第06章 抽样误差与假设检验

第06章 抽样误差与假设检验
第06章 抽样误差与假设检验

统计学习题 第十章 双样本假设检验及区间估计

第十章 双样本假设检验及区间估计 第一节 两总体大样本假设检验 两总体大样本均值差的检验·两总体大样本成数差的检验 第二节 两总体小样本假设检验 两总体小样本均值差的检验·两总体小样本方差比的检验 第三节 配对样本的假设检验 单一试验组的假设检验·一试验组与一控制组的假设检验·对实验设计与相关检验的评论 第四节 双样本区间估计 σ12和σ22已知,对双样本均数差的区间估计·σ12和σ22未知,对对双样本均值差的区间估计·大样本成数差的区间估计·配对样本均值差的区间信计 一、填空 1.所谓独立样本,是指双样本是在两个总体中相互( )地抽取的。 2.如果从N (μ1,σ12)和N (μ2,σ22 )两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N ( )。 3.两个成数的差可以被看作两个( )差的特例来处理。 4.配对样本,是两个样本的单位两两匹配成对,它实际上只能算作( )样本,也称关联样本。 5.配对样本均值差的区间估计实质上是( )的单样本区间估计 6.当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布将接近( )分布。 7.使用配对样本相当于减小了( )的样本容量。 8. 在配对过程中,最好用( )的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。 9. 单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于( )。 10. 方差比检验,无论是单侧检验还是双侧检验,F 的临界值都只在( )侧。 二、单项选择

1.抽自两个独立正态总体样本均值差(1X ―2X )的抽样分布是( )。 A N (μ1―μ2,121n σ―2 22n σ) B N (μ1―μ2,121n σ+22 2n σ) C N (μ1+μ2,121n σ―2 22n σ) D N (μ1+μ2,121n σ+22 2n σ) 2.两个大样本成数之差的分布是( )。 A N (∧ 1p -∧ 2p ,111n q p ―222n q p ) B N (∧1p -∧2p ,111n q p +2 22n q p ) C N (∧ 1p +∧ 2p ,111n q p ―222n q p ) D N (∧1p +∧2p ,111n q p +2 22n q p ) 3.为了检验两个总体的方差是否相等,所使用的变量抽样分布是( )。 A F 分布 B Z 分布 C t 分布 D 2 χ分布 4.配对小样本的均值d 的抽样分布是( ) A Z 分布 B 自由度为n 的t 分布 C 自由度为(n —1)的t 分布 D 自由度为(n —1)的2 χ分布 5.若零假设中两总体成数的关系为p 1=p 2,这时两总体可看作成数p 相同的总体,它 们的点估计值是( ) A p 1 + p 2 B p 1p 2 C p 1 -p 2 D 2 12 211n n p n p n ++∧ ∧ 6.在σ 1 2和σ 2 2未知,但可假定它们相等的情况下,σ的无偏估计量∧ S 是( ) A 2 212 2 211-++n n nS S n B 2212 2211-++n n nS S n ?2 12 1n n n n + C 2 12 1n n n n +σ D 2 22 1 2 1n n σσ+ 三、多项选择 1.两个成数之差的假设检验所使用的测量尺度包括( )。 A 定类尺度 B 定序尺度 C 定距尺度 D 定比尺度 2.在单一实验组与一控制组的实验设计之中,对前测后测之间的变化,消除额外变量影响的基本做法包括( )。

应用数理统计吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显著性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测 得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分布, 试在显著水平下确定这批元件是否合格。 解:

{}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从一 批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比, X 较μ大20(2/cm kg )。设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提 高 解: (1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13 /4020 /u 00 == -= n X σμ (3)否定域{}α->=1u u V (4)给定显著性水平01.0=α时,临界值33.21=-αu (5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。 某批矿砂的五个样品中镍含量经测定为(%): 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为

假设检验习题答案

假设检验习题答案

1 1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。 解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。采用 t 分布的检验统计量n x t /0 σμ-=。查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为 2.131和 2.947。334.116/60800 820=-=t 。因为t <2.131<2.947,所以在两个水平下都接受原假设。 2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批

2 量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)? 解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。n=100可近似采用正态分布的检验统计量n x z /0 σμ-=。查出α=0.01水平下的反查正态概率表得到临界值 2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。计算统计量值3100/5001000010150=-=z 。因为z=3>2.34(>2.32), 所以拒绝原假设,无故障时间有显著增

