。

二、线的概念线是由一系列点连在一起形成的图形。

线有无限延伸性,没有起点和终点,可以用小写字母表示,如ab、cd、ef等。

线可以是直线或曲线。

直线是两个点之间最短的路径,也是最简单的线。

曲线则是在平面上运动形成的轨迹,它可以弯曲和交叉。

三、线段和射线线段是由两个点及其之间的所有点组成的部分,具有起点和终点,可以用符号“ ”表示。

比如AB表示线段AB。

而射线是由一个起点及其从该起点出发的所有点组成的部分,可以用符号“→”表示。

比如AB→表示以点A为起点,沿着直线AB方向上无限延伸的射线。

四、面的概念面是由无数个点和直线组成的,是一个没有厚度的二维物体。

面可以用大写字母表示,如P、Q、R等。

在平面几何中,有两种特殊的面:平面和圆。

平面由无数的直线组成,没有边界。

圆是由平面上到一个固定点的距离相等的所有点组成的。

五、基本性质和定理平面几何有许多基本的性质和定理。

下面介绍几个常见的:1. 直线的性质:直线上的任意两点可以连成一条直线,直线与直线最多只有一个公共点,直线可以无限延伸。

2. 平行线的性质:如果两条直线在平面上没有交点,那么它们是平行线。

3. 垂直线的性质:如果两条直线相交成直角,那么它们是垂直线。

4. 三角形的性质:三角形是由三条线段组成的图形。

三角形的内角和等于180度。

5. 圆的性质:圆上的任意点到圆心的距离相等,这个相等的距离叫做半径。

圆上的点可以任意连成一条弧。

2024高考数学平面解析几何知识点

2024高考数学平面解析几何知识点

2024高考数学平面解析几何知识点
在2024年高考数学中,平面解析几何是一个重要的知识点,主要包括以下几个部分:
1. 有向线段和直线:了解有向线段和直线的概念,掌握直线的方程式和参数方程,理解直线的倾斜角、截距等概念。

2. 圆:掌握圆的标准方程和一般方程,理解圆心、半径、弦、直径等概念,会求圆的方程和圆心、半径等。

3. 椭圆、双曲线和抛物线:掌握椭圆、双曲线和抛物线的标准方程和性质,理解焦点、准线、离心率等概念,会求这些曲线的方程和相关性质。

4. 参数方程和极坐标:了解参数方程和极坐标的概念,掌握参数方程和极坐标的转换关系,会求参数方程和极坐标的方程。

5. 平面几何的基本概念:理解平面几何中的点、线、面的概念,掌握基本性质和定理,如平行线、垂直线、角等概念和性质。

6. 解析几何的基本方法:掌握解析几何中的基本方法,如向量法、解析法等,理解这些方法的几何意义和代数表示,能够运用这些方法解决一些平面几何问题。

7. 圆锥曲线的应用:理解圆锥曲线的应用,如椭圆用于卫星轨道、双曲线用于光学等,了解圆锥曲线在日常生活和科学研究中的应用。

以上是2024年高考数学平面解析几何的主要知识点,考生需要熟练掌握并能够灵活运用。

同时,也需要注重理解和应用,不要死记硬背。

平面解析几何初步

平面解析几何初步

平面几何初步课程要求1.直线及方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式及一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆及方程(1)掌握确定圆的几何要素,掌握圆的标准方程及一般方程.(2)能根据给定直线、圆的方程判断直线及圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.考情分析平面解析几何是高中数学的一个基本知识点,我们学习它是为了后面学习空间几何和圆锥曲线打基础。

但平面几何作为一个考点,还是会在选择题或填空题中出现一道,而且难度适中。

为了拿到这5分,并且为后面的解答题做准备,我们需要牢牢掌握这部分基础知识。

知识梳理1一、直线及方程1.直线的倾斜角和斜率:倾斜角:x轴正向及直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线及x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

