金属材料中Si、C、Mn、S、P等元素的作用及影响
各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。
使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。
硫对焊接性能也不利,降低耐腐蚀性。
所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。
在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。
铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
钢铁中的元素及作用

各种元素在钢铁中的作用钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。
其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。
它是工程技术中最重要、用量最大的金属材料。
各种元素在钢铁中有什么作用碳(Carbon)存在于所有的钢材,是最重要的硬化元素。
有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有0.6%以上的碳,也成为高碳钢。
铬(Chromium)增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。
尽管这么叫,如果保养不当,所有钢材都会生锈锰(Manganese)重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。
在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。
钼(Molybdenum)碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。
镍(Nickle)保持强度、抗腐蚀性、和韧性。
出现在L-6\AUS-6和AUS-8中。
硅(Silicon)有助于增强强度。
和锰一样,硅在钢的生产过程中用于保持钢材的强度。
钨(Tungsten)增强抗磨损性。
将钨和适当比例的铬或锰混合用于制造高速钢。
在高速钢M-2中就含有大量的钨。
钒(Vanadium)增强抗磨损能力和延展性。
一种钒的碳化物用于制造条纹钢。
在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420V A含有大量的钒。
而BG-42与ATS-34最大的不同就是前者含有钒按钢的用途分类一、结构钢(1)建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。
(2)机械制造用结构钢--是指用于制造机械设备上结构零件的钢。
这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等根据含碳量和用途的不同﹐这类钢大致又分为三类﹕1. 小于0.25%C为低碳钢﹐其中尤以含碳低于0.10%的08F﹐08Al等﹐由于具有很好的深冲性和焊接性而被广泛地用作深冲件如汽车﹑制罐……等﹐20G则是制造普通锅炉的主要材料﹐此外﹐低碳钢也广泛地作为渗碳钢﹐用于机械制造业﹐2. 0.25~0.60%C为中碳钢﹐多在调质状态下使用﹐制作机械制造工业的零件。
铸造中合金元素分析

1、铸铁的基本元素有哪些?各自的作用如何—对组织性能的影响?答:铸铁的基本元素为:碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)五大元素。
五大元素对铸铁组织性能的影响:(1)、碳本身就是构成石墨的元素,在铸铁中是促进石墨化元素。
但碳量过高,力学性能降低。
(2)、硅是强烈促进石墨化元素,但硅量过高,易使石墨粗大,力学性能降低,若含硅量过低;则易出现麻口或白口组织。
(3)、硫在铸铁中是有害元素,它以FeS的形式完全溶解于铁液中,并能降低碳在铁中的溶解度。
此外,硫在铸铁中还能恶化铸铁的铸造性能,当铁液中存在有大量硫化物时,就会降低铁液的流动性,补缩性能差,容易产生裂纹等缺陷。
因此,在灰铸铁中一般将含硫量限制在0.1-0.12%以下。
(4)、锰在铸铁中首先表现出抵消硫的一些有害作用上,因此铸铁中含有适量的锰是有益的。
通常锰的含量应控制在06-1.2%范围内。
(5)磷能增加铁水的流动性和提高铸铁的耐磨性,即铸铁的硬度随着含磷量的增加而增高,韧性则降低。
因此,普通灰铸铁中一般将含磷量限制在0.3%以下。
磷对铸铁的石墨化影响不大。
2、铸造碳钢的基本元素有哪些?各自的作用如何?答:碳钢的基本元素有:碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)五大元素。
