2019全国初中数学竞赛初三预赛试题
2019年初三数学竞赛试卷附答案
![2019年初三数学竞赛试卷附答案](https://img.taocdn.com/s3/m/65420af265ce050876321385.png)
2019学年初三数学竞赛试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,4*8=32)1.已知一列有规律的数:2,3,5,9,17,33,…,其中第10个数是()A.512 B.513 C.1024 D.10252.已知abc≠0,且a+b+c=0,则代数式的值是()A.3 B.2 C.1 D.03.如图,已知长方形纸片ABCD,AB=1.以点A所在直线为折痕折叠纸片,使点B落在AD上,折痕与BC交于点E;再以点E所在直线为折痕折叠纸片,使点A落在射线BC上,若折痕恰好经过点D,则长方形纸片ABCD的面积约为()A.1.4 B.1.5 C.1.6 D.1.74.甲,乙,丙,丁,戊与小强六位同学参加乒乓球比赛,每两人都要比赛一场,到现在为止,甲已经赛了5场,乙已经赛了4场,丙已经赛了3场,丁已经赛了2场,戊已经赛了1场,小强已经赛了()A.1场B.2场C.3场D.4场5.如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B,C,G在同一直线上,M是线段AE的中点,连接MF,则MF的长为()A.B.C.2D.6.计算:等于()A.B.C.D.7.直角三角形中,两直角边长为a,b,斜边长为c,斜边上的高为h,则()A.B.C.D.8.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[]+[]+[]+…+[]=()A.132 B.146 C.161 D.666第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,4*8=32)9.若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于.10.已知﹣3<a<﹣2,那么满足不等式的整数a是.11.如图,在四边形ABCD中,E,F分别是两组对边延长线的交点,EG,FG分别平分∠BEC,∠DFC,若∠ADC=60°,∠ABC=80°,则∠EGF=度.12.观察如图,我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律,第6个图形共有个正方形.13.不论k取什么样的实数,直线y=kx+(2009﹣2010k)总经过一定点,则这个定点的坐标为.14.如图,将△ABC的三个顶点与同一个内点连接起来,所得三条连线把△ABC分成六个小三角形,其中四个小三角形面积在图中已标明,则△ABC的面积为.15.设a、b、c均为非零实数,且ab=2(a+b),bc=3(b+c),ca=4(c+a),则a+b+c=.16.如图:在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则sin∠DBE的值为.评卷人得分三.解答题(共7小题,56分)17.(6分)如图,在等腰直角△ABC的斜边AB上取两点M、N(不与A、B重合)使∠MCN=45°,记AM=m,MN=x,NB=n,试判断以x、m、n为边长的三角形的形状,并给予说明.18.(6分)当x分别取值,,…,,,1,2,3,…,2007,2008时,求所得各代数式值的和.19.(6分)现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.求线段B′C的长.20.(8分)设S=++…+,求不超过S的最大整数[S].21.(10分)如图,正方形EFGH内接于△ABC,设BC=(表示一个两位数),EF=c,三角形中高线AD=d,已知a,b,c,d恰好是从小到大的四个连续正整数,试求△ABC的面积.22.(10分)春运开始,婺源长途汽车站以服务乘客为宗旨,随时根据乘客流量,调整检票口的数量,尽量使乘客不在车站滞留.2月9日,车站开始检票时,有a(a>0)名乘客在候车室排队等候检票进站,检票开始后,仍有乘客继续前来排队检票进站.设乘客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才能将排队等候检票的乘客全部检票完毕;若开放两个检票口,则需10分钟便可将排队等候检票的乘客全部检票完毕;如果要在5分钟内将排队等候检票的乘客全部检票完毕,以使后来到站的乘客能随到随检,至少要同时开放几个检票口?23.(10分)如图,正方形ABCD被直线OE分成面积相等的两部分,已知线段OD、AD的长都是正整数,=20,求满足上述条件的正方形ABCD面积的最小值.参考答案与试题解析一.选择题(共8小题)1.已知一列有规律的数:2,3,5,9,17,33,…,其中第10个数是()A.512 B.513 C.1024 D.1025【分析】观察已知一列数:2,3,5,9,17,33,…,分析总结用一个代数式表示出来,那么第10个数很容易得出.【解答】解:已知一列有规律的数:2,3,5,9,17,33,…,2=21﹣1+13=22﹣1+15=23﹣1+19=24﹣1+117=25﹣1+133=26﹣1+1…那么,第n个数可表示为:2n﹣1+1.当n=10即第10个数是210﹣1+1=513.故选:B.【点评】此题考查的知识点是数字的变化类问题,同时考查学生观察探究归纳问题的能力.关键是找出这列数的规律:2n﹣1+1.2.已知abc≠0,且a+b+c=0,则代数式的值是()A.3 B.2 C.1 D.0【分析】由a+b+c=0,则a=﹣(b+c),b=﹣(a+c),c=﹣(a+b),代入所求分式即可得出答案.【解答】解:把a=﹣(b+c),b=﹣(a+c),c=﹣(a+b)代入,原式==﹣()﹣()﹣()==++=.故选:A.【点评】本题考查了分式的化简求值,属于基础题,主要是由已知条件先变形后再代入化简.3.如图,已知长方形纸片ABCD,AB=1.以点A所在直线为折痕折叠纸片,使点B落在AD上,折痕与BC交于点E;再以点E所在直线为折痕折叠纸片,使点A落在射线BC上,若折痕恰好经过点D,则长方形纸片ABCD的面积约为()A.1.4 B.1.5 C.1.6 D.1.7【分析】根据折叠的几何性质,第一次折叠得到四边形ABEB′为正方形,得到AE=AB=;根据第二次折叠得到∠AED=∠DEA′,从而得到∠AED=∠ADE,则AD=AE=,最后利用矩形的面积公式计算即可.【解答】解:如图,∵以点A所在直线为折痕折叠纸片,使点B落在AD上,折痕与BC交于点E,∴AB=AB′,∴四边形ABEB′为正方形,∴AE=AB=,又∵以点E所在直线为折痕折叠纸片,使点A落在射线BC上,折痕恰好经过点D,∴∠AED=∠DEA′,而∠DEA′=∠ADE,∴∠AED=∠ADE,∴AD=AE=,∴矩形纸片ABCD的面积=≈1.4.故选:A.【点评】本题考查了折叠的性质:折叠后的图形与原图形全等.也考查了正方形的判定与性质以及等腰三角形的性质.4.甲,乙,丙,丁,戊与小强六位同学参加乒乓球比赛,每两人都要比赛一场,到现在为止,甲已经赛了5场,乙已经赛了4场,丙已经赛了3场,丁已经赛了2场,戊已经赛了1场,小强已经赛了()A.1场B.2场C.3场D.4场【分析】根据甲参赛了5场,则甲和每人参赛了一场,所以根据戊已经赛了1场,戊只和甲比赛了一场;再根据乙已经赛了4场,则乙和甲、丙、丁、小强各参赛了一场.根据丁已经赛了2场,则丁只和甲、乙进行了比赛;再根据丙已经赛了3场,则丙和甲、乙、小强各比赛了一场.所以小强比赛了3场.【解答】解:由于每两人比赛一场,因此每个人最多比5场.甲已经赛了5场,则说明甲和其他5人都比了一场;由此可知:甲与小强比了一场,戊只和甲赛了一场;乙赛了4场,除去和甲赛的一场外,还和其他三人各赛一场,因此这三人必为:丙、丁和小强;丁赛了2场,由上面两个人的比赛情况可知:丁只与甲、乙进行了比赛;丙赛了3场,除去和甲、丁的两场比赛,还剩下一场,而丁和戊都没有和丙比赛,因此丙剩下的一场比赛必为和小强的比赛.因此小强赛了三场,且对手为甲、乙、丙.故选:C.【点评】本题要首尾结合进行逐步推理.5.如图,正方形ABCD和正方形CGEF的边长分别是2和3,且点B,C,G在同一直线上,M是线段AE的中点,连接MF,则MF的长为()A.B.C.2D.【分析】延长AD至H,易证△AMH≌△EMF,得FM=HM,AH=EF,又∵DH=AH﹣AD,且DF =CF﹣CD,解直角△DFH可以求得FH的长,根据FM=HM即可解题.【解答】解:延长AD至H,延长FM与AH交于H点,则在△AMH和△EMF中,,∴△AMH≌△EMF,即FM=MH,AH=EF,∴DH=AH﹣AD=EF﹣AD=1,∵DF=CF﹣CD=3﹣2=1,在直角△DFH中,FH为斜边,解直角△DFH得:FH=,又∵FM=MH,∴FM=,故选:B.【点评】本题考查了勾股定理在直角三角形中的运用,考查了正方形各边长相等的性质,考查了正方形各内角均为直角的性质,本题中求证FM=MH是解题的关键.6.计算:等于()A.B.C.D.【分析】利用平方差公式将每一个括号部分因式分解,寻找约分规律.【解答】解:原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××××…××=×=.故选:A.【点评】本题考查了平方差公式的运用,利用公式能简化运算.7.直角三角形中,两直角边长为a,b,斜边长为c,斜边上的高为h,则()A.B.C.D.【分析】在直角三角形中,由题意a2+b2=c2,根据直角三角形的面积公式和勾股定理将各式化简,等式成立者即为正确答案【解答】解:在直角三角形中,由题意得:a2+b2=c2,如图所示由△ABC∽△BCD得即h=,ab=hcA中==,故本选项正确;B中=≠,故本选项错误;C中≠,故本选项错误;D中由A中等式可知≠,故本选项错误.故选:A.【点评】此题不仅考查了勾股定理,还考查了面积法求直角三角形的高,等式变形计算较复杂,要仔细.8.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[]+[]+[]+…+[]=()A.132 B.146 C.161 D.666【分析】先计算出1.52,2.52,3.52,4.52,5.52,即可得出[],[],[]…[]中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.【解答】解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故[]+[]+[]+…+[]=1×2+2×4+3×6+4×8+5×10+6×6=146.故选:B.【点评】本题考查了估算无理数的大小,难度较大,注意根据题意找出规律是关键.二.填空题(共8小题)9.若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于﹣13.【分析】先由4x﹣3y﹣6z=0,x+2y﹣7z=0,用含y、z的代数式表示x,则x=y+z,x=7z﹣2y,利用两式相等得出y=2z,x=3z,然后代入代数式求解即可.【解答】解:∵4x﹣3y﹣6z=0,∴x=y+z,又∵x+2y﹣7z=0,∴x=7z﹣2y,∴7z﹣2y=y+z,解得y=2z,把它代入x=7z﹣2y,∴x=3z,∴==﹣13,故答案为:﹣13.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.10.已知﹣3<a<﹣2,那么满足不等式的整数a是1,2,3.【分析】先判、在哪两个整数之间,再求出整数a.【解答】解:∵3<<4,5<<6,∴0<﹣3<1,3<﹣2<4,∴0<a<4,故答案为1,2,3.【点评】本题考查了估计无理数的大小和不等式的整数解,是基础知识要熟练掌握.11.如图,在四边形ABCD中,E,F分别是两组对边延长线的交点,EG,FG分别平分∠BEC,∠DFC,若∠ADC=60°,∠ABC=80°,则∠EGF=110度.【分析】根据题意,由三角形内角和等于180°性质得出∠EGF=180°﹣(∠GFE+∠GEF),后根据三角形角平分线及外角性质依次代入得出结论.【解答】解:连接EF,根据三角形内角和等于180°及三角形角平分线的性质,∴∠EGF=180°﹣(∠GFE+∠GEF)=180°﹣(∠CFE﹣∠CFG+∠CEF﹣∠CEG)=180°﹣(∠CFE+∠CEF)+(∠CFG+∠CEG)=180°﹣(180°﹣∠C)+(∠CFD+∠CEB)=∠C+(∠CFD+∠CEB)=∠C+(180°﹣∠C﹣∠CDA+180°﹣∠C﹣∠CBA)=∠C+(360°﹣2∠C﹣80°﹣60°)=110°.【点评】本题主要考查了三角形内角和等于180°及三角形角平分线、外角的性质12.观察如图,我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律,第6个图形共有91个正方形.【分析】根据题意分析可得出规律即是后一个图在前一个图的基础上添加这个图的序号的平方即可得出.【解答】解:第1个图中有1个正方形;第2个图中共有2×2+1=5个正方形;第3个图中共有3×3+5=14个正方形;第4个图形共有4×4+14=30个正方形;按照这种规律下去的第5个图形共有5×5+30=55个正方形.∴第6个图形共有6×6+55=91个正方形.故第6个图形共有91个正方形.故答案为:91.【点评】此题主要考查了图形的变化类,此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.不论k取什么样的实数,直线y=kx+(2009﹣2010k)总经过一定点,则这个定点的坐标为(2010,2009).【分析】将直线方程转化为y=k(x﹣2010)+2009的形式,问题转化为:无论k取何值,该函数都经过一定点.【解答】解:由直线y=kx+(2009﹣2010k),得y=k(x﹣2010)+2009,∴,解得,∴无论k取何值,该直线都会经过点(2010,2009).故答案是:(2010,2009).【点评】此题主要考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式的点就一定在函数的图象上.14.如图,将△ABC的三个顶点与同一个内点连接起来,所得三条连线把△ABC分成六个小三角形,其中四个小三角形面积在图中已标明,则△ABC的面积为315.【分析】设三条连线的交点为P,根据同高不同底的两个三角形的面积比等于它们的底之比,可得==,从而有=①,同理可得=②,解①②组成的方程组,而S=S△BDP+S△CDP+S△CPE+S△APE+S△APF+S△BPF,易求其面积.△ABC【解答】解:设三条连线的交点为P,如图所示,∵S△BDP=40,S△CDP=30,S△CEP=35,∴==,∴=①,同理可得=②,解关于①②的方程组,得,故S△ABC=40+30+35+70+84+56=315.故答案为:315.【点评】本题考查了三角形面积、解二元一次方程组.注意:同高不同底的两个三角形的面积比等于它们的底之比.15.设a、b、c均为非零实数,且ab=2(a+b),bc=3(b+c),ca=4(c+a),则a+b+c=.【分析】首先分别把已知等式变为=的形式,然后可以变为=,由此可以得到关于a、b、c的方程组,解方程组即可求解.【解答】解:∵ab=2(a+b),bc=3(b+c),ca=4(c+a),∴=,=,=,∴=,=,,联立解之得,a=,b=,c=24,∴a+b+c=.故答案为:.【点评】此题主要考查了分式的混合运算,解题时首先利用分式的性质变形为倒数的形式从而得到关于a、b、c的方程组,然后解方程组即可解决问题.16.如图:在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC边上,点A落在点E处,折痕为BD,则sin∠DBE的值为.【分析】根据折叠的性质得出△ABD≌△EBD,设AD=DE=x,利用三角形的面积求出AD的长,再利用勾股定理即可求出BD的长,继而根据sin∠DBE=sin∠ABD=即可得出答案.【解答】解:根据折叠的含义可知:△ABD≌△EBD,设AD=DE=x,在直角△ABC中利用勾股定理解得:BC=10,S△ABC=S△ABD+S△BCD,即:AB•AD+BC•DE=AB•AC,则8x+10x=48,解得:x=.在直角△ABD中,BD===,因而:sin∠DBE=sin∠ABD==.故答案为.【点评】此题考查了翻折变换的知识,由折叠可得出图形的全等,而三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.三.解答题(共7小题)17.如图,在等腰直角△ABC的斜边AB上取两点M、N(不与A、B重合)使∠MCN=45°,记AM =m,MN=x,NB=n,试判断以x、m、n为边长的三角形的形状,并给予说明.【分析】把△ACM绕C点逆时针旋转90°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、x、n集中为△DNB,只需判定△DNB的形状即可.【解答】解:把△ACM绕C点逆时针旋转90°,得△CBD,连接DN,∵△ACM≌△BCD,∴∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,在△MNC与△DNC中,∵,∴△MNC≌△DNC(SAS),∴MN=ND,AM=BD=m,又∵∠DBN=45°+45°=90°,∴以x、m、n为边长的三角形的形状为直角三角形.【点评】本题考查等腰直角三角形的性质,难度较大,注意掌握旋下列情形常实施旋转变换:(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.18.当x分别取值,,…,,,1,2,3,…,2007,2008时,求所得各代数式值的和.【分析】本题须先根据公式,再根据已知条件即可求出所要求的值.【解答】解:因为,所以当x分别取值,n(n=2008,2007,3,2)时,计算所得各代数式值的和为0.而当x=1时,,故所得各代数式值的和为0.【点评】本题主要考查了分式的混合运算,在解题时要注意找出规律再代入求值.19.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′.求线段B′C的长.【分析】连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.【解答】解:连接BB'交AE于点O,由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2将AB=4,BE=3,AE==5代入,得AO=cm;∴BO===cm,∴BB′=2BO=cm,∴在Rt△BB'C中,B′C===cm.【点评】本题考查图形的折叠变化及三角形的内角和定理勾股定理的综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.20.设S=++…+,求不超过S的最大整数[S].【分析】首先将化简,可得=1+﹣,然后代入原式求得S的值,即可求得[S]的值.