二项式定理及应用PPT教学课件
合集下载
二项式性质课件
展开式的应用
二项式定理的展开式在数学、物理、工程等多个领域都有广泛应用 ,例如组合数学、概率论、统计学等。
定理表述
定理表述
定理证明
定理推论
二项式定理表述为(a+b)^n的展开式 为(C(n,0)a^n+C(n,1)a^{n1}b+dots+C(n,n)b^n),其中 (C(n,k))表示组合数,即从n个不同元 素中取出k个元素的组合数。
03
二项式定理的应用
组合数学中的应用
二项式系数
二项式定理可以用来计算组合数,特 别是当组合数的上标和下标非常大时 ,使用二项式定理可以大大简化计算 过程。
排列数
通过二项式定理,我们可以推导出排 列数的公式,从而快速计算给定集合 的所有可能排列的数量。
概率论中的应用
概率计算
在概率论中,二项式定理常用于计算复杂事件的概率。例如,在n次独立重复 试验中,某一事件恰好发生k次的概率可以使用二项式定理来求解。
详细描述
牛顿二项式定理基于组合数学和幂级数展开,通过将二项式展开为幂级数形式,可以更方便地计算和 推导二项式的展开结果。
感谢您的观看
THANKS
1. 组合数的计算公式 为C(n, k) = n! / (k!(n-k)!),其中"!"表 示阶乘。
2. 组合数具有对称性 ,即C(n, k) = C(n, nk)。
3. 组合数具有递推性 ,即C(n, k) = C(n-1, k-1) + C(n-1, k)。
指数性质
总结词:二项式定理的指数表示从n个不 同元素中取出k个元素的排列方式数。
贝努利概率模型
贝努利概率模型是二项式定理在概率论中的一个重要应用,它描述了一个成功 概率为p的试验中,进行n次独立重复试验,成功次数k的概率。
二项式定理的展开式在数学、物理、工程等多个领域都有广泛应用 ,例如组合数学、概率论、统计学等。
定理表述
定理表述
定理证明
定理推论
二项式定理表述为(a+b)^n的展开式 为(C(n,0)a^n+C(n,1)a^{n1}b+dots+C(n,n)b^n),其中 (C(n,k))表示组合数,即从n个不同元 素中取出k个元素的组合数。
03
二项式定理的应用
组合数学中的应用
二项式系数
二项式定理可以用来计算组合数,特 别是当组合数的上标和下标非常大时 ,使用二项式定理可以大大简化计算 过程。
排列数
通过二项式定理,我们可以推导出排 列数的公式,从而快速计算给定集合 的所有可能排列的数量。
概率论中的应用
概率计算
在概率论中,二项式定理常用于计算复杂事件的概率。例如,在n次独立重复 试验中,某一事件恰好发生k次的概率可以使用二项式定理来求解。
详细描述
牛顿二项式定理基于组合数学和幂级数展开,通过将二项式展开为幂级数形式,可以更方便地计算和 推导二项式的展开结果。
感谢您的观看
THANKS
1. 组合数的计算公式 为C(n, k) = n! / (k!(n-k)!),其中"!"表 示阶乘。
2. 组合数具有对称性 ,即C(n, k) = C(n, nk)。
3. 组合数具有递推性 ,即C(n, k) = C(n-1, k-1) + C(n-1, k)。
指数性质
总结词:二项式定理的指数表示从n个不 同元素中取出k个元素的排列方式数。
贝努利概率模型
贝努利概率模型是二项式定理在概率论中的一个重要应用,它描述了一个成功 概率为p的试验中,进行n次独立重复试验,成功次数k的概率。
6.3.1二项式定理PPT课件(人教版)
①
①式中的每一项都含有82这个因数,故原式能被64整除.
反思 感悟
利用二项式定理可以解决求余数和整除的问题,通常需将底 数化成两数的和与差的情势,且这种转化情势与除数有密切 的关系.
跟踪训练4 (1)已知n∈N*,求证:1+2+22+…+25n-1能被31整除.
证明 1+2+22+23+…+25n-1=11--225n=25n-1=32n-1=(31+1)n-1 =31n+C1n×31n-1+…+Cnn-1×31+1-1=31×(31n-1+C1n×31n-2+… +Cnn-1), 显然括号内的数为正整数,故原式能被31整除.
反思 感悟
求多项式积的特定项的方法——“双通法”
所 谓 的 “ 双 通 法 ” 是 根 据 多 项 式 与 多 项 式 的 乘 法 法 则 得 到 (a + bx)n(s+tx)m 的展开式中一般项为:Tk+1·Tr+1=Cknan-k(bx)k·Crmsm-r(tx)r,再 依据题目中对指数的特殊要求,确定 r 与 k 所满足的条件,进而求 出 r,k 的取值情况.
跟踪训练 2
在2
x-
1
6
x
的展开式中,求:
(1)第3项的二项式系数及系数;
解 第 3 项的二项式系数为 C26=15,
又 T3=C26(2
x)4-
1x2=240x,
所以第3项的系数为240.
(2)含x2的项.
