小学几何之蝴蝶定理大全
小学奥数之几何蝴蝶定理问题精编版
EFG的面积大6平方厘米。
ABC的面积是多少平方厘米?
A
F
G
BDEC
三、练习题
1、如图,四边形ABCD中,AC和BD订交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少?
2、以下图,BD,CF将长方形ABCD分红4块,△DEF的面积是4 cm2,△CED的面积6cm2。
4
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
例12、
10厘米和12厘米,求暗影部
如图,甲、乙两图形都是正方形,它们的边长分别是
分的面积。
例13、如图,大正方形ABCD的边长为6,依以下条件求三角形BDF的面积。
例14、以下列图,已知D是BC的中点,E是CD的中点,F是AC的中点,且
D
A
O
C
B
例10、左下列图所示的ABCD的边BC长10cm,直角三角形BCE的直角边EC长8cm,已知两块暗影部分的面积和比△EFG的面积大10cm2,求CF的长。
例11、长方形ABCD的面积为36平方厘米,E、F、G分别为边AB、BC、CD的中点,H为AD边上的任一点。求图中暗影部分的面积是多少?
6
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
8、已知ABC中,ABAC12cm,ABC的面积是cm2,P是BC上随意一点,P到
AB,AC的距离是x, y,那么xy;
9、如右图所示,已知三角形ABC面积为1,延伸AB至D,使BD=AB;延伸BC至E,使CE=2BC;延伸CA至F,使AF=3AC,求三角形DEF的面积。
第六讲蝴蝶定理
S 3S 1S 4S 2abO ACBD五年级秋季第六讲——蝴蝶模型——学而思范基程老师【知识点总结】一、来源:蝴蝶模型是几何图形中非常重要的模型之一,分为任意四边形与梯形中的蝴蝶模型,因形似蝴蝶而得名。
二、模型: 1、任意四边形中的蝴蝶定理:① S 1:S 2=S 4:S 3或者S 1×S 3=S 2×S 4②AO:OC =(S 1+S 2):(S 3+S 4) {DO:BO =(S 1+S 4):(S 2+S 3)}2、梯形中的蝴蝶定理: 如果AD:BC=:① S 1:S 3=:② S 2= S 4 ③S 1 : S 3: S 2: S 4=::④ 梯形面积所对应的份数为:3、总结:无论是在任意四边形还是梯形当中的蝴蝶模型,都为我们提供了一种解决四边形或梯形面积的新的方法。
任意四边形当中,将不规则四边形的面积与四边形内的三角形结合了起来;而梯形当中,我们只需要知道梯形上下底之间的比例,就可以得出被对角线所分成的四个三角形的面积之间的比例关系,进而知道每个三角形的面积所对应的份数。
258OACDBF E【例题精讲】(2007年“数学解题能力展示”读者评选高年级组初赛)如图,长方形ABCD 被CE 、DF 分成四块,已知其中三块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为_________平方厘米。
【解析】连结DE 、CF 。
(1)在梯形EFCD 中,根据蝴蝶模型,有三角形EOF 与三角形DOC 的面积比为2:8,所以得到DF :DC=1:2。
那么,三角形EOF 与三角形EOD 的面积比为1:1×2=1:2,所以三角形EOD 的面积为4(平方厘米),三角形COF 的面积也为4(平方厘米)。
因为四边形OEAD 的面积为5(平方厘米),所以,三角形ADE 的面积为1(平方厘米)。
(2)在长方形ABCD 中,三角形ECD 的面积是长方形ABCD 面积的一半,是8+4=12(平方厘米)那么剩下的部分(三角形ADE 与三角形BCE 的面积和也是12),又因为三角形ECF 的面积为2+4=6(平方厘米),所以三角形BCF 的面积为12-1-6=5(平方厘米)。
几何中的蝴蝶定理
几何中的蝴蝶定理1. 哎呀,今天咱们来聊一个特别有意思的几何定理,叫蝴蝶定理!说实话,光听这名字就觉得美滋滋的,像是在数学花园里看见了一只翩翩起舞的蝴蝶。
2. 这个定理说的是啥呢?想象一下,在一个圆里面,画了两条相交的弦,就像蝴蝶的两个翅膀一样交叉在一起。
这时候就神奇了!3. 这两条弦交叉的那个点,把每条弦都分成了两段。
要是把这四段线段相乘,你猜怎么着?两组乘积居然完全相等!这就跟变魔术一样神奇。
4. 打个比方啊,假如咱们画了两条弦,一条被分成3厘米和5厘米两段,另一条被分成4厘米和3.75厘米两段。
你用计算器算算:3×5=15,4×3.75=15,这不就神了吗?5. 有的同学可能要问了:这定理咋这么像蝴蝶呢?你仔细看啊,两条相交的弦就像蝴蝶的翅膀,交点就像蝴蝶的身体,这不是活脱脱一只几何蝴蝶嘛!6. 这个定理还有个特别实用的地方。
要是你在做几何题时遇到圆里面有两条相交的弦,立马就能用上这个定理,分分钟解出来!7. 说到证明过程,其实也不难。
就像是把蝴蝶的翅膀折来折去,用相似三角形就能证明。
不过今天咱们主要是理解这个定理的妙处,就不钻牛角尖啦!8. 这个定理还告诉我们一个道理:看似不相关的东西,其实暗藏玄机。
就像蝴蝶翅膀上看似随意的花纹,背后却藏着严谨的数学规律。
9. 在实际应用中,蝴蝶定理经常和其他定理一起使用。
比如说和圆幂定理搭配,简直就是几何题的双保险!解题的时候,就像蝴蝶飞舞一样轻松自如。
10. 有意思的是,这个定理还能推广到更复杂的情况。