【解答】解:∵=,=,=,=|﹣|,=1+﹣,∴S=1+﹣+1+﹣+…+1+﹣=2000﹣,∴[S]=1999.∴不超过S的最大整数[S]为1999.【点评】此题考查了取整函数的应用与二次根式的化简.注意求得=1+﹣是解此题的关键.21.如图,正方形EFGH内接于△ABC,设BC=(表示一个两位数),EF=c,三角形中高线AD=d,已知a,b,c,d恰好是从小到大的四个连续正整数,试求△ABC的面积.【分析】由题意可知:a、b、c、d为连续四个整数故可设为a,a+1,a+2,a+3,其中BC=11a+1,(1≤a≤8的正整数),易证△AEF∽△ABC,可得:解得a=1或a=5,可求得△ABC的面积为24或224.【解答】解:a、b、c、d为连续四个整数故可设为a,a+1,a+2,a+3,∵BC=,∴BC=11a+1,∵四边形EFGH是正方形,∴EF∥BC,∴△AEF∽△ABC,∴=,即=,解关于a的方程,得a1=1,a2=5,经检验1和5是原分式方程的解,∴S△ABC=BC×AD=24,或S△ABC=BC×AD=224.【点评】本题考查了相似三角形的判定和性质、三角形面积公式、平行线分线段成比例定理的推论、解一元二次方程、相似三角形高的比等于相似比.22.春运开始,婺源长途汽车站以服务乘客为宗旨,随时根据乘客流量,调整检票口的数量,尽量使乘客不在车站滞留.2月9日,车站开始检票时,有a(a>0)名乘客在候车室排队等候检票进站,检票开始后,仍有乘客继续前来排队检票进站.设乘客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才能将排队等候检票的乘客全部检票完毕;若开放两个检票口,则需10分钟便可将排队等候检票的乘客全部检票完毕;如果要在5分钟内将排队等候检票的乘客全部检票完毕,以使后来到站的乘客能随到随检,至少要同时开放几个检票口?【分析】设旅客增加速度为x人/分;检票的速度为y人/分,至少要同时开放n个检票口,根据题意的等量关系可列出方程a+30x=30y,a+10x=2×10y,从而可解出a+5x≤5ny中的n的范围,也就得出了答案.【解答】解:设旅客增加速度为x人/分;检票的速度为y人/分,至少要同时开放n个检票口,依题意有a+30x=30y,a+10x=2×10y,如果要在5分钟内将排队等候检票的乘客全部检票完毕,则可得a+5x≤5ny,解得:n≥3.5.答:如果要在5分钟内将排队等候检票的乘客全部检票完毕,以使后来到站的乘客能随到随检,至少要同时开放4个检票口.【点评】本题考查一元一次不等式的应用,难度较大,涉及的未知数比较多,但需要解出的只有一个n,这就要求我们大胆的假设,这样有助于解题,并不是每个未知数都需要解出.23.如图,正方形ABCD被直线OE分成面积相等的两部分,已知线段OD、AD的长都是正整数,=20,求满足上述条件的正方形ABCD面积的最小值.【分析】根据OE把正方形ABCD分成面积相等的两部分,OE一定过正方形ABCD的中心O′,设BE=a,OD=m,分别表示出O′的坐标为(m+10.5a,10.5a),E为(m+21 a,20a),代入OE 的解析式y=kx得=,最后根据m=a求出21a的最小值为19,从而求出正方形ABCD的面积的最小值.【解答】解:OE一定过正方形ABCD的中心O′.设BE=a,OD=m∴CE=20a,正方形边长为21a;∴O′(m+10.5a,10.5a),E(m+21a,20a)设OE解析式为:y=kx∴k(m+10.5a)=10.5a,k(m+21 a)=20a∴=化简得:m=a∵m是整数,∴21a的最小值为19.此时正方形ABCD的面积为:(21a)2=(19)2=361.【点评】此题考查了一次函数的综合应用,关键是根据一次函数的解析式求出正方形边长的最小值.。
2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷解析版
![2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷解析版](https://img.taocdn.com/s3/m/4f3a7c7877232f60ddcca178.png)
2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷一、选择题(共6小题,每小题4分,满分24分)1.如果分式的值等于0,则x的值是()A.2B.﹣2C.﹣2或2D.2或32.已知a、b、c为一个三角形的三边长,则4b2c2﹣(b2+c2﹣a2)2的值为()A.恒为正B.恒为负C.可正可负D.非负3.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处4.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七.八.九三个年级共有学生800人.甲,乙,丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲,乙,丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙5.若方程组的解为x,y,且2<k<4,则x﹣y的取值范围是()A.0<x﹣y<B.0<x﹣y<C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<6.如图,已知AD是△ABC的外接圆的直径,AD=13cm,cos B=,则AC的长等于()A.5cm B.6cm C.10cm D.12cm二、填空题(共6小题,每小题4分,满分24分)7.已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=.8.已知m,n是有理数,且(+2)m+(3﹣2)n+7=0,则m=,n=.9.如图,在△ABC中,O是∠ABC与外角∠ACD的平分线BO、CO的交点,则∠O与∠A 的关系是.10.如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′上,EC′交AD于点G,已知∠EFG=58°,那么∠BEG=度.11.如图,直线y=kx﹣2(k>0)与双曲线在第一象限内的交点R,与x轴、y轴的交点分别为P、Q.过R作RM⊥x轴,M为垂足,若△OPQ与△PRM的面积相等,则k 的值等于.12.如图,BD:DC=5:3,E为AD的中点,延长BE交AC于F,则BE:EF=.三、解答题(共7小题,满分72分)13.解方程:.14.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.15.已知方程x2﹣kx﹣7=0与x2﹣6x﹣(k+1)=0有公共根.求k的值及两方程的所有公共根和所有相异根.16.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于F,点E是AB的中点,连接EF.(1)求证:.(2)若四边形BDFE的面积为8,求△AEF的面积.17.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.18.某厂现有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有几种方案请你设计出来;(2)设生产A、B两种产品总利润是y元,其中一种产品的生产件数是x.试写出y与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大,最大利润是多少?19.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题(共6小题,每小题4分,满分24分)1.【解答】解:由题意可得|x|﹣2=0且x2﹣5x+6≠0,解得x=±2,代入x2﹣5x+6≠0检验得到x=﹣2.故选:B.2.【解答】解:4b2c2﹣(b2+c2﹣a2)2=(2bc﹣b2﹣c2+a2)(2bc+b2+c2﹣a2)=[a2﹣(b﹣c)2][(b+c)2﹣a2]=(a﹣b+c)(a+b﹣c)(b+c+a)(b+c﹣a)>0.故4b2c2﹣(b2+c2﹣a2)2的值恒为正.故选:A.3.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.4.【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;七年级的达标率为×100%=87.8%;九年级的达标率为×100%=97.9%;八年级的达标率为.则九年级的达标率最高.则乙、丙的说法是正确的,故选B.5.【解答】解:①﹣②得,7x﹣7y=k+1﹣3整理得x﹣y=又因为2<k<4所以<x﹣y<即0<x﹣y<.故选:A.6.【解答】解:由圆周角定理知,∠D=∠B,∴cos D=cos B==CD:AD.又∵AD=13,∴CD=5.在Rt△ACD中,由勾股定理得,AC=12.故选:D.二、填空题(共6小题,每小题4分,满分24分)7.【解答】解:∵x2+y2+z2﹣2x+4y﹣6z+14=0,∴x2﹣2x+1+y2+4y+4+z2﹣6z+9=0,∴(x﹣1)2+(y+2)2+(z﹣3)2=0,∴x﹣1=0,y+2=0,z﹣3=0,∴x=1,y=﹣2,z=3,故x+y+z=1﹣2+3=2.故答案为:2.8.【解答】解:由且(+2)m+(3﹣2)n+7=0,得(m﹣2n)+2m+3n+7=0,∵m、n是有理数,∴m﹣2n、2m+2n+7必为有理数,又∵是无理数,∴当且仅当m﹣2n=0、2m+3n+7=0时,等式才成立,∴n=﹣1,m=﹣2.故答案为:﹣2、﹣1.9.【解答】解:∵OB、OC是∠ABC与∠ACD的平分线,∴∠OCD=∠ACD=∠O+∠OBC=∠O+∠ABC,∠O=∠OCD﹣∠OBC=∠ACD﹣∠ABC,∠A=180°﹣∠ABC﹣∠ACB,∠ACB=180°﹣∠ACD,∴∠A=180°﹣∠ABC﹣180°+∠ACD=∠ACD﹣∠ABC,又∠O=∠ACD﹣∠ABC,∴∠O=∠A.故答案为∠O=∠A.10.【解答】解:∵AD∥BC,∴∠EFG=∠CEF=58°,∵∠FEC=∠FEG,∴∠FEC=∠FEG=∠EFG=58°,∴∠BEG=180°﹣58°﹣58°=64°.11.【解答】解:∵y=kx﹣2,∴当x=0时,y=﹣2,当y=0时,kx﹣2=0,解得x=,所以点P(,0),点Q(0,﹣2),所以OP=,OQ=2,∵RM⊥x轴,∴△OPQ∽△MPR,∵△OPQ与△PRM的面积相等,∴△OPQ与△PRM的相似比为1,即△OPQ≌△MPR,∴OM=2OP=,RM=OQ=2,所以点R(,2),∵双曲线经过点R,∴=2,即k2=8,解得k1=2,k2=﹣2(舍去).故答案为:2.12.【解答】解:过D作DG∥AC交BF于G,∵E是AD的中点,∴△AEF≌△DEG,∴EG=EF,∵DG∥AC,BD:DC=5:3,∴BG:GF=5:3,∴BE:EF=(5+1.5):1.5=13:3.故答案为:13:3.三、解答题(共7小题,满分72分)13.【解答】解:方程两边各自通分,得,整理得:,即x2﹣11x+30=x2﹣17x+72,解得x=7.检验:把x=7代入原方程各分母,显然(x﹣5)(x﹣6)(x﹣8)(x﹣9)≠0,∴原方程的解为x=7.14.【解答】解:探究结论:BM+CN=NM.证明:延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ABD=∠DCE=90°,∴在△DCE和△DBM中,∴Rt△DCE≌Rt△DBM(SAS),∴∠BDM=∠CDE,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC﹣∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°∴DM=DE(上面已经全等)在△DMN和△DEN中∵∴△DMN≌△DEN(SAS),∴BM+CN=NM.15.【解答】解:,②﹣①得,(﹣6+k)x+(6﹣k)=0,当﹣6+k=0,即k=6时,x取任意值,两个方程得解都相同.两个方程是同一个式子.方程得解是x1=7,x2=﹣1;当k≠6时,解得x=1.把x=1代入x2﹣kx﹣7=0得,1﹣k﹣7=0,k=﹣6.于是两方程为:x2+6x﹣7=0③,x1=1,x2=﹣7.x2﹣6x+5=0④,x1=1,x2=5.故答案为:k=6,有公共根,公共根为7和﹣1.k=﹣6;其公共根为1,相异根为:﹣7和5.16.【解答】解:(1)∵DC=AC,∠ACB的平分线CF交AD于F,∴F为AD的中点,∵点E是AB的中点,∴EF为△ABD的中位线,∴,(2)∵EF为△ABD的中位线,∴,EF∥BD,∴△AEF∽△ABD,∵S△AEF:S△ABD=1:4,∴S△AEF:S四边形BDEF=1:3,∵四边形BDFE的面积为8,∴S△AEF=.17.【解答】解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.18.【解答】解:(1)设安排生产A种产品x件,则生产B种产品为(50﹣x)件,根据题意,得解得30≤x≤32.因为x是自然数,所以x只能取30,31,32.所以按要求可设计出三种生产方案:方案一:生产A种产品30件,生产B种产品20件;方案二:生产A种产品31件,生产B种产品19件;方案三:生产A种产品32件,生产B种产品18件;(2)设生产A种产品x件,则生产B种产品(50﹣x)件,由题意,得y=700x+1200(50﹣x)=﹣500x+60000因为a<0,由一次函数的性质知,y随x的增大而减小.因此,在30≤x≤32的范围内,因为x=30时在的范围内,所以当x=30时,y取最大值,且y最大值=45000.19.【解答】解:(1)因为抛物线的对称轴是x=,设解析式为y=a(x﹣)2+k.把A,B两点坐标代入上式,得,解得a=,k=﹣.故抛物线解析式为y=(x﹣)2﹣,顶点为(,﹣).(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x﹣)2﹣,∴y<0,即﹣y>0,﹣y表示点E到OA的距离.∵OA是OEAF的对角线,∴S=2S△OAE=2××OA•|y|=﹣6y=﹣4(x﹣)2+25.因为抛物线与x轴的两个交点是(1,0)和(6,0),所以自变量x的取值范围是1<x<6.①根据题意,当S=24时,即﹣4(x﹣)2+25=24.化简,得(x﹣)2=.解得x1=3,x2=4.故所求的点E有两个,分别为E1(3,﹣4),E2(4,﹣4),点E1(3,﹣4)满足OE=AE,所以平行四边形OEAF是菱形;点E2(4,﹣4)不满足OE=AE,所以平行四边形OEAF不是菱形;②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,此时点E的坐标只能是(3,﹣3),而坐标为(3,﹣3)的点不在抛物线上,故不存在这样的点E,使平行四边形OEAF为正方形.。
2019年初三数学竞赛试卷及答案
![2019年初三数学竞赛试卷及答案](https://img.taocdn.com/s3/m/6f5492c771fe910ef12df887.png)
2019年初三数学竞赛试卷学校___________________年级___________班 姓名_________________ 一、选择题(共5小题,每小题6分,共30分)1、抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为223y x x =--,则b c 、的值为 ( ) A 、22b c ==, B 、20b c ==, C 、21b c =-=-, D 、32b c =-=,2、如图,在等腰三角形△ABC 的斜边AB 上取两点M 、N ,使∠MCN =45°,记AM =m ,MN =x ,BN =n ,则以x 、m 、n 为边长的三角形的形状是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、随x 、m 、n 变化而变化3、如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为( ) A. B.C. D.4、已知函数2|82|y x x =﹣﹣和y kx k =+(k≠0,k 为常数),则不论k 为何值,这两个函数的图象( )A 、有且只有一个交点B 、有且只有二个交点C 、有且只有三个交点D 、有且只有四个交点5、已知关于x 的不等式组 恰有5个整数解,则t 的取值范围是( ).A 、6-<t <112-B 、6-≤t <112-C 、6-<t ≤112-D 、6-≤t ≤112-二、填空题(共5小题,每小题6分,共30分)6、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为 .FAAB CN255332x xx t x +⎧->-⎪⎪⎨+⎪-<⎪⎩7、如图,△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于E ,F 是OE 的中点.如果BD//CF ,BC =25,则线段CD 的长度为__________________.8、如图,在平面直角坐标系内放置一个直角梯形AOCD .已知AB =3,AO =8,OC =5,若点P 在梯形内,且S △PAD =S △POC ,S △PAO =S △PCD ,那么点P 的坐标是________.9、在平面直角坐标系xOy 中,不论k 取什么样的实数,直线y =kx ﹣3k +4总经过一个定点P ,若以原点O 为圆心的圆过点A (13,0),与⊙O 交于B 、C 两点,则弦BC 的长的最小值为10、小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.三、解答题(共4题,满分60分)11、如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D .求∠DBC -∠CBE .(第11题)12、如图,已知AB 为圆O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD AB ⊥,DE CO ⊥,垂足为E .若10CE =,且AD 与DB 的长均为正整数,求线段AD 的长.13、已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点.(1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最小值.14、如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.参考答案 1、B2、15、B ;提示:作∠CAD =∠BAM ,AD =AM , 可得△ABM ≌△ACD ,再得△MN ≌△AND ,可得结论3. B ; 【解析】过点E 作EM ⊥BC 于M ,交BF 于N ,易证得△ENG ≌△BNM (AAS ),MN 是△BCF 的中位线,根据全等三角形的性质,即可求得GN =MN =12,由折叠的性质,可得BG =3,求得BF =2BN =5,由勾股定理即可求得BC 的长.4. B ;【解析】函数y =8-2x -x 2中,令y =0,解得:x =-4或2.