铸造碳钢是熔模铸造生产中应用极为广泛的材料。
碳钢的主要元素是碳,其含量为0.12-0.62%。
改变含碳量可在很大程度上改变钢的机械性能。
此外,钢中含有硅、锰、磷、硫四大元素,硅、锰有脱氧和去硫作用,但且含量变化不大,对性能的影响也不大。
磷、硫在钢中均为有害元素,并在不同质量要求的钢中均有一定的限制。
磷和硫在钢中含量越少越好。
3、铸造合金钢常用的合金元素有哪些?加入的目的是什么?答:(1)含碳量越高,钢的硬度越高,耐磨性越好,但塑性及韧性越差。
(2)硫是钢中有害元素,含硫量较多的钢在热压力加工时容易脆裂,这种现象通常称为“热脆”。
(3)磷能提高钢的强度,但使钢的塑性及韧性明显下降,特别在低温时影响更为严重,这种现象通常称为“冷脆”。
各种金属元素在钢中的作用

各种金属元素在钢中的作用1.铁(Fe):铁是钢的主要成分,赋予钢良好的强度和塑性。
纯铁本身并不适合作为结构材料,但与其他元素合金后可形成钢,使其具有更高的强度和耐用性。
2.碳(C):碳是钢中最重要的合金元素之一、适量的碳能提高钢的硬度和强度,增加其耐磨性和耐蚀性。
其中,碳含量在0.02%至2.1%之间的钢被广泛应用。
3.锰(Mn):锰能够提高钢的硬度和韧性,使钢更加耐磨和耐冲击。
锰还可以与硫、磷等杂质结合,形成易于熔化的夹杂物,从而提高钢的可塑性和加工性能。
4.硅(Si):硅在钢中作为脱氧剂,能够有效降低钢中的氧含量,从而减少气孔和夹杂物的形成。
硅对钢的强度和塑性影响有限,但有助于改善钢的耐腐蚀性能。
5.磷(P):磷的掺入可以提高钢的硬度和抗拉强度。
然而,高磷含量会降低钢的可塑性和韧性,并增加冷脆倾向。
因此,磷含量通常应控制在较低水平。
6.硫(S):硫主要存在于原材料中的钢中,并往往是不可避免的。
过高的硫含量会导致钢的脆化和冷脆倾向。
因此,控制硫含量对于保证钢的可锻性和韧性至关重要。
7.铬(Cr):铬是不锈钢中的主要合金元素之一,能够形成耐蚀的氧化层,提高钢的耐腐蚀性能。
铬还可以增加钢的硬度和强度,同时改善钢的高温强度和抗氧化性能。
8.镍(Ni):镍可以提高钢的韧性和可塑性,改善冷加工性能。
镍还能增加钢的耐腐蚀性能和高温强度,使钢具有更好的抗剪切、耐磨和耐腐蚀性能。
9.钼(Mo):钼能够提高钢的强度和韧性,特别是在高温下。
钼还能增加钢的耐腐蚀性能、抗磨性和切削性能,因此常用于制造高速钢和高温合金。
10.钛(Ti):钛能够提高钢的耐高温性能和抗腐蚀性能。
钛还能够与氮结合形成细小的碳化钛,提高钢的硬度和强度。
由于钛的昂贵和难处理性,其含量通常较低。
除了上述主要的金属元素外,钢中还可能含有其他元素,如铜、铝、氮等,它们也会对钢的性能产生影响。
这些元素的含量、相互作用和加工过程都将影响到钢的力学性能、耐蚀性能、可加工性等特性。
各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。
使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。
硫对焊接性能也不利,降低耐腐蚀性。
所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。
在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。
铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
钢铁中五大元素的作用与危害及其分析方法

钢铁中五大元素的作用与危害及其分析方法作者:刘张50905022010 应化2班钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。
其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。
它是工程技术中最重要、用量最大的金属材料。
钢铁生产流程包括:矿山开采→选矿→烧结→炼铁→炼钢→连铸→轧钢等。
钢铁工业是最重要的基础工业,是其他工业发展的物质基础。
有了钢铁,就使得中国国民经济的技术改造成为可能。
同时,钢铁工业的发展也有赖于煤炭工业、采掘工业、冶金工业、动力、运输等工业部门的发展。
由于钢铁工业与其他工业的关系十分密切,因此许多国家都把发展钢铁工业放在十分重要的地位,并把这种发展与国民经济各部门的发展互相协调起来,保持正常的比例关系。
针对此块精英人才,也是目前我国最稀缺的。
五大元素是特指钢铁中的碳、硫、硅、磷、锰五种元素。
五大元素各个化学元素对钢的性能有以下的影响:1、碳(C) 碳是钢铁的主要成分之一它直接影响着钢铁的性能。
碳是区别铁与钢,决定钢号、品级的主要标志。
碳是对钢性能起决定作用的元素。