3 加。 3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600? 解: 01:1600, :1600,H H μμ=≠标准差σ已知,当0.05,α=26,n =96.1579.02/1==-z z α,由检验统计量16371600 1.25 1.96/150/26 x Z n μσ--===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600. 4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工

假设检验的类型

假设检验的类型 ——方差分析& 检验2

目录 一、方差分析 1.原理 2.步骤 3.实例 二、检验 1.原理 2.实例2

1.原理 (1)应用背景 在许多实际问题的统计分析中,我们不仅要讨论两个总体均值相等的假设检验问题,而且还要讨论两个以上总体的均值是否相等的假设检验问题,在这种情况下,我们就选择方差分析的方法来检验这些样本的平均数差异的显著程度。 (2)应用条件(运用方差分析方法需要满足的假定) ①观察对象来自所研究因素的各个水平之下的独立随机抽样;②每个水平下的样本都取自正态分布的总体;③各个总体有相同的方差。2 独立性正态性 方差齐性

1.原理 (3)基本原理 假定容量为n的k个样本取自同一总体。用k个样本的方差估计总体的方差;用全体k个样本的所有元素作为一个样本(样本和),并依此估算总体的方差,如果“原假设”成立,这两个估计值应该十分接近,如果这两个估计值相差很大,这k个样本就不可能都取自同一个总体。 因为方差分析用两个方差的估计值的比F作单侧检验,所以这种方法又称F 检验。检验用F分布进行。

2.步骤 (1)建立方差分析的数学模型; (2)确定各个总体是否服从正态分布,且具有相等的方差; (3)建立检验用的原假设和备择假设,给出显著水平; (4)计算总体方差的估计值和统计量F ; (5)根据F 做出判断。2

3.实例 1)研究目的 为了研究学生学习数学的成绩是否受教师教学水平的影响,现将一个数学提高班的学生分成三个小班,分别由甲、乙、丙三位教师任教。三个班各随机抽取五个学生的最终成绩见表。假定三个学生的最终成绩服从正态分布,试问三个班学生的最终成绩是否存在显著的差异?如果有差异,应推举哪位教师担任此班教学使教学效果最好(α=0.05)?

(完整版)假设检验习题及答案

第三章 假设检验 3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。已知这种元件寿命服从标准差 100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。 {}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为 010110 2: 3.25 H :t 3.252, S=0.0117, n=5 0.3419 H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.99512 0 V=t>t (1)0.01,(4) 4.6041, 3.25n t t t H ααα- ??-?? ?? ==<∴Q 本题中,接受认为这批矿砂的镍含量为。

3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S == 2N(,),μσ设总体为正态分布试在水平5%检验假设: 0101() H :0.5% H :0.5%() H :0.04% H :0.0.4% i ii μμσσ≥<≥< {}0.95()0.452% S=0.035%-4.1143 (1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。取检验统计量为X 本题中,代入上式得: 0.452%-0.5% 拒绝域为: V=t >t 本题中,0 1 4.1143H <=∴t 拒绝 {}2 2 2 002 2 2212210.95 2()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919 ii n n αα μχσσχχχχ χ χ--= ==*==>--==Q 2 构造统计量:未知,可选择统计量本题中,代入上式得: () () 否定域为: 本题中, 210 (1)n H αχ-<-∴接受 3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:

假设检验的基本步骤

假设检验的基本步骤 (三)假设检验的基本步骤 统计推断 1.建立假设检验,确定检验水准 H0和H1假设都是对总体特征的检验假设,相互联系且对立。 H0总是假设样本差别来自抽样误差,无效/零假设 H1是来自非抽样误差,有单双侧之分,备择假设。 检验水准,a=0.05 检验水准的含义 2.选定检验方法,计算检验统计量 选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题, 一般计量资料用t检验和u检验; 计数资料用χ2检验和u检验。 3.确定P值,作出统计推理 P≤a ,拒绝H0,接受H1 P> a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异 假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误 (四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论) u检验适用条件 t检验适用条件 t检验和u检验 1.样本均数与总体均数比较 2.配对资料的比较/成组设计的两样本均数的比较 配对设计的情况:3点 3. 两个样本均数的比较 (1)两个大样本均数比较的u检验 (2)两个小样本均数比较的t检验 (五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误) 1.两类错误 拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误; 接受错误的H0称Ⅱ型错误-存伪。用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。 两者的关系:α愈大β愈小;反之α愈小β愈大。 2.假设检验中的注意事项 (1)随机化:代表性和均衡可比性 (2)选用适当的检验方法 (3)正确理解统计学意义 (4)结论不绝对 (5)单侧与双侧检验的选择 四.分类变量资料的统计描述