则二次函数与x 轴的交点坐标是(-4,0)和(2,0).则函数的图象如图.一次函数y =kx +k (k 为常数)中,令y =0,解得:x =-1,故这个函数一定经过点(-1,0).经过(-1,0)的直线无论k 多大,都是2个交点.故选B . 5、C . 解:根据题设知不等式组有解,解得,32t -<x <20.由于不等式组恰有5个整数解,这5个整数解只能为15,16,17,18,19,因此14≤32t -<15,解得6-<t ≤112-. 6、解:因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 78、ABCM ND(第6题)9、2410、207; 解:设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y 所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又 20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.11、解:将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B .将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC=CEBE=因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12、解:连接AC ,BC ,则90ACB ∠=︒.又CD AB ⊥,DE CO ⊥,由Rt △CDE ∽Rt △COD 可得2CE CO CD ⋅=,由Rt △ACD ∽Rt △CBD 可得(第11题)2CD AD BD =⋅,所以CE CO AD BD ⋅=⋅.设AD a DB b ==,,a b ,为正整数,则2a bCO +=,又10CE =,代入上式得 102a bab +⋅=, …………10分 整理得(5)(5)25a b --=.考虑到a b >,只能是550a b ->->,得52551a b -=-=,. 因此30AD a ==. …………20分13、【解析】(1)当k =1时,函数为一次函数y =-2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.12x =综上所述,k 的取值范围是k ≤2.(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.由题意得(k -1)x 12+(k +2)=2kx 1.将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2. 又∵x 1+x 2=21k k -,x 1x 2=21k k +-, ∴2k ·21k k -=4·21k k +-.解得:k 1=-1,k 2=2(不合题意,舍去).∴所求k 值为-1. ②如图5,∵k 1=-1,y =-2x 2+2x +1=-2(x -12)2+32. 且-1≤x ≤1.由图象知:当x =-1时, y 最小=-3;当x =12时,y 最大=32. ∴y 的最大值为32,最小值为-3. 14、解:若n ≤6,取m =1,2,…,7,根据抽屉原理知,必有12n a a a ,,…,中的一个正整数M 是(1i j ,≤i <j ≤7)的公共的魔术数,即7|(10M i +),7|(10M j +).则有7|(j i -),但0<j i -≤6,矛盾.故n ≥7. …………10分又当12n a a a ,,…,为1,2,…,7时,对任意一个正整数m ,设其为k 位数(k 为正整数).则10ki m +(12i =,,…,7)被7除的余数两两不同.若不然,存在正整数i ,(1j ≤i <j ≤7),满足7|[(10)(10)]k kj m i m +-+,即7|10()k j i -,从而7|()j i -,矛盾. 故必存在一个正整数i (1≤i ≤7),使得7|(10)ki m +,即i 为m 的魔术数. 所以,n 的最小值为7.。
2019年初三数学竞赛试卷附答案
![2019年初三数学竞赛试卷附答案](https://img.taocdn.com/s3/m/b4b9ba4090c69ec3d5bb754c.png)
2019年初三数学竞赛试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,每小题4分,共24分)1.如图是一个正方体的表面展开图,已知正方体相对两个面上的数相同,且不相对两个面上的数值不相同,则“★”面上的数为()A.1 B.1或2 C.2 D.2或32.设a,b,c的平均数为M,a,b的平均数为N,N,c的平均数为P,若a>b>c,则M与P的大小关系是()A.M=P B.M>P C.M<P D.不确定3.若一个三角形的任意两边都不相等,则称之为不规则三角形,用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是()A.18 B.24 C.30 D.364.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则△ADE的面积是()5.工地上有甲、乙二块铁板,铁板甲形状为等腰三角形,顶角为α,且tanα=,腰长为6cm;铁板乙形状为等腰梯形,两底边长分别为4cm、10cm,且有一内角为60°.现在我们把它们任意翻转,分别试图从一个直径为5.3cm的铜环中穿过,结果是()A.甲板能穿过,乙板不能穿过B.甲板不能穿过,乙板能穿过C.甲、乙两板都能穿过D.甲、乙两板都不能穿过6.已知三个关于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰有一个公共实数根,则的值为()A.0 B.1 C.2 D.3第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,每小题5分,共30分)7.已知=.8.如图,“L”形纸片由六个边长为1的小正方形组成,过A点切一刀,刀痕是线段EF,若阴影部分的面积是纸片面积的一半,则EF的长为.9.一种儿童游戏,游戏规则是孩子站成一个圆圈,并唱一首有九个单词的诗歌,每人接前一个顺序唱一个单词,按这个圆圈的顺时针方向连续计数,将第九个孩子淘汰出圈,开始时,一圈有六个孩子,按顺时针方向分别记为a,b,c,d,e,f.如果最后留下的孩子是c,那么开始计数的位置是.10.将正方形沿虚线(其中x<y)剪成①,②,③,④四块图形,用这四块图形恰好能拼成一个如图所示的矩形,则=.11.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N 分别是AD和AB上的动点,则BM+MN的最小值是.12.如图,在平面直角坐标系中,直线y=﹣x+1分别交x轴、y轴于A,B两点,点P(a,b)是反比例函数y=在第一象限内的任意一点,过点P分别作PM⊥x轴于点M,PN ⊥y 轴于点N,PM,PN分别交直线AB于E,F,有下列结论:①AF=BE;②图中的等腰=(a+b﹣1);④∠EOF=45°.其中结论正确的序号是.直角三角形有4个;③S△OEF评卷人得分三.解答题(共4小题,共46分)13.(10分)利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性.(1)根据下列所示图形写出一个代数恒等式;(2)已知正数a,b,c和m,n,l,满足a+m=b+n=c+l=k.试构造边长为k的正方形,利用图形面积来说明al+bm+cn<k2.14.(12分)如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M 是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.15.(12分)在一次活动课中,老师请每位同学自己用纸板做一个如图所示的有盖的长方体的纸盒,长方体的长、宽、高分别为acm、b cm、c cm.小杨在展示自己做的纸盒时,告诉同学们说:“我做的纸盒的长、宽、高都是正整数,且经测量发现它们满足a(b ﹣c)=3,bc=ab+ac﹣7”.请同学们算一算,做一个这样的纸盒需要多少平方厘米的纸板(接缝不算)?16.(12分)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C.A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P 点作PQ垂直于直线OA,垂足为Q,设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线解析式;(2)求S与t的函数关系式;(3)将△OPQ绕着点P顺时针旋转90°,是否存t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.参考答案与试题解析1.解:这是一个正方体的平面展开图,共有六个面,其中面“x2”与面“3x﹣2”相对,面“★”与面“x+1”相对.因为相对两个面上的数相同,所以x2=3x﹣2,解得x=1或x=2,又因为不相对两个面上的数值不相同,当x=2时,∵x+2=4,3x﹣2=4,∴3x﹣2=x+2,不符合题意,∴x只能为1,即★=x+1=2.故选:C.2.解:由题意得:a+b+c=3M,a+b=2N,N+c=2P;∴M=,P=,N=,∴将N代入P可得:P=;M﹣p=;又∵a>b>c,∴a+b+c>3c,∴M﹣p>0,∴M>P;故选:B.3.解:如图所示,∵连接BD、BE、BF、EG,则△BEF、△BEG、△BDE均为不规则三角形,∴从正方体的一个顶点出发与所有顶点的连线中有三个不规则的三角形,∴用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是3×8=24个.4.解:过点D作DG垂直于BC于G,过E作EF垂直于AD交AD的延长线于F,∵∠EDF+∠CDF=90°,∠CDF+∠CDG=90°,∴∠EDF=∠CDG,又∵∠EFD=∠CGD=90°,DE=DC,∴△EDF≌△CDG(AAS),∴EF=CG,∴CG=BC﹣BG=5﹣3=2,∴EF=2,=×AD×EF=×3×2=3.∴S△ADE故选:C.5.解:如图1,设等腰△ABC中,AB=AC=6cm,作CD⊥AB,垂足为D,∵在Rt△ACD中,tana==,∴设CD=3x,则AD=4x,由勾股定理,得CD2+AD2=AC2,即(3x)2+(4x)2=62,解得x=1.2,∴CD=3x=3.6<5.3,能通过;如图2,在等腰梯形ABCD中,AD∥BC,∠B=60°,过A点作AE⊥CD,垂足为E,∵∠B=60°,AD=4cm,BC=10cm,∴BE===3,∴AE=BE•tan60°=3×=3≈5.2cm<5.3cm故选:C.6.解:x0是它们的一个公共实数根,则ax02+bx0+c=0,bx02+cx0+a=0,cx02+ax0+b=0.把上面三个式子相加,并整理得(a+b+c)(x02+x0+1)=0.因为,所以a+b+c=0.于是=故选:D.7.解:∵⇒⇒⇒a2﹣7a+1=0,解得a=,经检验,当a=,=<0与矛盾,故舍去.所以,当a=,则==.故答案为:.8.解:设BE=x,BF=y.=6﹣BE•BF=3,∵“L”形面积为6,S阴影∴xy=6,再由AC∥FB得△ACE∽△FBE,∴CE:BE=AC:FB,即=,整理,得xy﹣x﹣y=0,即x+y=6,EF2=BE2+BF2=x2+y2=(x+y)2﹣2xy=24,9.解:根据题意分析:假设开始记数的位置是a,则根据题意最后剩下的孩子是e,假设开始记数的位置是b,则根据题意最后剩下的孩子是f,故若最后剩下的这个孩子是c,则开始记数的位置是e.故答案为:e.10.解:如图,由拼图前后的面积相等得:[(x+y)+y]y=(x+y)2,∴=,∴1+=+1,∴=,∴=,∴+1=,∴(+1)=×,因为y≠0,整理得:()2+﹣1=0,解得:=或=(负值不合题意,舍去).故答案为:.11.解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故答案为:4.12.解:∵P(a,b),∴OM=a,PM=b,∴点E的横坐标为a,F的纵坐标为b,又E和F都在直线y=﹣x+1上,∴点E(a,1﹣a),点F(1﹣b,b),即OM=a,EM=1﹣a,ON=b,NF=1﹣b,∴PE=PM﹣EM=b﹣(1﹣a)=a+b﹣1,PF=PN﹣NF=a﹣(1﹣b)=a+b﹣1,=S矩形MONP﹣S△EMO﹣S△FNO﹣S△EPF,∴S△EOF=ab﹣a(1﹣a)﹣b(1﹣b)﹣(a+b﹣1)2=(a+b﹣1),选项③正确;∵BE==a,AF==b,∴BE与AF不一定相等,选项①错误;∵直线y=﹣x+1分别交x轴、y轴于A,B两点,∴令x=0,求出y=1,即B(0,1);令y=0,求出x=1,即A(1,0),∵OA=OB=1,且∠AOB=90°,即△AOB为等腰直角三角形,∴△BNF为等腰直角三角形,同理△PEF和△AEM都为等腰直角三角形,则图中等腰三角形有4个,选项②正确;∵△AOB为等腰直角三角形,∴∠FAO=∠EBO=45°,∵点P(a,b)是曲线y=上一点,∴2ab=1,即AF•BE=a•b=2ab=1,又∵OA•OB=1,∴=,∴△AOF∽△BEO,∴∠AFO=∠BOE,又∠BOE=∠BOF+∠FOE,且∠AFO=∠OBF+∠BOF,∴∠FOE=∠OBE,又∠OBE=45°,则∠FOE=45°,选项④正确,综上,正确选项的序号有:②③④.故答案为:②③④.13.解:(1)比如:(a+b)2﹣(a﹣b)2=4ab,或(a+b)2=(a﹣b)2+4ab,或(a+b)2﹣4ab等.(2分)(2)比如构造如图所示正方形:(若画成a=b=c,m=n=l等特殊情况扣1分)(5分)因为a+m=b+n=c+l=k,显然有al+bm+cn<k2(6分).14.解:CN=MN+BM证明:在CN上截取点E,使CE=BM,连接DE,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,又△BDC为等腰三角形,且∠BDC=120°,∴BD=DC,∠DBC=∠BCD=30°,∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°,在△MBD和△ECD中,,∴△MBD≌△ECD(SAS),∴MD=DE,∠MDB=∠EDC,又∵∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC﹣(∠BDN+∠EDC)=∠BDC﹣(∠BDN+∠MDB)=∠BDC﹣∠MDN=120°﹣60°=60°,∴∠MDN=∠EDN,在△MND与△END中,,∴△MND≌△END(SAS),∴MN=NE,∴CN=NE+CE=MN+BM.15.解:∵a(b﹣c)=3,且a,b,c均为正整数,∴或,即:或,①当时,把a=1,b=c+3分别代入bc=ab+ac﹣7中,得:(c+3)c=c+3+c﹣7,整理得:c2+c+4=0,此方程无实数根.②当时,把a=3,b=c+1分别代入bc=ab+ac﹣7中,得:(c+1)c=3(c+1)+3c﹣7,整理得:c2﹣5c+4=0,解得c=1或c=4.∴或,故长方体的表面积为:2(ab+ac+bc)=2×(3×2+3×1+2×1)=22(cm2)或2(ab+ac+bc)=2×(3×5+3×4+5×4)=94(cm2).∴做一个这样的纸盒需要22cm2或94cm2的纸板.16.解:(1)解法一:由图象可知:抛物线经过原点,设抛物线解析式为y=ax2+bx(a≠0).把A(1,1),B(3,1)代入上式得,解得,∴所求抛物线解析式为y=﹣x2+x;解法二:∵A(1,1),B(3,1),∴抛物线的对称轴是直线x=2.设抛物线解析式为y=a(x﹣2)2+h(a≠0),把O(0,0),A(1,1)代入得解得∴所求抛物线解析式为:y=﹣(x﹣2)2+.(2)分三种情况:,过点A作AF⊥x轴于点F,①当0<t≤2,重叠部分的面积是S△OPQ∵A(1,1),在Rt△OAF中,AF=OF=1,∠AOF=45°,在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°,∴PQ=OQ=tcos45°=t,∴S=(t)2=t2.②当2<t≤3,设PQ交AB于点G,作GH⊥x轴于点H,∠OPQ=∠QOP=45°,则四边形OAGP是等腰梯形,.重叠部分的面积是S梯形OAGP∴AG=FH=t﹣2,∴S=(AG+OP)AF=(t+t﹣2)×1=t﹣1.③当3<t<4,设PQ与AB交于点M,交BC于点N,重叠部分的面积是S.五边形OAMNC因为△PNC和△BMN都是等腰直角三角形,所以重叠部分的面积是S=S梯形OABC﹣S△BMN.五边形OAMNC∵B(3,1),OP=t,∴PC=CN=t﹣3,∴BM=BN=1﹣(t﹣3)=4﹣t,∴S=(2+3)×1﹣(4﹣t)2 S=﹣t2+4t﹣;(3)存在t1=1,t2=2.将△OPQ绕着点P顺时针旋转90°,此时Q(t+,),O(t,t)①当点Q在抛物线上时,=×(t+)2+×(t+),解得t=2;②当点O在抛物线上时,t=﹣t2+t,解得t=1.。
2019年全国初中数学竞赛(广东省赛区)选拔赛初赛试卷解析版
![2019年全国初中数学竞赛(广东省赛区)选拔赛初赛试卷解析版](https://img.taocdn.com/s3/m/2ab70f23a98271fe900ef90c.png)