碳在钢中可作为硬化剂和加强剂,正是由于碳的存在,才能用热处理的方法来调节和改善其机械性能,钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):由原料矿石引入或脱氧及特殊需要而有意加入,在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
(完整版)常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响1.生铁:生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。
这些元素对生铁的性能均有一定的影响。
碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。
石墨很软,强度低,它的存在能增加生铁的铸造性能。
硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。
锰(Mn):能溶于铁素体和渗碳体。
在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。
磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。
然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。
硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。
铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。
2.钢:2.1元素在钢中的作用2.1.1 常存杂质元素对钢材性能的影响钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。
这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。
这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。
1)硫硫来源于炼钢的矿石与燃料焦炭。
它是钢中的一种有害元素。
硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。
焊条 c mn si s 数值

焊条 c mn si s 数值
焊条是一种用于焊接的金属棒,通常由焊接材料和药芯组成。
C、Mn、Si和S代表焊条中的主要元素含量,它们对焊接性能有重要影响。
C代表碳含量,碳含量的增加通常会提高焊接材料的硬度和强度,但也可能导致脆性增加。
对于焊接来说,适当的碳含量可以提
高焊接材料的抗拉强度和硬度。
Mn代表锰含量,锰是一种常见的合金元素,可以提高焊接材料
的强度、韧性和耐磨性。
适当的锰含量可以改善焊接材料的机械性能。
Si代表硅含量,硅是一种常见的合金元素,可以提高焊接材料
的流动性和润湿性,有助于焊接的进行。
适当的硅含量可以改善焊
接材料的流动性和焊缝形貌。
S代表硫含量,硫是一种杂质元素,高硫含量可能会导致焊接
材料的脆性增加,降低焊接接头的韧性和冲击性能。
因此,控制硫
含量是保证焊接接头质量的重要因素。
总的来说,焊条中的C、Mn、Si和S的含量会直接影响焊接材料的性能和焊接接头的质量,因此在选择和使用焊条时,需要根据具体的焊接要求和工艺规程来合理控制这些元素的含量。
钢材中的合金元素含量对其性能的影响

钢材中的合金与杂质含量对其性能的影响一、对钢材一般性能的影响1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
优点:(1)提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。
(2) 硅能显著地提高钢的弹性极限、屈服极限和屈强比,这是一般弹簧钢。
(3)耐腐蚀性。
硅的质量分数为15%- 20%的高硅铸铁,是很好的耐酸材料。
含有硅的钢在氧化气氛中加热时,表面也将形成一层SiO2 薄膜,从而提高钢在高温时的抗氧化性。
缺点:使钢的焊接性能恶化。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
优点:(1)锰提高钢的淬透性。
(2)锰对提高低碳和中碳珠光体钢的强度有显著的作用。
(3)锰对钢的高温瞬时强度有所提高。
缺点:①含锰较高时,有较明显的回火脆性现象;②锰有促进晶粒长大的作用,因此锰钢对过热较敏感,在热处理工艺上必须注意。
各化学元素对钢材的影响

各化学元素对钢材的影响钢材是一种广泛应用于建筑、制造和其他领域的重要材料。
化学元素可以通过添加或与钢材中的化学成分相互作用来改变钢材的性能和特性。
下面将详细介绍一些常见的化学元素对钢材性能的影响。
1.碳(C):碳是钢材中最重要的元素之一、含碳量的增加可以提高钢材的硬度和强度,但同时也会降低其可塑性和冲击韧性。
高碳钢具有较高的硬度和强度,适合用于制造刀具和弹簧等应用。