假设检验习题答案

1假设某产品的重量服从正态分布,现在从一批产品中随机抽取 16件,测得平 均重量为820克,标准差为60克,试以显着性水平 >0.01与>0.05,分别检验这批 产品的平均重量是否是 800克 解:假设检验为H 0 : % =800,比: 丄0沁00 (产品重量应该使用双侧 检验)。米 以在两个水平下都接受原假设。 2?某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩 电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此 判断该彩电无故障时间有显着增加(>0.01) ? 解:假设检验为H 。: J =10000,比7。.10000 (使用寿命有无显着增加,应该 使用右侧检验)。n=100可近似采用正态分布的检验统计量 水平下的反查正态概率表得到临界值 2.32到2.34之间(因为表中给出的是双侧检验 的 接受域临界值,因此本题的单侧检验显着性水平应先乘以 2,再查到对应的临界值) 计算统计量值z 」 0150 _10000 =3。因为z=3>2.34(>2.32),所以拒绝原假设,无故 500 M/100 障时间有显着增加。 3. 设某产品的指标服从正态分布,它的标准差 (T 已知为150,今抽了一个容量为 26的样本,计算得平均值为1637。问在5%的显着水平下,能否认为这批产品的指标 的期望值卩为1600? 解 : H 0*=1600, H 1 -1600, 标 准 差 (T 已 知 , 当 — 0.05, n =26 , Z 1 _ :?/ 2 - Z 0.975 - 1.96 即,以95%勺把握认为这批产品的指标的期望值 卩为1600. 4. 某电器零件的平均电阻一直保持在 2.64 Q,改变加工工艺后,测得100个零件 的平均电阻为2.62 Q ,如改变工艺前后电阻的标准差保持在 O.06Q ,问新工艺对此零 件的电阻有无显着影响(a =0.05)? 解 : H 0:?二=2.64,已:?'2.64, 已知 标准差 c =0.06, 当 用t 分布的检验统计量 查出〉=0.05和0.01两个水平下的临界值 (df= n-1=15)为 2.131 和 2.947。t 820 一 800 60 / J6 二 1. 334 因为 t <2.131<2.947,所 查出〉=0.01 由 检 验 统 计 量 X-卩 hj~n 1637-1600 150/ , 26 = 1.25 <1.96,接受 H 0」=1600,

假设检验中两种类型错误的关系

假设检验中两种类型错误之间的关系 (一) α与β是在两个前提下的概率。α是拒绝H0时犯错误的概率(这时前提是“H0为真”);β是接受H0时犯错误的概率(这时“H0为假”是前提),所以α+β不一定等于1。结合图7—2分析如下: 图7-2 α与β的关系示意图 如果H0:μ1=μ0为真,关于与μ0的差异就要在图7—2中左边的正态分布中讨论。对于某一显著性水平α其临界点为。(将两端各α/2放在同一端)。 右边表示H0的拒绝区,面积比率为α;左边表示H0的接受区,面积比率为1-α。在“H0为真”的前提下随机得到的落到拒绝区时我们拒绝H0是犯了错误的。由于落到拒绝区的概率为α,因此拒绝“H0为真”时所犯错误(I型)的概率等于α。而落到H0的接受区时,由于前提仍是“H0为真”,因此接受H0是正确决定,落在接受区的概率为1-α,那么正确接受H0的概率就等于1-α。如α=0.05则1-α=0.95,这0.05和0.95均为“H0为真”这一前提下的两个概率,一个指犯错误的可能性,一个指正确决定的可能性,这二者之和当然为1。但讨论β错误时前提就改变了,要在“H0为假”这一前提下讨论。对于H0是真是假我们事先并不能确定,如果H0为假、等价于H l为真,这时需要在图7—2中右边的正态分布中讨论·(H1:μ1>μ0),它与在“H0为真”的前提下所讨论的相似,落在临界点左边时要拒绝H l (即接受H0),而前提H l为真,因而犯了错误,这就是II型错误,其概率为β。很显然,当α=0.05时,β不一定等于0.95。