要是在圆里面画更多的弦,它们相交的点也会形成一些有趣的规律,就像一群蝴蝶在跳舞。
11. 学习数学最重要的就是找到乐趣。
蝴蝶定理就是个很好的例子,它把枯燥的几何变成了生动的图画,让人感受到数学之美。
12. 所以啊,下次你看到蝴蝶,别光顾着欣赏它的美丽,也想想它身上藏着的数学奥秘。
这不就是数学最迷人的地方吗?它把大自然的美和严谨的逻辑完美地结合在了一起!。
小学奥数之蝴蝶定理
小学奥数---蝴蝶定理一、 基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S 1 : S 2 = a : b定理2:等分点结论( 鸟头定理)如图,三角形△AED 的面积占三角形△ABC 的面积的2034153=⨯定理3:任意四边形中的比例关系( 蝴蝶定理)1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4上、下部分的面积之积等于左、右部分的面积之积2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)梯形中的比例关系( 梯形蝴蝶定理)1)S 1∶S 3 =a 2∶b 2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab4)S 的对应份数为(a+b )2定理4:相似三角形性质CBEFDA1)Hh C c B b A a ===2) S 1 ∶S 2 = a 2 ∶A 2定理5:燕尾定理S △ABG ∶ S △AGC = S △BGE ∶ S △GEC = BE ∶ECS △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FCS △AGC ∶ S △BCG = S △ADG ∶ S △DGB = AD ∶DB二、 例题分析例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,14CF CA =,求三角形DEF 的面积.例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.例4、例1 如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD分割成四个三角形。
蝴蝶定理的八种证明及三种推广
蝴蝶定理的证明定理:设M 为圆内弦PQ 的中点,过M 作弦AB 和CD 。
设AD 和BC 各相交PQ 于点E 和F ,则M 是EF 的中点。
在蝴蝶定理的证明中有各种奇妙的辅助线,同时诞生了各种美妙的思想,蝴蝶定理在这些辅助线的帮助下,翩翩起舞!证法1 如图2,作OU AD OV BC ⊥⊥,,则垂足U V ,分别为AD BC 、的中点,且由于 EUO EMO 90∠=∠=︒ FVO FMO 90∠=∠=︒得M E U O 、、、共圆;M F V O 、、、共圆。
则AUM=EOM MOF MVC ∠∠∠=∠,又MADMCB ,U V 、为AD BC 、的中点,从而MUA MVC ∆∆,AUM MVC ∠=∠ 则 EOM MOF ∠=∠,于是ME=MF 。
证法2 过D 作关于直线OM 的对称点D',如图3所示,则 FMD'EMD MD=MD'∠=∠, ○1 联结D'M 交圆O 于C',则C 与C'关于OM 对称,即PC'CQ =。
又111CFP=QB+PC =QB+CC'+CQ =BC'=BD'C'222∠∠()()故M F B D'、、、四点共圆,即MBF MD'F ∠=∠而 MBF EDM ∠=∠ ○2 由○1、○2知,DME D'MF ∆≅∆,故ME=MF 。
证法 3 如图4,设直线DA 与BC 交于点N 。
对NEF ∆及截线AMB ,NEF ∆及截线CMD 分别应用梅涅劳斯定理,有FM EA NB 1ME AN BF ⋅⋅=,FM ED NC1ME DN CF⋅⋅= 由上述两式相乘,并注意到 NA ND NC NB ⋅=⋅ 得22FM AN ND BF CF BF CF ME AE ED BN CN AE ED⋅=⋅⋅⋅=⋅ ()()()()2222PM MF MQ MF PM MF PM ME MQ+ME PM ME -==-+--化简上式后得ME=MF 。
小学奥数几何之蝴蝶定理
几何之蝴蝶定理一、 基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S 1 : S 2 = a : b定理2:等分点结论( 鸟头定理)如图,三角形△AED 的面积占三角形△ABC 的面积的2034153=⨯定理3:任意四边形中的比例关系( 蝴蝶定理)1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4上、下部分的面积之积等于左、右部分的面积之积2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)梯形中的比例关系( 梯形蝴蝶定理)1)S 1∶S 3 =a 2∶b 2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab4)S 的对应份数为(a+b )2定理4:相似三角形性质CFEADBCBEFDA1)HhC c B b A a ===2) S 1 ∶S 2 = a 2 ∶A 2定理5:燕尾定理S △ABG ∶ S △AGC = S △BGE ∶ S △GEC = BE ∶ECS △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FCS △AGC ∶ S △BCG = S △ADG ∶ S △DGB = AD ∶DB二、 例题例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,14CF CA =,求三角形DEF 的面积.例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.例4、例1 如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD分割成四个三角形。