斜率反映直线及轴的倾斜程度斜率的公式:给定两点()()y x p y x P ,,222111,,x x 21≠,则直线P P 21的斜率平行及垂直:两条直线l l 21,,他们的斜率分别为k k 2,12.直线的方程点斜式:直线l 过点()y x p 000,,且斜率为k,那么直线方程为: 斜截式:直线l 斜率为k ,且及y 轴交点为(0,b ), 那么直线方程为: y=kx+b两点式:直线l 过点(),y x p 111,()y x p 222,,其中x x 21≠,y y 21≠,那么直线方程为xx x yy y x y 121121--=--直线的一般方程:0=++C By Ax ,(A ,B 不同是为0) 3.两点间的距离 4.点到直线的距离点()y x p 000,到直线l :0=++C By Ax 的距离为:B2200+++=A y x CB A d5. 两条平行线间的距离已知两条平行线0:,0:C 2211=++=++By Ax By Ax l C l ,则l l 21与的距离为BA C C d 2221+-=二、圆及方程1.圆的定义(1)在平面内,到定点的距离等于定长的点的集合叫做圆. (2)确定一个圆的要素是圆心和半径. 2.圆的方程(1)圆的标准方程: 222()()x a y b r -+-=,其中圆心为A(a,b),半径为r ;(2)圆的一般方程:220x y Dx Ey F ++++=()2240D E F +->注:上述方程配方得:22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭3.求圆的方程的一般步骤为:(1) 根据题意选择标准方程或者一般方程; (2) 根据条件列出关于,,a b r 或者,,D E F 的方程组; (3)解出,,a b r 或者,,D E F 代入标准方程或者一般方程.4.点00(,)M x y 及圆222()()x a y b r -+-=的关系: (1)若2200()()x a y b -+->2r 则点M 在圆外;(2)若22200()()x a y b r -+-=,则点M 在圆上; (3)若2200()()x a y b -+-<2r ,则点M 在圆内.5.直线l :0Ax By C ++=及圆 222()()x a y b r -+-=的位置关系: (1)若圆心A 到直线l的距离d r =>,则直线及圆相离;(2)若圆心A 到直线l的距离d r =<,则直线及圆相交; (3)若圆心A 到直线l的距离d r ==,则直线及圆相切; 6.圆及圆的位置关系:设两圆的连心线长为l ,则判别圆及圆的位置关系的依据有以 下几点:(1)当21r r l +>时,圆1C 及圆2C 相离; (2)当21r r l +=时,圆1C 及圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 及圆2C 相交;注:当圆()()2221111:C x a y b r -+-=及圆()()2222222:C x a y b r -+-=相交及A 、B 两点时,上述方程相减即得直线AB 方程. 题型分类1.求直线的方程:例. 如图所示,已知两条直线l 1:x -3y +12=0,l 2:3x +y -4=0,过定点P (-1,2作一条直线l ,分别及直线l 1、l 2 交于M 、N 两点,若点P 恰好是MN 的中点,求直线l 的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当l:y=kx+b时,d= ,
当l:x=a时,d=|a-x0|,当l:y= b时,d=|b-y0|。
3、两平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离公式d= ,
当l1:y=kx+b1,l2:y=kx+b2时,d= ,
当l1:x=c1,l2:x=c2时,d=| c1-c2|,
(1)l1∥l2 k1=k2,且b1≠ b2;
(2)l1、l2重合 k1=k2,且b1=b2;
斜率不存在时,l1∥l2,则l1:x=c1,l2:x =c2且c1≠c2;
(3)l1⊥l2 k1·k2= ,
斜率不存在时,l1l2,则l1:x=c1,l2:y=c2.
2、对于两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,
(x0,y0)——直线上已知=kx+b
k——斜率
b——纵截距
倾斜角为90°的直线不适用(y轴,即x=0)
两点式
=
(x1,y1),(x2,y2)是直线上两个已知点
与两坐标轴垂直的直线不适用
截距式
+ =1
a——直线的横截距
b——直线的纵截距
过(0,0)及与两坐标轴垂直的直线不适用
利用上面的直线系方程可证明有关直线过定点问题等.
六、两点、点到直线、两平行线间的距离
