高斯小学奥数四年级上册含答案第19讲_火车行程进阶

合集下载

高斯小学奥数五年级下册含答案第19讲_行程问题中的变速

高斯小学奥数五年级下册含答案第19讲_行程问题中的变速

第十九讲行程问题中的变速行程问题是小学应用题中很重要的一部分,从同学们刚刚接触行程问题开始,同学们已经学习了很多类型的行程问题,例如:火车问题、流水行船问题、环形路线问题等.几年的积累,相信同学们已经对行程问题已经有了一定的认识.但我们仅仅见识到了行程问题中的冰山一角,我们以后还会在学习数学和物理的过程中,更深入的了解行程问题的本质.行程问题来源于生活.在现实的生活中,不可能以同样的速度一直朝同一个方向走,经常会出现变向和变速的情况.我们将利用两次课的时间来深入的研究一下这类问题.首先我们来介绍一个概念——平均速度.平均速度是一种特殊的速度,它衡量的是一段时间内物体在所有路程上运动的平均快慢程度,体现在公式中:=总路程平均速度总时间.关于平均速度,尤其值得大家注意的是平均速度不是速度的平均.比如:在一段长为480米的跑道上,前一半路程速度为每秒4米,后一半路程速度为每秒6米,那么平均速度就为:()48024042406 4.8/÷÷+÷=米秒,而速度的平均为:()4625/+÷=米秒,这两个值是不等的.例1. 邮递员早晨7点出发送一份邮件到对面的村里,从邮局开始先走12千米的上坡路,再走6千米的下坡路.上坡的速度是3千米/时,下坡的速度是6千米/时,请问: (1) 邮递员去村里的平均速度是多少? (2) 邮递员返回时的平均速度是多少? (3) 邮递员往返的平均速度是多少? 「分析」一定严格按照平均速度的公式解题.练习1、阿瓜要去小高家玩.一共要走1200米,前400米阿瓜的速度是5米/秒,后面800米的速度是2.5米/秒.那么他全程的平均速度是多少?例2.如图所示,一只蚂蚁沿等边三角形的三条边爬行,在三条边上它每分钟分别爬行60厘米、20厘米、30厘米.蚂蚁由A 点开始,如果顺时针爬行一周,平均速度是多少?如果顺时针爬行了一周半,平均速度又是多少? 「分析」对于等边三角形的边长,不妨采用设数法.练习2、如果例题中的这只蚂蚁逆时针爬行2周半,平均速度是多少?在很多行程问题中,我们并不能一下子弄清楚整个过程,特别是在运动过程中有变向和变速的时候,那就需要分段来考虑整个过程.下面就来看一个这样的问题.例3.男、女两名田径运动员在长120米的斜坡上练习跑步(如图所示,坡顶为A ,坡底为B ).两人同时从A 点出发,在A 、B 之间不停地往返奔跑.已知男运动员上坡速度是每秒3米,下坡速度是每秒5米,女运动员上坡速度是每秒2米,下坡速度是每秒3米.请问:两人第一次迎面相遇的地点离A 点多少米?第二次迎面相遇的地点离A 点多少米? 「分析」本题可采用分段计算,一些速度发生变化或方向发生变化的位置可作为分段计算的线索.练习3、在30世纪的某一天,卡莉娅和墨莫两人在地球和火星间进行往返旅行.如果卡莉娅从地球飞向火星的速度是300万公里/天,而从火星返回地球的速度是400万公里/天;墨莫从地球飞向火星的速度是200万公里/天,而从火星返回的速度是300万公里/天.现两人同时从地球出发,在地球和火星间往返,请问两人第二次迎面在太空中相遇时距离地球多少万公里?(已知地球和火星间的距离约为6000万公里)通过例题3,我们对于变速和变向问题有了基本的解题思路,那就是分段考虑.分段考虑就是把一个大的问题进行分割,化整为零,各个击破.将复杂的问题简单化,不仅在行程问题中,在很多其他的问题中都有应用,特别是对于一些过程复杂的问题具有很好的效果.例4.在一条南北走向的公路上有A 、B 两镇,A 镇在B 镇北面4.8千米处.甲、乙两人分别同时从A 镇、B 镇出发向南行走,甲的速度是每小时9千米,乙的速度是每小时6千米.甲在运动过程中始终不改变方向,而乙向南走3分钟后,便转身往回走2分钟,接着按照先向南走3分钟,再向北走2分钟的方式循环运动.请问:两人相遇的地点距B 镇多少千米?「分析」注意分析两人路程差的变化规律.B练习4、在东西方向上的A、B(A地在B的西面)两地相距6千米.甲乙分别同时从A、B两地出发向东走,甲的速度是每小时12千米,乙的速度是每小时6千米.甲在运动的过程中始终不改变方向,而乙向东走了2分钟后,便转身往回走1分钟,再转向东走2分钟,再转身走1分钟,……,那么甲、乙两人相遇的地点距B地多远?例5.龟兔赛跑,全程1.04千米.兔子每小时跑4千米,乌龟每小时爬0.6千米.乌龟不停地爬,但兔子却边跑边玩,兔子先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟,…….请问:先到达终点的比后到达终点的快多少分钟?「分析」首先可确定乌龟到达终点的时间,然后再确定兔子到达终点的时间,两个时间直接对比即可得出答案.例6.如图所示,正方形边长是1200米,甲、乙两人于8:00同时从A,B沿图中所示的方向出发,甲每分钟走120米,乙每分钟走100米,且两人每到达一个顶点都需要休息1分钟.求甲从出发到第一次看见乙所用的时间.可看见乙.田径比赛——障碍跑障碍跑作为田径项目,始于英国.它和越野跑可算是一对“孪生兄弟”.越野跑是从儿童游戏脱胎而来的.有人设想把越野跑搬到运动场上来.于是,运动场上出现了篱笆、栅栏、水坑等人工障碍物.1837 年,在英国乐格比高等学校里,首创了一种叫做“障碍跑”的比赛项目.从此,这项活动在英国普遍开展起来.随后又相继传到其他国家,这才逐渐被人们所接受.19世纪,障碍跑在英国兴起.最初在野外进行,跨越的障碍是树枝、河沟,各障碍间的距离也长短不一,19世纪中叶开始在跑道上进行.有研究报告指出:19世纪时障碍跑的距离不统一,具有很大的随意性,短的440码,长的可达3英里.1900年第2届奥运会首次设立障碍跑,分2500米和4000米两个项目.从1904年第3届奥运会起将障碍跑的距离确定为3000米,并沿用至今.全程必须跨越35次障碍,其中包括7次水池.障碍架高91.1~91.7厘米,宽3.96米,重80~100公斤.4 00米的跑道可摆放5个障碍架,各障碍架的间距为80米.运动员可跨越障碍架,也可踏上障碍架再跳下,或用手撑越.国际田联直到1954年才开始承认其世界纪录.作业1. 如图所示,一个蜗牛从A 点出发沿着一个三角形的三边爬行,速度如图所示(单位:厘米/分),那么这个蜗牛顺时针爬行一周的平均速度是多少厘米/分?顺时针爬行一周半的平均速度是多少厘米/分?2. 小山羊去山上吃草,前一半路程速度为每秒4米,后一半路程开始跑步,速度为每秒6米.那么整段路程的平均速度是多少米/秒?3. 山谷和森林相距2000米,小老虎从森林出发去山谷,速度为5米/秒.它每走120米都会休息10秒钟,那么走完全程一共需要多少秒?4. 如图,B 地是AC 两地的中点,AC 之间的距离是12千米.人在AB 上的速度是3千米/时,在BC 上的速度是2千米/时.现在甲、乙二人分别从A 、C 两地同时出发,几时几分后两人相遇?5. 在一条河的相距24千米的两个码头A 、B 之间,客船和货船同时从上游的A 码头出发,在A 、B 之间不停的往返运动.已知,水速是每小时2千米,客船的速度是每小时6千米,货船的速度是每小时4千米,那么两船第一次迎面相遇的地点距离A 码头多少千米?第二次迎面相遇的地点距离A 码头多少千米?AC第十九讲 行程问题中的变速例题:例7. 答案:(1)3.6千米/时;(2)4.5千米/时;(3)4千米/时详解:(1)去的时候,上坡路走了1234÷=小时,下坡路走了661÷=小时.根据平均速度的定义,平均速度为(126)(41) 3.6+÷+=千米/时.(2)返回的时候,上坡路走了632÷=小时,下坡路走了1262÷=小时.根据平均速度的定义,平均速度为(126)(22) 4.5+÷+=千米/时.(3)往返的平均速度为(126)2(54)4+⨯÷+=千米/时.例8. 答案: 30厘米/分;133117厘米/分 详解:设等边三角形边长为60厘米,则平均速度为603(60606020+6030)30⨯÷÷+÷÷=厘米/分.如果顺时针爬行了一周半,平均速度为13180 1.5(6+6060+3020)3117⨯÷÷÷=厘米/分.例9. 答案:96米;3517米详解: 如图所示,男运动员到达B 点的时候用了24秒,这时女运动员走了72米距离B 点48米.然后两人做一个相遇运动,会在()48338÷+=秒后相遇,这时两人距离A 点是96米.男运动员跑到A 点,又用了32秒,而女运动员跑到B 点需要8秒,可知当男运动员走到A 点的时候,女运动员又向上走了24秒,走了48米,距离A 点还有72米.然后两人又做一个相遇运动,会在7272(52)7÷+=秒后相遇,可计算出这时两人相距A 点3517米.例10. 答案:0.96千米详解:如图所示,甲每分钟可以走150米,乙每分钟可以走100米.每过5分钟,甲都向南走750米,乙只向南走100米,那么每5分钟,两人的距离都拉近650米,48006507250÷=,所以在5735⨯=分钟以后,两人相距250米.此时,甲继续向南,乙向南走3分钟,这3分钟两人的距离拉近了()1501003150-⨯=米,这时两人相距100米.甲继续向南,而乙则返回往北走,两人在()1001501000.4÷+=分钟后相遇,那么甲总共走了3530.438.4++=分钟,共走了38.41505760⨯=米,所以相遇地点距离B 地57604800960-=米,即0.96千米.例11. 答案:420种详解:首先可以计算出乌龟用时111.040.6115÷=小时,合104分钟.兔子跑的时间为1.0440.26÷=小时,合15.6分钟.1234515++++=,可知兔子休息了5次,休息了51575⨯=分钟,共用时A第2次相遇15.67590.6+=分钟,兔子比乌龟先到达10490.613.4-=分钟.例12. 答案:65分钟详解:甲若追上乙至少要多走一个边长,至少用时120012010060÷-=()分钟.甲每走120012010÷=分钟,休息一分钟,60分钟内至少休息5次,共用时65分钟.乙每走120010012÷=分钟,休息一分钟,60分钟内至少休息4次,共用时64分钟,第65分钟恰好也在休息,因此甲恰好可以看见乙. 练习:1. 答案:3米/秒简答:()12004005800 2.53÷÷+÷=米/秒.2. 答案:12931厘米/分 简答:仍设等边三角形边长为60厘米,逆时针爬行两周用时12分钟,逆时针爬行半周用时60303020 3.5÷+÷=分钟,平均速度为1180 2.5(12 3.5)2931⨯÷+=厘米/分.3. 答案:2250万公里简答:做法同例3,分段计算.4. 答案:1200米简答:做法同例4,以3分钟为周期. 作业1. 答案:40;54013简答:设边长为120厘米,()36024340÷++=厘米/分;()5405402432213÷++++=厘米/分.2. 答案:4.8简答:设全长为24米,平均速度为()2432 4.8÷+=米/秒.3. 答案:560简答:小老虎走路的时间是400秒.20001201680÷=,一共要休息16次,即160秒.一共需要560秒.4. 答案:2小时30分简答:出发2小时后,甲到达中点处,乙距离中点还有2千米.再过0.5小时两人相遇,所以一共2小时30分钟.5. 答案:21.6;11.2简答:分段计算即可.。

四年级高思奥数之行程问题一含答案

四年级高思奥数之行程问题一含答案

第6讲行程问题一内容概述掌握速度、路程、时间的概念,以及它们之间的数量关系,掌握基本相遇问题和基本追及问题的解法;学会用比较的方法分析同一段路程上不同的运动过程. 重点掌握画线段图的分析方法.典型问题兴趣篇1. A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时. 如果要按照原定的时间到达B城,汽车在后一半路程上每小时应该行驶多少千米?2. A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1) 甲从A走到B需要多长时间?(2) 两个人从出发到相遇需要多长时间?3. 在第2题中,如果甲、乙两人的速度大小不变,但甲出发时改变方向,即两个人同时、同向出发. 请问:乙出发后多久可以追上甲?4. 甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地,2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地. 问:什么时候两车在途中相遇?5. 小悦和冬冬分别从相距720米的两地出发同向而行,且冬冬比小悦先出发2分钟,已知小悦的速度是每分钟60米,冬冬的速度为每分钟50米,试问:当小悦追上冬冬的时候,冬冬已经走了多少米?6. 一辆公共汽车和一辆小轿车从相距350千米的两地同时出发,相向而行,公共汽车每小时行40千米,小轿车每小时行60千米,问:(1) 2小时后两车相距多少千米?(2) 经过几小时后两车第一次相距50千米?7.一辆公共汽车和一辆小轿车从相距300千米的两地同时出发,同向而行,公共汽车在前,每小时行40千米;小轿车在后,每小时行60千米,问:(1) 经过6小时后两车相距多少千米?(2) 经过几小时后两车第一次相距100千米?8. 甲、乙两人分别在A地和B地,甲从A地到B地需要20分钟,乙从B地到A地需要30分钟,如果两个人同时出发相向而行,多长时间可以相遇?9. 甲、乙两车分别从A、B两地同时出发相向而行,已知甲车每小时行驶40千米,两车6小时后相遇,相遇后它们继续前进,又过了3小时,甲车到达B地,问:乙车还要过多久才能到达A地?10. 甲、乙两人分别从A、B两地同时出发相向而行,已知甲每分钟走50米,乙走完全程要18分钟,出发3分钟后,甲、乙仍相距450米,问:还要过多少分钟,甲、乙两人才能相遇?拓展篇1. 甲、乙两地相距450千米,快车和慢车分别从甲、乙两地出发相向而行,快车每小时行60千米,慢车每小时行30千米,试问:(1) 如果两车同时出发,几小时后相遇?(2) 如果慢车比快车早出发3小时,当两车相遇时快车走了多远?2. A、B两地相距400千米,甲、乙两车分别从A、B同时出发,相向而行,甲车的速度为每小时60千米,乙车的速度为每小时40千米,请问:(1) 从出发算起,多久后甲、乙两车第一次相距100千米?(2) 从出发算起,多久后甲、乙两车第二次相距100千米?3. 甲、乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?4. 冬冬步行上学,每分钟行75米,冬冬离家12分钟后,爸爸发现他忘了带文具盒,马上骑自行车去追,每分钟行375米,求爸爸追上冬冬所需要的时间隔。