小学奥数几何篇五大模型蝴蝶定理(附答案)
小学奥数几何篇五大模型蝴蝶定理一、蝴蝶定理的定义与公式蝴蝶定理是小学奥数几何篇中的一个重要模型,它描述了在等腰三角形中,一条平行于底边的线段将底边平分,并且这条线段与等腰三角形的两腰相交于同一点时,该线段的中点与等腰三角形的顶点、底边的中点以及两腰上的交点形成一个等腰三角形。
蝴蝶定理的公式如下:设等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,则AG=BG=CG。
二、蝴蝶定理的应用1. 在等腰三角形中求边长:通过蝴蝶定理,可以快速求出等腰三角形中未知边的长度。
例如,已知等腰三角形ABC中,AB=AC,底边BC 的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求AG的长度。
解答:根据蝴蝶定理,AG=BG=CG,又因为AB=AC,所以AG=AB/2=a。
2. 在等腰三角形中求角度:通过蝴蝶定理,可以求出等腰三角形中未知角的度数。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求∠AGB的度数。
解答:由于AG=BG=CG,所以△AGB是等边三角形,∠AGB=60°。
3. 在等腰三角形中求面积:通过蝴蝶定理,可以求出等腰三角形中未知部分的面积。
例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求△AGB的面积。
解答:由于△AGB是等边三角形,所以△AGB的面积=(a^2 √3)/ 4。
小学奥数几何篇五大模型蝴蝶定理(附答案)
小学奥数几何篇五大模型蝴蝶定理(附答案)在小学奥数的几何部分,蝴蝶定理是一个非常有用的工具,它可以帮助我们解决一些复杂的几何问题。
蝴蝶定理主要描述了在四边形中,当两条对角线互相垂直时,四边形被分成四个小三角形,而这四个小三角形的面积之间存在一定的关系。
蝴蝶定理的内容如下:设四边形ABCD中,AC和BD是互相垂直的对角线,交于点O。
设四个小三角形的面积分别为S1、S2、S3、S4。
那么,蝴蝶定理可以表述为:S1 + S2 = S3 + S4。
这个定理听起来可能有些抽象,但实际上它的应用非常广泛。
我们可以通过蝴蝶定理来解决一些看似复杂的问题。
下面,我将通过一些例子来展示蝴蝶定理的应用。
例1:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC =8cm,BD = 6cm。
如果三角形ABC的面积是24cm²,那么三角形ADC的面积是多少?解答:根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是24cm²,所以S1 = 24cm²。
又因为AC = 8cm,BD = 6cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 8cm6cm = 24cm²。
因此,三角形ADC的面积也是24cm²。
例2:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC = 10cm,BD = 5cm。
如果三角形ABC的面积是20cm²,那么三角形ADC的面积是多少?解答:同样地,根据蝴蝶定理,我们有S1 + S2 = S3 + S4。
由于三角形ABC的面积是20cm²,所以S1 = 20cm²。
又因为AC = 10cm,BD = 5cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 10cm 5cm = 25cm²。
因此,三角形ADC的面积是25cm²。
小学几何之蝴蝶定理大全
小学几何之蝴蝶定理大全小学几何之蝴蝶定理大全一、基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比等于对应底边之比。