(二)在其他条件不变的情况下,α与β不可能同时减小或增大。这一点从图7—2也可以清楚看到。当临界点向右移时,α减小,但此时β一定增大;反之向左移则α增大β减小。一般在差异检验中主要关心的是能否有充分理由拒绝H0,从而证实H l,所以在统计中规定得较严。至于β往往就不予重视了,其实许多情况需要在规定的同时尽量减小β。这种场合最直接的方法是增大样本容量。因为样本平均数分布的标准差为,当n增大时样本平均数分布将变得陡峭,在α和其他条件不变时β会减小(见图7—3)。 (三)在图7—2中H l为真时的分布下讨论β错误已指出落到临界点左边时拒绝H l所犯错误的概率为β。那么落在临界点右边时接受H l则为正确决定,其概率等于1一β。换言之,当H l为真,即μ1与μ0确实有差异时(图7—2中,μ1与μ0的距离即表示μ1与μ0的真实差异),能以(1—β)的概率接受之。 图7-3 不同标准差影响β大小示意图 如图7—2所示,当α以及其他条件不变时,减小μ1与μ0的距离势必引起β增大、(1一β)减小,也就是说,其他条件不变,μ1与μ0真实差异很小时,正确

假设检验练习题-答案

假设检验练习题 1. 简单回答下列问题: 1)假设检验的基本步骤? 答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论) 有三类假设 第二步选择检验统计量给出拒绝域的形式。 根据原假设的参数检验统计量: 对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A 拒绝域的形式由备择假设的形式决定 H1:W为双边 H1:W为单边 H1:W为单边 第三步:给出假设检验的显著水平 第四步给出零界值C,确定拒绝域W 有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。例如:对于=0.05有 的双边W为 的右单边W为 的右单边W为 第五步根据样本观测值,计算和判断 计算统计量Z 、t 、当检验统计量的值落在W时能拒绝,否则接受 (计算P值227页p值由统计软件直接得出时拒绝,否则接受

计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受) 2)假设检验的两类错误及其发生的概率? 答:第一类错误:当为真时拒绝,发生的概率为 第二类错误:当为假时,接受发生的概率为 3)假设检验结果判定的3种方式? 答:1.计算统计量Z 、t 、当检验统计量的值落在W时能拒绝,否则接受 2.计算P值227页p值由统计软件直接得出时拒绝,否则接受 3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受 4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么? 答:连续型(测量的数据):单样本t检验-----比较目标均值 双样本t检验-----比较两个均值 方差分析-----比较两个以上均值 等方差检验-----比较多个方差 离散型(区分或数的数据):卡方检验-----比较离散数 2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。 答:典型的Z检验 1. 提出原假设和备择假设 :平均值等于1600 :平均值不等于1600 2. 检验统计量为Z,拒绝域为双边

五参数估计和假设检验

第五章参数估计和假设检验 一、单项选择题 1. 抽样调查的主要目的在于()。 A. 计算和控制误差 B. 了解总体单位情况 C. 用样本来推断总体 D. 对调查单位作深入的研究 2. 抽样调查所必须遵循的基本原则是()。 A. 随意原则 B. 可比性原则 C. 准确性原则 D. 随机原则 3、对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍。抽样平均误差()。 A. 第一工厂大 B. 第二个工厂大 C. 两工厂一样大 D. 无法做出结论 4、在总体方差一定的情况下,下列条件中抽样平均误差最小的是()。 A. 抽样单位数为20 B. 抽样单位数为40 C. 抽样单位数为90 D. 抽样单位数为100 5、某地订奶居民户均牛奶消费量为120公斤,抽样平均误差为2公斤。据此可算得户均牛奶消费量在114-126公斤之间的概率为()。 A. 0.9545 B. 0.9973 C. 0.683 D. 0.900 6、按地理区域划片所进行的区域抽样,其抽样方法属于()。 A. 纯随机抽样 B. 等距抽样 C. 类型抽样 D. 整群抽样 7. 在抽样推断中,样本的容量()。 A. 越多越好 B. 越少越好 C. 由统一的抽样比例决定 D. 取决于抽样推断可靠性的要求 8、在用样本指标推断总体指标时,把握程度越高则()。 A.误差范围越小 B.误差范围越大 C.抽样平均误差越小 D.抽样平均误差越大 9、某乐器厂以往生产的乐器采用的是一种镍合金弦线,这种弦线的平均抗拉强度不超过1035Mpa,现产品开发小组研究了一种新型弦线,他们认为其抗拉强度得到了提高并想寻找证据予以支持。在对研究小组开发的产品进行检验时,应该采取以下哪种形式的假设?