解
Tk+1=Ck6(2
x)6-k-
1xk=(-1)k26-kCk6x3-k,
令3-k=2,解得k=1,
(2)(1+2x)3(1-x)4的展开式中,含x项的系数为
A.10
B.-10
√C.2
D.-2
二项式定理ppt课件
与幂级数的联系
二项式定理与幂级数有密切的联系,通过二项式定理可以推 导幂级数的展开式,反之亦然。
与微积分的联系
二项式定理在微积分中有重要的应用,例如在求解微分方程 和积分方程时,可以利用二项式定理进行近似计算。
二项式定理在实际问题中的应用
组合数学问题
二项式定理在组合数学中有广泛的应用,例如排列、组合、概率等问题中都可以用到二项式定理。
欧洲的发展
欧洲数学家在文艺复兴时 期开始深入研究二项式定 理,其中帕斯卡和贾法尼 等人都做出了重要贡献。
现代应用
二项式定理在现代数学、 物理、工程等领域都有广 泛的应用,是解决各种问 题的重要工具。
二项式定理的定义与公式
二项式定理定义
二项式定理描述了两个数 相乘时,各项的系数变化 规律。
二项式定理公式
总结词
二项式定理的展开形式是 $(a+b)^n$,其中$a$和$b$是常数 ,$n$是正整数。
详细描述
二项式定理的展开形式是$(a+b)^n$ ,其中$a$和$b$是常数,$n$是正整 数。这个公式可以展开为多项式,各 项的系数由组合数决定。
二项式展开的系数规律
总结词
二项式展开的系数规律是使用组合数 来表示的。
组合数学中的应用
排列组合公式
二项式定理可以用于推导排列组 合公式,例如C(n,k)=n!/(k!(nk)!),通过二项式定理可以推导
出该公式。
组合恒等式
利用二项式定理可以证明一些组 合恒等式,例如C(n,k)=C(n,n-k) 和C(n+1,k)=C(n,k)+C(n,k-1)等
。
组合数性质
利用二项式定理可以推导出组合 数的一些性质,例如C(n,k)总是 非负的,当k>n时,C(n,k)=0等
二项式定理与幂级数有密切的联系,通过二项式定理可以推 导幂级数的展开式,反之亦然。
与微积分的联系
二项式定理在微积分中有重要的应用,例如在求解微分方程 和积分方程时,可以利用二项式定理进行近似计算。
二项式定理在实际问题中的应用
组合数学问题
二项式定理在组合数学中有广泛的应用,例如排列、组合、概率等问题中都可以用到二项式定理。
欧洲的发展
欧洲数学家在文艺复兴时 期开始深入研究二项式定 理,其中帕斯卡和贾法尼 等人都做出了重要贡献。
现代应用
二项式定理在现代数学、 物理、工程等领域都有广 泛的应用,是解决各种问 题的重要工具。
二项式定理的定义与公式
二项式定理定义
二项式定理描述了两个数 相乘时,各项的系数变化 规律。
二项式定理公式
总结词
二项式定理的展开形式是 $(a+b)^n$,其中$a$和$b$是常数 ,$n$是正整数。
详细描述
二项式定理的展开形式是$(a+b)^n$ ,其中$a$和$b$是常数,$n$是正整 数。这个公式可以展开为多项式,各 项的系数由组合数决定。
二项式展开的系数规律
总结词
二项式展开的系数规律是使用组合数 来表示的。
组合数学中的应用
排列组合公式
二项式定理可以用于推导排列组 合公式,例如C(n,k)=n!/(k!(nk)!),通过二项式定理可以推导
出该公式。
组合恒等式
利用二项式定理可以证明一些组 合恒等式,例如C(n,k)=C(n,n-k) 和C(n+1,k)=C(n,k)+C(n,k-1)等
。
组合数性质
利用二项式定理可以推导出组合 数的一些性质,例如C(n,k)总是 非负的,当k>n时,C(n,k)=0等
第十章 第三节 二项式定理 课件(共47张PPT)
赋值法求系数和的应用技巧 (1)“赋值法”对形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R)的式子求其展 开式的各项系数之和,常用赋值法,只需令 x=1 即可;对形如(ax+by)n(a, b∈R)的式子求其展开式各项系数之和,只需令 x=y=1 即可. (2)若 f(x)=a0+a1x+a2x2+…+anxn,则 f(x)展开式中各项系数之和为 f(1), 偶次项系数之和为 a0+a2+a4+…=f(1)+2f(-1) ,奇次项系数之和为 a1+a3+a5+…=f(1)-2f(-1) .令 x=0,可得 a0=f(0).
令
x=1
代入2x-
1 x
6
=1;
故所有项的系数之和为 1;故选 AC.]
求形如(a+b)n(n∈N*)的展开式中与特定项相关的量 (常数项、参数值、特定项等)的步骤
(1)利用二项式定理写出二项展开式的通项公式 Tr+1=Crn an-rbr,常把字 母和系数分离开来(注意符号不要出错);
(2)根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整 数)先列出相应方程(组)或不等式(组),解出 r;
故选 B.]
3.(x+1x -2)6(x>0)的展开式中含 x3 项的系数为________.