2019年全国初中数学竞赛(广东省赛区)选拔赛初赛试卷一、选择题(每小题6分,满分30分)1.已知=0,a2+b2+c2=1,则a+b+c的值等于()A.1B.﹣1C.1或﹣1D.O2.若使函数的自变量x的取值范围是一切实数,则下面的关系中一定满足要求的是A.b>c>0B.b>0>c C.c>0>b D.c>b>03.如图,E、F、G、H、I、J、K、N分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应该是()A.B.C.D.4.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定5.一个盒子里有200只球,从101到300连续编号,甲、乙两人分别从盒子里拿球,直到他们各有100只球为止,其中甲拿到102号,乙拿到280号,则甲拿到的球的编号总和与乙拿到的球的编号总和之差最大是()A.10000B.9822C.377D.9644二、填空题(每小题6分,满分30分)6.已知a2+4a+1=0,且,则m=.7.如图,由12根铅丝焊接成一个正方体框架.现要将每个正方形的4根铅丝分别涂上红、黄、蓝、白4种颜色.如果已将AD涂成红色,BF涂成黄色,GH涂成蓝色,那么该涂成白色的铅丝有.8.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是元,所住的三人间、双人间、单人间的间数依次是.9.△ABC中,BC=a,AC=b,AB=c.若AC、BC上的中线BE、AD垂直相交于点O,则c可用a、b 的代数式表示为.10.如图,AB为半圆O的直径,C为半圆上一点,∠AOC=60°,点P在AB的延长线上,且PB=BO =3cm.连接PC交半圆于点D,过P作PE⊥P A交AD的延长线于点E,求PE长.三、解答题(每小题15分,共60分)11.设等腰三角形的一腰与底边的长分别是方程x2﹣6x+a=0的两根,当这样的三角形只有一个时,求a的取值范围.12.若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?13.(15分)如图,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED =∠A.求证:BD=2CD.14.如图,已知抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?(3)若OC =OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.参考答案一、选择题(每小题6分,满分30分)1.【解答】解:∵==0,∴bc+ac+ab=0,又∵(a+b+c)2,=a2+b2+c2+2(bc+ac+ab),=1+0,=1;∴a+b+c=±1.故选:C.2.【解答】解:∵函数的自变量x取值范围是一切实数,∴分母一定不等于0,∴x2﹣2bx+c2=0无解,即△=4b2﹣4c2=4(b+c)(b﹣c)<0,解得:c<b<﹣c或﹣c<b<c.当c>b>0时,一定满足要求上面要求.故选:D.3.【解答】解:∵△BMI∽△ABI,∴MI=BM,∴AI=3MB+MB=MB,又∵在直角△ABI中,AB:AI=3:,∴AB=×MB,∵MB与小正方形的边长相等,∴AB=×==5.故选:C.4.【解答】解:∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE=BC,∴AD+AE=AB+AC﹣BC=BC,∴BD+CE+BC=BC,L1=BC+DE,L2=BC+DE,即得L1=L2,故选:A.5.【解答】解:甲拿201至300,然后用280换102 则标号之和是:(201+300)×﹣(280﹣102)=24872;乙的编号之和是:(101+200)×+(280﹣102)=15228 24872﹣15228=9644.故选:D.二、填空题(每小题6分,满分30分)6.【解答】解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.7.【解答】解:∵每个正方形的4根铅丝分别涂上红、黄、蓝、白4种颜色.AD涂成红色,BF涂成黄色,GH涂成蓝色.∴涂成红色的铅丝只能有EF、FG、CG,而FG不合题意,则涂成红色的铅丝有EF、CG;同理涂成黄色的铅丝有EH、CD;涂成蓝色的铅丝有AE、BC.则涂成白色的铅丝有:AB、DH、FG.故答案为:AB、DH、FG.8.【解答】解:设该旅行团住三人间x间,双人间y间,单人间z间,总住宿费为a元.则由题意得由②﹣①得2x+y=30,即y=30﹣2x④由②﹣①×2得x﹣z=10,即z=x﹣10 ⑤∵0≤y≤20,即0≤30﹣2x≤20,解得5≤x≤15 ⑥同理0≤z≤20,即0≤x﹣10≤20,解得10≤x≤30 ⑦由⑥⑦知10≤x≤15将④⑤代入③得a=60x+60(30﹣2x)+50(x﹣10)=1300﹣10x⇒x=130﹣∴10≤≤15⇒1200≤a≤1150∴这笔最省的住宿费用是1150元,此时x=15再将x的值代入④⑤得y=0、z=5故答案为1150,15、0、5.9.【解答】解:∵AC、BC上的中线BE、AD垂直相交于点O,于是,中线BE、AD,E和D是AC,BC上的中点由题可知,∴∠BOA=90°,BD=CD=,AE=EC=,∵E,D为中点,故DE为中线=AB=,∴①BO2+DO2=()2,②AO2+EO2=()2,③DO2+EO2=()2,④BO2+AO2=c2,∴①+②=③+④,∴5c2=a2+b2.故c=.故答案为:c=.10.【解答】解:如图,连接BD,BE,∵∠AOC=60°,∴∠ADC=∠PDE=∠AOC=30°,∵AB是⊙O的直径,∴∠ADB=∠BDE=90°,∵PE⊥P A,∴∠BPE=90°,∴∠BDE=∠BPE=90°,∴∠BDE+∠BPE=180°,∴点B,P,E,D四点共圆,∴∠PBE=∠PDE=30°,在Rt△BPE中,tan∠PBE=,∴tan30°==,∴PE=.三、解答题(每小题15分,共60分)11.【解答】解:∵方程x2﹣6x+a=0有实数根,∴△=36﹣4a≥0,(1)当△=0时,即△=36﹣4a=0,解得a=9,此时三角形为等边三角形;(2)当△>0,即△=36﹣4a>0时,解得a<9,设两根为x1,x2(x1<x2)此时存在一个等腰三角形底边为x1,腰为x2,此时不存在一个等腰三角形底边为x2,腰为x1即最短两边(即两腰)之和不大于最大边(即底边)即2x1≤x2,由根与系数的关系可得,3x1≤x1+x2=6,∴x1≤2,∵x1+x2=6,x1•x2=a,∴a=x1•(6﹣x1),=6x1﹣(x1)2=﹣(3﹣x1)2+9∴=﹣(3﹣x1)2+9≤8,∴当0<a≤8,a=9时,三角形只有一个.12.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.13.【解答】证明:作DO∥AB交AC于O.则由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,所以O为△EDC的外心,取F为△EDC的外接圆与AC的交点,连接DF,则OF=OC=OD,∠ACE=∠ADF.所以△ACE∽△ADF,即有=.再由DO∥AB,∠ADO=∠BAE,∠AOD=180﹣∠DOC=180°﹣∠A=180°﹣∠BED=∠AEB,所以△ADO∽△BAE,即得===.故AF=OD=OC=CF,从而AO=2OC.由DO∥AB,得:BD=2CD.14.【解答】解:(1)∵抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),∴0=9a+3,∴a=﹣(1分)∴二次函数的解析式为:y=﹣x2+x+;(3分)(2)①∵D为抛物线的顶点,∴D(1,3),过D作DN⊥OB于N,则DN=3,AN=3,∴AD==6,∴∠DAO=60°.(4分)∵OM∥AD,①当AD=OP时,四边形DAOP是平行四边形,∴OP=6,∴t=6(s).(5分)②当DP⊥OM时,四边形DAOP是直角梯形,过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1)∴OP=DH=5,t=5(s)(6分)③当PD=OA时,四边形DAOP是等腰梯形,易证:△AOH≌△DPP′,∴AH=CP,∴OP=AD﹣2AH=6﹣2=4,∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(7分)(3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t,∴OQ=6﹣2t(0<t<3)过P作PE⊥OQ于E,则PE=t(8分)∴S BCPQ=×6×3×(6﹣2t)×t=(t﹣)2+(9分)当t=时,四边形BCPQ的面积最小值为.(10分)∴此时OQ=3,OP=,OE=;∴QE=3﹣=,PE=,∴PQ=.(11分)。
全国初中数学竞赛试题及答案
![全国初中数学竞赛试题及答案](https://img.taocdn.com/s3/m/2ccd4861f705cc17552709bf.png)
2019年全国初中数学竞赛试题及答案2019年全国初中数学竞赛试题考试时间2019年4月2日上午9∶30-11∶30 满分120分一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是()(A)36 (B)37 (C)55 (D)902.已知,,且=8,则a的值等于()(A)-5 (B)5 (C)-9 (D)93.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则()(A)h (B)h=1 (C)1h (D)h24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是()(A)2019 (B)2019 (C)2019 (D)20195.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为()(A)(B)(C)(D)二、填空题(共5小题,每小题6分,满分30分)6.已知a,b,c为整数,且a+b=2019,c-a=2019.若a,则a+b+c的最大值为.7.如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c为整数,且b不能被任何质数的平方整除,则的值等于.8.正五边形广场ABCDE的周长为2019米.甲、乙两人分别从A、C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过分钟,甲、乙两人第一次行走在同一条边上.9.已知0a1,且满足,则的值等于.(表示不超过x的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是.三、解答题(共4题,每小题15分,满分60分)11.已知,,为互质的正整数(即,是正整数,且它们的最大公约数为1),且≤8,.(1)试写出一个满足条件的x;(2)求所有满足条件的x.12.设,,为互不相等的实数,且满足关系式求a的取值范围.13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2019年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
2019年全国初中数学联赛(初三组)初赛试卷及答案
![2019年全国初中数学联赛(初三组)初赛试卷及答案](https://img.taocdn.com/s3/m/f1a68d96284ac850ad02429d.png)
第2题图DACB第4题图DACB2019年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( )A 、9504元B 、9600元C 、9900元D 、10000元 2、如图,在凸四边形ABCD 中,BD BC AB ==,︒=∠80ABC ,则ADC ∠等于( )A 、︒80B 、︒100C 、︒140D 、︒1603、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、04m <≤B 、3≥mC 、4≥mD 、34m <≤4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( )A 、7B 、4C 、72D 、245、如果20140a -<<,那么|2014||2014|||+-+++-a x x a x 的最小值是( ) A 、2019B 、2014+aC 、4028D 、4028+a6、方程()y x y xy x +=++322的整数解有( ) A 、3组B 、4组C 、5组D 、6组二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .2、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x .3、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 .4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .三、(本大题满分20分)已知0422=-+a a ,2=-b a ,求ba 211++的值。
2019年全国初中数学联赛试题及详解
![2019年全国初中数学联赛试题及详解](https://img.taocdn.com/s3/m/5af1d5cf960590c69fc3764b.png)
2019年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( B ) A .1. B .2. C .3. D .4.解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或 110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。
2.若实数,,a b c 满足等式3||6b =,9||6b c =,则c 可能取的最大值为 ( C )A .0.B .1.C .2.D .3.解:由已知,693)15121512c b b b b ==-=-≤,∴2c ≤.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。
观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A )A .-13.B .-9.C .6.D . 0.解:由已知:42x ax bx c +++一定能被231x x --整除。
∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++∴(333)(10)0a b x a c +++++=,故3330213100a b a b c a c ++=⎧⇒+-=-⎨++=⎩5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.解:如图,由已知,ADE 是正三角形。
2019年全国初中数学联赛试题及详解
![2019年全国初中数学联赛试题及详解](https://img.taocdn.com/s3/m/be1bcf045727a5e9856a6196.png)
2019年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B )A .1.B .2.C .3.D .4.解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或 110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。
2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C )A .0.B .1.C .2.D .3.解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。
观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A )A .-13.B .-9.C .6.D . 0.解:由已知:42x ax bx c +++一定能被231x x --整除。
∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++∴(333)(10)0a b x a c +++++=,故3330213100a b a b c a c ++=⎧⇒+-=-⎨++=⎩5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.解:如图,由已知,ADE 是正三角形。
2019年全国初中数学竞赛预赛试题及参考解析
![2019年全国初中数学竞赛预赛试题及参考解析](https://img.taocdn.com/s3/m/7b9e643dcc7931b764ce1516.png)
2019年全国初中数学竞赛预赛试题及参考解析注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
【一】选择题〔共6小题,每题6分,共36分.以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分〕1、在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【】 〔A 〕2,3,1〔B 〕2,2,1〔C 〕1,2,1〔D 〕2,3,2 【答】A 、解:完全平方数有1,9;奇数有1,3,9;质数有3、2、一次函数(1)(1)y m x m =++-的图象经过【一】【二】三象限,那么以下判断正确的选项是【】〔A 〕1m >-〔B 〕1m <-〔C 〕1m >〔D 〕1m < 【答】C 、解:一次函数(1)(1)y m x m =++-的图象经过【一】【二】三象限,说明其图象与Y 轴的交点位于Y 轴的正半轴,且Y 随X 的增大而增大,所以10,10.m m ->⎧⎨+>⎩解得1m >、3、如图,在⊙O 中,CD DA AB ==,给出以下三个 结论:〔1〕DC =AB ;〔2〕AO ⊥BD ;〔3〕当∠BDC =30° 时,∠DAB =80°、其中正确的个数是【】 〔A 〕0〔B 〕1 〔C 〕2〔D 〕3 【答】D 、解:因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =X 度,那么由△DAB 的内角和为180°得:2(30)180x x -︒+=︒,解得80x =︒、 4.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【】〔A 〕34〔B 〕23〔C 〕13〔D 〕21第3题图【答】B 、解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5、在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是Y 轴上一动点,要使△ABC 为等腰三角形,那么符合要求的点C 的位置共有【】〔A 〕2个〔B 〕3个〔C 〕4个〔D 〕5个 【答】D 、解:由题意可求出AB =5,如图,以点A 为圆心AB的长为半径画弧,交Y 轴于C1和C2,利用勾股定理可求出OC1=OC2=,可得62,0(),62,0(21-C C 以点B 为圆心BA 的长为半径画弧,交Y 轴于点C3和C4,可得34(0,1),(0,7)C C -,AB 的中垂线交Y 轴于点C5,利用三角形相似或一次函数的知识可求出)617,0(5-C 、6、二次函数221y x bx =++〔b 为常数〕,当b 取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是B 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上〔图中虚线型抛物线〕,这条抛物线的解析式是【】〔A 〕221y x =-+〔B 〕2112y x =-+ 〔C 〕241y x =-+〔D 〕2114y x =-+【答】A 、解:221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=、【二】填空题〔共6小题,每题6分,共36分〕7、假设2=-n m ,那么124222-+-n mn m 的值为、【答】7、解:71221)(212422222=-⨯=--=-+-n m n mn m 、 yxO第6题图第5题图8、方程112(1)(2)(2)(3)3x x x x +=++++的解是、【答】120,4x x ==-、解:11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++ 11213(1)(3)x x x x =-=++++.