第5章 统计假设检验练习题及答案

实验报告——第5章统计假设检验 姓名杨秀娟班级人力10001学号 【实验1】 某外企对员工英语水平进行调查,开发部门总结该部门员工英语水平很高,如果按照英语六级考试标准考核,一般平均分为75分。现从开发部门雇员中随机选出11人参加考试,得分如下:80,81,72,60,78,65,56,79,77,87,76 ^ 请问该开发部门的英语水平是否真的很高(即高于75分,且差异显著) 【解】 (1)数据和变量说明 本题所用数据是:外企英语六级考试成绩样本 该文件为11个样本,1个变量,如变量视图 (2)操作方法 (3)结果报告

, 上图为单样本t检验表,第一行注明了用于比较的已知的总体均数为75,下面从左到右依次为t值(t)、自由度(df)、P值(Sig)、两均数的差值、差值的95%可信区间。 由上表可知,t= , P=, P>,接受Ho,与平均成绩75相等,无显著差异,因此,该开发部门的英语水平不是真的很高。 【实验2】 以下是对某产品促销团队进行培训前后的销售业绩数据,试分析该培训是否产生了显著效果。 表5-20 培训前后销售业绩数据 56789 序号123' 4 7488827185 培训前677074~ 97 7687867895 培训后786778{ 98 【解】 (1)数据和变量说明 本文件有2个变量,9个数据 (2)操作方法 *

(3)结果报告 由上表可知,P=, P<,不接受无效假设,有显著差异,所以该培训产生了显著效果。 【实验3】 饲养队制定了两种喂养方案喂猪,希望通过试验了解一下不同喂养方案的喂养效果。

方案一:用一只猪喂不同的饲料所测得的体内钙留存量数据如下: 表 5-21 方案一喂养数据 序号! 1 23456789 饲料1" 饲料2/ 方案二:甲队有11只猪喂饲料1,乙队有9只猪喂饲料2,所得的钙留存量数据如下: ; 表5-22方案二喂养数据 序号12345678· 9 1011甲队饲料1; 乙队饲料2\ 请选用恰当方法对上述两种方案所获得的数据进行分析,研究不同饲料是否使小猪体内钙留存量有显著不同。 【解】 方案一 (1)《 (2)数据和变量说明 答:9个数据,2个变量 (3)操作方法

第六章抽样调查练习及答案

第 六章 抽样调查 一、填空题 1.抽选样本单位时要遵守 原则,使样本单位被抽中的机会 。 2.常用的总体指标有 、 、 。 3.在抽样估计中,样本指标又称为 量,总体指标又称为 。 4.全及总体标志变异程度越大,抽样误差就 ;全及总体标志变异程度越小, 抽样误差 。 5.抽样估计的方法有 和 两种。 6.整群抽样是对被抽中群内的 进行 的抽样组织方式。 7.误差分为 和代表性误差;代表性误差分为________和偏差;偏差是 ____________________________,也称为________________。 8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下: ; 不重复抽样条件下: 。 9.误差范围△,概率度t 和抽样平均误差μ之间的关系表达式为 。 10.抽样调查的组织形式有: 。 二、单项选择题 1.所谓大样本是指样本单位数在( )及以上 A 30个 B 50个 C 80个 D100个 2.抽样指标与总体指标之间抽样误差的可能范围是( ) A 抽样平均误差 B 抽样极限误差 C 区间估计范围 D 置信区间 3.抽样平均误差说明抽样指标与总体指标之间的( ) A 实际误差 B 平均误差 C 实际误差的平方 D 允许误差 4.是非标志方差的计算公式( ) A P(1-P) B P(1-P)2 C )1(P P - D P 2(1-P) 5.总体平均数和样本平均数之间的关系是( ) A 总体平均数是确定值,样本平均数是随机变量 B 总体平均数是随机变量,样本平均数是确定值 C 两者都是随机变量 D 两者都是确定值 6.对入库的一批产品抽检10件,其中有9件合格,可以( )概率保证合格率不低于80%。 A 95.45% B 99.7396 C 68.27% D 90% 7.在简单随机重复抽样情况下,若要求允许误差为原来的2/3,则样本容量 ( ) A 扩大为原来的3倍 B 扩大为原来的2/3倍 C 扩大为原来的4/9倍 D 扩大为原来的2.25倍 8.根据抽样调查得知:甲企业一等品产品比重为30%,乙企业一等品比重为50%