定理2:等分点结论(鸟头定理)在△ABC中,D为BC的中点,连接AD并延长交EF于点G,则有:frac{S_{\triangle AEG}}{S_{\triangleBGC}}=\frac{AD}{BC}$frac{S_{\triangle AFG}}{S_{\triangle BGC}}=\frac{AB-AD}{BC}$定理3:任意四边形中的比例关系(蝴蝶定理)1)上、下部分的面积之积等于左、右部分的面积之积:或 $S_1\times S_3=S_2\times S_4$2)AO∶OC=(S1+S2)∶(S4+S3)梯形中的比例关系(梯形蝴蝶定理)1)上、下部分的面积比等于上、下边的平方比:2)左、右部分的面积相等3)$4)S的对应份数为(a+b)2定理4:相似三角形性质1)$\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{h}{H}$ 2)$\frac{S_1}{S_2}=\frac{a^2}{A^2}$定理5:燕尾定理S_{\triangle ABG}:S_{\triangle AGC}=S_{\triangle BGE}:S_{\triangle GEC}=S_{\triangle BGA}:S_{\triangle BGC}=S_{\triangle AGF}:S_{\triangle GFC}=S_{\triangle AGC}:S_{\triangle BCG}=S_{\triangle ADG}:S_{\triangle DGB}=二、例题分析例1、如图,AD=DB,AE=EF=FC,已知阴影部分面积为5平方厘米,求ABC的面积。
删除明显有问题的例题)例4、如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD分割成四个三角形。
小学几何之蝴蝶定理大全
小学几何之蝴蝶定理大全一、 基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比 等于对应底边之比。
S 1 : S 2 = a : b定理2:等分点结论( 鸟头定理)如图,三角形△AED 的面积占三角形△ABC 的面积的2034153=⨯定理3:任意四边形中的比例关系( 蝴蝶定理)1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4上、下部分的面积之积等于左、右部分的面积之积2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)梯形中的比例关系( 梯形蝴蝶定理)1)S 1∶S 3 =a 2∶b 2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab4)S 的对应份数为(a+b )2定理4:相似三角形性质1)HhC c B b A a ===2) S 1 ∶S 2 = a 2 ∶A 2定理5:燕尾定理S △ABG ∶ S △AGC = S △BGE ∶ S △GEC = BE ∶ECS △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FCS △AGC ∶ S △BCG = S △ADG ∶ S △DGB = AD ∶DB二、 例题分析例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?CFEADBCBE FDA例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,14CF CA =,求三角形DEF 的面积.例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.例4、例1 如图,ABCD 是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD 分割成四个三角形。
小学奥数之几何蝴蝶定理问题
几何之蝴蝶(húdié)定理一、基本(jīběn)知识点定理(dìnglǐ)1:同一三角形中,两个三角形的高相等,则面积之比等于(děngyú)对应底边之比。
S1 : S2 = a : b定理(dìnglǐ)2:等分点结论( 鸟头定理)如图,三角形△AED的面积占三角形△ABC的面积的定理3:任意四边形中的比例关系( 蝴蝶定理)1) S1∶S2 =S4∶S3或 S1×S3 = S2×S4上、下部分的面积之积等于左、右部分的面积之积2)AO∶OC = (S1+S2)∶(S4+S3)梯形中的比例关系( 梯形蝴蝶定理)1)S1∶S3 =a2∶b2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S1∶S3∶S2∶S4 =a2∶b2∶ab∶ab4)S的对应份数为(a+b)2定理4:相似三角形性质1)2) S1∶S2 = a2 ∶A2定理(dìnglǐ)5:燕尾定理S△ABE ∶ S△AEC = S△BGE ∶ S△GEC = BE∶ECS△BGA ∶ S△BGC = S△AGF ∶ S△GFC = AF∶FCS△ADC ∶ S△DCB = S△ADG ∶ S△DGB = AD∶DB二、例题(lìtí)例1、如图,,,已知阴影(yīnyǐng)部分面积为平方厘米,的面积(miàn jī)是多少平方厘米?例2、有一个(yī ɡè)三角形ABC的面积为1,如图,且,,,求三角形的面积.例3、如图,在三角形ABC中,,D为BC的中点,E为AB上的一点,且BE=AB,已知四边形EDCA的面积是35,求三角形ABC 的面积.例4如图,ABCD是直角梯形,求阴影(yīnyǐng)部分的面积和。
(单位(dānwèi):厘米)例5、两条对角线把梯形(tīxíng)ABCD分割成四个三角形。
小升初奥数 几何(蝴蝶模型)
S4
S3 B
① S2 S4 ② S1 : S3 a 2 : b2 ③ S1 : S3 : S2 : S4 a 2 : b2 : ab : ab ④ S 的对应份数为 a b .