解析:
法一:因为(x+1x -2)6=(
x
-
1 x
)12,所以其展开式的通项公
式为 Tr+1=C1r2 (
x
)12-r(-
1 x
)r=Cr12
(-1)r(
x )12-2r=Cr12 (-1)rx6-r,由 6
1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)Ckn an-kbk 是二项展开式的第 k 项.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a+b)n 的展开式中,每一项的二项式系数与 a,b 无关.( ) (4)(a+b)n 某项的系数是该项中非字母因数部分,包括符号等,与该项的 二项式系数不同.( ) 答案: (1)× (2)× (3)√ (4)√
二项式定理ppt课件
二项式定理的应用领域
总结词
二项式定理的应用领域非常广泛,包括组合数学、概率论、统计学和物理学等。
详细描述
二项式定理在数学中有着广泛的应用,它可以应用于组合数学中的排列和组合计 算,概率论中的概率分布计算,统计学中的样本方差和总体方差计算,以及物理 学中的量子力学和统计力学等领域。
02
二项式定理的公式与性质
统计力学
在统计力学中,二项式定理用于计算 分子在特定条件下可能处于的微观状 态数。
二项式定理在计算机科学中的应用
数据压缩
二项式定理用于计算数据压缩的比特率,以确定压缩后数据的存储空间。
加密算法
二项式定理用于实现某些加密算法,如RSA公钥加密算法。
二项式定理在其他工程领域的应用
控制系统
在控制系统的分析和设计中,二项式定理用于计算系统的传递函数。
03
创新研究方法
随着数学研究方法的不断创新,二项式定理的研究方法也将不断更新和
完善,以适应新的研究需求和挑战。
THANKS
感谢பைடு நூலகம்看
二项式定理的化简技巧
合并同类项
在展开二项式定理后,可以将同类项 合并,以便简化表达式。
利用代数恒等式化简
利用二项式定理的逆用
在某些情况下,可以利用二项式定理 的逆用对表达式进行化简,如 $(ab)^n = sum_{k=0}^{n} (-1)^k C_n^k a^{n-k} b^k$。
在展开过程中,可以运用代数恒等式 对表达式进行化简,如 $(a+b)^2 = a^2 + 2ab + b^2$。
二项式定理展开与化简的应用
解决组合计数问题
二项式定理可以用于解决组合计 数问题,例如计算从 $n$ 个不同 项中选取 $k$ 个的不同方式的数
二项式定理(一)课件
03 二项式定理的扩展与推广
二项式定理的扩展形式
01
02
03
04
二项式定理的扩展形式包括二 项式定理的逆用、二项式定理 的变形以及二项式定理的推广
。
二项式定理的逆用是指将二项 式定理中的幂次和系数互换,
从而得到新的等式。
二项式定理的变形是指通过改 变二项式定理中的幂次或系数
,从而得到新的等式。
二项式定理的推广是指将二项 式定理应用到更广泛的情况, 例如应用到多项式、分式等。
解析
根据二项式定理,$(a + b)^{2}$ 可以展开为 $a^{2} + 2ab + b^{2}$,与给定的等式一致。
习题二:证明题
题目
证明 $(a - b)(a + b) = a^{2} - b^{2}$。
解析
首先展开 $(a - b)(a + b)$,得到 $a^{2} - b^{2}$,与给定的等式一致。
习题三:综合应用题
题目
计算 $(a + b + c)^{3}$ 的展开式。
解析
根据二项式定理,$(a + b + c)^{3}$ 可以展开为 $a^{3} + 3a^{2}b + 3ab^{2} + b^{3} + c^{3} + 3ac^{2} + 3bc^{2} + 3ab^{2}c + 3ac^{2}b$。
利用组合数的性质和二项式展开式的 性质来推导公式。
公式证明的过程
基础步骤
当$n=0$和$n=1$时,公式成立。
归纳步骤
假设当$n=k$时公式成立,证明当$n=k+1$时公式也成立。
二项式定理ppt课件
二项式定理
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。
汇报人:
2023-11-28
目录
• 二项式定理的背景和定义 • 二项式定理的公式和证明 • 二项式定理的应用 • 二项式定理的扩展和推广 • 二项式定理的意义和影响 • 二项式定理的实例和分析
01
二项式定理的背景和定义
背景介绍
二项式定理在数学中有着悠久的历史,它起源于17世纪,是组合数学中的一种基本理论。
03
二项式定理的应用
组合数学中的应用
排列数公式
二项式定理可以用于计算排列数公式,即从n个不同的元素中取出m个元素的所有排列的个数。
组合数公式
二项式定理可以用于计算组合数公式,即从n个不同的元素中取出m个元素的所有组合的个数。
插入与删除操作
二项式定理可以用于计算在n个元素中进行插入或删除操作的总次数,以及进行特定次数的插入或删除操 作的所有可能方式的个数。
概率论中的应用
概率分布
二项式定理可以用于计算二项分布的概率分布,即某个事 件在n次独立试验中发生的次数的概率分布。
01
组合概率
二项式定理可以用于计算多个事件同时 发生的概率,即组合事件发生的概率。
02
03
事件的独立性
二项式定理可以用于判断两个事件是 否独立,即一个事件的发生是否会影 响另一个事件发生的概率。
组合数性质:在二项式定理中,我们 使用了组合数的性质。组合数 $C(n,k)$ 等于 $C(n-1,k-1) + C(n1,k)$,这是组合数的一个重要性质。 这个性质可以帮助我们在二项式定理 的证明过程中进行简化。
指数性质:在证明二项式定理的过程 中,我们还使用了指数的性质。例如 ,当 $n$ 为偶数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2}$ ;当 $n$ 为奇数时,$(a+b)^n = (a+b)^{n/2} \times (a+b)^{n/2-1} \times b$。这些指数性质可以帮助 我们在计算过程中进行简化。
6.3.1二项式定理课件共15张PPT
和 (a b)3 a 3 3a 2b 3ab 2 b3的概括和推广,
它是以多项式的乘法公式为基础,以组合知识为工具,
用不完全归纳法得到的,其证明可用数学归纳法.
(2)对二项式定理的理解和掌握,要从项数、系数、指
数、通项等方面的特征去熟悉他的展开式.通项公式
Tr 1 C a
r
率9%,按复利计算,10年后收回本金和利息。
试问,哪一种投资更有利?这种投资比另一种投资10年后大约
可多得利息多少元?
分析:本金10万元,年利率11%,按单利计算,10年后的本利和是
10×(1+11%×10)=21(万元);
本金10万元,年利率9%,按复利计算,10年后的本利和是10×(1+
9%)10;
x
60 12 1
64 x 192x 240x 160
2 3
x x
x
3
2
0 n
1 n 1
a
b
C
a
C
n
例题讲评
例2: 求 (2 x
解:
1 6
) 的展开式中
x
的展开式的通项:
根据题意,得
因此, 2 的系数是
x
x 的系数。
艾萨克·牛顿 Isaac
Newton (1643—1727) 英国
科学家.他被誉为人类历史上
最伟大的科学家之一.他不仅
是一位物理学家、天文学家,
还是一位伟大的数学家.
牛顿二项式定理
新课引入
某人投资10万元,有两种获利的可能供选择。一种是年
利率11%,按单利计算,10年后收回本金和利息。另一种是年利
二项式定理-PPT课件
1.3 二项式定理 1.3.1 二项式定理
1
问题提出
1.(a+b)2和(a+b)3展开后分别等 于什么?
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3.