2.硅(Si):硅的添加可以提高钢材的抗腐蚀性和磁性。
硅还有助于钢材的脱氧作用,减少对氧气的敏感性。
硅含量较高的钢材常用于制造电力设备和变压器。
3.锰(Mn):锰的添加可以提高钢材的强度和韧性,并增加其耐磨性和耐蚀性。
锰含量较高的钢材常用于制造铁路轨道和重型机械设备。
4.硫(S)和磷(P):硫和磷是常见的非金属杂质元素,其含量对钢材性能有负面影响。
高硫和高磷含量会导致钢材变脆,降低其可塑性和韧性。
因此,在钢材生产过程中对硫和磷的含量进行控制非常重要。
5.铬(Cr):铬的添加可以提高钢材的耐腐蚀性和耐热性。
铬与钢中的碳形成的氧化物膜可以防止钢材与大气中的氧气接触,从而减少钢材的腐蚀。
高铬钢常用于制造不锈钢。
6.镍(Ni):镍的添加可以提高钢材的韧性和强度,同时也增加了钢材的耐腐蚀性。
镍含量较高的钢材常用于制造耐高温和耐腐蚀的材料,如合金钢和不锈钢。
7.钼(Mo):钼的添加可以提高钢材的强度和耐热性。
钼对钢材的影响类似于镍,但效果更加显著。
钼含量较高的钢材常用于制造高温设备和工具。
8.铝(Al):铝的添加可以改善钢材的氧化抗性和耐蚀性,并降低钢材的密度。
铝还可以提高钢材的强度和硬度,用于制造航空和汽车零件。
9.钛(Ti):钛的添加可以提高钢材的强度和耐腐蚀性。
钛含量较高的钢材常用于制造航空和化工设备。
10.硼(B):硼的添加可以提高钢材的硬度和强度,并改善其机械性能。
硼含量较高的钢材常用于制造切削工具和弹簧。
总之,化学元素对钢材性能的影响是多样且复杂的。
各元素对不锈钢的性能和组织的影响和作用

各元素对不锈钢的性能和组织的影响和作用不锈钢是一种耐腐蚀的金属材料,通常由铁、铬、镍和一些其他元素组成。
不同元素的添加和含量会对不锈钢的性能和组织造成影响。
以下是各元素对不锈钢性能和组织的主要影响和作用。
1.铁(Fe):铁是不锈钢的主要成分,提供了不锈钢的韧性和强度。
铁的含量决定了不锈钢的晶粒度、硬度和强度。
2.铬(Cr):铬是不锈钢的主要合金元素,具有耐腐蚀性。
当铬含量达到10.5%以上时,形成一层致密的铬氧化物膜(即钝化层),可以防止常见的腐蚀介质侵蚀不锈钢表面。
3.镍(Ni):镍可以提高不锈钢的强度、塑性和耐腐蚀性能,同时也有助于提高焊接性能。
镍含量越高,不锈钢的抗晶粒腐蚀能力越强。
4.碳(C):碳含量对不锈钢的合金化程度和硬度有较大影响。
低碳不锈钢有良好的韧性和可焊性,而高碳不锈钢则具有较高的硬度和耐磨性。
5.锰(Mn):锰对不锈钢的强度和硬度有一定影响。
适量的锰可以提高热处理硬化的效果,并影响不锈钢的晶体结构。
6.非金属元素(氮、硫、氧):非金属元素的含量会影响不锈钢的耐腐蚀性能。
氮与铬结合能够显著改善不锈钢的耐腐蚀性能,而硫和氧会对不锈钢的耐腐蚀性能产生负面影响。
7.磷(P)和硅(Si):磷和硅的含量会对不锈钢的热处理过程和组织形成产生影响。
适量的磷可以提高不锈钢的强度和耐蚀性,而硅的添加则可提高不锈钢的高温氧化和耐蚀性能。
8.氢(H):氢会导致不锈钢脆性的产生,因此在制备和使用过程中要严格控制氢含量。
以上是各元素对不锈钢性能和组织的主要影响和作用。
不锈钢的配方和处理工艺可以根据具体的应用要求进行调整,以获得所需的力学性能、耐腐蚀性能和加工性能。
钢中常见的元素、夹杂物对钢性能的作用及影响

Байду номын сангаас
硅(Si): 硅在碳钢的含量≤0.50%。硅也是钢中的有益元素。在沸腾钢中,含硅量很低,硅是 作为脱氧元素加入到钢中。在镇静钢中硅的含量一般为0.12~0.37%。硅增大了钢液的流动 性,除了形成非金属夹杂外,硅溶于铁素体中。随着硅含量的提高,钢的抗拉强度提高,屈 服点提高,伸长率下降,钢的面缩率和冲击韧性显著降低。 锰(Mn): 在碳钢中,锰是有益元素。锰是作为脱氧除硫的元素加入到钢中的。对于镇静钢来 说,锰可以提高硅和铝的脱氧效果,可以同硫形成硫化锰,相当程度上降低硫在钢中的危害。 锰对碳钢的力学性能有良好的影响,它能提高钢热轧后的硬度和强度,原因是锰溶入铁素体 中引起固溶强化。因此,精炼过程中要按照技术要求严格稳定控制各炉次的锰含量。 磷(P): 一般来说,磷是钢中的有害元素。它来源于矿石和生铁等炼钢原料。磷能提高钢的 强度,但使塑性和韧性降低,特别是使钢的脆性转折温度急剧上升,即提高钢的冷脆性(低 温变脆)。由于磷的有害影响,同时考虑到磷有较大的偏析,因而对其含量要严格的控制。 但是在含碳量比较低的钢种中,磷的冷脆危害比较小。在这种情况下,可以用磷来提高钢的 强度,如鞍钢生产的高强度 IF 钢就需要加入磷。另外,在适当的情况下,还利用磷的其他 一些有益作用,如增加钢的抗大气腐蚀能力,如集装箱用钢;提高磁性,如电工硅钢;改善 钢材的易切削加工性,减少热轧薄板的粘结等。
常用金属材料中各种化学成分对性能的影响 (2)

常用金属材料中各种化学成分对性能的影响.生铁:生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。