∴22(1)(3)3x x =++,解得120,4x x ==-.9、如图,在平面直角坐标系中,点B 的坐标是〔1,0〕, 假设点A 的坐标为〔A ,B 〕,将线段BA 绕点B 顺时针旋转 90°得到线段BA ',那么点A '的坐标是、 【答】(1,1)b a +-+、解:分别过点A 、A '作X 轴的垂线,垂足分别 为C 、D 、显然RT △ABC ≌RT △B A 'D 、由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+、10、如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,那么图中两段弧之间的阴影部分的面积为、【答】2、解:连接MN ,显然将扇形AED 向右平移可与扇形MBN 重合,图中阴影部分的面积等于矩形AMND 的面积,等于221=⨯、11、α、β是方程2210x x +-=的两根,那么3510αβ++的值为、【答】2-、解:∵α是方程2210x x +-=的根,∴212αα=-、第10题图 第9题图∴322(12)22(12)52αααααααααα=⋅=-=-=--=-, 又∵2,αβ+=-∴3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-、12、现有145颗棒棒糖,分给假设干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有个、【答】36、 解:利用抽屉原理分析,设最多有X 个小朋友,这相当于X 个抽屉,问题变为把145颗糖放进X 个抽屉,至少有1个抽屉放了5颗或5颗以上,那么41x +≤145,解得x ≤36,所以小朋友的人数最多有36个、【三】解答题〔第13题15分,第14题15分,第15题18分,共48分〕13、王亮的爷爷今年〔2018年〕80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为x ,个位数字为y 〔X 、Y 均为0~9的整数〕、∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前、故应分两种情况:…………………2分〔1〕假设王亮出生年份为2000年后,那么王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,整理,得1011,2xy -=X 、Y 均为0~9的整数,∴0.x =此时 5.y =∴王亮的出生年份是2005年,今年7周岁、…………………8分〔2〕假设王亮出生年份在2000年前,那么王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得111022x y =-,故X 为偶数,又1021110211,09,22x xy --=≤≤∴779,11x ≤≤∴8.x =此时7.y = ∴王亮的出生年份是1987年,今年25周岁、…………………14分 综上,王亮今年可能是7周岁,也可能是25周岁、……………15分14、如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y kx b =+、〔1〕求K的取值范围;〔2〕当K为取值范围内的最大整数时,假设抛物线25y ax ax=-的顶点在直线PQ、OA、AB、BC围成的四边形内部,求A的取值范围、解:〔1〕直线y kx b=+经过P(0,3),∴3b=、∵B (3,2),A(5,0),BD=BA,∴点D的坐标是(1,0),∴BD的解析式是1y x=-,1 3.x≤≤依题意,得1,3.y xy kx=-⎧⎨=+⎩,∴4,1xk=-∴41 3.1k-≤≤解得13.3k--≤≤……………………………………………7分〔2〕13,3k--≤≤且K为最大整数,∴1k=-.那么直线PQ的解析式为3y x=-+.……………………………………………9分又因为抛物线25y ax ax=-的顶点坐标是525,24a⎛⎫-⎪⎝⎭,对称轴为52x=、解方程组⎪⎩⎪⎨⎧=+-=.25,3xxy得⎪⎪⎩⎪⎪⎨⎧==.21,25yx即直线PQ与对称轴为52x=的交点坐标为51(,)22,∴125224a<-<、解得822525a-<<-、……………………………………15分15.如图,扇形OMN的半径为1,圆心角是90°、点B是MN上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q、〔1〕求证:四边形EPGQ是平行四边形;〔2〕探索当OA的长为何值时,四边形EPGQ是矩形;〔3〕连结PQ,试说明223PQ OA+是定值、解:〔1〕证明:如图①,∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形、 ∴OC AB OC AB =,//、 ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE = ∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分连接OB ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形、………………………………………………6分 〔2〕如图②,当∠CED =90°时,□EPGQ 是矩形、 此时∠AED +∠CEB =90°、又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE 、∴△AED ∽△BCE 、………………………………8分 ∴AD AEBE BC =、设OA =X ,AB =Y ,那么2x ∶2y =2y∶x ,得222y x =、 (10)分 又222OA AB OB +=,即2221x y +=、∴2221x x +=,解得3x =、∴当OA的长为3时,四边形EPGQ 是矩形、………………………………12分〔3〕如图③,连结GE 交PQ 于O ',那么.,E O G O Q O P O '=''='、过点P 作OC 的平行线分别交BC 、GE 于点B '、A '、由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴PA '=23A B ''=13AB ,GA '=13GE =13OA ,∴1126A O GE GA OA'''=-=、AB COD E F G PQ MN图①AB CO D EF GP QMN 图②B'N M A'QP O'GF E DC BAO图③在RT △PA O ''中,222PO PA A O ''''=+,即2224936PQ AB OA =+,又221AB OA +=, ∴22133PQ AB =+,∴2222143()33OA PQ OA AB +=++=、……………………………………18分。
2019年初三数学竞赛试卷附答案
![2019年初三数学竞赛试卷附答案](https://img.taocdn.com/s3/m/7218ddc083d049649b66584b.png)
2019年初三数学竞赛试卷一、选择题(每题3分,共27分)1.如图,A是反比例函数y=图象上一点,过点A作AB⊥y轴于点B,点P在x 轴上,△ABP的面积为2,则k的值为()A.1 B.2 C.3 D.42.把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定3.如图,小雪从O点出发,前进4米后向右转20°,再前进4米后又向右转20°,…,这样一直走下去,她第一次回到出发点O时一共走了()A.40米B.60米C.70米D.72米4.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.5.已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b 的图象可能正确的是()A.B.C.D.6.已知函数,若使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.37.(3分)已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1•x2=3,那么二次函数ax2+bx+c(a>0)的图象有可能是()A.B.C.D.8.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N 的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()A.B.C.D.9.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°二、填空(每题4分,共20分)10.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆•(用含n的代数式表示)11.观察下面的图形,它们是按一定规律排列的,依照此规律,第个图形共有120个★.12.先找规律,再填数:+﹣1=,+﹣=,+﹣=,+﹣=,则+﹣=.13.出售某种手工艺品,若每个获利x元,一天可售出(8﹣x)个,则当x=元,一天出售该种手工艺品的总利润y最大.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为.三、解答题(15题6分,16题7分,17题7分,18题8分,共28分)15.(6分)△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=;(3)求第10次剪取后,余下的所有小三角形的面积之和.16.(7分)如图,飞机沿水平方向(A、B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低.就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.17.(7分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.(1)设A型汽车安排x辆,B型汽车安排y辆,求y与x之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.18.(8分)抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标.参考答案与试题解析一、选择题(每题3分,共27分)1.解:根据反比例函数的几何意义可得,S△ABP==2,又∵函数图象在第一象限,∴k=4.故选:D.2.解:设底面的正方形的边长为a,正方形卡片A,B,C的边长为b,由图1,得S1=(a﹣b)(a﹣b)=(a﹣b)2,由图2,得S2=(a﹣b)(a﹣b)=(a﹣b)2,∴S1=S2.故选:C.3.解:∵小雪每次都是右转20°,∴她走过的路线是正多边形,边数为:360°÷20°=18,18×4=72米.故选:D.4.解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1﹣x,根据勾股定理,得EH2=AE2+AH2=x2+(1﹣x)2即s=x2+(1﹣x)2.s=2x2﹣2x+1,∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选:B.5.解:根据图象可知抛物线与x轴两交点的横坐标一正一负,则根据二次函数交点式的性质可知a,b异号,∵a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限,故选:D.6.解:函数的图象如图:根据图象知道当y=3时,对应成立的x值恰好有三个,∴k=3.故选:D.7.解:∵已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1•x2=3,∴x1,x2是一元二次方程x2﹣4x+3=0的两个根,∴(x﹣1)(x﹣3)=0,解得:x1=1,x2=3∴二次函数ax2+bx+c(a>0)与x轴的交点坐标为(1,0)和(3,0)故选:C.8.解:过A作AD⊥x轴于D,∵OA=OC=4,∠AOC=60°,∴OD=2,由勾股定理得:AD=2,①当0≤t<2时,如图所示,ON=t,MN=ON=t,S=ON•MN=t2;②2≤t≤4时,ON=t,MN=2,S=ON•2=t.故选:C.9.解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以M+N不可能是630°.故选:D.二、填空(每题4分,共20分)10.解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1).故答案为:4+n(n+1),11.解:通过观察,得到星的个数分别是,1,3,6,10,15,…,第一个图形为:1×(1+1)÷2=1,第二个图形为:2×(2+1)÷2=3,第三个图形为:3×(3+1)÷2=6,第四个图形为:4×(4+1)÷2=10,…,所以第n个图形为:n(n+1)÷2个星,设第m个图形共有120个星,则m(m+1)÷2=120,解得:m=15.故答案为:15.12.解:通过观察得:每个算式第一个加数的分母依次是1,3,5,7,…,是首项为1,公差为2的等差数列,每个算式的减数的分母依次是1,2,3,4,…即是第几个算式,设要求的是第n个算式,则:1+(n﹣1)×2=2011,解得:n=1006,故答案为:.13.解:∵出售某种手工艺品,若每个获利x元,一天可售出(8﹣x)个,∴y=(8﹣x)x,即y=﹣x2+8x,∴当x=﹣=﹣=4时,y取得最大值.故答案为:4.14.解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.三、解答题(15题6分,16题7分,17题7分,18题8分,共28分)15.解:(1)解法1:如图甲,由题意,得AE=DE=EC,即EC=1,S正方形CFDE=12=1如图乙,设MN=x,则由题意,得AM=MQ=PN=NB=MN=x,∴,解得∴又∵∴甲种剪法所得的正方形面积更大.=1.说明:图甲可另解为:由题意得点D、E、F分别为AB、AC、BC的中点,S正方形OFDE解法2:如图甲,由题意得AE=DE=EC,即EC=1,如图乙,设MN=x,则由题意得AM=MQ=QP=PN=NB=MN=x,则,解得,又∵,即EC>MN.∴甲种剪法所得的正方形面积更大.(2),.(3)解法1:探索规律可知:剩余三角形面积和为2﹣(S1+S2+…+S10)=2﹣(1++…+)=解法2:由题意可知,第一次剪取后剩余三角形面积和为2﹣S1=1=S1第二次剪取后剩余三角形面积和为,第三次剪取后剩余三角形面积和为,…第十次剪取后剩余三角形面积和为.16.解:(1)如图,测出飞机在A处对山顶的俯角α,测出飞机在B处对山顶的俯角β,测出AB的距离为d,连接AM,BM,NM,(2)第一步:在Rt△AMN中,tanα=,∴AN=,第二步:在Rt△BMN中,tanβ=,∴BN=,其中:AN=d+BN,解得:NM=.17.解:(1)解法一:根据题意得4x+6y+7(21﹣x﹣y)=120化简得:y=﹣3x+27解法二:根据题意得2x+4y+2x+(21﹣x﹣y)+2y+6(21﹣x﹣y)=120化简得:y=﹣3x+27;(2)由,得,解得∵x为正整数,∴x=5,6,7故车辆安排有三种方案,即:方案一:A型车5辆,B型车12辆,C型车4辆方案二:A型车6辆,B型车9辆,C型车6辆方案三:A型车7辆,B型车6辆,C型车8辆;(3)设总运费为W元,则W=1500x+1800(﹣3x+27)+2000(21﹣x+3x﹣27)=100x+36600∵W随x的增大而增大,且x=5,6,7=37100元∴当x=5时,W最小答:为节约运费,应采用(2)中方案一,最少运费为37100元18.解:(1)∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3.答:抛物线解析式为y=x2﹣2x﹣3.(2)解:A(﹣1,0),C(2,﹣3),由勾股定理得:AC==3,AC所在直线的解析式为:y=﹣x﹣1,∠BAC=45°,∵平行四边形ACQP的面积为12,∴平行四边形ACQP中AC边上的高为=2,过点D作DK⊥AC与PQ所在直线相交于点K,DK=2,∴DN=4,∵四边形ACQP,PQ所在直线在直线ADC的两侧,可能各有一条,∴根据平移的性质得出直线PQ的解析式为①y=﹣x+3或②y=﹣x﹣5,∴由①得:,解得:或,由②得:,方程组无解,即P1(3,0),P2(﹣2,5),∵ACQP是平行四边形,A(﹣1,0),C(2,﹣3),∴当P(3,0)时,当以AC为边时,Q1(6,﹣3),Q2(0,3),当AC为对角线时Q3(﹣2,﹣3)∴满足条件的P,Q点是P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2),Q3(﹣2,﹣3)当P(﹣2,5)时,当以AC为边时,Q4(1,2),Q5(﹣5,8),当AC为对角线时,Q6(3,﹣8)以AC为对角线时,答:点P,Q的坐标是P1(3,0),Q1(6,﹣3)或(0,3)或(﹣2,﹣3)或P2(﹣2,5),Q2(1,2)或(﹣5,8)或(3,﹣8).(3)解:设M(t,t2﹣2t﹣3),(﹣1<t<3),过点M作y轴的平行线,交PQ所在直线于点T,则T(t,﹣t+3),MT=(﹣t+3)﹣(t2﹣2t﹣3)=﹣t2+t+6,过点M作MS⊥PQ所在直线于点S,MS=MT=(﹣t2+t+6)=﹣(t﹣)2+,则当t=时,M(,﹣),△PQM中PQ边上高的最大值为,∵P1(3,0),Q1(6,﹣3)或P2(﹣2,5),Q2(1,2).∴当P(3,0),Q(6,﹣3)时,PQ==3.当P(﹣2,5),Q(1,2)时,PQ==3,=×PQ×=.∴S△PQM答:△PQM的最大面积是,点M的坐标是(,﹣).。
2019年秋九年级数学竞赛试题(含答案)
![2019年秋九年级数学竞赛试题(含答案)](https://img.taocdn.com/s3/m/a6fb2655763231126edb1197.png)