2
问题提出
2.对于a+b,(a+b)2,(a+b)3, (a+b)4,(a+b)5等代数式,数学上统 称为二项式,其一般形式为(a+b)n
7
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a b)n
Cn0an Cn1an 1b Cn2an 2b2
C
n n
1abn
1
C nnb n
如何证明这个猜想?
8
大家学习辛苦了,还是要坚持
继续保持安静
9
形成结论
(a b)n Cn0an Cn1an 1b
Cnkan kbk
C nnb n
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,2,
…,n)叫做二项式系数.
10
问题探究
共有n+1项;字母a的最高次
数为n且按降幂排列;字母b的最高
次数为n且按升幂排列;各项中a与
b的指数幂之和都是n;各项的二项
式系数依次为 b无关.
C
n0,C
n1,C
n2,
13
问题探究
在(a+b)n的二项展开式中,
Tk 1 Cnkan kbk 叫做二项展开式的通
项,那么(a-b)n的二项展开式的通项
是什么?
Tk 1 ( 1)kCnkan kbk
14
问题探究
(2x+3y)20的二项展开式的通项是什 么?
1
问题提出
1.(a+b)2和(a+b)3展开后分别等 于什么?
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3.
2
问题提出
2.对于a+b,(a+b)2,(a+b)3, (a+b)4,(a+b)5等代数式,数学上统 称为二项式,其一般形式为(a+b)n
7
问题探究
根据归纳推理,你能猜测出
(a+b)n(n∈N*)的展开式是什么
吗?
(a b)n
Cn0an Cn1an 1b Cn2an 2b2
C
n n
1abn
1
C nnb n
如何证明这个猜想?
8
大家学习辛苦了,还是要坚持
继续保持安静
9
形成结论
(a b)n Cn0an Cn1an 1b
Cnkan kbk
C nnb n
叫做二项式定理,等式右边叫做二项展
开式,其中各项的系数
C
k n
(k=0,1,2,
…,n)叫做二项式系数.
10
问题探究
共有n+1项;字母a的最高次
数为n且按降幂排列;字母b的最高
次数为n且按升幂排列;各项中a与
b的指数幂之和都是n;各项的二项
式系数依次为 b无关.
C
n0,C
n1,C
n2,
13
问题探究
在(a+b)n的二项展开式中,
Tk 1 Cnkan kbk 叫做二项展开式的通
项,那么(a-b)n的二项展开式的通项
是什么?
Tk 1 ( 1)kCnkan kbk
14
问题探究
(2x+3y)20的二项展开式的通项是什 么?
第四节二项式定理及其应用课件 理课件
(2)由 C0n+C1n+C2n=79, 可得 n=12.设 Tk+1 项的系数最大.
( ) ∵21+2x12=2112 1+4x 12,
∴CC1k1k2244kk≥≥CCkk11+-22 1144kk- +11, , 解得 9.4≤k≤10.4,即 k=10, 故展开式中系数最大的项为 T11, 且 T11=11212·C1102·410·x10=16 896x10.
变式探究
3.(1)在
n的展开式中,只有第5项的二项式系数最大,
则展开式中常数项是( )
A.-7
B.7
C.-28
D.28
(2)(2013·新课标全国卷Ⅰ)设m为正整数,(x+y)2m展开式的 二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大 值为b,若13a=7b,则m=( )
A.5 B.6 C.7 D.8
点评:(1)求二项式系数最大项:
①如果 n 是偶数,则中间一项第2n+1项的二项式系数最大; ②如果 n 是奇数,则中间两项第n+2 1项与第n+2 1+1项的二 项式系数相等并最大.
(2)求展开式系数最大项:如求(a+bx)n(a,b∈R)的展开式系 数最大的项,一般是采用待定系数法,设展开式各项系数分别为 A1,A2,…,An+1,且第 k 项系数最大,应用AAkk≥≥AAkk-+11,, 从而解 出 k 来,即得最大项.
(1)(a0+a2+a4)2―(a1+a3)2 的值;
(2)|a0|+|a1|+|a2|+|a3|的值.
思路点拨:对涉及到求与二项式展开式系数有关的 求和问题时,常用赋值法,即给二项式中的字母赋予适当 的值,例如1或者-1等,问题即可得到解决.
解析:(1)在使用赋值法前,
应先将(a0+a2+a4)2-(a1+a3)2 变形, 即(a0+a2+a4)2―(a1+670
《二项式定理》(共17张)-完整版PPT课件全文
展开式的第3项是240x
例1.(2)求(2 x 1 )6的展开式 x
对于例1(2)中,请思考: ①展开式中的第3项的系数为多少? ②展开式中的第3项的二项式系数为多少? ③你能直接求展开式的第3项吗?
④你能直接求展开式中 x 2的系数吗?
解:④ Tk1 C6k (2
x)6k ( 1 )k x
(1)k 26k C6k x3k
N*)
①项数: 展开式共有n+1项.
②次数: 各项的次数均为n
字母a的次数按降幂排列,由n递减到0 , 字母b的次数按升幂排列,由0递增到n .
③二项式系数: Cnk (k 0,1,2,, n)
④二项展开式的通项: Tk1 Cnk ankbk
典例剖析
例1.(1)求(1 1 )4的展开式; x
(2)求(2 x 1 )6的展开式. x
N
*
)
(1)二项式系数: Cnk (k 0,1,2,, n)
(2)二项展开式的通项:Tk1 Cnk ankbk
思想方法:
(1) 从特殊到一般的数学思维方式.
(2) 类比、等价转换的思想.
巩固型作业: 课本36页习题1.3A组第2,4题
思维拓展型作业
二项式系数Cn0 , Cn1,, Cnk ,, Cnn有何性质?