第19讲 行程问题三-完整版

第19讲  行程问题三-完整版

第19讲行程问题三内容概述运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑。

在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律。

典型例题兴趣篇1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校,如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米?答案:每分钟159米解析:注意到莉莉与莎莎两人同时从家出发,同时到达学校,而且两人在途中都没有停留,因此两人用去的时间相同.当运动时间相同时,速度的倍数关系等于路程的倍数关系.如图,莉莉步行从家到学校,走的路程是家与学校的距离.在相同的时间内,莎莎骑车到学校,又马上从学校返回家,再回到学校,经过的路程是家与学校距离的3倍,因此莎莎骑车的速度是莉莉步行速度的3倍,由于莉莉每分钟走53米,所以莎莎骑车的速度是每分钟53×3=159米.2.小燕上学时骑车?回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟,求小燕往返都骑车所需的时间.答案:30分钟解析:如图,因为小燕往返都步行需要70分钟,所以她步行从学校回到家需要70÷2=35分钟.由于小燕上学时骑车,回家时步行需要50分钟,所以她骑车从家到学校需要50-35=15分钟,那么她往返都骑车需要15×2=30分钟.3.萱萱和卡莉娅从距离32千米的两地同时出发相向而行,萱萱每小时走4千米,卡莉娅乘坐“飞天扫帚”,每小时飞12千米,她俩迎面相遇后,卡莉姬发现自己忘记带东西了,立刻返回出发点,再掉头向萱萱前进.请问:她们第二次相遇的地点距离卡莉娅的出发点多少千米?答案:12千米解析:第一次相遇时卡莉娅走了32÷(4+12)×12=24(千米).从第一次相遇到第二次相遇,两人又合走了24×2=48(千米).这期间萱萱又往前走了48÷(4+12)×4=12(千米).因此第二次相遇点离卡莉娅的出发点24-12=12(千米).4.培英学校和电视机厂之间有一条公路,原计划下午2点整培英学校派车去电视机厂接劳模来校作报告,往返需用1小时.实际上这位劳模在下午1点便提前离厂步行向学校走来,途中遇到接他的汽车,劳模便立刻上车去往学校,并在下午2点40分到达.问:汽车行驶速度是劳模步行速度的几倍?答案:8倍解析:如图,汽车下午2时从工厂出发,途中遇到迎面走来的劳模后立即返回,于2时40分回到工厂,汽车的速度不变,因此汽车遇到劳模的时间是2时20分,另一方面,汽车往返学校与工厂需要1小时,因此从学校到工厂单程行驶需要30分钟,也即如果汽车2时从学校出发,按计划将于2时30分到达工厂.所以汽车途中遇到劳模提前了10分钟返回,而少行驶的10分钟路程正是劳模步行了60+20=80分钟的路程。

四年级高思奥数之行程问题二含答案

四年级高思奥数之行程问题二含答案

第14讲行程问题二内容概述参与运动的某些对象自身具有长度的行程问题.涉及多个对象的行程问题,一般需要从其中两个对象入手进行分析,并把所得的结论与其他对象联系起来.1.(1)费叔叔沿着一条与铁路平行的公路散步,每分钟走60米,迎面开过来一列长300米的火车.从火车头与费叔叔相遇到火车尾离开他共用了20秒.求火车的速度.(2)小悦沿着一条与铁路平行的公路散步,她散步的速度是每秒2米.这时从小悦背后开来一列火车,从车头追上她到车尾离开她共用了18秒.已知火车速度是每秒17米,求火车的长度.2.(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?3.一列火车长180米,每秒行20米;另一列火车长200米,每秒行18米.两车相向而行,它们从车头相遇到车尾相离要经过多长时间?4. 甲火车长370米,每秒行15米;乙火车长350米,每秒行21米,两车同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?5.许三多所在的钢七连队伍长450米,以每秒1.5米的速度行进.许三多以每秒3米的速度从队尾跑到队头需要多长时间?然后从队头返回队尾,又需要多长时间?6.甲、乙两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米.坐在甲车上的小坤从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗为止共用13秒, 问:乙车全长多少米?7.现有两列火车同时同方向齐头行进,快车每秒行18米,慢车每秒行10米,行12秒后快车超过慢车.如果这两列火车车尾对齐,同时同方向行进,则9秒后快车超过慢车.请问:快车和慢车的车长分别是多少米?8.有甲、乙、丙三人,甲每分钟走40米,乙每分钟走50米,丙每分钟走60米. A、B两地相距2700米.甲、乙两人从A、B两地同时出发相向而行,他们出发15分钟后,丙从B 地出发去追赶乙.请问:甲在与乙相遇之后多少分钟又与丙相遇?又过了多少分钟丙才追上乙?9.有甲、乙、丙三人,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米. 如果甲从A地,乙和丙从B地,三人同时出发相向而行.甲和乙相遇后,过了15分钟又与丙相遇.求A、B两地的距离.10.东、西两城相距75千米.小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西走,每小时行15千米.三人同时动身,途中小辉遇见小强即折回向东骑,遇见了小明又折回向西骑,再遇见小强又折回向东骑,……这样往返,直到三人在途中相遇为止.请问:小辉共骑了多少千米?拓展篇1.(1)一列火车长400米,以每分钟800米的速度通过一条长2800米的隧道,需要多长时间?(2)一列火车长720米,每秒行驶15米,全车通过一个山洞用了64秒.这个山洞长多少米?2.一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.你知道火车有多长吗?它的速度是多少?3.有一列客车和一列货车,客车长400米,每秒行驶20米;货车长800米,每秒行驶10米.试问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车(从追上到完全超过)需要多长时间?4.一列客车和一列货车同向而行,货车在前,客车在后.已知客车通过460米长的隧道用30秒,通过410米长的隧道用28秒.又已知货车长160米,每小时行驶54千米.请问:客车从追上到离开这列货车需要多少秒?5.与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米.这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.请问:这列火车的车身总长是多少米?6.人大附小组织学生去春游,队伍行进的速度是每秒2米,宋老师以每秒4米的速度从队尾跑到队头,再回到队尾,共用6分钟.请问:队伍的总长是多少米?7.阿奇在一条与铁路平行的小路上行走,有一列客车迎面开来,40秒后经过阿奇. 如果这列客车从阿奇的背后开来,60秒后经过阿奇.试问:如果阿奇站着不动,客车多长时间可以经过阿奇?8.一列货车和一列客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小明在客车内沿着客车前进的方向向前走,小明发现货车用140秒就超过了他.已知小明在客车内行走的速度为每秒l米,客车的速度为每秒20米,客车长350米,货车长280米.求货车从追上客车到完全超过客车所需要的时间.9.甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?10.甲、乙两人同时从A地出发向B地前进,甲骑车,乙步行.与此同时,丙从B地出发向A地前进.甲骑9千米后与丙相遇,而乙走6千米后就与丙相遇.如果甲骑车的速度是乙步行速度的3倍,求A、B两地的距离.11.甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍.现在甲从A地向B地行进,乙、丙两人从B地向A地行进.三人同时出发,出发时,甲、乙步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又重新改为步行,三人仍按原来的方向继续前进.试问:三人之中谁最先到达目的地?谁最后到达目的地?12.A、B两城相距56千米,甲、乙、丙三人分别以每小时6千米、5千米、4千米的速度前进.甲、乙两人从A城,丙从B城同时出发,相向而行.请问:出发多长时间后,乙正好在甲和丙的中点?超越篇1.米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒,货车超过了它;’另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它.如果客车的长度是货车的2倍,客车的速度是货车的3倍.请问:客车和货车什么时间相遇?两车错车需要多长时间?2.货车和客车相向而行,两车在A点迎面相遇,在B点错开,A点和B两点之间的距离为150米.已知客车的长度为450米,速度为每小时108公里,货车的速度为每小时72公里.如果货车比客车长,那么货车的长度是多少?3.铁路旁有一条小路,一列长110米的火车以每小时30千米的速度向北缓缓驶去.14时10分追上向北行走的一位工人,15秒后离开这个工人;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生.请问:工人与学生将在何时相遇?4.A、B两地相距120千米,甲、乙两人分别骑车从A、B两地同时相向出发,甲速度为每小时50千米,出发后1小时30分钟相遇,然后甲、乙两人继续沿各自方向往前骑.在他们相遇6分钟后,甲与迎面骑车而来的丙相遇,而丙在c地追上乙.若甲以每小时44千米的速度,乙以每小时比原速度快6千米的车速,两人同时分别从A、B出发相向而行,则甲、乙二人在C点相遇,问丙的车速是多少?5.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用6分钟、12分钟、20分钟追上,已知快车每小时行24千米,中车每小时行20千米,求慢车每小时行多少千米.6.快、中、慢三辆车同时从甲地出发开往乙地,与此同时冬冬以每分钟100米的速度沿公路走向甲地.已知快车出发30分钟后在途中遇上冬冬,中车出发35分钟后遇上冬冬.三辆车到达乙地的时候分别用了100分钟、120分钟、150分钟.请问:慢车出发多长时间后可以遇上冬冬?7. 铁路旁的一条平行小路上,有一行人与一骑车人早上同时从A城出发向南前进,行人速度为每小时7.2千米,骑车人速度为每小时18千米.途中,有一列火车从他们背后开过来,9点10分恰好追上行人,而且从行人身边通过用了20秒钟;9点18分恰好追上骑车人,从骑车人身边通过用26秒钟.请问:这列火车的车身总长是多少米?行人与骑车人早上何时从A城出发?他们出发时,火车头离A城还有多少千米?8. 铁路货运调度站有A、B两个信号灯,在灯旁停靠着甲、乙、丙三列火车,它们的车长正好构成一个等差数列,其中乙车的车长居中. 最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A信号灯处,而车头则冲着B信号灯的方向,乙车的车尾则位于B信号灯处,车头则冲着A的方向. 现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇. 再过15秒,甲车恰好完全超过丙车,而丙车也正好完全和乙车错开. 请问:甲、乙两车从车头相遇直至完全错开一共用了几秒钟?第14讲行程问题二内容概述参与运动的某些对象自身具有长度的行程问题.涉及多个对象的行程问题,一般需要从其中两个对象入手进行分析,并把所得的结论与其他对象联系起来.1.(1)费叔叔沿着一条与铁路平行的公路散步,每分钟走60米,迎面开过来一列长300米的火车.从火车头与费叔叔相遇到火车尾离开他共用了20秒.求火车的速度.(2)小悦沿着一条与铁路平行的公路散步,她散步的速度是每秒2米.这时从小悦背后开来一列火车,从车头追上她到车尾离开她共用了18秒.已知火车速度是每秒17米,求火车的长度.答案:14米/秒270米解析:(1)相遇问题,60米/分=1米/秒300−20=15 15-1=14(2)追击问题,(17-2)⨯18=270米2.(1)一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?(2)一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?答案:25秒220米解析:(1)火车过桥(320+180)−20=25秒(2)20⨯21-200=220米3.一列火车长180米,每秒行20米;另一列火车长200米,每秒行18米.两车相向而行,它们从车头相遇到车尾相离要经过多长时间?答案:10秒解析:火车相遇,路程为两车路程之和(180+200)÷(20+18)=10秒4. 甲火车长370米,每秒行15米;乙火车长350米,每秒行21米,两车同向行驶,乙车从追上甲车到完全超过甲车需要多长时间?答案:120秒解析:火车追击,路程为两车路程之和(370+350)÷(21-15)=120秒5.许三多所在的钢七连队伍长450米,以每秒1.5米的速度行进.许三多以每秒3米的速度从队尾跑到队头需要多长时间?然后从队头返回队尾,又需要多长时间?答案:300秒100秒解析:队尾到对头是追击问题450÷(3-1.5)=300秒对头到队尾是相遇问题450÷(3+1.5)=100秒6.甲、乙两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米.坐在甲车上的小坤从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗为止共用13秒, 问:乙车全长多少米?答案:390米解析:相遇问题,从相遇到离开单位不统一60+48=108千米每时=30千米每秒30⨯13=390米7.现有两列火车同时同方向齐头行进,快车每秒行18米,慢车每秒行10米,行12秒后快车超过慢车.如果这两列火车车尾对齐,同时同方向行进,则9秒后快车超过慢车.请问:快车和慢车的车长分别是多少米?答案:快96米慢72米解析:齐头并进多走的是一个快车的车长(18-10)⨯12=96米车尾对齐多走的是一个慢车的车长(18-10)⨯9=72米8.有甲、乙、丙三人,甲每分钟走40米,乙每分钟走50米,丙每分钟走60米. A、B两地相距2700米.甲、乙两人从A、B两地同时出发相向而行,他们出发15分钟后,丙从B 地出发去追赶乙.请问:甲在与乙相遇之后多少分钟又与丙相遇?又过了多少分钟丙才追上乙?答案:6分钟54分钟解析:甲乙相遇时2700÷(40+50)=30分钟这时丙走了15分钟走了15⨯60=900米乙走了50⨯30=1500米,甲丙相距1500-900=600米600÷(40+60)=6分钟(600+50⨯6-60⨯6)÷(60-50)=54分钟9.有甲、乙、丙三人,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米. 如果甲从A地,乙和丙从B地,三人同时出发相向而行.甲和乙相遇后,过了15分钟又与丙相遇.求A、B两地的距离.答案:16500米解析:甲丙相遇的路程是乙比丙多走的路程(60+40)⨯15=1500米1500÷(50-40)=150分钟150⨯(60+50)=16500米10.东、西两城相距75千米.小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西走,每小时行15千米.三人同时动身,途中小辉遇见小强即折回向东骑,遇见了小明又折回向西骑,再遇见小强又折回向东骑,……这样往返,直到三人在途中相遇为止.请问:小辉共骑了多少千米?答案:90千米解析:小辉行走的时间和两人从出发到相遇的时间是一样的75÷(6.5+6)=6小时6⨯15=90千米拓展篇1.(1)一列火车长400米,以每分钟800米的速度通过一条长2800米的隧道,需要多长时间?(2)一列火车长720米,每秒行驶15米,全车通过一个山洞用了64秒.这个山洞长多少米?答案:4分钟240米解析:(1)火车过桥(2800+400)÷800=4分钟(2)15⨯64-720=240米2.一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.你知道火车有多长吗?它的速度是多少?答案:200米10米/秒解析:从火车车头上桥,到车尾离开桥所走路程是:车长+桥长火车完全在桥上所走路程是:桥长-2个车长所以行走一个车长的距离用(120-80)÷2=20秒行走桥长用的时间是120-20=100秒1000÷100=10米/秒车长为200米3.有一列客车和一列货车,客车长400米,每秒行驶20米;货车长800米,每秒行驶10米.试问:如果两车相向而行,它们从相遇到错开需要多长时间?如果两车同向而行,客车赶超货车(从追上到完全超过)需要多长时间?答案:40秒120秒解析:(800+400)÷(20+10)=40秒(800+400)÷(20-10)=120秒4.一列客车和一列货车同向而行,货车在前,客车在后.已知客车通过460米长的隧道用30秒,通过410米长的隧道用28秒.又已知货车长160米,每小时行驶54千米.请问:客车从追上到离开这列货车需要多少秒?答案:45秒解析:通过隧道走的路程都是:车长+桥长460-410=50 30-28=2 速度为50÷2=25米每秒车长为:25⨯30-460=290米54千米每时=15米每秒(290+160)÷(25-15)=45秒5.与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米.这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.请问:这列火车的车身总长是多少米?答案:286米解析:3.6千米每时=1米每秒10.8千米每时=3米每秒(26⨯3-22)÷(26-22)=14 22⨯(14-1)=286米6.人大附小组织学生去春游,队伍行进的速度是每秒2米,宋老师以每秒4米的速度从队尾跑到队头,再回到队尾,共用6分钟.请问:队伍的总长是多少米?答案:540米解析:两次跑的路程是一样的,两次速度分别为2米每秒6米每秒所以去的时候的时间是回来时的三倍6分钟=360秒360÷4⨯6=540米7.阿奇在一条与铁路平行的小路上行走,有一列客车迎面开来,40秒后经过阿奇. 如果这列客车从阿奇的背后开来,60秒后经过阿奇.试问:如果阿奇站着不动,客车多长时间可以经过阿奇?答案:48秒解析:迎面开来是路程和速度和背后开来是路程差速度差40(车速+人速)=60(车速-人速)车速=5人速路程为240人速240÷5=488.一列货车和一列客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小明在客车内沿着客车前进的方向向前走,小明发现货车用140秒就超过了他.已知小明在客车内行走的速度为每秒l米,客车的速度为每秒20米,客车长350米,货车长280米.求货车从追上客车到完全超过客车所需要的时间.答案:210秒解析:小明发现货车用140秒就超过了他,所走路程为货车车长280÷140=2米每秒货车速度为2+20+1=23米每秒(350+280)÷(23-20)=210秒9.甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?答案:32千米每时解析:从甲车和卡车相遇开始计时,乙车和卡车相遇用了一个小时路程和为甲乙两车行走6小时的路程差(52-40)6=72千米72÷1=72千米每时72-40=32千米每时10.甲、乙两人同时从A地出发向B地前进,甲骑车,乙步行.与此同时,丙从B地出发向A地前进.甲骑9千米后与丙相遇,而乙走6千米后就与丙相遇.如果甲骑车的速度是乙步行速度的3倍,求A、B两地的距离.答案:12千米解析:从甲丙相遇时开始计时,再过一段时间乙丙相遇甲的速度是乙速度的三倍所以相同时间内甲走的路程是乙路程的三倍当甲走9千米时乙走3千米所以乙丙速度相同所以甲走9千米时丙走3千米路程为12千米11.甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍.现在甲从A地向B地行进,乙、丙两人从B地向A地行进.三人同时出发,出发时,甲、乙步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又重新改为步行,三人仍按原来的方向继续前进.试问:三人之中谁最先到达目的地?谁最后到达目的地?答案:丙最先到达,甲最后到达解析:画线段图总路程为四份,丙两份时间到达,甲四份时间到达乙不到四份时间12.A、B两城相距56千米,甲、乙、丙三人分别以每小时6千米、5千米、4千米的速度前进.甲、乙两人从A城,丙从B城同时出发,相向而行.请问:出发多长时间后,乙正好在甲和丙的中点?答案:7小时解析:由分析知乙正好在甲丙中点上时一定是甲丙相遇后的时间,相同时间内,甲走6份路程,乙走5份路程,丙走4份路程甲乙相差1份所以乙丙也相差一份根据容斥原理知道这一份为9份-56=1份所以一份路程为7 时间为7小时超越篇1.米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒,货车超过了它;’另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它.如果客车的长度是货车的2倍,客车的速度是货车的3倍.请问:客车和货车什么时间相遇?两车错车需要多长时间?答案:9:15 15秒米代表米老鼠客代表客车货代表货车解析:在速度上:30(货-米)=12(客+米)÷2 客=3货客=9米货=3米货车长度30(货-米)=30(3米-米)=60米客车车上12(客+米)=120米9:30相遇时米老鼠走了一份路程客车走了9份路程两人共走了10份路程走1:30时米老鼠路程为90米客车路程为810米货车路程为270米全程为900米900÷(270÷90+810÷90)=75分钟 8:00+00:75=9:15分(60+120)÷(9+3)=15秒2.货车和客车相向而行,两车在A 点迎面相遇,在B 点错开,A 点和B 两点之间的距离为150米.已知客车的长度为450米,速度为每小时108公里,货车的速度为每小时72公里.如果货车比客车长,那么货车的长度是多少?答案:550米解析:108公里每时=30米每秒 72公里每时=20米每秒从相遇到错开客车走的路程为 150+450=600 600÷30=20秒20(30+20)-450=550米3.铁路旁有一条小路,一列长110米的火车以每小时30千米的速度向北缓缓驶去.14时10分追上向北行走的一位工人,15秒后离开这个工人;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生.请问:工人与学生将在何时相遇?答案:14时40分解析:碰到工人是追击问题 30÷3.6-110÷15=1米每秒=60米每分碰到学生是相遇问题 110÷12-30÷3.6=65米每秒=50米每分 火车速度为30千米每时=500米每分工人与学生的时间为6(500-60)÷(50+60)=24分钟14时16份+24分=14时40分4.A 、B 两地相距120千米,甲、乙两人分别骑车从A 、B 两地同时相向出发,甲速度为每小时50千米,出发后1小时30分钟相遇,然后甲、乙两人继续沿各自方向往前骑.在他们相遇6分钟后,甲与迎面骑车而来的丙相遇,而丙在c 地追上乙.若甲以每小时44千米的速度,乙以每小时比原速度快6千米的车速,两人同时分别从A 、B 出发相向而行,则甲、乙二人在C 点相遇,问丙的车速是多少?答案:70千米每时解析:第一次相遇可以求出乙的速度为 30千米每时 再过6分钟甲共走了80千米 第二次甲乙两人相遇时间为 120÷(44+36)=1.5时C 距离A 地66千米 追上乙,丙走了80-66=14千米 乙走了14-8=6千米 14÷(6÷30)=70千米每时5.快、中、慢三辆车同时从甲地出发追赶前方的骑车人,分别用6分钟、12分钟、20分钟追上,已知快车每小时行24千米,中车每小时行20千米,求慢车每小时行多少千米. 答案:18.4千米每时解析:每次都是速度差,路程差都一样是开始时距离骑车人的距离求出骑车人速度为16千米每时,路程差为0.8千米 慢车速度为18.4千米每时6.快、中、慢三辆车同时从甲地出发开往乙地,与此同时冬冬以每分钟100米的速度沿公路走向甲地.已知快车出发30分钟后在途中遇上冬冬,中车出发35分钟后遇上冬冬.三辆车到达乙地的时候分别用了100分钟、120分钟、150分钟.请问:慢车出发多长时间后可以遇上冬冬?答案:42分钟解析:与上题类似,求出刚开始距离东东的距离即可。