这些元素对生铁的性能均有一定的影响。
碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。
石墨很软,强度低,它的存在能增加生铁的铸造性能。
硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。
锰(Mn):能溶于铁素体和渗碳体。
在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。
磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。
然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。
硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。
铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。
2.钢:2.1元素在钢中的作用2.1.1 常存杂质元素对钢材性能的影响钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。
这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。
这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。
1)硫硫来源于炼钢的矿石与燃料焦炭。
它是钢中的一种有害元素。
硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。
各种元素在钢铁中的作用

各种元素在钢铁中的作用钢是一种合金,主要由铁、碳和其他合金元素组成。
这些合金元素在钢中起着不同的作用,以下是一些常见的合金元素及其作用:1.碳(C):碳是钢中最重要的合金元素之一,它能够提高钢的硬度和强度。
高碳钢含碳量超过0.6%,通常用于制造刀具和机械零件。
中碳钢常用于制造车轴、齿轮等。
低碳钢含碳量少于0.3%,其韧性较好,常用于制造汽车结构部件等。
2.硅(Si):硅用于降低钢的液相温度和粘度,促进钢的液相区域扩大。
它还能提高钢的强度和耐磨性。
硅常用于制造电力设备、变压器等。
3.锰(Mn):锰能够提高钢的韧性和延展性,并抑制高温下的晶界腐蚀。
锰常用于制造桥梁、建筑结构等。
4.磷(P):磷用于提高低碳钢的强度和硬度,但过高的磷含量会降低钢的可焊性。
因此,磷含量应控制在一定范围内。
5.硫(S):硫能够提高钢的切削性能和机械加工性能。
但高硫含量的钢会降低钢的可焊性和韧性,同时还容易形成疏松铸态组织。
6.铬(Cr):铬是不锈钢的主要合金元素之一,它能够提高钢的耐蚀性和耐磨性。
铬还能提高钢的强度和硬度,常用于制造压力容器、船舶等。
7.镍(Ni):镍能够提高钢的韧性和抗冲击性能。
它还能提高钢的耐高温性能,因此常用于制造汽车发动机、航空发动机等。
8.钼(Mo):钼能够提高钢的硬度和强度,同时还能提高钢的耐腐蚀性能。
它常用于制造汽车结构部件、涡轮发动机等。
9.钒(V):钒能够提高钢的强度和硬度,同时还能提高钢的耐热性能。
钒主要用于制造高速切削工具、齿轮等。
总而言之,钢中各种合金元素的添加能够改善钢的机械性能、耐磨性、耐腐蚀性和热处理性能等。
通过适当调整合金元素的含量,可以生产出满足不同工程要求的各类钢材。
各种金属元素对材料性能影响

钢中常见元素对钢的各种性能影响1、SiSi的熔点1410C,是缩小丫相区、形成丫相圈的元素,在a铁和丫铁中的溶解度分别为18.5%及2.15%。
Si是钢中常见元素之一,Si和氧的亲和力仅次于铝和钛,而强于Mn、Cr、V。
所以在炼钢中为常用的还原剂和脱氧剂。
为保证质量,除沸腾钢的半镇静钢外,Si在钢中含量应不小于0.10%,作为合金元素一般不低于0.4%Si在钢中不形成碳化物,而是以固溶体的形态存在于铁素体或奥氏体中。
Si固溶于铁素体和奥氏体中可起到提高它们的硬度和强度的作用,在常见元素中仅次于P,而较Mn、Ni、Cr、W、Mo、V等为强。
但Si量超过3%,将显著降低钢的塑性、韧性和延展性。
低Si含量对钢的抗腐蚀性能有显著增强作用。
Si含量为15~20%的Si铁是很好的耐酸材料,对不同温度和浓度的硫酸、硝酸都很稳定。
但在盐酸和王水的作用下稳定性很小,在HF 酸中则不稳定。
高Si铸铁之所以抗腐蚀,是由于当开始腐蚀时,在其表面形成致密的SiO2薄层,阻碍着酸的进一步向内侵蚀。
含Si的钢在氧化气氛中加热时,表面也形成SiO2薄层,从而提高钢在高温时的抗氧化性。
在Cr、Cr-Al、Cr-Ni、Cr-W等钢中加Si,都将提高它们的高温抗氧化性能。
各种奥氏体不锈钢中加入约2%的Si,可以增强它们的高温不起皮性。