1) x
C62 (2
x )4 (
1 x
)2
C63
(2
x )3 (
1 x
)3
C64
(2
x )2 (
1 )4 x
C65 (2
x )(
1 x
)5
C66
(
1 )6 x
64x3
192x2
240x
二项式定理课件
展开式的性质
二项式定理的展开式具有一些重要的性质,这些性质在后续 的应用中非常重要。
例如,二项式定理的展开式中的每一项都是正整数幂次的乘 积,而且每一项的系数都是组合数。此外,二项式定理的展 开式具有对称性,即第i+1项和第n-i+1项是相等的。
03
二项式定理的扩展
二项式定理的推广
推广到多项式
详细描述
通过二项式定理,可以计算出多个独立事件的概率和期望值,这在概率论中非常重要,如计算彩票中奖概率、股 票投资风险评估等领域都有应用。
微积分中的二项式定理应用
总结词
在微积分中,二项式定理常用于求幂级数的展开式。
详细描述
利用二项式定理,可以求出幂级数的展开式,这在微积分中非常重要,如求解微分方程、积分变换等 领域都有应用。
04
二项式定理的应用实例
组合数学中的二项式定理应用
总结词
在组合数学中,二项式定理常用于计 算组合数和排列数。
详细描述
利用二项式定理,可以快速计算出给 定集合的组合数或排列数,这些计算 在组合数学中非常重要,如排列组合 问题、概率论等领域都有广泛应用。
概率论中的二项式定理应用
总结词
在概率论中,二项式定理常用于计算概率和期望值。
二项式定理在组合数学、概率论和统计学 等领域有广泛的应用。
二项式定理的定义
01
二项式定理描述了一个二项式展 开后的系数规律,即$(a+b)^n$ 的展开式中的每一项系数。
02
二项式定理的系数可以用组合数 表示,即$C(n, k)$,表示从n个 不同项中选取k个的组合方式数目 。
二项式定理的应用场景
组合数的性质
二项式定理中的组合数具有一些重要的性质,如对称性、递推关系等,这些性 质在解决数学问题时非常有用。
职中二项式定理ppt课件
二项式定理的应用场景
总结词
二项式定理在数学、物理、工程等多个领域都有广泛的应用。
详细描述
在数学中,二项式定理常用于解决一些代数问题,如因式分解、求根公式等。在物理中,二项式定理可以用于计 算一些物理量的近似值,如光的波长、电子的能量等。在工程中,二项式定理可以用于解决一些优化问题,如线 性规划、组合优化等。
03
二项式定理的扩展与推广
二项式定理的扩展形式
二项式定理的通项公式
通过组合数和幂运算,推导出二项式定理的通项公式,用于 计算特定项的值。
二项式定理的推广
将二项式定理的适用范围从两项扩展到多项,并推导出相应 的展开式。
二项式定理的几何意义
二项式定理与几何图形的关系
通过图形解释二项式定理的原理,如利用三角形和组合数的关系解释二项式系 数。
习题二及答案
习题二
$(a+b+c)^2$的展开式中,$a^2$的 系数是多少?
答案
根据二项式定理,$(a+b+c)^2$的展 开式中$a^2$的系数是 $C_2^1b^1c^0+C_2^0b^0c^2=2 c+2b$。
习题三及答案
习题三
$(a+b)^5$的展开式中,常数项是多少?
答案
根据二项式定理,$(a+b)^5$的展开式中常 数项是$C_5^4a^1b^4=5b定理简介 • 二项式定理的公式与证明 • 二项式定理的扩展与推广 • 二项式定理的实际应用 • 习题与解答
01
二项式定理简介
二项式定理的定义
总结词
二项式定理是数学中的一个基本定理 ,它描述了两个数的乘积的展开式的 特定规律。
详细描述
二项式定理指出,对于任何两个数a和 b(其中b不为0),它们的乘积可以 展开为(a+b),(a+b)^2,(a+b)^3等 幂次的各项,这些项的系数遵循特定 的规律。
第三节 二项式定理 课件(共36张PPT)
其展开式的第k+1项为Tk+1=Ck4(x2+x)4-kyk,
因为要求x3y2的系数,所以k=2, 所以T3=C24(x2+x)4-2y2=6(x2+x)2y2. 因为(x2+x)2的展开式中x3的系数为2, 所以x3y2的系数是6×2=12.
法二 (x2+x+y)4表示4个因式x2+x+y的乘积,在 这4个因式中,有2个因式选y,其余的2个因式中有一个 选x,剩下的一个选x2,即可得到含x3y2的项,故x3y2的系 数是C24·C12·C11=12.
对于几个多项式和的展开中的特定项(系数)问题, 只需依据二项展开式的通项,从每一项中分别得到特定 的项,再求和即可.