1、两点P1(x1,y1),(x2,y2)间的距离公式| P1P2|= ,
当x1=x2时,| P1P2|=|y1-y2|,当y1=y2时,| P1P2|=|x1-x2|。
2、点P(x0,y0)到直线l:Ax+By+C=0的距离公式d= ,
(2)l/⊥l时,设l/:y= x+b/(k≠0);
斜率不存在,l/∥l时,则l:x=c,可设l/:x=c/,且c/≠c;
l/⊥l时,则l:x=c,可设l/:y=c/;
斜率k=0,l/⊥l时,则l:y=c,可设l/:x=c/。
2、对于直线l:Ax+By+C=0,可以这样假设l/:
(1)l/∥l时,设l/:Ax+By+C/=0,且C/≠C;
五、两直线的位置关系
直角坐标平面内两条直线的位置关系有:平行、重合、相交(垂直)
(一)两直线平行或垂直的判断
判断两直线是否平行(重合)或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则可以用一般式的平行垂直条件来判断.
1、对于两条直线l1:y=k1x+b1,l2:y=k2x+b2,有以下结论:
2、直线的斜率是对直线相对于x轴的倾斜程度的刻画,也是确定直线方向的特征量(数量):
(1) 时, , 时,直线的斜率不存在;
(2) (其中 是直线上两个不同的点,即 );
(3)当k>0时, ;当k=0时,α=0;当k<0时, .
二、各种形式的直线方程及适用范围
名称
方程
说明
适用条件
点斜式
y-y0=k(x-x0)
(2)l/⊥l时,设l/:Bx-Ay+C/=0.
(三)直线l1与l2的交点、直线系方程
直线l1与l2交点对于两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,
当A1B2≠A2B1时,l1与l2相交。
(1)方程组 的解即l1与l2交点P坐标;
(2)直线l:A1x+B1y+C1+λ(A2x+B2y+C2)=0表示过l1与l2交点P的一系列直线(但不含直线l2),
(3)当A1B2=A2B1,A1C2≠A2C1,或B1C2≠B2C1时,l1∥l2,
直线l:A1x+B1y+C1+λ(A2x+B2y+C2)=0表示与l1平行或重合的一系列直线(但不含直线l2),
(4)直线l:λ(A1x+B1y+C1)+μ(A2x+B2y+C2)=0表示过l1与l2交点P或与l1与l2平行或重合的一系列直线.
平面解析几何初步
一、直线的倾斜角、斜率
1、直线的倾斜角是反映直线方向的特征量(几何图形):
(1)在平面直角直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最中正角叫做直线的倾斜角;
(2)当直线和x轴平行或重合时,我们规定直线的倾斜角为0°;
(3)直线的倾斜角范围是0°≤α<180°,即 .
当l1:y=c1,l2:y=c2时,d=| c1-c2|.
七、对称问题
1、点关于点对称
(1)点P(a,b)关于M(m,n)的对称点Q(2m-a,2n-b),
(2)点P(a,b)关于原点O(0,0)的对称点Q(-a,-b).
2、点关于直线对称
点P(a,b)关于直线l:Ax+By+C=0的对称点Q的求法:
4、化简:进行等价变形和转化;
5、结论:将代数和结论转化为几何结论.
四、注意:
(1)要注意倾斜角的范围,要注意斜率存在的条件;
(2)要注意直线方程的几种形式各自的适用范围,特别是在利用直线的点斜式、斜截式解题时,要防止由于“无斜率”而漏解,在解与截距有关的问题时,要防止“零截距”漏解现象;
(3)在利用解析法证明时,注意几个步骤,防止特殊化.
2)l1与l2重合 A1B2=A2B1,A1C2=A2C1,且B1C2=B2C1;
3)l1与l2相交 A1B2≠A2B1;
4)l1⊥l2 A1A2+B1B2=0.
(二)与已知直线平行或垂直直线的求法
求与已知直线平行或垂直的直线一般采用待定系数法.
1、对于直线l:y=kx+b,可以这样假设l/:
(1)l/∥l时,设l/:y=kx+b/,且b/≠b;
(1)当A2,B2,C2都不为零时,有以下结论:
1)l1∥l2 = ≠ ;
2)l1与l2重合 = = ;
3)l1与l2相交 ≠ ;
4)l1⊥l2 A1A2+B1B2=0.
(2)当A1,A2,B1,B2,C1,C2∈R时,有以下结论:
1)l1∥l2 A1B2=A2B1,A1C2≠A2C1,或B1C2≠B2C1;
一般式
Ax+By+C=0
, , 分别为斜率、横截距和纵截距
A、B不能同时为零
注意:直线五种形式间的转化.
三、解析法:通过直角坐标系,利用代数方法证明几何命题的方法称为解析法,解析法证题的一般步骤为:
1、建标:建立适当的直角坐标系;
2、设点:根据已知条件,写出已知点的坐标(不要特殊化);
3、列式:根据已知条件,建立关系式;
方法一、设Q(c,d), P、Q中点M( , ),由
解得c,d,得Q(c,d);
相关文档
最新文档