Mn钢加Si也可以提高它的抗氧化性。
但Si含量高时,钢的表面脱碳倾向加剧。
Si提高钢中固熔体的硬度和强度,从而提高钢的屈服强度和抗拉强度。
在普通低合金钢中,Si还可以增强钢在自然条件下的耐腐蚀性,特别时增高局部腐蚀的抗力。
Si含量较高时,对焊接性不利,并易导致冷脆,还降低钢的被切削性;对中高碳钢回火时易产生石墨化。
2、M nMn的熔点1244E,扩大丫相区,形成无限固熔体。
Mn与硫形成MnS是良好的脱氧剂和脱硫剂,可防止因硫而导致的热脆现象,从而改善钢的热加工性能。
在工业用钢中一般都含有一定数量的Mn。
钢铁化学成分表

钢铁化学成分表简介钢铁是广泛使用的金属材料之一,其化学成分对其性能具有重要影响。
钢铁的化学成分主要由碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)以及铁(Fe)等元素组成。
这些元素的不同含量与钢铁的物理特性、机械性能和耐蚀性等密切相关。
元素含量以下是钢铁中常见元素的含量范围:1. 碳(C):碳是钢铁中最重要的合金元素之一。
它的含量决定了钢铁的硬度和强度。
通常,含碳量在0.02%至0.25%之间的钢被称为低碳钢、中碳钢和高碳钢。
2. 硅(Si):硅对钢铁的影响类似于碳,但是其效果较弱。
硅的存在可以增强钢铁的抗腐蚀性和减少热膨胀。
硅含量一般在0.15%至0.35%之间。
3. 锰(Mn):锰是一种重要的合金元素,对钢铁的凝固过程和晶体结构具有重要作用。
锰的含量通常为0.30%至0.80%。
4. 磷(P):磷的含量应控制在较低水平,以确保钢铁的可塑性和韧性。
磷含量通常不超过0.035%。
5. 硫(S):硫是一种有害元素,会降低钢铁的可焊性和冲击韧性。
因此,硫含量应控制在低水平,一般不超过0.040%。
6. 铁(Fe):铁是钢铁的主要组成元素,其含量通常是余量。
总结钢铁的化学成分对其物理和机械性能具有重要影响。
了解钢铁化学成分的含量范围,有助于我们合理选择和使用钢铁材料。
根据具体需求,我们可以根据钢铁的化学成分进行合金化和淬火处理,以获得所需的材料特性。
同时,通过控制不同元素的含量,可以生产出适用于不同领域的特殊钢铁材料。
以上是钢铁化学成分表的介绍,希望对您有所帮助。
---。
化学元素对钢铁性能的影响

化学元素对钢铁性能的影响钢铁是一种在工业中广泛使用的金属材料,其性能取决于许多因素,化学元素是其中一个重要因素。
不同的化学元素会对钢铁的性能产生不同的影响。
本文将会详细介绍几个常见的化学元素对钢铁性能的影响。
1.碳(C):碳是钢铁的主要合金元素,它的存在可以使钢铁变得坚硬和耐磨。
通过控制碳含量,可以调整钢铁的硬度和强度。
碳含量较高的钢铁被称为高碳钢,其硬度较高,但韧性较差。
而碳含量较低的钢铁被称为低碳钢,其韧性较高,但硬度较低。
2.硅(Si):硅是一种常见的合金元素,可以提高钢铁的强度和韧性。
适量的硅含量可以改善钢铁的铸造性能和热处理性能。
硅还可以降低钢铁的磁导率,提高其电磁性能。
3.锰(Mn):锰是一种重要的合金元素,可以提高钢铁的强度和硬度。
锰含量通常在0.3%~1.5%之间。
锰还可以提高钢铁的耐磨性和耐蚀性,延长钢铁的使用寿命。
4.磷(P):磷是一种杂质元素,通常需要控制其含量。
高磷含量会降低钢铁的韧性,并使其易于开裂。
因此,钢铁中的磷含量应控制在较低水平。
磷含量可以通过矿石的选择和冶炼过程中的控制来进行调节。
5.硫(S):硫也是一种常见的杂质元素,类似磷,高硫含量会导致钢铁的脆性增加。
此外,硫还会降低钢铁的延展性和焊接性能。
因此,控制钢铁中的硫含量也是非常重要的。
除了以上所述的元素外,还有一些其他的合金元素也会对钢铁的性能产生影响,如铬、镍、钼等。
铬可以提高钢铁的耐蚀性,镍可以提高钢铁的耐热性和耐腐蚀性,钼可以提高钢铁的强度和韧性。
不同的合金元素可以根据不同的需求进行调整,以满足特定的工程要求。
总之,化学元素对钢铁的性能有着重要的影响。
通过合理控制合金元素的含量,可以调整钢铁的硬度、强度、韧性、耐磨性、耐腐蚀性等特性,以满足不同工程中的需求。
因此,在钢铁制造过程中,对化学元素含量和配比的控制是十分关键的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料中Si、C、Mn S、P等元素的作用及影响1、硅 (Si ):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15 —0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1—4%的度,故广泛用于作弹簧钢。
在调质结构钢中加入 1.0 —1.2%的硅,强度可提高15—20% 硅和低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