角度 几个多项式积的展开式中特定项(系数)问题 [例4] (1)(2x-3) 1+1x 6 的展开式中剔除常数项后的 各项系数和为( ) A.-73 B.-61 C.-55 D.-63 (2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0, 则正实数a=________. 解析:(1)(2x-3)1+1x6的展开式中所有项的系数和为 (2-3)(1+1)6=-64,(2x-3)1+1x6=
为( )
A.-1
B.1
C.32
解析:由题意可得CC6162aa54bb=2=-13158,,
D.64
解得ab==1-,3,或ab==-3. 1,则(ax+b)6=(x-3)6, 令x=1得展开式中所有项的系数和为(-2)6=64,故选D. 答案:D
2.(2020·包头模拟)已知(2x-1)5=a5x5+a4x4+a3x3+
[例2] (1)若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+ a5x5,则|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=( )
《二项式定理》课件
二项式系数是组合数的一种形式,记 为$C(n, k)$,表示从n个不同元素中 选取k个元素的组合数。
二项式定理的应用场景
01
02
03
04
在数学领域,二项式定理常用 于解决组合数学问题,如排列
、组合、概率等。
在物理领域,二项式定理可以 用于计算各种物理量的展开式 ,如力学、电磁学、光学等领
域。
在计算机科学领域,二项式定 理可以用于快速算法设计、数
详细描述
切比雪夫二项式定理是由切比雪夫发现的一种数学定理,它适用于解决与切比雪 夫多项式相关的问题。该定理可以用来计算切比雪夫多项式的系数,从而得到一 些重要的数学结论。
贝塞尔二项式定理
总结词
贝塞尔二项式定理是二项式定理的一 种特殊形式,它适用于解决与贝塞尔 函数相关的问题。
详细描述
贝塞尔二项式定理是由贝塞尔发现的 一种数学定理,它适用于解决与贝塞 尔函数相关的问题。该定理可以用来 计算贝塞尔函数的系数,从而得到一 些重要的数学结论。
总结词
牛顿二项式定理是二项式定理的一种特殊形式,它适用于解决特定的问题,如 无穷级数求和等。
详细描述
牛顿二项式定理是由牛顿发现的一种数学定理,它适用于解决一些特定的问题 ,如无穷级数求和等。该定理可以用来计算二项式展开式的系数,从而得到一 些重要的数学结论。
切比雪夫二项式定理
总结词
切比雪夫二项式定理是二项式定理的一种特殊形式,它适用于解决与切比雪夫多 项式相关的问题。
04
二项式定理的扩展与推广
二项式定理的扩展形式
扩展到多于两项的乘积
扩展到无穷级数
二项式定理可以扩展到多项式乘积的 形式,即$(a+b+c)^n$的展开形式。
二项式定理的应用场景
01
02
03
04
在数学领域,二项式定理常用 于解决组合数学问题,如排列
、组合、概率等。
在物理领域,二项式定理可以 用于计算各种物理量的展开式 ,如力学、电磁学、光学等领
域。
在计算机科学领域,二项式定 理可以用于快速算法设计、数
详细描述
切比雪夫二项式定理是由切比雪夫发现的一种数学定理,它适用于解决与切比雪 夫多项式相关的问题。该定理可以用来计算切比雪夫多项式的系数,从而得到一 些重要的数学结论。
贝塞尔二项式定理
总结词
贝塞尔二项式定理是二项式定理的一 种特殊形式,它适用于解决与贝塞尔 函数相关的问题。
详细描述
贝塞尔二项式定理是由贝塞尔发现的 一种数学定理,它适用于解决与贝塞 尔函数相关的问题。该定理可以用来 计算贝塞尔函数的系数,从而得到一 些重要的数学结论。
总结词
牛顿二项式定理是二项式定理的一种特殊形式,它适用于解决特定的问题,如 无穷级数求和等。
详细描述
牛顿二项式定理是由牛顿发现的一种数学定理,它适用于解决一些特定的问题 ,如无穷级数求和等。该定理可以用来计算二项式展开式的系数,从而得到一 些重要的数学结论。
切比雪夫二项式定理
总结词
切比雪夫二项式定理是二项式定理的一种特殊形式,它适用于解决与切比雪夫多 项式相关的问题。
04
二项式定理的扩展与推广
二项式定理的扩展形式
扩展到多于两项的乘积
扩展到无穷级数
二项式定理可以扩展到多项式乘积的 形式,即$(a+b+c)^n$的展开形式。
二项式定理课件ppt
二项式定理的应用举例
04
求解某些特定形式的幂级数展开式
01
幂级数展开式的求解
二项式定理可以用于求解某些特定形式的幂级数展开式 ,例如$(a+b)^n$的展开式。
02
泰勒级数展开
利用二项式定理,我们可以求解一些函数的泰勒级数展 开,从而得到函数在某个点的近似值。
03
幂级数的求和
对于一些特定的幂级数,我们可以利用二项式定理找到 其求和的方法。
其中,C(n,k)表示从n个不同元素中取出k个元素的组合数。
二项式系数的性质
二项式系数是组合数的推广 ,它具有与组合数相同的性 质,例如
1. 对称性:对于任何自然数n ,C(n,k) = C(n,n-k)。
2. 递推性:C(n+1,k) = C(n,k-1) + C(n,k)。
3. 组合恒等式:C(n,k) + C(n,k-1) = C(n+1,k)。
二项式定理的历史背景
二项式定理最初由牛顿在17世纪发 现,用于解决一些特殊的数学问题。
之后,许多数学家都对二项式定理进 行了研究和推广,使其成为现代数学 中的基本工具之一。
二项式定理的意义与应用
01
二项式定理是组合数学的基础,可以帮助我们理解和分 析一些组合问题的内在规律。
02
在统计学中,二项式定理可以用于计算样本数量较少时 的置信区间和置信度。
深化理解的进阶题目
总结词
深入理解概念
详细描述
在基本掌握二项式定理的基础上,通过解决 一些相对复杂的进阶题目,帮助学生深入理 解二项式定理的概念和变形方式,进一步提 高解题能力。
有趣的开放性问题
总结词
激发学习兴趣
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、( 1 3 x )20展开式中,不含x的项是第____ 项 x
3、(x2 - 1 )9展开式中x9的系数是 _________(03年 2x
全国高考)
例1(x 1)5 5(x 1)4 10(x 1)3 10(x 1)2 5(x 1)
(A)x5 (C)x5+1
(B)x5-1 (D)(x-1)5-1
(1) a1+a2+a3+ a4 + a5的值 (2) a1+a3+ a5的值 (3) |a1|+|a2|+|a3|+ |a4| + |a5|的值
评注:涉及展开式的系数和的问题,常用赋值法解决
练习:
若(2 x 3 )4 a0 a1 x a2 x2 a3 x3 a4 x4 ,则 (a0 a2 a4 )2 (a1 a3 )2 ______ (99年全国)
作业: 指导与学习P74-75
T1-10
重庆遇罕见蝗灾
2001年夏,重庆壁山县古老城遭受了 罕见的蝗虫灾害,铺天盖地的蝗虫像 收割机一样把当地近千亩的农作物和 果树林吞食得面目全非,眼看数年心 血就要化为泡影。
重 庆 遇 罕 见 蝗 灾
请你帮助
古老城人可以怎样消灭 蝗虫,控制蝗灾?