九年级数学竞赛试题一.选择题:(每题4分,共32分)1.若m 为实数,则代数式||m +m 的值一定是( ).A .正数B .0C .负数D .非负数2.若10<<a ,化简2211()4()4a a a a-+++-的结果为( )A .2a -B .2aC .-2aD .2a 3.如果a ,b ,c 都不为零且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值是( ) A .零 B .正数 C .负数 D .不能确定4.已知四边形的边长分别是m ,n ,p ,q ,且满足222222m n p q mn pq +++=+,则这个四边形是( )A .平行四边形B .对角线互相垂直的四边形C .对角线相等的四边形D .平行四边形或对角线互相垂直的四边形5.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .143≤<mB .43≥mC .10≤≤mD .143≤≤m6.如下图,已知函数y ax b =+和2(0)y ax bx c a =++≠,那么它们的图象可以是( )A B C D7.记35311+-=x y ,25212+=x y ,523+-=x y ,对每一个实数x ,都有唯一的一个值y 1,y 2,y 3与之对应,取y 为三数之中的最小值,当x 取遍所有实数时,所有y 值中的最大值为( )A .1B .2C .3D .58.如图,矩形ABCD 中,AB =4,BC =12.5,O 在BC 上,OB =3.5.以O 为坐标原点,建立如图所示的平面直角坐标系,M 坐标为(5,0),以OM 为一边作等腰△OMP ,P 点落在矩形ABCD 的边上,则符合条件的P 点共有( )个A .5B .6C .7D .8二.填空题:(每题4分,共32分)9.规定][a 表示不超过a 的最大整数,当1-=x 时,代数式6323+-nx mx 的值为16,则]32[n m -的值为________.10.若52=a ,94=a ,并且所有正整数n 满足1611=+++-n n n a a a ,则2016a = . 11.在△ABC 中,AB =3,AC =4,BC =5,△ABD .△ACE .△BCF 是等边三角形,则四边形AEFD的面积为_______.12.如图,在平面直角坐标系中,⊙O 的半径为1,点P 在经过点A (-4,0),B (0,4)的直线上,PQ 切⊙O 于点Q ,则切线长PQ 的最小值为________.yxO MDC B AEFDAB PBA O yx第8题图 第11题图 第12题图 13.设抛物线452)12(2++++=a x a x y 与x 轴只有一个交点.则243-+a a 的值为_________. 14.已知实数x ,y 满足0332=-++y x x ,则y x +的最大值为 .15.如图,把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =6cm ,DC =7cm ,把三角板DCE 绕点C 顺时针旋转15°得到△D ′CE ′,如图乙.这时AB 与CD ′相交于点O ,D ′E ′与AB 相交于点F .则线段AD ′的长为___________.16.如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1cm /s 的速度移动;同时,点Q沿折线A —B —C 从点A 开始向点C 以2cm /s 的速度移动.当点P 移动到点A 时,P ,Q 同时停止移动.设点P 出发x 秒时,△P AQ 的面积为ycm 2,y 与x 的函数图象如图②,写出线段EF 所对应的函数关系式并指出自变量的取值范围:____________________.图①PQDCB A第15题图 第16题图ACBE D(甲)E 'ACBOF D '(乙)三.解答题:(56分) 17.(8分)在学校文化艺术节中,有A ,B ,C ,D 四个班的同学参加集体舞表演,已知A ,B 两个班共16名演员,B ,C 两个班共20名演员,C ,D 两个班共34名演员,且各班演员的人数正好按A ,B ,C ,D 次序从小到大排列,求各班演员的人数. 18.(8分)△ABC 三边长分别为a ,b ,c ,满足下列条件:①c b a >>;②b c a 2=+;③b 为正整数,a ,c 不一定是正整数;④842222=++c b a .根据以上条件: (1)用含b 的代数式表示ac ;(3分)(2)求b 的值.(5分)19.(8分)如图,在△ABC 中,AC =BC ,∠ACB =90°,D ,E 是边AB 上的两点,AD =3,BE =4,∠DCE =45°.(1)求证:AD 2+BE 2=DE 2;(4分) (2)求△ABC 的面积.(4分)EDB CA20.(8分)如图,△ABC 内接于⊙O ,AC >BC ,点D 为的中点.(1)求证:CD 平分∠ACE ;(3分)(2)求证:AD 2=AC ·BC +CD 2.(5分)ODCBA21.(12分)某公司市场信息部经过调研发现:如果单独投资A 产品,则所获利润y A (万元)与投资金额x (万元)之间存在一次函数关系1+=kx y A .并且当投资5万元时,获得利润3万元;如果单独投资B 产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系bx ax y B +=2.并且当投资2万元时,获得利润2.4万元;投资4万元时,获得利润3.2万元. (1)分别求出上述的一次函数和二次函数的解析式;(4分)(2)如果该公司只投资一种产品,当投资金额在什么范围内,投资B 产品合算?(4分)(3)如果该公司同时对A ,B 两种产品投资,共投资10万元.请设计一种投资方案,使获得的总利润最大,最大总利润是多少万元?(4分)22.(12分)如图,已知抛物线()2y ax bx c a 0=++≠的对称轴为x =-1,且经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)求抛物线和直线BC 的解析式;(4分)(2)N 点是抛物线上第二象限的一个动点,当△NBC 面积最大时,求N 点坐标;(4分) (3)设点P 在抛物线的对称轴x =-1上,且△BPC 是直角三角形,直接写出点P 的坐标.(4分)九年级数学竞赛题参考答案一.选择题(每题4分,共32分)1.D2.B3.A4.D5.A6.C7.B8.C二.填空题(每题4分,共32分)9.-410.211.612.13.814.415.516.三.解答题:17.设A班有x名演员,则B班有(16-x)名演员,C班有20-(16-x)=(x+4)名演员,D 班有34-(x+4)=(30-x)名演员.由已知得:,解得:.∵x为整数,所以.所以:A班有7名演员,B班有9名演员,C班有11名演员,D班有23名演员.18.(1)由④得:,由②得:,即:,∴,.………………3分(2)于是a,c可以看作方程两根,∵a,c是三角形的边长,所以,解得.∵b为正整数,所以,b=4.…………………8分19.(1)将△BCE绕点C顺时针旋转90°到△ACF位置,连接DF.这时,∠DCF=∠DCA+∠FCA=∠DCA+∠BCE=90°-∠DCE=45°.在△DEC和△DFC中,CE=CF,∠DCE=∠DCF,CD=CD,∴△DEC≌△DFC,∴DE=DF.∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=∠BAC=45°,∴∠DAF=90°.在△DAF中,由勾股定理可得:AD2+AF2=DF2.∵AF=BE,DF=DE,所以:AD2+BE2=DE2.…………………4分(2)由(1)得:DE=5,所以:AB=3+4+5=12.过C作CH⊥AB,垂足为H,则CH=AB=6,所以:△ABC的面积S==36.…………………8分20.(1)∵D为的中点,∴∠ACD=∠BAD.∵四边形ABCD是圆内接四边形,∴∠DCE=∠BAD,∴∠ACD=∠DCE,∴CD平分∠ACE.………………3分(2)连接BD,过D作DM⊥AC于M,DN⊥BE于N.∵D为的中点,∴AD=BD.∵CD平分∠ACE,DM⊥AC,DN⊥BE,∴DM=DN.在Rt△ADM和Rt△BDN中,,所以Rt△ADM≌Rt△BDN,∴AM=BN.在Rt△DCM和Rt△DCN中,,所以Rt△DCM≌Rt△DCN,∴CM=CN.在△ADM和△CDM中,由勾股定理得:,.∴=.……………8分21.(1),;…………………4分(2)当时,=,解得:,.∴当时,;…………………8分(3)设对B产品投资t万元,则A产品投资(10-t)万元,总利润为w万元,则:.,当时,w的最大值为6.8万元.即对A产品投资7万元,B产品投资3万元,所获利润最大,最大利润是6.8万元.………………12分22.(1)抛物线的解析式为:;…………………2分直线的解析式为:.…………………4分(2)过N点作x轴的垂线交直线BC于M,设N点的横坐标为t,则N点坐标为(t,),M点的坐标为(t,),则MN=; e则△NBC的面积S===.………7分即当时,S的最大值是,此时,N点的坐标为(,).………8分(3)P1(-1,4),P2(-1,-2),P3(-1,),P3(-1,).…………………12分。
2019年初三数学竞赛试卷附答案
![2019年初三数学竞赛试卷附答案](https://img.taocdn.com/s3/m/8c319d860c22590102029d73.png)
2019年初三数学竞赛模拟试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题,每小题4分,共24分)1.从分数组中删去两个分数,使剩下的数之和为1,则删去两个数是()A.B.C.D.2.将正三角形每条边四等份,然后过这些分点作平行于其它两边的直线,则以图中线段为边的菱形个数为()A.15 B.18 C.21 D.243.以正方形ABCD的BC边为直径作半圆O,过点D作直线切半圆于点F,交AB边于点E.则三角形ADE和直角梯形EBCD周长之比为()A.3:4 B.4:5 C.5:6 D.6:74.如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回点E点,则蚂蚁所走的最小路程是()A.2 B.4 C.D.5.把正整数按下图所示的规律排序,那么从2005到2007的箭头方向依次为()A.B.C.D.6.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3 B.8 C. D.2第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,每小题5分,共30分)7.当整数m=时,代数式的值是整数.8.规定一种运算“*”:对于任意实数对(x,y)恒有(x,y)*(x,y)=(x+y+1,x2﹣y ﹣1).若实数a,b满足(a,b)*(a,b)=(b,a),则a=,b=.9.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有.10.如图,在斜坡的顶部有一铁塔AB,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=14m,塔影长DE=36m,小明和小华的身高都是1.6m,小明站在点E处,影子也在斜坡面上,小华站在沿DE方向的坡脚下,影子在平地上,两人的影长分别为4m 与2m,那么,塔高AB=m.11.如图,从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm,图甲.用尺量出整卷卫生纸的半径(R)与纸筒内芯的半径(r),分别为5.8cm和2.3cm,图乙.那么该两层卫生纸的厚度为cm.(π取3.14,结果精确到0.001cm)12.如图,等腰直角三角形ABD,点C是直角边AD上的动点,连接CB.现在将点C绕点A逆时针方向旋转90°得点E,再将点C绕点B顺时针方向旋转90°得点F.如果,设△AED,△BFD,△ABC的面积分别为S1,S2,S3,那么S1+S2﹣S3=.评卷人得分三.解答题(共4小题,共46分)13.(10分)已知,x、y满足,求(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y)的值.14.(12分)如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=,PB=5,PC=2,求△ABC的面积.15.(12分)是否存在质数p.q,使得关于x的一元二次方程px2﹣qx+p=O有有理数根?16.(12分)操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.参考答案与试题解析1.解:由,而,故删去后,可使剩下的数之和为1.故选:C.2.解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线,这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形.共得21个菱形.故选:C.3.解:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.设EF=x,DF=y,则在直角△AED中,AE=y﹣x,AD=CD=y,DE=x+y.根据勾股定理可得:(y﹣x)2+y2=(x+y)2,∴y=4x,∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,∴两者周长之比为12x:14x=6:7.故选:D.4.解:延长DC到D',使CD=CD',G关于C对称点为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===2.故选:C.5.解:∵1和5的位置相同,∴图中排序每四个一组循环,而2005除以4的余数为1,∴2005的位置和1的位置相同,∴20052007.故选:D.6.解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.7.解:∵要使代数式的值是整数,∴3m﹣1只能在±1、±2、±3、±6这四个数中取值,∵当3m﹣1=1时,∴m=,当3m﹣1=﹣1时,m=0,当3m﹣1=2时,m=1,当3m﹣1=﹣2时,m=﹣,当3m﹣1=3时,m=,当3m﹣1=﹣3时,m=﹣,当3m﹣1=6时,m=,当3m﹣1=﹣6时,m=﹣,又∵m也是整数,∴可得m=0或1,故答案为0或1.8.解:由题意得:,解得,故答案两空分别填﹣1,1.9.解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第=n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得,=n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.10.解:作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G,可得矩形BDFG.由题意得:=∴DF==14.4(m);∵GF=BD=CD=7(m),同理可得:=,∴AG=1.6÷2×7=5.6(m),∴AB=14.4+5.6=20(m).∴铁塔的高度为20m.故答案为:20.11.解:设该两层卫生纸的厚度为hcm .根据题意,得 11.4×11×h ×300=π(5.82﹣2.32)×11 37620h=π(33.64﹣5.29)×11 h ≈0.026.答:两层卫生纸的厚度为0.026cm .12.解:作CM ⊥AB ,DN ⊥BF 垂足分别为M ,N , 由旋转的性质可知AC=AE ,BC=BF , 设AC=x ,则CM=x ,又AD=BD=,∴AB=2,那么S △AED =×AE ×AD=x ,S △ABC =×AB ×CM=x ,而△BDN ∽△CBD ,那么,那么DN ×BC=BD 2=2,∴S △BFD =×BF ×DN=×DN ×BC=1, ∴S 1+S 2﹣S 3=S △AED +S △BFD ﹣S △ABC =x +1﹣x=1.故答案为:1.13.解:∵且,∴y ﹣2x=0, ∴x=1,y=2;(x+y)+(x2+2y)+(x3+3y)+…+(x199+199y),=(1+2)+(1+4)+(1+6)+…+(1+398),=3+5+7+ (399)=,=39999.14.解:如图,作△ABQ,使得∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP.∵AB=2AC,∴△ABQ与△ACP相似比为2.∴AQ=2AP=2,BQ=2CP=4,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°.由AQ:AP=2:1知,∠APQ=90°,于是PQ=AP=3,∴BP2=25=BQ2+PQ2,从而∠BQP=90°,过A点作AM∥PQ,延长BQ交AM于点M,∴AM=PQ,MQ=AP,∴AB2=AM2+(QM+BQ)2=PQ2+(AP+BQ)2=28+8,=AB•ACsin60°===3+.故S△ABC故答案为:3+.15.解:设方程有有理数根,则判别式为平方数.令△=q2﹣4p2=n2,规定其中n是一个非负整数.则(q﹣n)(q+n)=4p2.(5分)由于1≤q﹣n≤q+n,且q﹣n与q+n同奇偶,故同为偶数,因此,有如下几种可能情形:、、、、消去n,解得.(10分)对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2﹣5x+2=0,它的根为,它们都是有理数.综上所述,存在满足题设的质数.(15分)16.解:(1)连接PC.∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE;(2)共有四种情况:①当点C与点E重合,即CE=0时,PE=PB;②CE=2﹣,此时PB=BE;③当CE=1时,此时PE=BE;④当E在CB的延长线上,且CE=2+时,此时PB=EB;(3)MD:ME=1:3.过点M作MF⊥AC,MH⊥BC,垂足分别是F、H.∴MH∥AC,MF∥BC.∴四边形CFMH是平行四边形.∵∠C=90°,∴▱CFMH是矩形.∴∠FMH=90°,MF=CH.∵,HB=MH,∴.∵∠DMF+∠DMH=∠DMH+∠EMH=90°,∴∠DMF=∠EMH.∵∠MFD=∠MHE=90°,∴△MDF∽△MEH.∴.。
2019-2019年全国初中数学联赛试题30套30页word文档
![2019-2019年全国初中数学联赛试题30套30页word文档](https://img.taocdn.com/s3/m/6c5e5d3f77232f60ddcca1a3.png)
1991年年全国初中数学联赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的。
请把正确结论的代表字母写在题后的圆括号内。
1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )。
(A )3 (B )31 (C )2 (D )35 2.如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是( )。
(A )10 (B )12(C )16 (D )18。
3.方程012=--x x 的解是( )。
(A )251± (B )251±- (C )251±或251±- (D )251±-± 4.已知:)19911991(2111n n x --=(n 是自然数)。
那么n x x )1(2+-的值是( )。