硅能溶于铁素体和奥氏体中提高钢的硬度和强度,其作用仅次于磷,较锰、镍、铬、钨、钼和钒等元素强。
但含硅超过3%时,将显著降低钢的塑性和韧性。
硅能提高钢的弹性极限、屈服强度和屈服比((T S/ dlb)及疲劳强度和疲劳比(&1/ (T t等,这是硅或硅锰钢可作为弹簧钢种的缘故。
硅能降低钢的密度、热导率和电导率。
能促使铁素体晶粒粗化。
降低矫顽力。
有减小晶体的各向异性倾向,使磁化容易,磁阻减小,可用来生产电工用钢,所以硅钢片的磁滞损耗较低,硅能提高铁素体的磁导率,使硅钢片在较弱磁场下有较高的磁感强度。
但在强磁场下,硅降低钢的磁感强度。
硅因有强的脱氧力,从而减小了铁的磁时效作用。
含硅的钢在氧化气氛中加热时,表面将形成一层SiO2薄膜,从而提高钢在高温时的抗氧化性。
硅能促使铸钢中的柱状晶成长,降低塑性。
硅钢若加热或冷却较快,由于热导率低,钢的内部和外部温差较大,因而易裂。
硅能降低钢的焊接性能。
因为与氧的亲合力硅比铁强,在焊接时容易生成低熔点的硅酸盐,增加熔渣和熔化金属的流动性,引起喷溅现象,影响焊缝质量。
硅是良好的脱氧剂。
用铝脱氧时酌加一定量的硅,能显著提高铝的脱氧能力。
硅在钢中本来就有一定的残存,这是由于炼铁炼钢作为原料带入的。
在沸腾钢中,硅限制在V 0.07%,有意加入时,则在炼钢时加入硅铁合金。
(1)对钢的显做组织及热处理的作用A、作为钢中的合金元素,其含量一般不低于0.4 %。
以固溶体形态存在于铁素体或奥氏体中,缩小奥氏体相区B、提高退火、正火和淬火温度,在亚共析钢中提高淬透性C、硅不形成碳化物,有强烈的促进碳的石墨化的作用,在硅含量较高的中碳和高碳钢中,如不含有强碳化物形成元素,易在一定温度条件下发生石墨化D、在渗碳钢中,硅减小渗碳层厚度和碳的浓度E、硅对钢水有良好脱氧作用⑵对钢的力学性能的作用A、提高铁素体和奥氏体的硬度和强度,其作用较Mn、Ni、Cr . W、Mo、V等更强;显著提高钢的弹性极限、屈服强度和屈强比(T s/ T.b并提高应劳强度和疲劳比(T1/T b)B、硅含量超过3 %时显著降低钢的塑性和韧性;硅提高塑/脆转变温度C、硅易使钢中形成带状组织,使横向性能低于纵向性能D、改善钢的耐磨性能⑶对钢的物理、化学及工艺性能的作用A、降低钢的密度、热导率、电导率和电阻温度系数B、硅钢片的涡流损耗量显著低于纯铁,矫顽力、磁阻和磁滞损耗较低. 磁导率和磁感强度较高。
但在强磁场中,硅降低磁感强度C、提高高温时钢的抗氧化性能,但硅含量高时,表面脱碳加剧D、硅含量超过2.5 %的钢,其变形加工较为困难E、硅降低钢的可焊性⑷在钢中的应用A、在普通低合金钢中提高强度,改善局部腐蚀抗力,在调质钢中提高淬透性和抗回火性,是多元合金结构钢中的主要合金组元之一B、硅含量为0.5 %-2.8 %的SiMn或SiMnB钢(碳含量0.5 % -0.7 %)广泛用于高载荷弹黄材料,同时加人W、V、Mo、Nb、Cr等强碳化物形成元素C、硅钢片为含硅1.O % -4.5 %的低碳和超低碳钢,用于电机和变压器D、在不锈钢和耐蚀钢中,与Mo、W、Cr、Al、Ti、N等配合,提高抗蚀和抗高温氧化能力E、硅含量较高的石墨钢用于冷作模具材料2、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
典型的例子是低碳钢、高碳钢、高碳钢力学性能变化。
3、锰 (Mr):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30 —0.50%在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40% 含锰11 —14%勺钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
形成奥低体组织,降低碳的危害在低含量范围内,对钢有很大的强化作用,提高强度、硬度和耐磨性降低钢的临界冷却速度,提高钢的淬透性高含量范围内为主要奥氏体化元素锰是良好的脱氧剂和脱硫剂。
钢中一般都含有一定量的锰,它能消除或减弱由于硫所引起的钢的热脆性,从而改善钢的热加工性能。
锰和铁形成固溶体,提高钢中铁素体和奥氏体的硬度和强度;同时又是碳化物形成元素,进入渗碳体中取代一部分铁原子。
锰在钢中由于降低临界转变温度。
起到细化珠光体的作用。
也间接地起到提高珠光体钢强度的作用;锰稳定奥氏体组织的能力仅次于镍,也强烈增加钢的淬透性。
已用含量不超过2%的锰与其他元素配合制成多种合金钢。
锰具有资源丰富、效能多样的特点,获得了广泛的应用,如含锰较高的碳素结构钢、弹簧钢。
在高碳高锰耐磨钢中。
锰含量可达10% —14%,经固溶处理后有良好的韧性,当受到冲击而变形时,表面层将因变形而强化,具有高的耐磨性。
锰与硫形成熔点较高的MnS。
可防止因FeS而导致的热脆现象。
锰有增加钢晶粒粗化的倾向和回火脆性敏感性。
若冶炼浇铸和锻轧后冷却不当,容易使钢产生白点。