古老城紧急呼救
1、已知
x
2 x
n
展开式中第五项的系数与
第三项的系数比是10 : 1,求展开式中含x的项
2、如果: 1+2C
1 n
22 Cn2 L
2n
C
n n
2187
求:Cn1 L Cnr L Cnn 的值
小结 二项式定理体现了二项式展开式的指 数、项数、二项式系数等方面的内在联系。 涉及到二项展开式中的项和系数的综合问 题,只需运用通项公式和二项式系数的性 质对条件进行逐个击破,对于与组合数有 关的和的问题,赋值法是常用且重要的方 法,同时注意二项式定理的逆用
知识网络
二项式 定理
展开式 通项公式 系数性质
应用
复习
1.二项式定理:
(a b)n
C
0 n
a
n
C
1 n
a
n
1b1
C
r n
a
nr
b
r
C
n n
b
n
(n
N
)
2.通项即展开式的第r+1项:
Tr1
C
r n
a
n
r
b
r
二项式系数的性质
Hale Waihona Puke (1)对称性: 与首末两端“等距离” 的 两个二项式系数相
等
代数意义:
例 6 若 (x+m)2n+1 和 (mx+1)2n (n∈N+ , m∈R且m≠0)的展开式的 xn 项的系数相等, 求实数m的取值范围
评注:注意区分二项式系数与项的系数
练习、若(1+ x )n的展开式中,倒数第5,6, 7项的系数顺次为等差数列,且展开式的项 数为奇数,求展开式中x2的系数
练习
例2、在(2x+3)20的展开式中,求其项的最大 系数与最大二项式系数之比
2
例3、已知 ( x 3 3x2 )n的展开式中,各项系
数和比它的二项式系数和大992.求展开式 中二项式系数最大的项
典题型举例
例4、设(1-2x)5= a0+ a1x + a2x2 + a3x3+ a4x4+ a5x5. 求:
请支援我们 20万只青蛙,2 万只麻雀和5000条蛇。
疑问1 为什么古老城选择了用
自然方法处理蝗灾?
第三章 动物在生物圈中的作用
第一节 动物在自然界中的作用
疑问2 古老城中的青蛙、麻雀
和蛇都哪儿去了?
当地农民说:“青蛙和蛇对付蝗 虫很管用,可现在青蛙和蛇都让 人吃光了。”
麻雀啄食和糟蹋农作物,曾被 列为主要害鸟。20世纪50~60 年代,我国开展了一场轰轰烈 烈的“剿灭麻雀”的全民运动。
评注:利用二项式定理证明不等式问题时,通常 是把二项展开式中的某些正项适当删去(缩小), 或把某些负项删去(放大),使等式转化为不等 式,然后再根据不等式的传递性进行证明
练习:设x 1,n N *且n 2, 求证:xn n2 ( x - 1)2
4
典题型举例
例5 求(x - 1) - (x -1) 2 + (x -1)3- (x -1)4 + (x -1)5展开
典题型举例
例5、 9192除以100的余数是_____
(92年“三南”高考 题)
评注:利用二项式定理可以求余数和证明整除性 问题,通常需将底数化成两数的和与差的形式, 且这种转化形式与除数有密切关系
练习:若今天是星期天,则今天后的第100100 天是星期________
典题型举例
例6证明:当 n 3时,2n 2(n 1)
“成果”:
仅一天,上海就消灭麻雀194432只! 据不完全报道:从3月到11月上旬, 8个月的时间中全国捕杀麻雀19.6亿 只!
通过以上资料的分析,你认为人类能否 随意灭杀某种动物吗?为什么? 人为的破坏动物的种类和数量,会导致 整个生态系统失去平衡
从而可以看出 动物在自然界有什么作用?
维持生态平衡
C
m n
C
n n
m
几何意义:
直线 r n 2
作为对称轴
将图象分成对称的两部分
(2)增减性与最大值
当k n 1时,二项式系数是逐渐增大的.由对称性 2
知它的后半部分是逐渐减小的, 且在中间取得最大值.
n
当n是偶数时,中间的一项 C n2 取得最大值;当 n是奇
n1 n1
数时,中间的两项Cn 2 ,Cn 2 相等,且同时取得最大值.
在生态系统中,各种生物的数量和 所占的比例总是维持在相对稳定的 状态,这种现象就叫生态平衡。
如果食物链或食物网中某一环节出 了问题,就会使整个生态失衡。
▪疑问:
▪ 在自然生态系统中,各种 动物的数量能不能无限的 增长?为什么?
(3)各二项式系数的和
(1)C
0 n
C
1 n
C
2 n
C
r n
C
n n
2n
即:(a b)n的展开式的各个二项式系数的和等于2n
(
2)C
0 n
C
2 n
C
1 n
C
3 n
2n1
即:(a b)n的展开式中,奇数项的二项式系数的和 等于偶数项的二项式系数的和
这种方法叫做赋值法
考点练习
1、若(1+x)8展开式中间三项依次成等差数列, 则x=____________
式中含 x 2 项的系数
(90年全国)
分析:求特定项系数,我们已经学过二项式展开式、 通项公式、分解因式等方法。对于求较复杂的代数式 的展开式中某项的系数,常常需要对所给的代数式进 行化简,减少计算量
变式:求(a b c d )1995展开式中 a200b800c900d 95项的系数
典题型举例
3、(x2 - 1 )9展开式中x9的系数是 _________(03年 2x
全国高考)
例1(x 1)5 5(x 1)4 10(x 1)3 10(x 1)2 5(x 1)
(A)x5 (C)x5+1
(B)x5-1 (D)(x-1)5-1
(1) a1+a2+a3+ a4 + a5的值 (2) a1+a3+ a5的值 (3) |a1|+|a2|+|a3|+ |a4| + |a5|的值
评注:涉及展开式的系数和的问题,常用赋值法解决
练习:
若(2 x 3 )4 a0 a1 x a2 x2 a3 x3 a4 x4 ,则 (a0 a2 a4 )2 (a1 a3 )2 ______ (99年全国)
作业: 指导与学习P74-75
T1-10
重庆遇罕见蝗灾
2001年夏,重庆壁山县古老城遭受了 罕见的蝗虫灾害,铺天盖地的蝗虫像 收割机一样把当地近千亩的农作物和 果树林吞食得面目全非,眼看数年心 血就要化为泡影。
重 庆 遇 罕 见 蝗 灾
请你帮助
古老城人可以怎样消灭 蝗虫,控制蝗灾?