(A )11991- (B )11991-- (C )1991)1(n - (D )11991)1(--n5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M 为自然数,n 为使得等式成立的最大的自然数,则M ( )。
(A )能被2整除,但不能被3整除(B )能被3整除,但不能被2整除(C )能被4整除,但不能被3整除(D )不能被3整除,也不能被2整除6.若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是( )。
(A )1- (B )5- (C )0 (D )17.如图,正方形OPQR 内接于ΔAB (C )已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是( )。
2019年初三数学竞赛试卷及答案
![2019年初三数学竞赛试卷及答案](https://img.taocdn.com/s3/m/74e0173e591b6bd97f192279168884868762b813.png)
2019年初三数学竞赛试卷及答案2019年初三数学竞赛试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一.选择题(共6小题,每小题4分,共24分)1.用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。
现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x:y=()A。
4:5B。
3:4C。
2:3D。
1:22.一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,如图是这个立方体的平面展开图,若20、__、9的对面分别写的是a、b、c,则a²+b²+c²-ab-bc-ca的值为()A。
481B。
301C。
602D。
9623.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x²+mx+n的图象与x轴有两个不同交点的概率是()A。
1/12B。
1/6C。
1/4D。
1/34.设$f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$,S是曲线$y=f(x)$与x轴所围成的面积,$S_1$是曲线$y=\frac{1}{2}f(x)$与x轴所围成的面积,则4$S_1$的整数部分等于()A。
4B。
5C。
6D。
75.横坐标、纵坐标都是整数的点叫做整点,函数y=$\frac{1}{x}$在第一象限内有整点,这些整点的个数是()A。
3个B。
4个C。
6个D。
8个6.有红色、黄色、蓝色三个盒子,其中有一个盒子内放有一个苹果;三个盒子上各写有一句话,红色盒子上写着“该盒子没有苹果”,黄色盒子上写着“该盒子内有苹果”,蓝色盒子上写着“黄色盒子内没有苹果”;已知这三句话中有且只有一句是真的,那么XXX在哪个盒子内()A。
红色B。
黄色C。
2019年全国初中数学竞赛预赛荆州市试题试题(含答案)
![2019年全国初中数学竞赛预赛荆州市试题试题(含答案)](https://img.taocdn.com/s3/m/3470f478a8956bec0975e3c1.png)
2019年全国初中数学竞赛预赛试题(荆州市)一、选择题(每小题6分,共30分)1.若实数a 、b 、c 、d 满足a+1=b -2=c+3=d -4,则a 、b 、c 、d 这四个实数中最大的是( )A .aB .bC .cD .d2.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y.如果关于x 的函数图象如图2所示,则BD 的长是( )A .13B .29C .10D .33.如图是一个正方体的表面展开图,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A .1B .1或2C .2D .2或34.关于x 满足32537213x x x +-≥--,且23+--x x 的最大值为p ,最小值为q , 则pq 的值是( )A .6B .5C .-5D .45.如图,直角梯形ABCD 中,A D ∥BC ,A B ⊥BC ,AD=3,BC=5,将腰DC 绕点D 的逆时针方向旋转90°至DE ,连结AE ,则△ADE 的面积是( )A .1B .2C .3D .4二、填空题(每小题6分,共30分)6.已知51=-a a ,则aa 1-=______________. 7.若不论自变量x 取何实数时,二次函数y=2x 2-2kx+m 的函数值总是正数,且关于x 的一元二次方程x 2-4x+k=0有两个不相等的实数根.当k 为符合条件的最大整数时,m 的取图1 图2 第3题图第5题图值范围为______________.8.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①AB=DC ;②∠ABE =∠DCE ;③AE=DE ;④∠A =∠D ;小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张,则以已经抽取的两张纸片上的等式为条件,使△BEC 不能构成等腰三角形的概率是______________.9.如图,“L ”形纸片由六个边长为1的小正方形组成,过A 点切一刀,刀痕是线段EF.若阴影部分面积是纸片面积的一半,则EF 的长为______________.10.规定任意两个实数对(a ,b )和(c ,d ):当且仅当a=c 且b=d 时,(a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(a c -bd ,ad+bc).若(1,2)⊗(p,q)=(5,0),则p+q=______________.三、解答题(共60分)11.(本题满分10分)利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性.(1)根据下列所示图形写出一个代数恒等式;(2)已知正数a 、b 、c 和m 、n 、l ,满足.a+m =b+n =c+l =k .试构造边长为k 的正方形,利用图形面积来说明al+bm+cn<k 2.第8题图 第9题图12.(本题满分12分)如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究MB、MN、CN之间的数量关系,并给出证明.13.(本题满分12分)某校10名教师带领八年级全体学生乘坐汽车外出参加社会实践活动,要求每辆汽车乘坐的人数相等.起初每辆汽车乘了22人,结果剩下1人未上车;如果有一辆汽车空着开走,那么所有师生正好能平均分乘到其他各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?该校八年级有多少名学生?14.(本题满分12分)如图,PQ=10,以PQ为直径的圆与一个以20为半径的O内切于点P,与正方形ABCD切于点Q,其中A、B两点在⊙O上.若AB=m+n,其中m、n是整数,求m+n的值.15.(本题满分14分)在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针针旋转,旋转角为θ,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点M,BC边交轴于点N(如图).(1)求边AB在旋转过程中所扫过的面积;(2)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论;(3)当旋转角θ为多少度时,△OMN的面积最小,并求出此时△BMN内切圆的半径.。
2019年全国初中数学竞赛(海南赛区)初赛试卷解析版
![2019年全国初中数学竞赛(海南赛区)初赛试卷解析版](https://img.taocdn.com/s3/m/1b77a0fe08a1284ac85043dc.png)
2019年全国初中数学竞赛(海南赛区)初赛试卷一、选择题(共10小题,每小题5分,满分50分)1.设xy<0,x>|y|,则x+y的值是()A.负数B.0C.正数D.非负数2.若(x+3)(x+n)=x2+mx﹣15,则m等于()A.﹣2B.2C.﹣5D.53.若a+|a|=0,则等于()A.1﹣2a B.2a﹣1C.﹣1D.14.无论m为何实数,直线y=x+2m与y=﹣x+4的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)从1到9这9个自然数中任取一个,是2的倍数的概率是()A.B.C.D.16.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算7.如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A.B.C.D.8.如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为()A.4米B.6米C.8米D.10米9.如图,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD =1,则a等于()A.B.C.1D.210.如图,根据天气预报,某台风中心位于A市正东方向300km的点O处,正以20km/h 的速度向北偏西60°方向移动,距离台风中心250km范围内都会受到影响,若台风移动的速度和方向不变,则A市受台风影响持续的时间是()A.10h B.20h C.30h D.40h二、填空题(共8小题,每小题5分,满分40分)11.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为.12若a+3b=0,则=.13.如图,是30名初三女学生1分钟内仰卧起坐次数的频数分布直方图(每组次数只含最小值而不含最大值),则仰卧起坐次数在25~45次的频率是.14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则cos∠ABC的为.15.已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.16.如图,两个滑块A、B由一个连杆连接,分别可以在两条互相垂直的滑道上滑动.开始时,滑块A距O点20cm,滑块B距O点15cm.则当滑块A向下滑到O点时,滑块B 滑动了.17.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.18.如图,将长为4cm宽为2cm的矩形纸片ABCD折叠,使点B落在CD边上的中点E处,压平后得到折痕MN,则线段AM的长度为cm.三、解答题(共2小题,满分30分)19.如图,正方形ABCD的边长为1,对角线AC与BD相交于点O,点P是AB边上的一个动点(点P不与点A、B重合),CP与BD相交于点Q.(1)若CP平分∠ACB,求证:AP=2QO.(2)先按下列要求画出相应图形,然后求解问题.①把线段PC绕点P旋转90°,使点C落在点E处,并连接AE.设线段BP的长度为x,△APE的面积为S.试求S与x的函数关系式;②求出S的最大值,判断此时点P所在的位置.20.文昌某校准备组织学生及学生家长到三亚进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,文昌到三亚的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?参考答案一、选择题(共10小题,每小题5分,满分50分)1.【解答】解:∵xy<0,x>|y|,∴x>0,y<0,且|x|>|y|,∴x+y的值正数.故选:C.2.【解答】解:∵(x+3)(x+n)=x2+(3+n)x+3n,∴3n=﹣15,∴n=﹣5,m=3+(﹣5)=﹣2.故选:A.3.【解答】解:由a+|a|=0,得|a|=﹣a,可知a为非正数,∴=1﹣a,=﹣a∴原式=1﹣a﹣a=1﹣2a故选:A.4.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故选:C.5.【解答】解:所有机会均等的可能共有9种.而2的倍数有2,4,6,8四个,因此是2的倍数的概率是.故选:B.6.【解答】解:本题没有AB两地的单程,可设为1,那么总路程为2,总时间为+.平均速度=2÷(+)=2÷=.故选B.7.【解答】解:由于一段时间离家的距离保持不变,家是一个点,所以在那段时间内行走的路线就可能是在以家为圆心,那段距离为半径的一段弧上.故选:D.8.【解答】解:如图,由题意可知,∠ACB=90°,∠ABC=60°,则AB=2BC=8米,故选:C.9.【解答】解:∵∠BAC=∠BCA=∠OBC=∠OCB,∴△BOC∽△ABC,所以,即,所以,a2﹣a﹣1=0.由a>0,解得.故选:A.10.【解答】解:如图,以点A为圆心,250km为半径画圆,交OM于点B、C,作AN⊥BC 于点N,∵∠AON=90°﹣60°=30°,AO=300,∴在Rt△OAN中,AN=AO=150km,又AC=250km,在Rt△CAN中,由勾股定理,得CN==200km,则BC=2CN=400km,台风中心在线段BC上时,A市都会受到台风的影响,∴A市受台风影响持续的时间为400÷20=20小时.故选:B.二、填空题(共8小题,每小题5分,满分40分)11.【解答】解:把n代入方程得到n2+mn+2n=0,将其变形为n(m+n+2)=0,因为n≠0所以解得m+n=﹣2.12.【解答】解:∵a+3b=0,∴a=﹣3b.∴原式=====.故答案为:.13.【解答】解:由频率分布直方图可知,“25~45”的学生人数有21人,∴仰卧起坐次数在25~45次的频率=21÷30=0.7.故应填:0.7.14.【解答】解:连接AC,延长AD交CD的延长线于D,由题意可知∠D=90°,则AC==,BC==,AB==,∵AC2+BC2=AB2∴△ABC直角三角形,∵AC=BC,∴∠A=∠B==45°.cos45°=故答案为.15.【解答】解:根据题意得,与x轴的另一个交点为(1,0)或(﹣1,0),因此要分两种情况:(1)过点(﹣1,0),设y=ax(x+1),则,解得:a=1,∴抛物线的解析式为:y=x2+x;(2)过点(1,0),设y=ax(x﹣1),则,解得:a=,∴抛物线的解析式为:y=x2+x.16.【解答】解:如图,由AB2=AO2+OB2=202+152=252,可知连杆AB的长度等于25cm,当滑块A向下滑到O点时,滑块B距O点的距离是25cm,故滑块B滑动了25﹣15=10cm.故答案为10cm.17.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.18.【解答】解:如图,连接BM,EM,BE,由折叠的性质可知,四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,∵点E是CD的中点,DE=1,∴在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=x,则DM=4﹣x,∴x2+22=(4﹣x)2+12.解得,即cm.故答案为:.三、解答题(共2小题,满分30分)19.【解答】(1)证明:过点O作OM∥AB交PC于点M,则∠COM=∠CAB.∵四边形ABCD是正方形,∴OA=OC,∠CAB=∠CBD=∠COM=45°,∴AP=2OM.又∵∠1=∠2,∴∠1+∠COM=∠2+∠CBD,即∠OMQ=∠OQM.∴OM=OQ∴AP=2OQ.(2)解:根据题意作出图形,如图所示①ⅰ、当PC绕点P逆时针旋转90°时,作EF⊥AB交BA延长线于点F,则∠EFP=∠PBC=90°,∠3+∠CPB=90°.又∠2+∠CPB=90°,∴∠3=∠2.又PE由PC绕点P旋转形成∴PE=PC∴△EPF≌△CPB.∴EF=BP=x,∴AP=1﹣x,∴.∴△APE的面积S与x的函数关系式为(0<x<1).ⅱ、当PC绕点P顺时针旋转90°时,作E′G⊥AB交AB延长线于点G,则同理可得△E′PG≌△CPB,E′G=BP=x.∴△APE的面积S与x的函数关系式为由ⅰ、ⅱ可得△APE的面积S与x的函数关系式为,(0<x<1)②由①知S与x的函数关系式为,(0,x,1)即,(0<x<1)∴当时S的值最大,最大值为.此时点P所在的位置是边AB的中点处.20.【解答】解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意得:,解得,则2m=20,答:参加社会实践的老师、家长与学生分别有10人、20人、180人.(2)解:由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x﹣180)名成年人买二等座火车票,(210﹣x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x﹣180)+81(210﹣x),即y=﹣13x+13950(180≤x<210),②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210﹣x)张,∴火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210﹣x),即y=﹣30x+17010(0<x<180),答:购买火车票的总费用(单程)y与x之间的函数关系式是y=﹣13x+13950(180≤x <210)或y=﹣30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=﹣13x+13950,∵﹣13<0,y随x的增大而减小,∴当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=﹣30x+17010,∵﹣30<0,y随x的增大而减小,∴当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元.。
2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷(含答案)
![2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷(含答案)](https://img.taocdn.com/s3/m/c448ca04f90f76c660371a91.png)