第19讲-行程问题【三】

第19讲-行程问题【三】

一、分段计算的行程问题1,行程问题中的三个基本倍数关系①当运动的速度相同时,时间的倍数关系等于路程的倍数关系②当运动的时间相同时,速度的倍数关系等于路程的倍数关系③当运动的路程相同时,时间的倍数关系等于速度的反倍数关系2,按时间流程画线段图的方法画线段图的方法在求解行程问题中是至关重要的,画好线段图,能使题目条件一目了然,有助于解题。

3,分段与比较的想法①同一个人的不同过程之间,速度相同,可以得到路程与时间之间的关系;②两个时刻之间所经过的时间相同,可以得到不同对象之间路程与速度的关系;③长度相同的线段,路程相同,可以得到速度和时间之间的关系。

二、多次往返相遇和追及1、甲,乙两车从A、B两地出发相向而行,并在两地之间不断往返,记两地距离为1个全长,则①甲车和乙车的路程和为1个全长时,两次第一次迎面相遇;•在此之后,两车的路程和每多出2个全长时就会迎面相遇一次.②如果甲车的速度大于乙车速度,则:•当甲车与乙车的路程差为1个全长时,甲车第一次追上乙车;在此之后,每当甲车比乙车多跑2个全长时就会追上乙车一次。

2,甲,乙两车从A地同时出发同向而行,在A、B两地之间不断往返,记两地距离为1个全长,则①当甲车和乙车的路程和为2个全长时,两次第一次迎面相遇;在此之后,两车的路程和每多出2个全长时就会迎面相遇一次.②如果甲车的速度大于乙车速度,则:当甲车与乙车的路程差为2个全长时,甲车第一次追上乙车;在此之后,每当甲车比乙车多跑2个全长时就会追上乙车一次。

【1】(高思学校竞赛数学导引P116)甲、乙两人从同一个地点出发同向而行,甲比乙先出发.甲出发6分钟到达A地.此时乙距离起点150米.又过了3分钟乙到达A地,此时甲距离起点900米.问:乙比甲晚出发多长时间?自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队.然后通信员立即返回出发点;到达出发点后通信员又马上掉头去追自行车队,再次追上时恰好离出发点18千米.自行车队每分钟行多少千米?摩托车每分钟行多少千米?乌龟与兔子迚行10000米赛跑,兔子的速度是乌龟的速度的5倍.当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉.兔子醒来时发现乌龟已经领先它5000米,于是奋起直追.当乌龟到达终点时,兔子仍落后100米.请问:兔子睡觉期间,乌龟跑了多少米?一天,萱萱到离自己家4000米的表哥家去玩.早晨7:20时,萱萱从家出发向表哥家走去,每分钟行60米,同时表哥骑车从家出发来接她.表哥到萱萱家后才发现萱萱已经走了,又立即返回去追.表哥骑车每分钟行260米.当表哥追上萱萱后,带着她一起回表哥家,这时骑车速度变为每分钟骑175米.请问:当他们到达表哥家时还差几分钟就到8点了?甲、乙两车分别从A、B两地同时出发,相向而行,12小时后在C地相遇.相遇后,两车并不停顿,继续前迚.甲车在相遇后继续行驶4小时到达B地,然后立即掉头以相同的速度返回A地.请问:(1)当甲车再次到达C地的时候,乙车还要再开几小时才能到达A地?(2)如果甲车从B地返回的时候不是原速返回,而是变慢了.而且当它经过C地的时候,乙车正好到达A地.甲车返回的速度是原来速度的多少倍?某科研单位每天派汽车早8点准时到工程师家接他上班.但今天早晨,工程师临时决定提前到单位,于是他没有等汽车来接,就自己步行去单位.步行途中遇到了前来接他的汽车,他马上上车赶到单位,结果发现比平时早到了30分钟,问:工程师上车时是几点几分?【7】(高思学校竞赛数学导引P117)快车和慢车分别从甲、乙两地同时开出,相向而行,经过4小时在途中相遇.相遇后两车继续向前行驶.慢车到达甲地后停留1小时再返回乙地.快车到达乙地后停留2.5小时再返回甲地.已知慢车从乙地到甲地用了12小时,那么两车从第一次相遇到第二次相遇需要多长时间?【8】(高思学校竞赛数学导引P117)甲、乙两车分别从相距900千米的A,B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:(1)甲、乙两车第二次迎面相遇是在出发后多长时间?(2)第二次迎面相遇后又经过多长时间甲、乙两车第三次相遇?(3)甲车第一次从后面追上乙车是在出发后多长时间?【9】(高思学校竞赛数学导引P117)甲、乙两车同时从A地出发,在相距900千米的A、B两地之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:(1)甲车第一次从后面追上乙车是在出发后多长时间?(2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙车?(3)甲、乙两车第二次迎面相遇是在出发后多长时间?【10】(高思学校竞赛数学导引P117)A、B两辆汽车分别从甲、乙两地同时出发,并在两地间不断往返行驶.两车在距离甲地40公里处第一次迎面相遇,在距离甲地10公里处第二次迎面相遇.求甲、乙两地之问的距离.【11】(高思学校竞赛数学导引P118)甲、乙两人分别从A、B两地出发,在A、B两地之间不断往返行走.当甲走了3个来回的时候,乙恰好走了5个来回.在甲、乙两人行迚的过程中,两人一共相遇了多少次?(迎面碰到和追上都算相遇)【12】(高思学校竞赛数学导引P118)小明和小刚的速度分别为每分钟90米和每分钟70米.早上8:00他们分别从A、B两站同时出发,相向而行,第一次相遇后两人继续前迚,分别到达B、A后返回并在途中第二次相遇.第二次相遇地点距离A、B 两站的中点450米.从两人同时出发到第二次相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次相遇是几点几分?【13】(高思学校竞赛数学导引P118)甲、乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇(两车同时到达同一地点即称为相遇)的地点与第四次相遇的地点恰好相距100千米.请问:两地之间的距离是多少千米?【14】(高思学校竞赛数学导引P118)某人从甲地走往乙地.甲、乙两地之间有定时的公共汽车往返,而且两地发车的间隔都相等.他发现每隔6分钟开过来一辆去甲地的公共汽车,每隔12分钟开过去一辆去乙地的公共汽车.问:公共汽车每隔多少分钟从各自的始发站发车?下节课见!。

学而思奥数网奥数专题行程问题火车过桥c

学而思奥数网奥数专题行程问题火车过桥c

学而思奥数网奥数专题(行程问题)
1、四年级行程问题:火车过桥
难度:难度
某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟
答:
2、四年级行程问题:火车过桥
难度:难度
某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟
答:
3、四年级行程问题:火车过桥
难度:难度
长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间
答:
4、四年级行程问题:火车过桥
难度:中难度
甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米
答:
5、四年级行程问题:火车过桥
难度:中难度
答:
学而思奥数网奥数专题(行程问题详解)
1、四年级火车过桥答案:
2、四年级火车过桥答案:
3、四年级火车过桥答案:
4、四年级火车过桥答案:
5、四年级火车过桥答案:
快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车尾齐时,快车几秒可越过慢车。

人教版四年级数学上册【详解】四年级上第19讲_火车行程进阶

人教版四年级数学上册【详解】四年级上第19讲_火车行程进阶

第十九讲 火车行程进阶1. 例题1答案:160米;200米详解:(1)齐头并进,路程差即快车车长,()60408160-⨯=米;(2)齐尾并进,路程差即慢车车长,()604010200-⨯=米.2. 例题2答案:450秒;90秒详解:(1)从排尾跑到排头,路程差为队伍长度,所以时间是()45032450÷-=秒;(2)从排头跑到排尾,路程和为队伍长度,所以时间是()4503290÷+=秒.3. 例题3答案:25米/秒详解:火车30秒的路程是“460米车长+”,28秒的路程是“410米车长+”,时间差为30282-=秒,路程差为46041050-=米,所以速度为50225÷=米/秒.4. 例题4答案:25米/秒详解:乙车与小王老师的追及过程,路程差为乙车车长480米,时间为96秒,所以速度差为480965÷=米/秒,小王老师速度即为甲车速度20米/秒,所以乙车速度为20525+=米/秒.5. 例题5答案:200米详解:火车120秒的路程为“1000米车长+”,80秒的路程为“1000米车长-”,比较可得火车40秒的路程为“2个车长”,即20秒的路程为“车长”,而12秒的路程为“1000米车长+”,所以火车100秒的路程为1000米,速度为100010010÷=米/秒,车长为120101000200⨯-=米.6. 例题6答案:23米/秒;210秒详解:(1)小高的实际速度为20121+=米/秒,货车与小高的追及过程,时间为140秒,路程差为货车车长280,所以速度差为2801402÷=米/秒,所以货车速度为21223+=米/秒;(2)货车与客车的追及时间,路程差为两车车长之和即350280630+=米,所以时间为()6302320210÷-=秒.7. 练习1答案:110米;165米详解:(1)齐头并进,路程差为快车车长,()20910110-⨯=米;(2)齐尾并进,路程差为慢车车长,()20915165-⨯=米.8. 练习2答案:6分钟详解:从队尾跑到队头,路程差为队伍长度,所以时间是()54042270÷-=秒;从队头跑回队尾,路程和为队伍长度,所以时间是()5404290÷+=秒,一共用了27090360+=秒即6分钟.9. 练习3答案:15米/秒简答:50秒的路程是“530米车长+”,40秒的路程是“380米车长+”,时间差为504010-=秒,路程差为530380150-=米,所以速度为1501015÷=米/秒.10. 练习4答案:10秒简答:直达列车与小王老师的相遇过程,路程和即直达列车车长900米,速度和为603090+=米/秒,所以时间为9009010÷=秒.11. 作业1答案:10米简答:齐头并进,路程差为快车车长,即蛇妈妈的长度,为()541010-⨯=米.12. 作业2答案:5米简答:齐尾并进,路程差为慢车车长,即蛇宝宝的长度,为()5455-⨯=米.13. 作业3答案:10秒简答:从队尾跑到队头,速度差为队伍长度20米,所以时间为()203110÷-=秒.14. 作业4答案:180米简答:20秒的路程是“220米车长+”,24秒的路程是“300米车长+”,时间差为24204-=秒,路程差为30022080-=米,所以速度为80420÷=米/秒,所以火车车长为2020220180⨯-=米.15. 作业5答案:18米/秒简答:慢车与小王老师的相遇过程,路程和为慢车车长380米,时间为10秒,所以速度和为3801038÷=米/秒,小王老师速度即为快车速度20米/秒,所以慢车速度为382018-=米/秒.。