古老城紧急呼救
1、已知
x
2 x
n
展开式中第五项的系数与
第三项的系数比是10 : 1,求展开式中含x的项
2、如果: 1+2C
1 n
22 Cn2 L
2n
C
n n
2187
求:Cn1 L Cnr L Cnn 的值
小结 二项式定理体现了二项式展开式的指 数、项数、二项式系数等方面的内在联系。 涉及到二项展开式中的项和系数的综合问 题,只需运用通项公式和二项式系数的性 质对条件进行逐个击破,对于与组合数有 关的和的问题,赋值法是常用且重要的方 法,同时注意二项式定理的逆用
知识网络
二项式 定理
展开式 通项公式 系数性质
应用
复习
1.二项式定理:
(a b)n
C
0 n
a
n
C
1 n
a
n
1b1
C
r n
a
nr
b
r
C
n n
b
n
(n
N
)
2.通项即展开式的第r+1项:
Tr1
C
r n
a
n
r
b
r
二项式系数的性质
Hale Waihona Puke (1)对称性: 与首末两端“等距离” 的 两个二项式系数相
等
代数意义:
例 6 若 (x+m)2n+1 和 (mx+1)2n (n∈N+ , m∈R且m≠0)的展开式的 xn 项的系数相等, 求实数m的取值范围
评注:注意区分二项式系数与项的系数
练习、若(1+ x )n的展开式中,倒数第5,6, 7项的系数顺次为等差数列,且展开式的项 数为奇数,求展开式中x2的系数
练习
例2、在(2x+3)20的展开式中,求其项的最大 系数与最大二项式系数之比
2
例3、已知 ( x 3 3x2 )n的展开式中,各项系
数和比它的二项式系数和大992.求展开式 中二项式系数最大的项
典题型举例
例4、设(1-2x)5= a0+ a1x + a2x2 + a3x3+ a4x4+ a5x5. 求:
请支援我们 20万只青蛙,2 万只麻雀和5000条蛇。
疑问1 为什么古老城选择了用
自然方法处理蝗灾?
第三章 动物在生物圈中的作用
第一节 动物在自然界中的作用
疑问2 古老城中的青蛙、麻雀
和蛇都哪儿去了?
当地农民说:“青蛙和蛇对付蝗 虫很管用,可现在青蛙和蛇都让 人吃光了。”
麻雀啄食和糟蹋农作物,曾被 列为主要害鸟。20世纪50~60 年代,我国开展了一场轰轰烈 烈的“剿灭麻雀”的全民运动。
评注:利用二项式定理证明不等式问题时,通常 是把二项展开式中的某些正项适当删去(缩小), 或把某些负项删去(放大),使等式转化为不等 式,然后再根据不等式的传递性进行证明
练习:设x 1,n N *且n 2, 求证:xn n2 ( x - 1)2
4
典题型举例
例5 求(x - 1) - (x -1) 2 + (x -1)3- (x -1)4 + (x -1)5展开
典题型举例
例5、 9192除以100的余数是_____
(92年“三南”高考 题)
评注:利用二项式定理可以求余数和证明整除性 问题,通常需将底数化成两数的和与差的形式, 且这种转化形式与除数有密切关系
练习:若今天是星期天,则今天后的第100100 天是星期________
典题型举例
例6证明:当 n 3时,2n 2(n 1)
“成果”:
仅一天,上海就消灭麻雀194432只! 据不完全报道:从3月到11月上旬, 8个月的时间中全国捕杀麻雀19.6亿 只!
通过以上资料的分析,你认为人类能否 随意灭杀某种动物吗?为什么? 人为的破坏动物的种类和数量,会导致 整个生态系统失去平衡
从而可以看出 动物在自然界有什么作用?
维持生态平衡
C
m n
C
n n
m
几何意义:
直线 r n 2
作为对称轴
将图象分成对称的两部分
(2)增减性与最大值
当k n 1时,二项式系数是逐渐增大的.由对称性 2
知它的后半部分是逐渐减小的, 且在中间取得最大值.
n
当n是偶数时,中间的一项 C n2 取得最大值;当 n是奇
n1 n1
数时,中间的两项Cn 2 ,Cn 2 相等,且同时取得最大值.
在生态系统中,各种生物的数量和 所占的比例总是维持在相对稳定的 状态,这种现象就叫生态平衡。
如果食物链或食物网中某一环节出 了问题,就会使整个生态失衡。
▪疑问:
▪ 在自然生态系统中,各种 动物的数量能不能无限的 增长?为什么?
(3)各二项式系数的和
(1)C
0 n
C
1 n
C
2 n
C
r n
C
n n
2n
即:(a b)n的展开式的各个二项式系数的和等于2n
(
2)C
0 n
C
2 n
C
1 n
C
3 n
2n1
即:(a b)n的展开式中,奇数项的二项式系数的和 等于偶数项的二项式系数的和
这种方法叫做赋值法
考点练习
1、若(1+x)8展开式中间三项依次成等差数列, 则x=____________
式中含 x 2 项的系数
(90年全国)
分析:求特定项系数,我们已经学过二项式展开式、 通项公式、分解因式等方法。对于求较复杂的代数式 的展开式中某项的系数,常常需要对所给的代数式进 行化简,减少计算量
变式:求(a b c d )1995展开式中 a200b800c900d 95项的系数
典题型举例