2019年全国初中数学竞赛(湖北省襄阳市)预选赛试卷一、选择题(共6小题,每小题4分,满分24分)1.如果分式的值等于0,则x的值是()A.2B.﹣2C.﹣2或2D.2或32.已知a、b、c为一个三角形的三边长,则4b2c2﹣(b2+c2﹣a2)2的值为()A.恒为正B.恒为负C.可正可负D.非负3.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处4.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七.八.九三个年级共有学生800人.甲,乙,丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲,乙,丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙5.若方程组的解为x,y,且2<k<4,则x﹣y的取值范围是()A.0<x﹣y<B.0<x﹣y<C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<6.如图,已知AD是△ABC的外接圆的直径,AD=13cm,cos B=,则AC的长等于()A.5cm B.6cm C.10cm D.12cm二、填空题(共6小题,每小题4分,满分24分)7.已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=.8.已知m,n是有理数,且(+2)m+(3﹣2)n+7=0,则m=,n=.9.如图,在△ABC中,O是∠ABC与外角∠ACD的平分线BO、CO的交点,则∠O与∠A 的关系是.10.如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′上,EC′交AD于点G,已知∠EFG=58°,那么∠BEG=度.11.如图,直线y=kx﹣2(k>0)与双曲线在第一象限内的交点R,与x轴、y轴的交点分别为P、Q.过R作RM⊥x轴,M为垂足,若△OPQ与△PRM的面积相等,则k 的值等于.12.如图,BD:DC=5:3,E为AD的中点,延长BE交AC于F,则BE:EF=.三、解答题(共7小题,满分72分)13.解方程:.14.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.15.已知方程x2﹣kx﹣7=0与x2﹣6x﹣(k+1)=0有公共根.求k的值及两方程的所有公共根和所有相异根.16.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于F,点E是AB的中点,连接EF.(1)求证:.(2)若四边形BDFE的面积为8,求△AEF的面积.17.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.18.某厂现有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件.已知生产一件A种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元;生产一件B种产品,需甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A、B两种产品的生产件数,有几种方案请你设计出来;(2)设生产A、B两种产品总利润是y元,其中一种产品的生产件数是x.试写出y与x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大,最大利润是多少?19.如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题(共6小题,每小题4分,满分24分)1.【解答】解:由题意可得|x|﹣2=0且x2﹣5x+6≠0,解得x=±2,代入x2﹣5x+6≠0检验得到x=﹣2.故选:B.2.【解答】解:4b2c2﹣(b2+c2﹣a2)2=(2bc﹣b2﹣c2+a2)(2bc+b2+c2﹣a2)=[a2﹣(b﹣c)2][(b+c)2﹣a2]=(a﹣b+c)(a+b﹣c)(b+c+a)(b+c﹣a)>0.故4b2c2﹣(b2+c2﹣a2)2的值恒为正.故选:A.3.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.4.【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;七年级的达标率为×100%=87.8%;九年级的达标率为×100%=97.9%;八年级的达标率为.则九年级的达标率最高.则乙、丙的说法是正确的,故选B.5.【解答】解:①﹣②得,7x﹣7y=k+1﹣3整理得x﹣y=又因为2<k<4所以<x﹣y<即0<x﹣y<.故选:A.6.【解答】解:由圆周角定理知,∠D=∠B,∴cos D=cos B==CD:AD.又∵AD=13,∴CD=5.在Rt△ACD中,由勾股定理得,AC=12.故选:D.二、填空题(共6小题,每小题4分,满分24分)7.【解答】解:∵x2+y2+z2﹣2x+4y﹣6z+14=0,∴x2﹣2x+1+y2+4y+4+z2﹣6z+9=0,∴(x﹣1)2+(y+2)2+(z﹣3)2=0,∴x﹣1=0,y+2=0,z﹣3=0,∴x=1,y=﹣2,z=3,故x+y+z=1﹣2+3=2.故答案为:2.8.【解答】解:由且(+2)m+(3﹣2)n+7=0,得(m﹣2n)+2m+3n+7=0,∵m、n是有理数,∴m﹣2n、2m+2n+7必为有理数,又∵是无理数,∴当且仅当m﹣2n=0、2m+3n+7=0时,等式才成立,∴n=﹣1,m=﹣2.故答案为:﹣2、﹣1.9.【解答】解:∵OB、OC是∠ABC与∠ACD的平分线,∴∠OCD=∠ACD=∠O+∠OBC=∠O+∠ABC,∠O=∠OCD﹣∠OBC=∠ACD﹣∠ABC,∠A=180°﹣∠ABC﹣∠ACB,∠ACB=180°﹣∠ACD,∴∠A=180°﹣∠ABC﹣180°+∠ACD=∠ACD﹣∠ABC,又∠O=∠ACD﹣∠ABC,∴∠O=∠A.故答案为∠O=∠A.10.【解答】解:∵AD∥BC,∴∠EFG=∠CEF=58°,∵∠FEC=∠FEG,∴∠FEC=∠FEG=∠EFG=58°,∴∠BEG=180°﹣58°﹣58°=64°.11.【解答】解:∵y=kx﹣2,∴当x=0时,y=﹣2,当y=0时,kx﹣2=0,解得x=,所以点P(,0),点Q(0,﹣2),所以OP=,OQ=2,∵RM⊥x轴,∴△OPQ∽△MPR,∵△OPQ与△PRM的面积相等,∴△OPQ与△PRM的相似比为1,即△OPQ≌△MPR,∴OM=2OP=,RM=OQ=2,所以点R(,2),∵双曲线经过点R,∴=2,即k2=8,解得k1=2,k2=﹣2(舍去).故答案为:2.12.【解答】解:过D作DG∥AC交BF于G,∵E是AD的中点,∴△AEF≌△DEG,∴EG=EF,∵DG∥AC,BD:DC=5:3,∴BG:GF=5:3,∴BE:EF=(5+1.5):1.5=13:3.故答案为:13:3.三、解答题(共7小题,满分72分)13.【解答】解:方程两边各自通分,得,整理得:,即x2﹣11x+30=x2﹣17x+72,解得x=7.检验:把x=7代入原方程各分母,显然(x﹣5)(x﹣6)(x﹣8)(x﹣9)≠0,∴原方程的解为x=7.14.【解答】解:探究结论:BM+CN=NM.证明:延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ABD=∠DCE=90°,∴在△DCE和△DBM中,∴Rt△DCE≌Rt△DBM(SAS),∴∠BDM=∠CDE,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC﹣∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°∴DM=DE(上面已经全等)在△DMN和△DEN中∵∴△DMN≌△DEN(SAS),∴BM+CN=NM.15.【解答】解:,②﹣①得,(﹣6+k)x+(6﹣k)=0,当﹣6+k=0,即k=6时,x取任意值,两个方程得解都相同.两个方程是同一个式子.方程得解是x1=7,x2=﹣1;当k≠6时,解得x=1.把x=1代入x2﹣kx﹣7=0得,1﹣k﹣7=0,k=﹣6.于是两方程为:x2+6x﹣7=0③,x1=1,x2=﹣7.x2﹣6x+5=0④,x1=1,x2=5.故答案为:k=6,有公共根,公共根为7和﹣1.k=﹣6;其公共根为1,相异根为:﹣7和5.16.【解答】解:(1)∵DC=AC,∠ACB的平分线CF交AD于F,∴F为AD的中点,∵点E是AB的中点,∴EF为△ABD的中位线,∴,(2)∵EF为△ABD的中位线,∴,EF∥BD,∴△AEF∽△ABD,∵S△AEF:S△ABD=1:4,∴S△AEF:S四边形BDEF=1:3,∵四边形BDFE的面积为8,∴S△AEF=.17.【解答】解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.18.【解答】解:(1)设安排生产A种产品x件,则生产B种产品为(50﹣x)件,根据题意,得解得30≤x≤32.因为x是自然数,所以x只能取30,31,32.所以按要求可设计出三种生产方案:方案一:生产A种产品30件,生产B种产品20件;方案二:生产A种产品31件,生产B种产品19件;方案三:生产A种产品32件,生产B种产品18件;(2)设生产A种产品x件,则生产B种产品(50﹣x)件,由题意,得y=700x+1200(50﹣x)=﹣500x+60000因为a<0,由一次函数的性质知,y随x的增大而减小.因此,在30≤x≤32的范围内,因为x=30时在的范围内,所以当x=30时,y取最大值,且y最大值=45000.19.【解答】解:(1)因为抛物线的对称轴是x=,设解析式为y=a(x﹣)2+k.把A,B两点坐标代入上式,得,解得a=,k=﹣.故抛物线解析式为y=(x﹣)2﹣,顶点为(,﹣).(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x﹣)2﹣,∴y<0,即﹣y>0,﹣y表示点E到OA的距离.∵OA是OEAF的对角线,∴S=2S△OAE=2××OA•|y|=﹣6y=﹣4(x﹣)2+25.因为抛物线与x轴的两个交点是(1,0)和(6,0),所以自变量x的取值范围是1<x<6.①根据题意,当S=24时,即﹣4(x﹣)2+25=24.化简,得(x﹣)2=.解得x1=3,x2=4.故所求的点E有两个,分别为E1(3,﹣4),E2(4,﹣4),点E1(3,﹣4)满足OE=AE,所以平行四边形OEAF是菱形;点E2(4,﹣4)不满足OE=AE,所以平行四边形OEAF不是菱形;②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,此时点E的坐标只能是(3,﹣3),而坐标为(3,﹣3)的点不在抛物线上,故不存在这样的点E,使平行四边形OEAF为正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第2题图) 2019全国初中数学竞赛初三预赛试题
注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!
2018年全国初中数学竞赛九年级预赛试题
〔本卷总分值120分,考试时间120分钟〕
【一】选择题〔本大题共6个小题,每题5分,共30分〕
在以下各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分、
1.从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是〔〕
A 、41
B 、31
C 、21
D 、1
2、如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,那么△ABC 的周长为〔〕 A 、38 B 、39 C 、40 D.41
3、1≠xy ,且有09201152=++x x ,05201192=++y y ,那么y x 的值等于〔〕
A 、9
5
B 、5
9
C 、
52011- D 、9
2011-
4、直角三角形的一直角边长是4,以这个直角三角形的三边 为直径作三个半圆(如下图),两个月牙形(带斜线的阴
影图形)的面积之和是10,那么以下四个整数中,最接近图 中两个弓形〔带点的阴影图形〕面积之和的是〔〕
A 、6 B.7C 、8 D 、9
5、设a ,b ,c 是△ABC 的三边长,二次函数2
2(2b a cx x b a y -
---=在1=x 时取最小值
b 5
8-,那么△ABC 是〔〕 A 、等腰三角形 B 、锐角三角形 C 、钝角三角形 D 、直角三角形
6、计算机中的堆栈是一些连续的存储单元,在每个堆栈中数据的存入、取 出按照“先进后出”的原那么,如图,堆栈〔1〕中的2个连续存储单元
已依次存入数据b ,a ,取出数据的顺序是a ,b ;堆栈〔2〕的3个 连续存储单元已依次存入数据e ,d ,c ,取出数据的顺序是c ,d , e ,现在要从这两个堆栈中取出5个数据〔每次取出1个数据〕
,那么不
(1) (2)
(第5题图)
同顺序的取法的种数有〔〕
A 、5种
B 、6种
C 、10种
D 、12种 【二】填空题〔本大题共6个小题,每题5分,共30分〕 7、假设
4122=---x x ,那么满足该方程的所有根之和为.
8、〔人教版考生做〕如图A ,在
中,过A ,B ,
C 三点的圆交A
D 于
E ,且与CD 相切,假设AB =4,BE =5
,那么DE 的长为、 8、〔北师大版考生做〕如图B ,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,那么FG AF
=
、
9、012=--a a ,且3222
322
324-=-++-a
xa a xa a ,那么=x 、 10、元旦期间,甲、乙两人到特价商店购买商品,两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.假设两人购买商品一共花费了172元,那么其中单价为9元的商品有件、
11、如图,电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成o 45,∠A =o 60,CD =4m ,BC =)2264(-m ,那么电线杆AB 的长为m 、
12、实数x 与y ,使得y x +,y x -,xy ,y x 四个数中的三个有相同的数值,那么所有具
有这样性质的数对),(y x 为、
3个小题,每题20分,共60分〕
13. :))(())(a x c x c x b +++++是完全平方式、 14.〔此题总分值20分〕如图,将OA =6,AB =4的矩形OABC 放置在平面直角坐标系中,动点M ,N 以每秒1个单位的速度分别从点A ,C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP 、
〔1〕点B 的坐标为;用含t 的式子表示点P 的坐标为;
〔2〕记△OMP 的面积为S ,求S 与t 的函数关系式〔0<t <6〕;并求t 为何值时,S 有最大
值?
〔3〕试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角
形和四边形两部分,且三角形的面积是△ONC 面积的3
1?假设存在,求出点T 的坐
15.〔此题总分值20分〕
对于给定的抛物线ax x y ++=2〔1〕证明:抛物线px x y ++=2〔2〕证明:以下两个二次方程,x 实数根. (备用图)
(第14题图)
(第11题图)
A B C
D (第8题图A )
G
F E
C
B
A
(第8题图B )
D
2018年九年级试卷参考答案
一、选择题〔每题5分,共30分〕1—6CDBADC 二、填空题〔每题5分,共30分〕:
7.62-;8.A :516;B :12
;9.4;10.12;11.26;12.)1,21
(-)1,2
1
(--. 【三】解答题:〔每题20分,共60分〕
13.证明:把代数式整理成关于x 的二次三项式,得
原式=3x 2
+2(a +b +c )x +ab +ac +bc ∵它是完全平方式,∴△=0. 即4(a +b +c )2-12(ab +ac +bc )=0.∴2a 2+2b 2+2c 2-2ab -2bc -2ca =0,
(a -b )2+(b -c )2+(c -a )2
=0.要使等式成立,必须且只需:
⎪⎩
⎪
⎨⎧=-=-=-000
a c c
b b a
解这个方程组,得c b a ==. 14.解:〔1〕〔6,4〕;〔
2,3
t t 〕.〔其中写对B 点得1分〕 ………………………………3分
〔2〕∵S △OMP =12×OM ×23
t
,
∴S =12×〔6-t 〕×23t =213t -+2t =2
1(3)3
3
t --+〔0<t <6〕、
∴当3t =时,S 有最大值、…………………………………………8分
〔3〕存在、
由〔2〕得:当S 有最大值时,点M 、N 的坐标分别为:M 〔3,0〕,N 〔3,4〕, 那么直线ON 的函数关系式为:43
y x
=、
设点T 的坐标为〔0,b 〕,那么直线MT 的函数关系式为:3
b
y x b
=-+, 解方程组
433y x b y x b ⎧
=⎪⎪⎨
⎪=-+⎪⎩
得
3444b
x b b y b
⎧
=⎪⎪+⎨⎪=⎪+⎩
∴直线ON 与MT 的交点R 的坐标为
34(,)44b b b b
++、 ∵S △OCN =12×4×3=6,∴S △ORT =13
S △OCN =2、 ········· …………………10分
一、当点T 在点O 、C 之间时,分割出的三角形是△OR 1T 1, 二、如图,作R 1D 1⊥y 轴,D 1为垂足,
那么S △OR 1T 1=12
•RD 1•OT =12
•34b b
+•b =2.
∴234160b b --=,b
∴b 1
,b 2
此时点T 1的坐标为〔0
. ·· ……………………………………………15分
②当点T 在OC 的延长线上时,分割出的三角形是△R 2NE ,如图,设MT 交CN 于点E , ∵点E 的纵坐标为4,∴由①得点E 的横坐标为312b b
-,
作R 2D 2⊥CN 交CN 于点D 2,那么 S △R 2NE =12•EN •D 2=12
•312(3)b b
--
•
4(4)4b b -
+96
(4)
b b =+=2.
∴24480b b +-=,b
2
=±.
∴b 1
=2,b 2
=2-〔不合题意,舍去〕、 ∴此时点T 2的坐标为〔0
,2〕、
综上所述,在y 轴上存在点T 1〔0
,
23
+〕
,T 2〔0
,2〕符合条件、…20分
15.证明:〔1〕∵)(2q b ap +=
∴
b
ap q -=2
代入抛物线q px x y ++=2中,得0)2(2
=++-+-a x p b x y 得
⎪
⎩
⎪⎨⎧=+=-+-020
2a x b x y 解得:
⎪⎪⎩
⎪⎪⎨⎧
-=-=4422
b a y a x , 故抛物线q px x y ++=2通过定点
)4
4,2(2b a a --……………………10分
〔2〕∵b ap q 22-=,∴)2(2224222b ap p q p q p --=⋅-=-
=b ap p 422+-=b a a ap p 42222+-+- =)4()(22b a a p ---
∴0)()4()4(222≥-=-+-a p b a q p ∴q p 42-与b a 42-中至少有一个非负.
∴02=++b ax x 与02=++q px x 中至少有一个方程有实数根.…………20分
(备用图)。