四年级高思奥数之格点与割补含答案

四年级高思奥数之格点与割补含答案

第19讲格点与割补内容概述明确格点多边形的概念,学会通过分割和添补的方法计算其面积;学会利用割补法计算不规则图形的面积;掌握格点多边形的面积计算公式.典型问题兴趣篇1.图19-l中相邻两格点问的距离均为1厘米.三个多边形的面积分别是多少平方厘米?2.图19-2中相邻两格点问的距离均为l厘米.三个阴影图形的面积分别是多少平方厘米?3.图19-3中每个小正方形的面积均为2平方厘米.阴影多边形的面积是多少平方厘米?4.图19-4是一个三角形点阵,其中能连出的最小的等边三角形的面积为l平方厘米.三个多边形的面积分别为多少平方厘米?5.如图19-5所示,如果每个小等边三角形的面积都是1平方厘米.四边形ABCD和三角形EFG的面积分别是多少平方厘米?6.图19-6中的数字分别表示对应线段的长度,试求这个多边形的面积.(单位:厘米)7.如图19-7所示,在正方形ABCD内部有一个长方形.EFGH.已知正方形ABCD的边长是6厘米,图中线段AE、AH都等于2厘米.求长方形EFGH的面积.8.如图19-8所示,四边形ABCD是长方形,长AD等于7厘米,宽AB等于5厘米,四边形CDEF是平行四边形.如果BH的长是3厘米,那么图中阴影部分面积是多少平方厘米?9.如图19-9所示,大正方形的边长为10厘米.连接大正方形的各边中点得到一个小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连.请问:图中阴影部分的面积总和等于多少平方厘米?10.在图19-10中,五个小正方形的边长都是2厘米,求三角形ABC的面积.拓展篇1. 图19-11中相邻格点围成的最小正方形或正三角形的面积均为l平方厘米.这三个多边形的面积分别是多少平方厘米?2. (1)图19-12中每个小正方形的面积是2平方厘米.阴影部分面积是多少平方厘米?(2)图19-13中每个小正三角形的面积是4平方厘米.阴影部分面积是多少平方厘米?3.图19-14中每个小正方形的边长为1厘米.阴影部分的面积是多少平方厘米?4.如图19-15和图19-16,把两个相同的正三角形的各边分别五等分和七等分,并连接这些分点.已知图19-15中阴影部分的面积是294平方分米.请问:图19-16中的阴影部分的面积是多少平方分米?5.如图19-17,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A的面积是36平方厘米,那么正方形B的面积是多少平方厘米?6.如图19-18所示,正六边形ABCDEF的面积是6平方厘米,M是AB中点,N是CD中点,P是EF中点.请问:三角形MNP的面积是多少平方厘米?7.图19-19中小正方形和大正方形的边长分别是4厘米和6厘米.阴影部分的面积是多少平方厘米?8.图19-20中,三角形ABC和DEF是两个完全相同的等腰直角三角形,其中DF长9厘米,CF长3厘米,求阴影部分的面积.9.图19-21是一个边长为l米的正方形和一个等腰梯形拼成的“火炬”.梯形的上底长1.5米,A为上底的中点,B为下底的中点,线段AB恰好是梯形的高,长为0.5米,CD长为0.3米.图中阴影部分的面积是多少平方米?10.在图19-22中,每一个小正方形的面积都是1平方厘米.用粗线围成的图形面积是多少平方厘米?11.如图19-23,正方形网格的总面积等于96平方厘米,求阴影图形的面积.12.如图19-24,每个小等边三角形的面积都是1平方厘米.阴影部分的面积是多少平方厘米?超越篇1.图19-25中每个小正方形的边长为1厘米.阴影部分的面积是多少平方厘米?2.如图19-26,平面上有16个点,相邻两点间隔为1厘米.在每个点都钉上钉子,形成4行4列的正方形钉阵.现在有许多皮筋,请问:可以套出多少种不同面积的三角形?(面积相同但形状不同的三角形算一种)3.已知大的正六边形面积是72平方厘米,按图19-27中不同方式切割(切割点均为等分点),形成的阴影部分面积各是多少平方厘米?4. 图19-28为一个边长为2厘米的正方形,分别连接顶点与对应边中点.围成的阴影部分的面积为多少平方厘米?5.如图19-29所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)6. 如图19-30所示,这个多边形六条边的长度分别是1、2、3、4、5、7.问:这个图形的面积最大可能是多少?7.如图19-31,有一个80×100的长方形网格,它的四个顶点分别为A、B、C、D.已知图中每一个小方格的面积都是l,请选出一个合适的格点P,使得三角形PAC的面积尽可能小(不能等于0),那么这个最小的面积是多少?8.正12边形的边长为1厘米,阴影部分都是正三角形(边长也为l厘米),如图19-32.那么空白部分面积等于多少平方厘米?第19讲格点与割补内容概述明确格点多边形的概念,学会通过分割和添补的方法计算其面积;学会利用割补法计算不规则图形的面积;掌握格点多边形的面积计算公式.典型问题兴趣篇1.图19-l中相邻两格点问的距离均为1厘米.三个多边形的面积分别是多少平方厘米?答案:4平方厘米2平方厘米8平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=0,L=10,则用粗线围成图形的面积为:(0+10÷2-1)×1=4(平方厘米) 有N=0,L=10,则用粗线围成图形的面积为:(1+4÷2-1)×1=2(平方厘米) 有N=5,L=8,则用粗线围成图形的面积为:(5+8÷2-1)×1=8(平方厘米)2.图19-2中相邻两格点问的距离均为l厘米.三个阴影图形的面积分别是多少平方厘米? 答案:5平方厘米5平方厘米0.5平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=4,则用粗线围成图形的面积为:(4+4÷2-1)×1=5(平方厘米) 有N=4,L=4,则用粗线围成图形的面积为:(4+4÷2-1)×1=5(平方厘米) 有N=0,L=3,则用粗线围成图形的面积为:(0+3÷2-1)×1=0.5(平方厘米)3.图19-3中每个小正方形的面积均为2平方厘米.阴影多边形的面积是多少平方厘米? 答案:19平方厘米【分析】方法:交点组成了正方形格点,正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=7,L=17,则用粗线围成图形的面积为:(7+7÷2-1)×2=19(平方厘米)4.图19-4是一个三角形点阵,其中能连出的最小的等边三角形的面积为l平方厘米.三个多边形的面积分别为多少平方厘米?答案:6平方厘米6平方厘米14平方厘米【分析】方法:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L为图形周界上格点数.有N=0,L=8,所以用粗线围成的图形的面积为:(0×2+8-2)×1=6(平方厘米).有N=2,L=4,所以用粗线围成的图形的面积为:(2×2+4-2)×1=6(平方厘米).有N=4,L=7,所以用粗线围成的图形的面积为:(4×2+7-2)×1=14(平方厘米).5.如图19-5所示,如果每个小等边三角形的面积都是1平方厘米.四边形ABCD和三角形EFG的面积分别是多少平方厘米?答案:20平方厘米10平方厘米【分析】方法:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L为图形周界上格点数.有N=9,L=4,所以用粗线围成的图形的面积为:(9×2+4-2)×1=20(平方厘米).有N=4,L=4,所以用粗线围成的图形的面积为:(4×2+4-2)×1=10(平方厘米).6.图19-6中的数字分别表示对应线段的长度,试求这个多边形的面积.(单位:厘米)答案:32平方厘米【分析】3×2+2×4+(5-2)×(3+1+2)=327.如图19-7所示,在正方形ABCD 内部有一个长方形.EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.答案:16平方厘米【分析】先算正方形面积6×6=36 再算左上角和右下角三角形面积2×2÷2×2=4 后算左下角和右上角三角形面积4×4÷2×2=16 36-4-16=168.如图19-8所示,四边形ABCD 是长方形,长AD 等于7厘米,宽AB 等于5厘米,四边形CDEF 是平行四边形.如果BH 的长是3厘米,那么图中阴影部分面积是多少平方厘米?答案:25平方厘米【分析】 CDEF S 平行四边形=DC×BC=5×7=35,HC=BC-BH=7-3=4,所以CDH S =12×CD×HC=12×5×4=10. S 阴影=CDEF S 平行四边形-CDHS =35-10=25(平方厘米).9.如图19-9所示,大正方形的边长为10厘米.连接大正方形的各边中点得到一个小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连.请问:图中阴影部分的面积总和等于多少平方厘米?答案:50平方厘米【分析】 如下图,我们将大正方形中的所有图形分成A 、B 两种三角形.其中含有A 形三角形8个,B 形三角形16个,其中阴影部分含有A 形三角形4个,B形三角形8个.方形面积的12,即为所以,阴影部分面积恰好为大正12×10×10=50(平方厘米).10.在图19-10中,五个小正方形的边长都是2厘米,求三角形ABC的面积.答案:14平方厘米【分析】方法:转化为正方形格点,正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=3,L=3,则用粗线围成图形的面积为:(3+3÷2-1)×4=14(平方厘米)拓展篇1. 图19-11中相邻格点围成的最小正方形或正三角形的面积均为l平方厘米.这三个多边形的面积分别是多少平方厘米?答案:7.5平方厘米 6.5平方厘米9平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=9,则用粗线围成图形的面积为:(4+9÷2-1)×1=7.5(平方厘米) 有N=3,L=9,则用粗线围成图形的面积为:(3+9÷2-1)×1=6.5(平方厘米) 有N=4,L=12,则用粗线围成图形的面积为:(4+12÷2-1)×1=9(平方厘米)2. (1)图19-12中每个小正方形的面积是2平方厘米.阴影部分面积是多少平方厘米?(2)图19-13中每个小正三角形的面积是4平方厘米.阴影部分面积是多少平方厘米?答案:17平方厘米56平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=3,L=13,则用粗线围成图形的面积为:(3+13÷2-1)×2=17(平方厘米) 【分析】方法:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=8,所以用粗线围成的图形的面积为:(4×2+8-2)×4=56(平方厘米).3.图19-14中每个小正方形的边长为1厘米.阴影部分的面积是多少平方厘米?答案:14平方厘米【分析】方法:可用公式先算出整个图形的面积,在减去中间空白部分的面积。

2018四年级奥数.行程.火车问题(C级).学生版

2018四年级奥数.行程.火车问题(C级).学生版

火车问题知识框架火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度—人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度±人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度—慢车速度)×错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

例题精讲【例1】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高14,结果用了1分36秒.求通过大桥时的速度及车身的长度.【例2】小张沿着一条与铁路平行的笔直小路行走,这时有一列长460米的火车从他背后开来,他在行进中测出火车从他身边通过的时间是20秒,而在这段时间内,他行走了40米.求这列火车的速度是多少?【巩固】小明沿着一条与铁路平行的笔直的小路由南向北行走,这时有一列长825米的火车从他背后开来,他在行进中测出火车从他身边通过的时间是30秒,而在这段时间内,他行走了75米.求这列火车的速度是多少?【例3】一辆长12米的汽车以36千米/时的速度由甲站开往乙站,上午10点整,在距乙站2000米处迎面遇到一行人,1秒后汽车经过这个行人。

四年级数学奥数思维训练导学案:第10讲:火车行程学案通用版(含答案)

四年级数学奥数思维训练导学案:第10讲:火车行程学案通用版(含答案)

四年级数学奥数思维训练(xùnliàn)导学案:第10讲:火车行程学案通用版(含答案)x学习(xuéxí)目标1.渗透(shèntòu)一种数学思想(sīxiǎng):数形结合思想.2.学习(xuéxí)两种思维方法:线段图解法,抵消法.3.训练两种基本技能:理解火车行程问题的特殊性,能画图分析解决火车行程问题.4.体验一种乐趣:处处留心皆数学.学习重点:线段图解法,抵消法学习难点:理解火车行程问题的特殊性,能画图分析解决火车行程问题探究案一、题型、技巧归纳题型一:火车过桥一列货车长245米,它以每秒25米的速度通过一座长405米的铁桥,火车过这座桥需要多少秒?火车过桥是指车头上桥到车尾离开,火车过桥所行的路程就是()长与()长之和.解:(245+405)÷25=26(秒)答:火车过桥共需要26秒.题型二:相向错车一辆长320米的快车(kuàichē)以每秒钟45米的速度行驶,迎面(yíng miàn)开来一辆长240米速度为每秒钟25米的慢车,两车从车头(chē tóu)相遇到车尾离开共需几秒钟?如果(rúguǒ)两车同向而行,慢车(mànchē)在前,快车在后,两车错车的时间时间是多少呢?解:(3220+240)÷(45+24)=8(秒)答:两车从车头相遇到车尾离开共需8秒钟.题型三:车过桥洞一列火车穿过一个长1150米的隧道需要52秒,以同样的速度通过一座长650米的铁桥需要32秒,这列火车的速度和车长各是多少?根据题意得:火车52秒行驶的路程=隧道长+火车长①火车32秒行驶的路程(lùchéng)=铁桥长+火车长②①-②可得52-32=20(秒)行驶(xíngshǐ)的距离1150-650=500(米)解:火车(huǒchē)的速度:(1150-650)÷(52-32)=25(米/秒)火车(huǒchē)的长度:25×32-650=150(米)答:这列火车(huǒchē)的速度是25米/秒,车长是150米.题型四:车在桥洞中一列火车穿过一个长2700米的山洞,从开始进洞到完全出洞需要135秒,整列火车完全在洞内的时间是90秒,这列火车的车长和速度各是多少?从两图可得:火车135秒行驶的路程=洞长+车长①火车90秒行驶的路程=洞长-车长②①-②可得45秒行驶了2个车长的距离,则90秒行驶了4个车长的距离,也就是说山洞相当于5个车长.解:135-90=45(秒) 2个车长90秒 4个车长4个车长=2700-车长车长=2700÷5=540(米)车速为:(2700+540)÷135=24(米/秒)答:这列火车的车长是540米,速度为24米/秒.二、本节总结(zǒngjié)火车(huǒchē)行程歌火车(huǒchē)行程题,路程(lùchéng)较特殊. 火车(huǒchē)过桥时,车头上桥起,车尾离桥止,车长加桥长;火车过山洞,车长洞长和,两车错车时,路程两车长,火车过桥时,就是火车长.相遇速度和,追及速度差.画图来分析,一看就明了.随堂检测(jiǎn cè)1.一座大桥(dà qiáo)长2400米,一列火车以每分钟864米的速度(sùdù)通过这座桥,从车头上桥到车尾(chē wěi)离开桥用了3分钟,这列火车(huǒchē)有多长?2.一个人以每分钟60米的速度沿铁路步行,一列长144米的客车从后面开来,从他身边通过用了8秒,求列车的速度。

举一反三四年级奥数(新版)第19周

举一反三四年级奥数(新版)第19周

练习5: 1.农机厂生产柴油机,原计划每天生产40台 ,可以在预定的时间内完成任务。实际每天 生产50台,结果提前6天完成,这批柴油机有 多少台? 2.一辆汽车运一堆黄沙,计划每天运15吨, 可以在预定时间内完成任务。实际每天运 20 吨,结果提前3天运完。这批黄沙有多少吨? 3.新兴机械厂原计划30天生产一批机器,实 际每天比原计划多生产 80台,结果提前 25天 就完成了任务。这批机器有多少台?
第19讲 应 用题(二)
一、知识要点 解答复合应用题时一般有如下四个步骤 : 1.弄清题意,找出已知条件和所求问题 ; 2.分析已知条件和所求问题之间的关系 ,找出解题的途径; 3.拟定解答计划,列出算式,算出得数 ; 4,检验解答方法是否合理,结果是否 正确,最后写出答案

二、精讲精练 【例题1】 某发电厂有 10200吨煤,前10天每天 烧煤300吨,后来改进炉 灶,每天烧煤240吨。这 堆煤还能烧多少天?
【思路导航】条件 摘录
综合法思路: 前10天每天烧煤300吨,可以求 出10天烧的吨数; 已知煤的总吨数和前10天烧的吨 数,可以求出还有多少吨没有烧 ; 根据还剩的吨数和后来每天烧煤 240吨,可以求出这堆煤还能烧多 少天。
分析法思路: 要求还能烧多少天,要知道还有的吨 数和后来每天烧的吨数(240吨); 要求还有多少吨煤,要知道这堆煤有 多少吨(10200吨)和已经烧了多少吨。 要求已经烧了多少吨,要知道已经烧 了多少天(10天)和每天烧多少吨(300 吨)。 (10200-300×10)÷240=30(天).
练习3: 1.玩具厂一车间要生产900个玩具,如果用手工 做要20小时才能完成,用机器只需要4小时。一车 间工人先用手工做了5小时,后改用机器生产,还 需要几小时才能完成任务? 2.甲、乙两地相距200千米,汽车行完全程要5小 时,步行要40小时。张强从甲地出发,先乘汽车4 小时,后改步行,他从甲地到乙地共用了多少小 时?