(1)对钢的显做组织及热处理的作用A、锰是良好的脱氧剂和脱硫剂,工业用钢中一般均含有一定量的锰B、锰固溶于铁素体和奥氏体中•扩大奥氏体区,使临界温度A4点升高,A3点降低,(a +丫)区下移•当锰含量超过12 %时,上临界点降至室温以下,使钢在室温时形成单一奥氏体组织。
在降低共析温度同时,使共析体中的碳含量减少C、锰强烈降低钢的Ar1和马氏体转变温度(其作用仅次于碳)和钢中相变的速度,提高钢的淬透性,增加残余奥氏体含量D、使钢的调质组织均匀、细化,避免了渗碳层中碳化物的聚集成块,但增大了钢的过热敏感性和回火脆性倾向E、锰是弱碳化物形成元素⑵对钢的力学性能的作用A、锰强化铁素体或奥氏体的作用不及碳,磷、硅,在增加强度的同时,对延展性无影响B、由于细化了珠光体,显著提高低碳和中碳珠光体钢的强度,使延展性有所降低C、通过提高淬透性而提高了调质处理索氏体钢的力学性能D、在严格控制热处理工艺、避免过热时的晶粒长大以及回火脆性的前提下,锰不会降低钢的韧性⑶对钢的物理、化学及工艺性能的作用A、随锰含量的增加,钢的热导率急剧下降,线胀系数上升,使快速加热或冷却时形成较大内应力,工件开裂倾向增大B、使钢的电导率急剧降低,电阻率相应增大,电阻温度系数下降C、使矫顽力增大,饱和磁感、剩余磁感和磁导率均下降,因而锰对永磁合金有利,对软磁合金有害D、锰含量很高时,钢的抗氧化性能下降E、使钢中的硫形成较高熔点的MnS,避免了晶界上的FeS薄膜,消除钢的热脆性,改善热加工性能F、高锰奥氏体钢的变形阻力较大,且钢锭中柱状结晶明显,锻轧时较易开裂G、由于提高了淬透性和降低了马氏体转变温度,对焊接性能有不利影响。
在适当范围内应降低碳含量⑷在钢中的应用A、易切削钢中常有适量的锰和磷,MnS夹杂使切屑易于碎断B、普通低合金钢中利用锰来强化铁素体和珠光体,提高钢的强度,锰含量一般为1% -2%C、渗碳和调质合金结构钢的许多系列中含有不超过 2 %的锰D、弹簧钢、轴承钢和工具钢中利用锰强烈提高淬透性的作用,可采用油淬和空冷的淬火工艺,减少开裂、扭曲和变形E、耐磨钢、无磁钢、不锈钢、耐热钢,包括高碳高锰耐磨铸钢(C:1.0 % -1.4%, Mn:10 % -1 4%),中碳高锰无磁钢(C:0.3 %-0.6% , Mn:18 % -19%),低碳高锰不锈钢(有Cr ,无Ni或少N i),高锰耐热钢(以Mn代Ni的耐热不起皮钢,或含有Al、Mo、V等)4、硫(S):硫在通常情况下也是有害元素。
使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。
硫对焊接性能也不利,降低耐腐蚀性。
所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。
在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
提高硫和锰的含量,可改善钢的被切削性能,在易切削钢中硫作为有益元素加入。
硫在钢中偏析严重,恶化钢的质量。
在高温下,降低钢的塑性,是一种有害元素,它以熔点较低的FeS的形式存在;单独存在的FeS的熔点只有1190 C,而在钢中与铁形成共晶体的共晶温度更低,只有988C,当钢凝固时,硫化铁析集在原生晶界处。
钢在1100-1200 C进行轧制时,晶界上的FeS就将熔化,大大地削弱了晶粒之间的结合力,导致钢的热脆现象。
因此对硫应严加控制,一般控制在0.020%-0.050%。
为了防止因硫导致的脆性,应加入足够的锰,使其形成熔点较高的MnS o若钢中含硫量偏高,焊接时由于SO2的产生,将在焊接金属内形成气孔和疏松,5、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
磷在钢中固溶强化和冷作硬化作用强,作为合金元素加入低合金结构钢中,能提高其强度和钢的耐大气腐蚀性能,但降低其冷冲压性能。
磷与硫和锰联合使用,能增加钢的被切削性能,增加加工件的表面质量,用于易切钢,所以易切钢含磷也较高。
磷溶于铁素体,虽然能提高钢的强度和硬度,最大的害处是偏析严重,增加回火脆性,显著降低钢的塑性和韧性,致使钢在冷加工时容易脆裂,也即所谓”冷脆”现象。
磷对焊接性也有不良影响。
磷是有害元素,应严加控制,一般含量不大于0.030%-0.040%°6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。
铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
铬能增加钢的淬透性并有二次硬化作用。
可提高高碳钢的硬度和耐磨性而不使钢变脆;含量超过12%时。
使钢有良好的高温抗氧化性和耐氧化性介质腐蚀的作用。
还增加钢的热强性,铬为不锈耐酸钢及耐热钢的主要合金元素。
铬能提高碳素钢轧制状态的强度和硬度。
降低伸长率和断面收缩率。
当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。