假设检验习题答案

1.假设某产品得重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0、01与α=0、05,分别检验这批产品得平均重量就是否就是800克。 解:假设检验为 (产品重量应该使用双侧检验)。采用t分布得检验统计量。查出=0、05与0、01两个水平下得临界值(df=n-1=15)为2、131与2、947。。因为<2、131<2、947,所以在两个水平下都接受原假设。 2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0、01)? 解:假设检验为 (使用寿命有无显著增加,应该使用右侧检验)。n=100可近似采用正态分布得检验统计量。查出=0、01水平下得反查正态概率表得到临界值2、32到2、34之间(因为表中给出得就是双侧检验得接受域临界值,因此本题得单侧检验显著性水平应先乘以2,再查到对应得临界值)。计算统计量值。因为z=3>2、34(>2、32),所以拒绝原假设,无故障时间有显著增加。 3、设某产品得指标服从正态分布,它得标准差σ已知为150,今抽了一个容量为26得样本,计算得平均值为1637。问在5%得显著水平下,能否认为这批产品得指标得期望值μ为1600? 解: 标准差σ已知,当,由检验统计量,接受, 即,以95%得把握认为这批产品得指标得期望值μ为1600、 4、某电器零件得平均电阻一直保持在2、64Ω,改变加工工艺后,测得100个零件得平均电阻为2、62Ω,如改变工艺前后电阻得标准差保持在O、06Ω,问新工艺对此零件得电阻有无显著影响(α=0、05)? 解:已知标准差σ=0、06, 当 由检验统计量,接受, 即, 以95%得把握认为新工艺对此零件得电阻有显著影响、 5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,792,612,407,506、假定重量服从正态分布,试问以95%得显著性检验机器工作就是否正常? 解:,总体标准差σ未知,经计算得到=502, =148、9519,取,由检验统计量 ,<2、2622,接受 即, 以95%得把握认为机器工作就是正常得、

习题假设检验答案

习题八 假设检验 一、填空题 1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量t X 2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。要检验假设0μμ=应用 U 检验法,检验的统计量是 U =0H 成立时 该统计量服从N (0,1) 。 3.要使犯两类错误的概率同时减小,只有 增加样本容量 ; 4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。 (1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为 X Y U =0H 成立时该统计量服从 N (0,1) 。 (2)若 X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为 T = ;当0H 成立时该统计量服从 (2)t m n +- 。 5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 22 00:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-= ;当0H 成 立时,该统计量服从 2(1)n χ- 。 6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。要检验假设220:X Y H σσ=,应用 F 检验法,检 验的统计量为 22X Y S F S = 。 7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验 假设22 220010:;:;H H σσσσ=≠的拒绝域为 2 22(1)n αχχ≥-或222(1)n αχχ≤- ; 8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为 X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下, 检验假设0010:;:H H μμμμ≥<的统计量为 X U = ,拒绝域为 {}U u α≤- 。 当2σ未知时,在显著性水平α下,检验假设0010:;:H H μμμμ≤>

第六章抽样调查练习及答案

第六章抽样调查 一、填空题 1.抽选样本单位时要遵守原则,使样本单位被抽中的机会。 2.常用的总体指标有、、。 3.在抽样估计中,样本指标又称为量,总体指标又称为。 4.全及总体标志变异程度越大,抽样误差就;全及总体标志变异程度越小, 抽样误差。 5.抽样估计的方法有和两种。 6.整群抽样是对被抽中群内的进行的抽样组织方式。 7.误差分为和代表性误差;代表性误差分为________和偏差;偏差是 ____________________________,也称为________________。 8.简单随机抽样的成数抽样平均误差计算公式是:重复抽样条件下:; 不重复抽样条件下:。 9.误差范围△,概率度t和抽样平均误差 之间的关系表达式为。 10.抽样调查的组织形式有:。 二、单项选择题 1.所谓大样本是指样本单位数在( )及以上 A 30个 B 50个 C 80个D100个 2.抽样指标与总体指标之间抽样误差的可能范围是( )