2018四年级奥数.行程.火车与火车的相遇与追及问题(A级).学生版

2018四年级奥数.行程.火车与火车的相遇与追及问题(A级).学生版

火车与火车的相遇与追及知识框架火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度—人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度±人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度—慢车速度)×错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。

例题精讲【例1】快车A车长120米,车速是20米/秒,慢车B车长140米,车速是16米/秒。

慢车B在前面行驶,快车A从后面追上到完全超过需要多少时间?欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,快车从后面追上到完全超过慢车需要多少时间?【例2】有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?【巩固】有两列火车,一列长200米,每秒行32米;一列长340米,每秒行20米.两车同向行驶,从第一列车的车头追及第二列车的车尾,到第一列车的车尾超过第二列车的车头,共需多少秒?【例3】一列长72米的列车,追上长108米的货车到完全超过用了10秒,如果货车速度为原来的1.4倍,那么列车追上到超过货车就需要15秒。

高斯小学奥数四年级上册含答案第19讲_火车行程进阶

高斯小学奥数四年级上册含答案第19讲_火车行程进阶

第十九讲火车行程进阶上一讲中我们已经学习了火车行程中的火车过桥、火车过人、火车过车这三种基本类型.解决火车行程问题,最重要的是要学会画图,将火车行程过程转化为最后对齐的两个位置的相遇或追及过程.接下来,我们来介绍较复杂的火车行程问题.我们已经学过了火车与火车的相遇与追及,追及问题一般是指两列火车从开始追上到完全超过所经历的过程.接下来看两类特殊的火车与火车的追及问题,齐头行进或齐尾行进.始末乙车乙车始甲车甲车①齐头并进始末乙车乙车甲车甲车始②齐尾并进与之前分析过程一样,首先找到最后对齐的部位,并找到其初始位置,将火车行程过程转化为甲车尾与乙车头的追及过程,可以总结如下:齐头并进:从出发到离开(即超过)时刻,两车路程差为快车车长.齐尾并进:从出发到离开(即超过)时刻,两车路程差为慢车车长.例题1(1)现有D字头动车和T字头特快同时同向齐头行进,动车每秒行60米,特快每秒行40米,经过8秒后动车超过特快.请问:D字头动车车长多少米?(2)现有D字头动车和T字头特快车尾对齐,同时同向行进,动车每秒行60米,特快每秒行40米,经过10秒后动车超过特快.请问:T字头特快车车长多少米?「分析」题(1)中,火车从齐头开始出发,到超过为止,快车车长(D字头动车车长)即为路程差,所以求路程差即可.练习1(1)现有两列火车,如果这两列火车同时同向齐头行进,快车每秒行20米,慢车每秒行9米,行10秒后快车超过慢车.请问:快车车长多少米?(2)现有两列火车,快车每秒行20米,慢车每秒行9米,如果这两列火车车尾对齐,同时同向行进,则15秒后快车超过慢车.请问:慢车车长是多少米?.在现实生活中,有很多行程问题都会涉及到运动对象本身的长度,比如队列、队伍等等.下面我们看一下另外一类比较特殊的火车行程——队列行程问题.这类问题主要包含两种基本类型(队伍是匀速前进的):“人从队头走到队尾”与“人从队尾走到队头”① 人从队头走到队尾:始始行人队伍末从图中可以看出,这类问题其实就是队列与行人的相遇过程,队列与行人的路程和即为队列长度.② 人从队尾跑到队头:行人始末末队伍从图中可以看出,这类问题其实就是队列与行人的追及过程,只不过,这里的行人要比“火车”还要快,行人与队列的路程差即为队列长度.例题 2某解放军队伍长 450 米,以每秒 2 米的速度行进.一名战士以每秒 3 米的速度从排尾跑到排头需要多长时间?然后从排头返回排尾,又需要多少时间?「分析」从排尾到排头,即为战士与队伍的追及过程,要计算时间,就需要找到路程差与速 度差.练习 2某学校组织学生去春游,队伍长 540 米,并以每秒 2 米的速度前进,一名学生以每秒 4米的速度从队尾跑到队头,再回到队尾,共用多少分钟?在之前学习的盈亏、和差倍等应用题中,我们用到了比较的方法.在行程问题中,往往也会应用到比较的思想.例题3一列火车完全通过460米长的隧道用30秒,以同样的速度完全通过410米的隧道用28秒.请问:这列火车的速度是每秒多少米?「分析」本题包含两个“火车通过桥”的过程,一一分析,可以计算出什么吗?不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度.练习3一列客车完全通过530米长的桥用了50秒,以同样速度完全通过380米长的山洞用了40秒.请问:这列客车的速度是每秒多少米?火车行驶的过程中,火车行驶的距离只需要看火车上的某一个点即可,可以是火车头或者火车尾,当然,也可以是火车的某一个窗户.对于坐在火车某个窗户旁边的人来说,他的速度其实就是火车前进的速度.接下来,我们分析一下火车中的人观察其他火车经过的过程:③相遇始乙车始甲车乙车甲车末④追及乙车始末乙车甲车甲车始从图中可以看出,这类型的行程过程,其实就是人与另外一辆火车的相遇或追及过程,对应的路程和或路程差其实都是另外一辆火车的车长,与人所乘坐的火车长度没有关系.例题4甲、乙两列火车同向而行,甲车在前,乙车在后.甲车长320米,每秒行20米;乙车长480米.坐在甲车上的小王老师从乙车车头经过她的车窗时开始计时,到车尾经过她的车窗为止共用96秒.那么乙车的速度是多少?「分析」题目所叙述的过程,其实是乙车与王老师的追及过程,请画图分析一下,路程差是什么呢?跟甲车车长、乙车车长有什么关系呢?练习4动车和直达列车相向而行.动车长600米,每秒行60米;直达列车长900米,每秒行30米.坐在动车上的小王老师记录了从直达列车车头经过她车窗,到车尾经过她车窗所用的时间.那么这个时间是多少?例题5一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.请问:火车车长多少?「分析」本题涉及到两个过程:一个是火车通过桥,一个是火车完全在桥上.一一分析,两个过程都无法计算.不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度与车长.从前面的分析中,我们已经知道,火车中的人与另外一辆火车的相遇与追及过程,其实就是人与另外一辆火车的相遇与追及,和人所乘坐的车长是没有关系的.而解决这类题目,关键的一步就是要找到人的速度.如果人在车上静止,那么人的速度就是车的速度.如果人在车上行走呢?我们看一个简单例子:一列火车以每秒20米的速度行驶,乘务员以每秒1米的速度在车厢内沿着火车前进的方向向前走,那么在地面上静止的人来看,乘务员的前进速度是多少呢?如果乘务员以每秒1米的速度在车厢内沿着火车前进的反方向向前走,那么对于地面上静止的人,乘务员的前进速度又是多少呢?我们可以这么想:火车1秒钟前进了20米,如果乘务员行走方向跟火车一样,那么在火车带着他前进了20米的基础上他又往前走了1米,所以对于地面来说,乘务员其实是走了21米,所以他的速度就是每秒钟21米,即车与人的速度和;同样的道理,如果乘务员的行走方向与火车相反,那么他对于地面的速度就是车与人的速度差.例题6货车和客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小高在客车内沿着客车前进的方向向前走,发现货车用140秒就超过了他.已知小高在客车内行走的速度为每秒1米,客车的速度为每秒20米,客车长350米,货车长280米.求:(1)货车的行驶速度;(2)货车从追上客车到完全超过客车所需要的时间.「分析」小高在客车内行走,那么他的实际速度是多少呢?货车与小高的追及过程,路程差是什么呢?画图好好分析一下吧!课堂内外白(黄)色安全线火车站台或者地铁的站台边都会有一条白色或者黄色的安全线,当列车进站的时候,车站的工作人员都会提醒人们注意站在安全线的后面,不过那并不是怕乘客拥挤掉下去,到底是为什么呢?据铁路史志记载,这条安全线来源于近百年前的一场惨案.1905年冬天,在俄国一个名鄂洛多克的小车站上,站长率全站38名员工身着盛装、手持鲜花,列队站在铁路线两旁恭候沙皇尼古拉二世派来视察的钦差大臣.然而,遗憾的是,列车没有缓缓进站,而是狂风般冲进了“人巷”,刹那间“人巷”倒塌了,数十名员工仿佛背后被人猛推了一掌,不由自主向前倒去.结果造成34人丧生,4人终生残疾.由于当时科技水平有限,人们对此无法解释.后来人们才弄明白惨案真相.在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔•伯努利1738年发现的“伯努利定律”.在行驶的汽车或者火车窗外,紧挨着车身的空气由于车身的带动而流速较快,从而产生比正常的大气压更小的气压,并且速度越快,这个气压就会越小,这样周围的空气就会把旁边的物体推向火车.所以,火车高速行驶时,人站立太近的话就有可能被吸过去,那个后果可真得会惨不忍睹啊.而在站台上,即使在列车进站的时候车速减慢了很多,但在完全停稳之前,这个吸力还是会存在.这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了这一定律.飞机机翼的上表面是流畅的曲面,下表面则是平面.这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了.工程学上会用一个“伯努利公式”来计算,这个力到底有多大.所以,即使运行在站台的列车速度并不是很快,也不要挑战自己,去试那个吸引力有多大.当我们在站台上等候火车或地铁时,一定要站在白色安全线外.作业1.蛇妈妈和蛇宝宝比赛跑步,齐头并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了10秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇妈妈的长度多少米?2.蛇妈妈和蛇宝宝比赛跑步,齐尾并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了5秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇宝宝的长度多少米?3.麦兜参加学校军训,所在班队伍长20米,以每秒1米的速度前进.麦兜以每秒3米的速度从队尾跑到队头需要多长时间?4.一列火车通过220米长的大桥需要20秒,以同样的速度通过300米长的隧道需要24秒.这列火车长多少米?5.一列快车和一列慢车相向行驶,坐在快车上面的小王老师,从慢车经过她的窗口开始计时,到完全经过她的窗口结束,共计10秒钟.已知快车长200米,速度是每秒20米;慢车长380米,那么慢车的速度是每秒多少米?( , ” , ” ( (第十九讲 火车行程进阶1.例题 1答案:160 米;200 米详解: 1)齐头并进,路程差即快车车长,(60 - 40)⨯ 8 = 160 米;(2)齐尾并进,路程差即慢车 车长, (60 - 40 )⨯ 10 = 200 米.2. 例题 2答案:450 秒;90 秒详解:(1)从排尾跑到排头,路程差为队伍长度,所以时间是 450 ÷ (3 - 2) = 450 秒;(2)从排 头跑到排尾,路程和为队伍长度,所以时间是 450 ÷ (3 + 2) = 90 秒.3. 例题 3答案:25 米/秒详解:火车 30 秒的路程是“ 460米 + 车长 ” 28 秒的路程是“ 410米 + 车长 ,时间差为 30 - 28 = 2 秒,路程差为 460 - 410 = 50 米,所以速度为 50 ÷ 2 = 25 米/秒.4. 例题 4答案:25 米/秒详解:乙车与小王老师的追及过程,路程差为乙车车长 480 米,时间为 96 秒,所以速度差为 480 ÷ 96 = 5 米/秒,小王老师速度即为甲车速度 20 米/秒,所以乙车速度为 20 + 5 = 25 米/秒.5. 例题 5 答案:200 米详解:火车 120 秒的路程为“1000米 + 车长 ” 80 秒的路程为“1000米 - 车长 ,比较可得火车40 秒的路程为“2 个车长”,即 20 秒的路程为“车长”,而 12 秒的路程为“1000米 + 车长 ”,所 以火车 100 秒的路程为 1000 米,速度为 1000 ÷100 = 10 米/秒,车长为 120 ⨯10 - 1000 = 200 米.6. 例题 6答案:23 米/秒;210 秒详解: 1)小高的实际速度为 20 + 1 = 21 米/秒,货车与小高的追及过程,时间为140 秒,路程差 为货车车长 280,所以速度差为 280 ÷140 = 2 米/秒,所以货车速度为 21+ 2 = 23 米/秒; 2)货车 与 客 车 的 追 及 时 间 , 路 程 差 为 两 车 车 长 之 和 即 350 + 280 = 630 米 , 所 以 时 间 为630 ÷ (23 - 20) = 210 秒.7.练习 1答案:110 米;165 米详解:(1)齐头并进,路程差为快车车长, (20 - 9)⨯10 = 110 米;(2)齐尾并进,路程差为慢车, ” , ”车长, (20 - 9)⨯15 = 165 米.8. 练习 2 答案:6 分钟详解:从队尾跑到队头,路程差为队伍长度,所以时间是 540 ÷ (4 - 2) = 270 秒;从队头跑回队 尾,路程和为队伍长度,所以时间是 540 ÷ (4 + 2) = 90 秒,一共用了 270 + 90 = 360 秒即 6 分钟.9. 练习 3答案:15 米/秒简答:50 秒的路程是“ 530米 + 车长 ” 40 秒的路程是“ 380米 + 车长 ,时间差为 50 - 40 = 10 秒,路程差为 530 - 380 = 150 米,所以速度为 150 ÷10 = 15 米/秒.10. 练习 4答案:10 秒简答:直达列车与小王老师的相遇过程,路程和即直达列车车长 900 米,速度和为 60 + 30 = 90 米 /秒,所以时间为 900 ÷ 90 = 10 秒.11. 作业 1答案:10 米简答:齐头并进,路程差为快车车长,即蛇妈妈的长度,为 (5 - 4)⨯10 = 10 米.12. 作业 2答案:5 米简答:齐尾并进,路程差为慢车车长,即蛇宝宝的长度,为 (5 - 4)⨯ 5 = 5 米.13. 作业 3答案:10 秒简答:从队尾跑到队头,速度差为队伍长度 20 米,所以时间为 20 ÷ (3 - 1) = 10 秒.14. 作业 4答案:180 米简答:20 秒的路程是“ 220米 + 车长 ” 24 秒的路程是“ 300米 + 车长 ,时间差为 24 - 20 = 4 秒,路程差为 300 - 220 = 80 米,所以速度为 80 ÷ 4 = 20 米/秒,所以火车车长为 20 ⨯ 20 - 220 = 180 米.15. 作业 5答案:18 米/秒简答:慢车与小王老师的相遇过程,路程和为慢车车长 380 米,时间为 10 秒,所以速度和为380 ÷10 = 38 米/秒,小王老师速度即为快车速度 20 米/秒,所以慢车速度为 38 - 20 = 18 米/秒.。

高斯小学奥数四年级上册含答案第18讲_火车行程初步

高斯小学奥数四年级上册含答案第18讲_火车行程初步

第十八讲火车行程初步我们之前已经学习了基本行程问题,明确了速度、时间和路程这三个量之间的关系:路程速度时间、=÷=⨯时间路程速度速度路程时间、=÷另外,我们还学习了两个对象之间的行程关系:相遇和追及.相遇问题中有:路程和速度和相遇时间=⨯速度和路程和相遇时间=÷相遇时间路程和速度和=÷追及问题中有:路程差速度差追及时间=⨯速度差路程差追及时间=÷追及时间路程差速度差=÷本讲,我们将在之前内容的基础上,学习一类新的、比较特殊的行程问题——与运动对象本身长度有关系的行程问题——我们称之为“火车行程”.比如北京到广州的铁路全长2300千米,如果一列火车从北京出发,以每小时100千米的速度开往广州,我们很容易算出火车需要行驶23小时.在这个问题中,火车的长度与北京到广州的距离相比微乎其微,我们可以忽略不计火车的长度.但是当行人在铁路旁行走,火车从行人身边开过时,从车头与行人相遇到车尾离开行人,是需要一段时间的,这时火车的长度就不能忽略不计了,我们需要把火车看成考虑自身长度的运动物体.火车行程问题和一般的行程问题最大的区别在于,火车是有长度的.因此计算火车行走的距离时,我们盯住火车上的一个点,比如车头,或者车尾.车头走了多远,火车就开了多远;车尾走了多远,火车也就开了多远.分析火车行程过程,首先要画出始末两个状态,找到最后对齐的部位.........及其初始位置,将火车行程过程转化为这两个部位之间的相遇或追及过程.火车的行程问题大体上可以分为三类:火车过桥/山洞/隧道的问题;火车与行人的相遇和追及问题;火车与火车的相遇和追及问题.我们先来看看火车经过桥/山洞/隧道的过程.这类问题一般会考察两种情况——“火车通过桥/山洞/隧道”与“火车完全在桥上/山洞中/隧道中”.① “火车通过桥”即指“火车从车头上桥到车尾离桥”的过程,如图所示:首先,找到最后对齐的部位——车尾与桥头(红旗),再找出它们最初的位置,整个过程便可以转化为车尾从初始位置一直行驶到桥头红旗处的过程,很明显,路程即为“火车车长与桥长之和”.由此我们可以总结出以下规律:火车在通过桥/山洞/隧道时行驶的总路程是火车车长与桥/山洞/隧道的长度之和.例题1(1)一列火车车长180米,每秒行20米.请问:这列火车通过320米的大桥,需要经过多长时间?(2)一列火车以每分钟1000米的速度通过一条长2800米的隧道,共用180秒.请问:这列火车长多少米?「分析」火车通过桥即从车头上桥到车尾下桥的过程,火车的路程是什么呢?练习1一列火车长700米,以每分钟500米的速度通过一座长1300米的大桥.从车头上桥到车尾离桥要多少分钟?始 末② “火车完全在桥上”即指“火车从车尾上桥到车头离桥”的过程,如图所示:首先,找到最后对齐的部位——车头与桥头(红旗),再找出它们最初的位置,整个过程便可以转化为车头从初始位置一直行驶到桥头红旗处的过程,很明显,路程即为“桥长与火车车长之差”.由此我们可以总结出以下规律:火车完全在桥上/山洞中/隧道中行驶的总路程是桥/山洞/隧道的长度与火车车长之差.例题2一列火车车长180米,每秒行20米,这列火车要通过320米的大桥,请问:该过程中,火车有多长时间是完全在桥上的?「分析」火车完全在桥上即从车尾上桥到车头下桥的过程,火车的路程是什么呢?练习2一列火车以每秒20米的速度通过一条长2800米的隧道,完全在隧道中的时间是100秒.请问:这列火车有多长?火车从静止的人身旁经过的过程是非常简单的,从车头遇到人到车尾离开人,整个过程中火车行驶的路程就是火车长度——其实可以把人看作缩短至长度为0的桥.接下来,我们画图观察分析一下火车从行人身旁经过的过程.① 火车与人相遇:首先,找到最后对齐的部位——车尾与行人,再找出它们最初的位置,整个过程便可以始 末 末火车转化为车尾与行人的相遇过程,很明显,“火车与行人的路程和即为火车车长”.由此我们可以总结出以下规律:行人和火车迎面相遇,从相遇时刻到错开时刻,火车和行人的路程和=火车的长度. ② 火车追人:首先,找到最后对齐的部位——车尾与行人,再找出它们最初的位置,整个过程便可以转化为车尾与行人的追及过程,很明显,“火车与行人的路程差即为火车车长”.由此我们可以总结出以下规律:火车追行人,从追上时刻到离开时刻,火车和行人的路程差=火车的长度.例题3(1) 一名行人沿着铁路散步,每秒走1米,迎面过来一列长300米的火车.已知火车每秒钟行驶14米,请问:从火车头与行人相遇到火车尾离开他共用了多长时间?(2) 一人以每分钟60米的速度沿铁路步行,一列长144米的客车从他身后开来,客车的速度是每秒钟17米.客车从他身边经过用了多少秒钟?「分析」题(1)是一个火车与行人的相遇问题,在相遇过程中,路程和是什么呢?题(2)是火车与行人的追及过程,路程差又是什么呢?练习3(1) 一人以每分钟60米的速度沿铁路步行,一列长144米的客车从对面开来,从他身边通过用了8秒钟,客车的速度是每秒钟多少米?(2) 东东在铁路旁边沿着铁路方向散步,他散步的速度是2米/秒.这时背后开来一列火车,从车头追上他到车尾离开他一共用了18秒.已知火车速度是17米/秒,请问:火车的车长多少米?末火车通过火车过桥、火车与人之间的相遇和追及问题,我们知道,火车问题中,往往需要盯着火车的一个点来计算——要么车头,要么车尾——这样就把对象的长度转化成了路程中的一部分,简化分析.在两辆火车之间的相遇和追及问题之中也同样要用到这种分析方法.下面我们来看看两列火车之间的相遇与追及.①火车与火车相遇:末首先,找到最后对齐的部位——两车车尾,再找出它们最初的位置,整个过程便可以转化为两车车尾的相遇过程,很明显,“两列火车的路程和即为两列火车车长之和”.由此我们可以总结出以下规律:火车和火车相遇,从相遇时刻到错开时刻,两列火车的路程和=两列火车车长之和.②火车追火车:程便可以转化为甲尾和乙头的追及过程,很明显,“两列火车的路程差即为两列火车车长之和”.由此我们可以总结出以下规律:火车追火车,从追上时刻到离开时刻,两列火车的路程差=两列火车车长之和.例题4(1)一列火车车长180米,每秒行20米,另一列火车长200米,每秒行18米,两车相向而行,它们从车头相遇到车尾相离要经过多长时间?(2)甲火车长370米,每秒钟行15米,乙火车长350米,每秒钟行21米,两车同向行驶.请问:乙车从追上甲车到完全超过共需多长时间?「分析」题(1)是一个两列火车的相遇问题,在相遇过程中,路程和是什么呢?题(2)是两列火车的追及过程,路程差又是什么呢?练习4(1)已知快车长582米,每秒行24米,慢车长1018米.两车相向而行,它们从车头相遇到车尾相离共用时40秒.请问:慢车速度是多少?(2)已知快车长182米,每秒行20米,慢车长134米,每秒行18米.两车同向而行,请问:快车从追上到完全超越慢车的时间是多少秒?例题5与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进.行人速度为每秒1米,骑车人速度为每秒3米.这时,有一列长360米的火车从他们背后开过来,火车从行人身旁经过用18秒钟.请问:这列火车从骑车人身旁经过需要多长时间?「分析」本题的实质是两个追及问题:火车与行人的追及问题,以及火车与骑车人的追及问题.在追及过程中,火车、行人、骑车人经过的路程有什么关系,路程差分别是什么呢?例题6高高号列车每秒行50米,思思号每秒行30米.两列火车相向而行时,它们从车头相遇到车尾相离要经过4秒.请问:两列火车同向行驶时,高高号从追上思思号到完全超过共需多长时间?「分析」题目中有两个过程:一是两列火车的相遇过程,一是两列火车的追及过程.画出火车图,寻找一下:相遇过程中两车路程和是什么?追及过程中两车路程差又是什么?课堂内外火车发展简史早在1804年,一个名叫德里维斯克的英国矿山技师,首先利用瓦特的蒸汽机造出了世界上第一台蒸汽机车,能牵引5节车厢,时速为5至6公里.这台机车没有设计驾驶室,机车行驶时,驾驶员跟在车旁边走边驾驶.真正的蒸汽机车是由乔治·斯蒂芬森发明的,因为当时使用煤炭或者木柴做燃料,所以人们都叫它“火车”,一直沿用至今.世界上第一列真正在轨道上行驶的蒸汽火车是由康瓦尔的工程师查理·特里维西克所设计的.他设计的火车有四个轮胎,1840年2月22日试车,空车时速20公里,载重时,时速8公里(相当于人快速行走的速度).不幸,火车的重量压垮了铁轨.1879年,德国西门子电气公司研制了第一台电力机车,只在一次展览会上做了表演.1903年10月27日,西门子与通用电气公司研制的第一台实用电力机车投入使用,时速达到200公里.1894年,德国研制成功了第一台汽油内燃机车,并将它应用于铁路运输,开创了内燃机车的新纪元,但这种机车烧汽油,耗费太高,不易推广.1941年,瑞士研制成功新型的燃油汽轮机车,以柴油为燃料,且结构简单、震动小、运行性能好,因而在工业国家普遍采用.20世纪60年代以来,各国都大力发展高速列车,例如法国巴黎至里昂的高速列车,时速达到260公里;日本东京至大阪的高速列车时速也达到200公里以上.人们对这样的高速列车仍不满足.法国、日本等率先开发了磁悬浮列车,中国在上海修建了世界第一条商用磁悬浮列车线,时速可达400—500公里.作业1.一列火车车长180米,每秒行25米,这列火车完全通过320米的大桥,需要经过多少秒?2.一列火车车长240米,每秒行30米,这列火车车尾在720米的大桥的一端,行驶多少秒后,火车的车头到达大桥的另一端?3.思思在铁路旁边沿铁路方向的公路上散步,他散步的速度是每秒2米,这时迎面开来一列火车,经过他共用了18秒.已知火车全长360米,请问:火车每秒钟行多少米?4.高高在铁路旁以每秒2米的速度步行,一列长180米的火车从他后面开来,从他身边通过用了10秒.请问:火车每秒钟行多少米?5.有两列火车,一列长360米,每秒行18米,另一列长216米,每秒行30米.两车同向而行,快车赶超慢车(从追上到完全超过)需要多少秒?第十八讲火车行程初步1.例题1答案:25秒;200米详解:(1)火车通过桥,路程为桥长、车长之和,所以时间为()+÷=秒;(2)每分1803202025钟行驶1000米,通过桥时间为180秒即3分钟,所以路程是100033000⨯=米,而火车通过桥,路程为桥长、车长之和,所以车长为30002800200-=米.2.例题2答案:7秒详解:火车完全在桥上的路程为桥长、车长之差,即320180140÷=-=米,所以时间是140207秒钟.3.例题3答案:20秒;9秒详解:(1)从相遇到错开,火车与行人的路程和为车长,即300米,速度和是11415+=米/秒,所以时间为3001520÷=秒;(2)从追上到超过,火车与行人的路程差为火车车长,即144米,行人每分钟走60米,即每秒钟走1米,所以速度差是17116-=米/秒,时间是144169÷=秒.4.例题4答案:10秒;120秒详解:(1)从相遇到错开,两列车的路程和为车长之和,即380米,速度和是201838+=米/秒,所以时间为3803810÷=秒;(2)从追上到超过,两列车的路程差为车长之和,即720米,速度差是21156÷=秒.-=米/秒,时间是72061205.例题5答案:20秒详解:火车追行人:路程差为车长360米,时间为18秒,所以速度差为3601820÷=米/秒,行人速度是1米/秒,所以火车速度为21米/秒;火车追骑车人:路程差为车长360米,速度差为21318÷=秒.-=米/秒,所以时间为36018206.例题6答案:16秒详解:从相遇到错开,两车路程和为车长之和,其速度和为503080+=米/秒,时间为4秒,所以路程和为804320⨯=米,即两车车长和为320米.从追上到超过,两车路程差为两车长之和,即320米,速度差为503020÷=秒.-=米/秒,所以时间为32020167.练习1答案:4分钟详解:火车通过桥,路程为桥长、车长之和,所以时间为()+÷=分钟.700130050048.练习2答案:800米详解:火车完全在隧道中的路程为隧道长、车长之差,即201002000⨯=米,其中隧道长度为2800米,所以车长为28002000800-=米.9.练习3答案:17米/秒;270米简答:(1)从相遇到错开,火车与人的路程和是车长,即144米,用时8秒,所以可知速度和为144818÷=米/秒,其中人的速度是1米/秒,所以火车的速度为17米/秒;(2)从追上到超过,火车与人的路程差为车长,已知速度差为17215-=米/秒,用时18秒,所以路程差即车长为1815270⨯=米.10.练习4答案:16米/秒;158秒简答:(1)从相遇到错开,两列车的路程和是车长之和,即10185821600+=米,用时40秒,所以可知速度和为16004040÷=米/秒,其中快车的速度是24米/秒,所以慢车的速度为16米/秒;(2)从追上到超过,两车的路程差为车长之和,即182134316-=+=米,而速度差为20182米/秒,所以时间为3162158÷=秒.11.作业1答案:20秒简答:火车通过桥,路程为桥长、车长之和,所以时间为()+÷=秒.180320252012.作业2答案:16秒简答:火车完全在桥上的路程为桥长、车长之差,即720240480÷=-=米,所以时间是4803016秒钟.13.作业3答案:18米/秒简答:从相遇到错开,火车与人的路程和是车长360米,用时18秒,所以可知速度和为÷=米/秒,其中人的速度是2米/秒,所以火车的速度为18米/秒.360182014.作业4答案:20米/秒简答:从追上到超过,火车与人的路程差是车长180米,用时10秒,所以可知速度差为÷=米/秒,其中人的速度是2米/秒,所以火车的速度为20米/秒.180101815.作业5答案:48秒简答:从追上到超过,两列车的路程差为车长之和,即576米,速度差是301812-=米/秒,时间是5761248÷=秒.。