A 抽样平均误差 B 抽样极限误差 C 区间估计范围 D 置信区间 3.抽样平均误差说明抽样指标与总体指标之间的( ) A 实际误差 B 平均误差 C 实际误差的平方 D 允许误差 4.是非标志方差的计算公式( ) A P(1-P) B P(1-P)2 C )1(P P D P 2(1-P) 5.总体平均数和样本平均数之间的关系是( ) A 总体平均数是确定值,样本平均数是随机变量 B 总体平均数是随机变量,样本平均数是确定值 C 两者都是随机变量 D 两者都是确定值 6.对入库的一批产品抽检10件,其中有9件合格,可以( )概率保证合格率不低于80%。 A 95.45% B 99.7396 C 68.27% D 90% 7.在简单随机重复抽样情况下,若要求允许误差为原来的2/3,则样本容量( ) A 扩大为原来的3倍 B 扩大为原来的2/3倍 C 扩大为原来的4/9倍 D 扩大为原来的2.25倍 8.根据抽样调查得知:甲企业一等品产品比重为30%,乙企业一等品比重为50% 一等品产品比重的抽样平均误差为 ( ) A 甲企业大 B 两企业相同 C 乙企业大 D 无法判断 9.是非标志的平均数是( ) A -P)1P( B P(1-P) C p D (1-P)2 10.重复抽样的误差一定( )不重复抽样的误差。

MBA参数估计、假设检验参考答案

1.某公司雇用2 000名推销员,并希望估计其平均每年的乘车里程。从过去的经验可知,通常每位推销员行程的标准差为5 000公里。随机选取的25辆汽车样本的均值为14 000公里。 1)求出总体均值μ所需要的估计量;14 000 2)确定总体均值μ95%的置信区间;(14000±1.96*5000/5)。虽是小样本,但“从过去的经验可知,通常每位推销员行程的标准差为5 000公里”这句话,表明总体服从正太分布且标准差已知,所以用最基本的公式。 3)公司经理们认为均值介于13 000到15 000公里之间,那么该估计的置信度是多少? 对应的Z在-1-+1之间,所以置信度为68.26%。 这里要注意的是应用均值的分布。 4)如果在3)的估计中希望有95%的置信水平,那么所要求的样本容量是多少。 96=1.962*50002/10002 2.生产隐形眼镜的某公司生产一种新的型号,据说其寿命比旧型号的寿命长。请6个人对该新型眼镜做实验,得出平均寿命为4.6年,标准差为0.49年。构造该新型眼镜的平均寿命90%的置信区间。 小样本且总体标准差未知,用t公式。 4.6±2.015*0.49/2.45 3.假设某厂家生产的可充电的电池式螺丝刀的使用寿命近似于正态分布。对15个螺丝刀进行测试,并发现其平均寿命为8 900小时,样本标准差为500小时。 1)构造总体均值置信水平为95%的区间估计;8900±2.145*500/3.87 2)构造总体均值置信水平为90%的区间估计;8900±1.761*500/3.87 4.电话咨询服务部门在每次通话结束时都要记录下通话的时间。从一个由16个记录组成的简单随机样本得出一次通话的平均时间为1.6分钟。试求总体平均值的置信度为90%的置信区间。已知总体服从标准差为0.7分钟的正态分布。 1.6±1.645*0.7/4 5.某仓库中有200箱食品,每箱食品均装100个。今随机抽取20箱进行检查,其每箱食品变质个数如下:20 17 32 24 23 18 16 12 3 9 6 2 6 12 20 20 0 1 2 3 试求食品变质的成数(即比例)和总的食品变质个数的置信度为95%的置信区间。 P=246/100*20=12.3% 食品变质的成数置信度为95%的置信区间:12.3%±1.96*0.734% 总的食品变质个数的置信度为95%的置信区间:200*100(12.3%±1.96*0.734%) 6.一项Roper Starch调查向18-29岁的雇员询问他们对于更好的健康保险和加薪两种选择,更喜欢哪一个(USA Today,September5,2000)。如果在500名雇员中有340人愿意选择更好的健康保险的话,回答下列问题: (1)18-29岁的雇员中愿意选择更好健康保险的雇员所占比例的点估计是多少?p=340/500 (2)总体比例的95%置信区间。p±1.96*2.1%