高斯小学奥数四年级上册含答案第18讲_火车行程初步

高斯小学奥数四年级上册含答案第18讲_火车行程初步

第十八讲火车行程初步我们之前已经学习了基本行程问题,明确了速度、时间和路程这三个量之间的关系:路程速度时间、=÷=⨯时间路程速度速度路程时间、=÷另外,我们还学习了两个对象之间的行程关系:相遇和追及.相遇问题中有:路程和速度和相遇时间=⨯速度和路程和相遇时间=÷相遇时间路程和速度和=÷追及问题中有:路程差速度差追及时间=⨯速度差路程差追及时间=÷追及时间路程差速度差=÷本讲,我们将在之前内容的基础上,学习一类新的、比较特殊的行程问题——与运动对象本身长度有关系的行程问题——我们称之为“火车行程”.比如北京到广州的铁路全长2300千米,如果一列火车从北京出发,以每小时100千米的速度开往广州,我们很容易算出火车需要行驶23小时.在这个问题中,火车的长度与北京到广州的距离相比微乎其微,我们可以忽略不计火车的长度.但是当行人在铁路旁行走,火车从行人身边开过时,从车头与行人相遇到车尾离开行人,是需要一段时间的,这时火车的长度就不能忽略不计了,我们需要把火车看成考虑自身长度的运动物体.火车行程问题和一般的行程问题最大的区别在于,火车是有长度的.因此计算火车行走的距离时,我们盯住火车上的一个点,比如车头,或者车尾.车头走了多远,火车就开了多远;车尾走了多远,火车也就开了多远.分析火车行程过程,首先要画出始末两个状态,找到最后对齐的部位.........及其初始位置,将火车行程过程转化为这两个部位之间的相遇或追及过程.火车的行程问题大体上可以分为三类:火车过桥/山洞/隧道的问题;火车与行人的相遇和追及问题;火车与火车的相遇和追及问题.我们先来看看火车经过桥/山洞/隧道的过程.这类问题一般会考察两种情况——“火车通过桥/山洞/隧道”与“火车完全在桥上/山洞中/隧道中”.① “火车通过桥”即指“火车从车头上桥到车尾离桥”的过程,如图所示:首先,找到最后对齐的部位——车尾与桥头(红旗),再找出它们最初的位置,整个过程便可以转化为车尾从初始位置一直行驶到桥头红旗处的过程,很明显,路程即为“火车车长与桥长之和”.由此我们可以总结出以下规律:火车在通过桥/山洞/隧道时行驶的总路程是火车车长与桥/山洞/隧道的长度之和.例题1(1)一列火车车长180米,每秒行20米.请问:这列火车通过320米的大桥,需要经过多长时间?(2)一列火车以每分钟1000米的速度通过一条长2800米的隧道,共用180秒.请问:这列火车长多少米?「分析」火车通过桥即从车头上桥到车尾下桥的过程,火车的路程是什么呢?练习1一列火车长700米,以每分钟500米的速度通过一座长1300米的大桥.从车头上桥到车尾离桥要多少分钟?始 末② “火车完全在桥上”即指“火车从车尾上桥到车头离桥”的过程,如图所示:首先,找到最后对齐的部位——车头与桥头(红旗),再找出它们最初的位置,整个过程便可以转化为车头从初始位置一直行驶到桥头红旗处的过程,很明显,路程即为“桥长与火车车长之差”.由此我们可以总结出以下规律:火车完全在桥上/山洞中/隧道中行驶的总路程是桥/山洞/隧道的长度与火车车长之差.例题2一列火车车长180米,每秒行20米,这列火车要通过320米的大桥,请问:该过程中,火车有多长时间是完全在桥上的?「分析」火车完全在桥上即从车尾上桥到车头下桥的过程,火车的路程是什么呢?练习2一列火车以每秒20米的速度通过一条长2800米的隧道,完全在隧道中的时间是100秒.请问:这列火车有多长?火车从静止的人身旁经过的过程是非常简单的,从车头遇到人到车尾离开人,整个过程中火车行驶的路程就是火车长度——其实可以把人看作缩短至长度为0的桥.接下来,我们画图观察分析一下火车从行人身旁经过的过程.① 火车与人相遇:首先,找到最后对齐的部位——车尾与行人,再找出它们最初的位置,整个过程便可以始 末 末火车转化为车尾与行人的相遇过程,很明显,“火车与行人的路程和即为火车车长”.由此我们可以总结出以下规律:行人和火车迎面相遇,从相遇时刻到错开时刻,火车和行人的路程和=火车的长度. ② 火车追人:首先,找到最后对齐的部位——车尾与行人,再找出它们最初的位置,整个过程便可以转化为车尾与行人的追及过程,很明显,“火车与行人的路程差即为火车车长”.由此我们可以总结出以下规律:火车追行人,从追上时刻到离开时刻,火车和行人的路程差=火车的长度.例题3(1) 一名行人沿着铁路散步,每秒走1米,迎面过来一列长300米的火车.已知火车每秒钟行驶14米,请问:从火车头与行人相遇到火车尾离开他共用了多长时间?(2) 一人以每分钟60米的速度沿铁路步行,一列长144米的客车从他身后开来,客车的速度是每秒钟17米.客车从他身边经过用了多少秒钟?「分析」题(1)是一个火车与行人的相遇问题,在相遇过程中,路程和是什么呢?题(2)是火车与行人的追及过程,路程差又是什么呢?练习3(1) 一人以每分钟60米的速度沿铁路步行,一列长144米的客车从对面开来,从他身边通过用了8秒钟,客车的速度是每秒钟多少米?(2) 东东在铁路旁边沿着铁路方向散步,他散步的速度是2米/秒.这时背后开来一列火车,从车头追上他到车尾离开他一共用了18秒.已知火车速度是17米/秒,请问:火车的车长多少米?末火车通过火车过桥、火车与人之间的相遇和追及问题,我们知道,火车问题中,往往需要盯着火车的一个点来计算——要么车头,要么车尾——这样就把对象的长度转化成了路程中的一部分,简化分析.在两辆火车之间的相遇和追及问题之中也同样要用到这种分析方法.下面我们来看看两列火车之间的相遇与追及.①火车与火车相遇:末首先,找到最后对齐的部位——两车车尾,再找出它们最初的位置,整个过程便可以转化为两车车尾的相遇过程,很明显,“两列火车的路程和即为两列火车车长之和”.由此我们可以总结出以下规律:火车和火车相遇,从相遇时刻到错开时刻,两列火车的路程和=两列火车车长之和.②火车追火车:程便可以转化为甲尾和乙头的追及过程,很明显,“两列火车的路程差即为两列火车车长之和”.由此我们可以总结出以下规律:火车追火车,从追上时刻到离开时刻,两列火车的路程差=两列火车车长之和.例题4(1)一列火车车长180米,每秒行20米,另一列火车长200米,每秒行18米,两车相向而行,它们从车头相遇到车尾相离要经过多长时间?(2)甲火车长370米,每秒钟行15米,乙火车长350米,每秒钟行21米,两车同向行驶.请问:乙车从追上甲车到完全超过共需多长时间?「分析」题(1)是一个两列火车的相遇问题,在相遇过程中,路程和是什么呢?题(2)是两列火车的追及过程,路程差又是什么呢?练习4(1)已知快车长582米,每秒行24米,慢车长1018米.两车相向而行,它们从车头相遇到车尾相离共用时40秒.请问:慢车速度是多少?(2)已知快车长182米,每秒行20米,慢车长134米,每秒行18米.两车同向而行,请问:快车从追上到完全超越慢车的时间是多少秒?例题5与铁路平行的一条小路上,有一个行人与一个骑车人同时向南行进.行人速度为每秒1米,骑车人速度为每秒3米.这时,有一列长360米的火车从他们背后开过来,火车从行人身旁经过用18秒钟.请问:这列火车从骑车人身旁经过需要多长时间?「分析」本题的实质是两个追及问题:火车与行人的追及问题,以及火车与骑车人的追及问题.在追及过程中,火车、行人、骑车人经过的路程有什么关系,路程差分别是什么呢?例题6高高号列车每秒行50米,思思号每秒行30米.两列火车相向而行时,它们从车头相遇到车尾相离要经过4秒.请问:两列火车同向行驶时,高高号从追上思思号到完全超过共需多长时间?「分析」题目中有两个过程:一是两列火车的相遇过程,一是两列火车的追及过程.画出火车图,寻找一下:相遇过程中两车路程和是什么?追及过程中两车路程差又是什么?课堂内外火车发展简史早在1804年,一个名叫德里维斯克的英国矿山技师,首先利用瓦特的蒸汽机造出了世界上第一台蒸汽机车,能牵引5节车厢,时速为5至6公里.这台机车没有设计驾驶室,机车行驶时,驾驶员跟在车旁边走边驾驶.真正的蒸汽机车是由乔治·斯蒂芬森发明的,因为当时使用煤炭或者木柴做燃料,所以人们都叫它“火车”,一直沿用至今.世界上第一列真正在轨道上行驶的蒸汽火车是由康瓦尔的工程师查理·特里维西克所设计的.他设计的火车有四个轮胎,1840年2月22日试车,空车时速20公里,载重时,时速8公里(相当于人快速行走的速度).不幸,火车的重量压垮了铁轨.1879年,德国西门子电气公司研制了第一台电力机车,只在一次展览会上做了表演.1903年10月27日,西门子与通用电气公司研制的第一台实用电力机车投入使用,时速达到200公里.1894年,德国研制成功了第一台汽油内燃机车,并将它应用于铁路运输,开创了内燃机车的新纪元,但这种机车烧汽油,耗费太高,不易推广.1941年,瑞士研制成功新型的燃油汽轮机车,以柴油为燃料,且结构简单、震动小、运行性能好,因而在工业国家普遍采用.20世纪60年代以来,各国都大力发展高速列车,例如法国巴黎至里昂的高速列车,时速达到260公里;日本东京至大阪的高速列车时速也达到200公里以上.人们对这样的高速列车仍不满足.法国、日本等率先开发了磁悬浮列车,中国在上海修建了世界第一条商用磁悬浮列车线,时速可达400—500公里.作业1.一列火车车长180米,每秒行25米,这列火车完全通过320米的大桥,需要经过多少秒?2.一列火车车长240米,每秒行30米,这列火车车尾在720米的大桥的一端,行驶多少秒后,火车的车头到达大桥的另一端?3.思思在铁路旁边沿铁路方向的公路上散步,他散步的速度是每秒2米,这时迎面开来一列火车,经过他共用了18秒.已知火车全长360米,请问:火车每秒钟行多少米?4.高高在铁路旁以每秒2米的速度步行,一列长180米的火车从他后面开来,从他身边通过用了10秒.请问:火车每秒钟行多少米?5.有两列火车,一列长360米,每秒行18米,另一列长216米,每秒行30米.两车同向而行,快车赶超慢车(从追上到完全超过)需要多少秒?第十八讲火车行程初步1.例题1答案:25秒;200米详解:(1)火车通过桥,路程为桥长、车长之和,所以时间为()+÷=秒;(2)每分1803202025钟行驶1000米,通过桥时间为180秒即3分钟,所以路程是100033000⨯=米,而火车通过桥,路程为桥长、车长之和,所以车长为30002800200-=米.2.例题2答案:7秒详解:火车完全在桥上的路程为桥长、车长之差,即320180140÷=-=米,所以时间是140207秒钟.3.例题3答案:20秒;9秒详解:(1)从相遇到错开,火车与行人的路程和为车长,即300米,速度和是11415+=米/秒,所以时间为3001520÷=秒;(2)从追上到超过,火车与行人的路程差为火车车长,即144米,行人每分钟走60米,即每秒钟走1米,所以速度差是17116-=米/秒,时间是144169÷=秒.4.例题4答案:10秒;120秒详解:(1)从相遇到错开,两列车的路程和为车长之和,即380米,速度和是201838+=米/秒,所以时间为3803810÷=秒;(2)从追上到超过,两列车的路程差为车长之和,即720米,速度差是21156÷=秒.-=米/秒,时间是72061205.例题5答案:20秒详解:火车追行人:路程差为车长360米,时间为18秒,所以速度差为3601820÷=米/秒,行人速度是1米/秒,所以火车速度为21米/秒;火车追骑车人:路程差为车长360米,速度差为21318÷=秒.-=米/秒,所以时间为36018206.例题6答案:16秒详解:从相遇到错开,两车路程和为车长之和,其速度和为503080+=米/秒,时间为4秒,所以路程和为804320⨯=米,即两车车长和为320米.从追上到超过,两车路程差为两车长之和,即320米,速度差为503020÷=秒.-=米/秒,所以时间为32020167.练习1答案:4分钟详解:火车通过桥,路程为桥长、车长之和,所以时间为()+÷=分钟.700130050048.练习2答案:800米详解:火车完全在隧道中的路程为隧道长、车长之差,即201002000⨯=米,其中隧道长度为2800米,所以车长为28002000800-=米.9.练习3答案:17米/秒;270米简答:(1)从相遇到错开,火车与人的路程和是车长,即144米,用时8秒,所以可知速度和为144818÷=米/秒,其中人的速度是1米/秒,所以火车的速度为17米/秒;(2)从追上到超过,火车与人的路程差为车长,已知速度差为17215-=米/秒,用时18秒,所以路程差即车长为1815270⨯=米.10.练习4答案:16米/秒;158秒简答:(1)从相遇到错开,两列车的路程和是车长之和,即10185821600+=米,用时40秒,所以可知速度和为16004040÷=米/秒,其中快车的速度是24米/秒,所以慢车的速度为16米/秒;(2)从追上到超过,两车的路程差为车长之和,即182134316-=+=米,而速度差为20182米/秒,所以时间为3162158÷=秒.11.作业1答案:20秒简答:火车通过桥,路程为桥长、车长之和,所以时间为()+÷=秒.180320252012.作业2答案:16秒简答:火车完全在桥上的路程为桥长、车长之差,即720240480÷=-=米,所以时间是4803016秒钟.13.作业3答案:18米/秒简答:从相遇到错开,火车与人的路程和是车长360米,用时18秒,所以可知速度和为÷=米/秒,其中人的速度是2米/秒,所以火车的速度为18米/秒.360182014.作业4答案:20米/秒简答:从追上到超过,火车与人的路程差是车长180米,用时10秒,所以可知速度差为÷=米/秒,其中人的速度是2米/秒,所以火车的速度为20米/秒.180101815.作业5答案:48秒简答:从追上到超过,两列车的路程差为车长之和,即576米,速度差是301812-=米/秒,时间是5761248÷=秒.。

小学四年级奥数举一反三专题第19讲 应用题

小学四年级奥数举一反三专题第19讲    应用题

小学四年级奥数举一反三专题第19讲应用题一、知识要点解答复合应用题时一般有如下四个步骤:1.弄清题意,找出已知条件和所求问题;2.分析已知条件和所求问题之间的关系,找出解题的途径;3.拟定解答计划,列出算式,算出得数;4,检验解答方法是否合理,结果是否正确,最后写出答案。

二、精讲精练【例题1】某发电厂有10200吨煤,前10天每天烧煤300吨,后来改进炉灶,每天烧煤240吨。

这堆煤还能烧多少天?【思路导航】条件摘录综合法思路:前10天每天烧煤300吨,可以求出10天烧的吨数;已知煤的总吨数和前10天烧的吨数,可以求出还有多少吨没有烧;根据还剩的吨数和后来每天烧煤240吨,可以求出这堆煤还能烧多少天。