假设检验的基本步骤

假设检验的基本步骤

————————————————————————————————作者:————————————————————————————————日期:

假设检验的基本步骤 (三)假设检验的基本步骤 统计推断 1.建立假设检验,确定检验水准 H0和H1假设都是对总体特征的检验假设,相互联系且对立。 H0总是假设样本差别来自抽样误差,无效/零假设 H1是来自非抽样误差,有单双侧之分,备择假设。 检验水准,a=0.05 检验水准的含义 2.选定检验方法,计算检验统计量 选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题, 一般计量资料用t检验和u检验; 计数资料用χ2检验和u检验。 3.确定P值,作出统计推理 P≤a,拒绝H0,接受H1 P>a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异 假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误 (四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论) u检验适用条件 t检验适用条件 t检验和u检验 1.样本均数与总体均数比较 2.配对资料的比较/成组设计的两样本均数的比较 配对设计的情况:3点 3. 两个样本均数的比较 (1)两个大样本均数比较的u检验 (2)两个小样本均数比较的t检验 (五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误) 1.两类错误 拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误; 接受错误的H0称Ⅱ型错误-存伪。用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。 两者的关系:α愈大β愈小;反之α愈小β愈大。 2.假设检验中的注意事项 (1)随机化:代表性和均衡可比性 (2)选用适当的检验方法 (3)正确理解统计学意义 (4)结论不绝对 (5)单侧与双侧检验的选择 四.分类变量资料的统计描述

IV数据分析假设检验

以收集到的数据为根据,对要确认的事实进行判断的方法以及 找出作为判断基准的p-Value的方法。 ?000营业部的IQC小组每天都要检查合作公司的产品质量。 IQC小组根据产品有没有达到规定的质量要求,判断它是合格品还是不合格品。 ?即IQC小组必须对以下两个事实中的一个做出判断。 -产品的质量符合要求(是合格品) -产品质量不符合要求(是不合格品) 还没有确认的两个事实称为假设,分别用0假设和对立假设表示。 ?(肯定的假设是0假设,否定0假设的是对立假设) 这种情况下,如果按照常理,应在合作公司交上来的部件中抽样本,并将其与预定的规格进行比较。规格和样本的差异大,则为对立假设;差异小,则为0假设。对这些数据进行整理…… ?换句话说,以样本为根据对0假设的概率进行计算,如果概率大则设定为0假设,概率小则设定为对立假设,这样的一系列判断方法称为假设检验。0假设的概率称为p-Value。 ?求出p-Value之后需要一个基准来判断它的大小。 这个基准称为显著性水平,一般会选择1%、5%、10%中的一个。

(通常使用5%)。显著性水平的选择跟分析者对0假设的确信程度有关。 如果对0假设很确信,为了尽量使0假设正确,应选择较低的显著性水平。对0假设不是很确信的时候,为提高对立假设的正确率,应该选择较高的显著性水平。

1/15 对一个平均值的假设检验(已知某样本集合的标准误差率的时候) 确认一下身高的平均值是否为70。 (已知:某样本集合的标准偏差是12) -0假设:平均身高是70 -对立假设:平均身高不是70 Stat -> Basic Statistics -> 1-Sample Z...

概率与数理统计第8章假设检验习题及答案

第8章 假设检验 一、填空题 1、 对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设 00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。 2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。 3、设总体),(N ~ X 2σμ,样本n 21X ,X ,X ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0 --<-n t n S X αμ,其中显著性水平为α。 4、设n 21X ,X ,X 是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记 ∑==n 1 i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- . 二、计算题 1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常? 解:设重量),(~2σμN X 05.016==αn 4252==S X (1)检验假设250:0=μH 250:1≠μH , 因为2σ未知,在0H 成立下,)15(~/250t n S X T -= 拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t 由样本值算得1315.22<=T ,故接受0H (2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量 2 02 2)1(σS n x -= 在0H 成立条件下,2 x 服从)15(2x 分布,

相关文档
最新文档