分析法思路:要求还能烧多少天,要知道还有的吨数和后来每天烧的吨数(240吨);要求还有多少吨煤,要知道这堆煤有多少吨(10200吨)和已经烧了多少吨。

要求已经烧了多少吨,要知道已经烧了多少天(10天)和每天烧多少吨(300吨)。

(10200-300×10)÷240=30(天).练习1:1.某电冰箱厂要生产1560台冰箱,已经生产了8天,每天生产120台。

剩下的每天生产150台,还要多少天才能完成任务?2.某工厂计划生产36500套轴承,前5天平均每天生产2100套,后来改进操作方法,平均每天可以生产2600套。

这样完成这批轴承生产任务共需多少天?3.某机床厂计划每天生产机床40台,30天完成任务。

现在要提前10天完成任务,每天要生产多少台?【例题2】师傅和徒弟同时开始加工200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。

徒弟每小时加工多少个?【思路导航】由条件可知,师傅完成任务用了200÷25=8小时,徒弟完成任务用了8+2=10小时。

所以,徒弟每小时加工200÷10=20个。

练习2:1.张师傅和李师傅同时开始各做90个玩具,张师傅每天做10个,完成任务时,李师傅还要做1天才能完成任务。

四年级上册奥数第19讲解决问题(二)

四年级上册奥数第19讲解决问题(二)

第19 周解决问题(二)专题简析:解答复合应用题时一般有以下四个步骤:1、弄清题意,找出已知条件和所求问题。

2、分析已知条件和所求问题之间的关系,找出解题的途径。

3、拟定解答计划,列出算式,算出得数。

4、检查解答方法是否合理,结果是否合理,最后写出答案。

例1: 某电冰箱厂要生产1560台电冰箱,已经生产了8 天,每天生产120 台,剩下的每天生产150台,还需要多少天才能完成任务?练习:1、自行车厂计划生产9900辆自行车,前10天平均每天生产460辆,由于改进技术,后来每天生产530 辆,完成这批任务还要多少天?2、某工厂计划生产20900个零件,前 5 天平均每天生产2100个,后来改进操作方法,每天生产2600 个,这样完成这批任务还要多少天?3、某发电厂运来一批煤,计划每天烧300吨,20天用完,后来改进技术,每天少烧60 吨,这批煤实际可以烧多少天?例2: 师傅和徒弟同时开始分别加工200 个零件,师傅每小时加工25 个,师傅完成任务时,徒弟还要做 2 小时才能完成任务。

徒弟每小时加工多少个?练习:1、张师傅和李师傅同时开始分别做90 个玩具,张师傅每天做10个,张师傅完成任务时,李师傅还要做 1 天才能完成任务。

李师傅每天做多少个?2、小华和小明同时开始写大字,各写了192个,小华每天写24 个,小华完成任务时,小明还要写 4 天才能完成。

小明每天写多少个字?3、同学们折纸鹤,计划20 天折2400个,实际每天多折30 个,这样可提前几天完成任务?例3: 甲、乙两地相距200 千米,汽车行驶完全程要 5 小时,步行要40 小时。

张强从甲地出发,先步行8 小后改乘汽车,还需要几小时到达乙地?练习:1、玩具厂一车间要生产900个玩具,如果用手工做要20小时才能完成,用机器做只需要 4 小时一车间工人先用手工做了 5 个小时,后改用机器生产,还需要几小时才能完成任务?2、甲、乙两地相距200千米,汽车行驶完全程要 5 小时,步行要40小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九讲火车行程进阶上一讲中我们已经学习了火车行程中的火车过桥、火车过人、火车过车这三种基本类型.解决火车行程问题,最重要的是要学会画图,将火车行程过程转化为最后对齐的两个位置的相遇或追及过程.接下来,我们来介绍较复杂的火车行程问题.我们已经学过了火车与火车的相遇与追及,追及问题一般是指两列火车从开始追上到完全超过所经历的过程.接下来看两类特殊的火车与火车的追及问题,齐头行进或齐尾行进.与之前分析过程一样,首先找到最后对齐的部位,并找到其初始位置,将火车行程过程转化为甲车尾与乙车头的追及过程,可以总结如下:齐头并进:从出发到离开(即超过)时刻,两车路程差为快车车长. 齐尾并进:从出发到离开(即超过)时刻,两车路程差为慢车车长.例题1(1)现有D 字头动车和T 字头特快同时同向齐头行进,动车每秒行60米,特快每秒行40米,经过8秒后动车超过特快.请问:D 字头动车车长多少米?(2)现有D 字头动车和T 字头特快车尾对齐,同时同向行进,动车每秒行60米,特快每秒行40米,经过10秒后动车超过特快.请问:T 字头特快车车长多少米?「分析」题(1)中,火车从齐头开始出发,到超过为止,快车车长(D 字头动车车长)即为路程差,所以求路程差即可. 练习1(1) 现有两列火车,如果这两列火车同时同向齐头行进,快车每秒行20米,慢车每秒行9米,行10秒后快车超过慢车.请问:快车车长多少米?(2) 现有两列火车,快车每秒行20米,慢车每秒行9米,如果这两列火车车尾对齐,同时同向行进,则15秒后快车超过慢车.请问:慢车车长是多少米?①齐头并进 始② 齐尾并进在现实生活中,有很多行程问题都会涉及到运动对象本身的长度,比如队列、队伍等等.下面我们看一下另外一类比较特殊的火车行程——队列行程问题.这类问题主要包含两种基本类型(队伍是匀速前进的):“人从队头走到队尾”与“人从队尾走到队头”.① 人从队头走到队尾:从图中可以看出,这类问题其实就是队列与行人的相遇过程,队列与行人的路程和即为队列长度.② 人从队尾跑到队头:从图中可以看出,这类问题其实就是队列与行人的追及过程,只不过,这里的行人要比“火车”还要快,行人与队列的路程差即为队列长度.例题2某解放军队伍长450米,以每秒2米的速度行进.一名战士以每秒3米的速度从排尾跑到排头需要多长时间?然后从排头返回排尾,又需要多少时间?「分析」从排尾到排头,即为战士与队伍的追及过程,要计算时间,就需要找到路程差与速度差. 练习2某学校组织学生去春游,队伍长540米,并以每秒2米的速度前进,一名学生以每秒4米的速度从队尾跑到队头,再回到队尾,共用多少分钟?末队伍队伍始行人在之前学习的盈亏、和差倍等应用题中,我们用到了比较的方法.在行程问题中,往往也会应用到比较的思想.例题3一列火车完全通过460米长的隧道用30秒,以同样的速度完全通过410米的隧道用28秒.请问:这列火车的速度是每秒多少米?「分析」本题包含两个“火车通过桥”的过程,一一分析,可以计算出什么吗?不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度. 练习3一列客车完全通过530米长的桥用了50秒,以同样速度完全通过380米长的山洞用了40秒.请问:这列客车的速度是每秒多少米?火车行驶的过程中,火车行驶的距离只需要看火车上的某一个点即可,可以是火车头或者火车尾,当然,也可以是火车的某一个窗户.对于坐在火车某个窗户旁边的人来说,他的速度其实就是火车前进的速度. 接下来,我们分析一下火车中的人观察其他火车经过的过程:从图中可以看出,这类型的行程过程,其实就是人与另外一辆火车的相遇或追及过程,对应的路程和或路程差其实都是另外一辆火车的车长,与人所乘坐的火车长度没有关系.③ 相遇始④追及末例题4甲、乙两列火车同向而行,甲车在前,乙车在后.甲车长320米,每秒行20米;乙车长480米.坐在甲车上的小王老师从乙车车头经过她的车窗时开始计时,到车尾经过她的车窗为止共用96秒.那么乙车的速度是多少?「分析」题目所叙述的过程,其实是乙车与王老师的追及过程,请画图分析一下,路程差是什么呢?跟甲车车长、乙车车长有什么关系呢?练习4动车和直达列车相向而行.动车长600米,每秒行60米;直达列车长900米,每秒行30米.坐在动车上的小王老师记录了从直达列车车头经过她车窗,到车尾经过她车窗所用的时间.那么这个时间是多少?例题5一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用120秒,而火车完全在桥上的时间是80秒.请问:火车车长多少?「分析」本题涉及到两个过程:一个是火车通过桥,一个是火车完全在桥上.一一分析,两个过程都无法计算.不妨把两次的时间和路程列出来,比较一下,寻找对应的时间和路程,进而计算火车速度与车长.从前面的分析中,我们已经知道,火车中的人与另外一辆火车的相遇与追及过程,其实就是人与另外一辆火车的相遇与追及,和人所乘坐的车长是没有关系的.而解决这类题目,关键的一步就是要找到人的速度.如果人在车上静止,那么人的速度就是车的速度.如果人在车上行走呢?我们看一个简单例子:一列火车以每秒20米的速度行驶,乘务员以每秒1米的速度在车厢内沿着火车前进的方向向前走,那么在地面上静止的人来看,乘务员的前进速度是多少呢?如果乘务员以每秒1米的速度在车厢内沿着火车前进的反方向向前走,那么对于地面上静止的人,乘务员的前进速度又是多少呢?我们可以这么想:火车1秒钟前进了20米,如果乘务员行走方向跟火车一样,那么在火车带着他前进了20米的基础上他又往前走了1米,所以对于地面来说,乘务员其实是走了21米,所以他的速度就是每秒钟21米,即车与人的速度和;同样的道理,如果乘务员的行走方向与火车相反,那么他对于地面的速度就是车与人的速度差.例题6货车和客车同向行驶,由于货车有紧急任务,因此开始赶超客车.小高在客车内沿着客车前进的方向向前走,发现货车用140秒就超过了他.已知小高在客车内行走的速度为每秒1米,客车的速度为每秒20米,客车长350米,货车长280米.求:(1)货车的行驶速度;(2)货车从追上客车到完全超过客车所需要的时间.「分析」小高在客车内行走,那么他的实际速度是多少呢?货车与小高的追及过程,路程差是什么呢?画图好好分析一下吧!课堂内外白(黄)色安全线火车站台或者地铁的站台边都会有一条白色或者黄色的安全线,当列车进站的时候,车站的工作人员都会提醒人们注意站在安全线的后面,不过那并不是怕乘客拥挤掉下去,到底是为什么呢?据铁路史志记载,这条安全线来源于近百年前的一场惨案.1905年冬天,在俄国一个名鄂洛多克的小车站上,站长率全站38名员工身着盛装、手持鲜花,列队站在铁路线两旁恭候沙皇尼古拉二世派来视察的钦差大臣.然而,遗憾的是,列车没有缓缓进站,而是狂风般冲进了“人巷”,刹那间“人巷”倒塌了,数十名员工仿佛背后被人猛推了一掌,不由自主向前倒去.结果造成34人丧生,4人终生残疾.由于当时科技水平有限,人们对此无法解释.后来人们才弄明白惨案真相.在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔•伯努利1738年发现的“伯努利定律”.在行驶的汽车或者火车窗外,紧挨着车身的空气由于车身的带动而流速较快,从而产生比正常的大气压更小的气压,并且速度越快,这个气压就会越小,这样周围的空气就会把旁边的物体推向火车.所以,火车高速行驶时,人站立太近的话就有可能被吸过去,那个后果可真得会惨不忍睹啊.而在站台上,即使在列车进站的时候车速减慢了很多,但在完全停稳之前,这个吸力还是会存在.这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了这一定律.飞机机翼的上表面是流畅的曲面,下表面则是平面.这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了.工程学上会用一个“伯努利公式”来计算,这个力到底有多大.所以,即使运行在站台的列车速度并不是很快,也不要挑战自己,去试那个吸引力有多大.当我们在站台上等候火车或地铁时,一定要站在白色安全线外.作业1.蛇妈妈和蛇宝宝比赛跑步,齐头并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了10秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇妈妈的长度多少米?2.蛇妈妈和蛇宝宝比赛跑步,齐尾并进,从出发到最后蛇妈妈恰好完全超过蛇宝宝用了5秒钟的时间.已知蛇妈妈的速度是每秒5米,蛇宝宝的速度是每秒4米.那么蛇宝宝的长度多少米?3.麦兜参加学校军训,所在班队伍长20米,以每秒1米的速度前进.麦兜以每秒3米的速度从队尾跑到队头需要多长时间?4.一列火车通过220米长的大桥需要20秒,以同样的速度通过300米长的隧道需要24秒.这列火车长多少米?5.一列快车和一列慢车相向行驶,坐在快车上面的小王老师,从慢车经过她的窗口开始计时,到完全经过她的窗口结束,共计10秒钟.已知快车长200米,速度是每秒20米;慢车长380米,那么慢车的速度是每秒多少米?第十九讲火车行程进阶1.例题1答案:160米;200米详解:(1)齐头并进,路程差即快车车长,()-⨯=米;(2)齐尾并进,路程差即慢车60408160车长,()604010200-⨯=米.2.例题2答案:450秒;90秒详解:(1)从排尾跑到排头,路程差为队伍长度,所以时间是()÷-=秒;(2)从排45032450头跑到排尾,路程和为队伍长度,所以时间是()÷+=秒.45032903.例题3答案:25米/秒详解:火车30秒的路程是“460米车长-=+”,时间差为30282+”,28秒的路程是“410米车长秒,路程差为46041050÷=米/秒.-=米,所以速度为502254.例题4答案:25米/秒详解:乙车与小王老师的追及过程,路程差为乙车车长480米,时间为96秒,所以速度差为+=米/秒.480965÷=米/秒,小王老师速度即为甲车速度20米/秒,所以乙车速度为205255.例题5答案:200米详解:火车120秒的路程为“1000米车长-”,比较可得火车+”,80秒的路程为“1000米车长40秒的路程为“2个车长”,即20秒的路程为“车长”,而12秒的路程为“1000米车长+”,所以火车100秒的路程为1000米,速度为100010010⨯-=米.÷=米/秒,车长为1201010002006.例题6答案:23米/秒;210秒详解:(1)小高的实际速度为20121+=米/秒,货车与小高的追及过程,时间为140秒,路程差为货车车长280,所以速度差为2801402+=米/秒;(2)货车÷=米/秒,所以货车速度为21223与客车的追及时间,路程差为两车车长之和即350280630+=米,所以时间为()6302320210÷-=秒.7.练习1答案:110米;165米详解:(1)齐头并进,路程差为快车车长,()-⨯=米;(2)齐尾并进,路程差为慢车20910110车长,()20915165-⨯=米. 8.练习2 答案:6分钟详解:从队尾跑到队头,路程差为队伍长度,所以时间是()54042270÷-=秒;从队头跑回队尾,路程和为队伍长度,所以时间是()5404290÷+=秒,一共用了27090360+=秒即6分钟. 9.练习3 答案:15米/秒简答:50秒的路程是“530米车长+”,40秒的路程是“380米车长+”,时间差为504010-=秒,路程差为530380150-=米,所以速度为1501015÷=米/秒. 10. 练习4答案:10秒简答:直达列车与小王老师的相遇过程,路程和即直达列车车长900米,速度和为603090+=米/秒,所以时间为9009010÷=秒. 11. 作业1答案:10米简答:齐头并进,路程差为快车车长,即蛇妈妈的长度,为()541010-⨯=米. 12. 作业2答案:5米简答:齐尾并进,路程差为慢车车长,即蛇宝宝的长度,为()5455-⨯=米. 13. 作业3答案:10秒简答:从队尾跑到队头,速度差为队伍长度20米,所以时间为()203110÷-=秒. 14. 作业4答案:180米简答:20秒的路程是“220米车长+”,24秒的路程是“300米车长+”,时间差为24204-=秒,路程差为30022080-=米,所以速度为80420÷=米/秒,所以火车车长为2020220180⨯-=米.15. 作业5答案:18米/秒简答:慢车与小王老师的相遇过程,路程和为慢车车长380米,时间为10秒,所以速度和为3801038÷=米/秒,小王老师速度即为快车速度20米/秒,所以慢车速度为382018-=米/秒.。

相关文档
最新文档