2
b
C
基础篇: 【一】 如图,某公园的外轮廓是四边形 ABCD,被对角线 AC、BD 分成四个部分,△AOB 面积为 1 平方千米, △BOC 面积为 2 平方千米, △COD 的面积为 3 平方千米, 公园由陆地面积是 6.92 平方千米和人工湖组成,求人工湖的面积是多少平方千米?
A 2 B C 1 G 3 D
【分析】 ⑴根据蝴蝶定理, S
BGC
1 2 3 ,那么 S
BGC
6;
⑵根据蝴蝶定理, AG : GC 1 2 : 3 6 1: 3 . 【三】 图中的四边形土地的总面积是 52 公顷,两条对角线把它分成了四个小三角形,其中两个小 三角形的面积分别是 6 公顷和 7 公顷,求四个三角形中最大的一个的面积。
C
B O A D
【分析】 根据蝴蝶定理求得 S△ AOD 3 1 2 1.5 平方千米,公园四边形 ABCD 的面积是
1 2 3 1.5 7.5 平方千米,所以人工湖的面积是 7.5 6.92 0.58 平方千米
【二】 如图, 四边形被两条对角线分成 4 个三角形, 其中三个三角形的面积已知, 求: ⑴三角形 BGC 的面积;⑵ AG : GC ?
米), SECD 4 8 12 (平方厘米).那么长方形 ABCD 的面积为 12 2 24 平方厘 米,四边形 OFBC 的面积为 24 5 2 8 9 (平方厘米).
【八】 如图,正方形 ABCD 面积为 3 平方厘米, M 是 AD 边上的中点.求图中阴影部分的面积. C B
小学几何之蝴蝶定理大全
小学几何之蝴蝶定理大全一、基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比等于对应底边之比。
S i : S2 = a : b定理2:等分点结论(鸟头定理)如图,三角形△ AED的面积占三角形△ ABC的面积的3 125 4 20定理3:任意四边形中的比例关系(蝴蝶定理)1)S i : S2 =S4: S3 或S i x S3 = S 2 x S4上、下部分的面积之积等于左、右部分的面积之积2 )AO: OC = (S i+ S2):( S+ SO梯形中的比例关系(梯形蝴蝶定理)1)S : S3 =a2: b2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S i : S3 : S2: S =a2: b2: ab : ab4)S的对应份数为(a+b)2定理4:相似三角形性质、a b c h 1)A B CH2) S : S = a 2: A 2定理5:燕尾定理SA ABG :S A AGC : =S ABGE :SA GEC =BE : EC S A BGA:SA BGC : =S A AGF : :SA GFC =AF : FC S A AGC:SA BCG : =S AADG:SA DGB=AD :DB二、例题分析例1、如图,AD DB , AE EF FC ,已知阴影部分面积为 5平方厘米, 多少平方厘米?ABC 的面积是A1例2、有一个三角形 ABC 的面积为1,如图,且AD 丄AB , BE21例3、如图,在三角形 ABC 中,,D 为BC 的中点,E 为AB 上的一点,且 BE=—AB,已知四边3例4、例1如图,ABCD 是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形 ABCD 分割成四个三角形。
已知两个三角形的面积(如图所示) ,求 另两个三角形的面积各是多少?(单位:平方厘米)例6、如下图,图中 BO=2DO 阴影部分的面积是 4平方厘米,求梯形 ABCD 勺面积是多少平三角形DEF 的面积.1BC , CF3-CA ,求 4形EDCA 勺面积是35,求三角形 ABC 的面积.B方厘米?例7、(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB面积为1平方千米,△ BOC 面积为2平方千米,△ COD 的面积为3平方千米,公园陆地的 面积是6.92平方千米,求人工湖的面积是多少平方千米?例8、如图:在梯形 ABCD 中,三角形 AOD 的面积为 25平方厘米,求梯形 ABCD 的面积。
小学奥数之几何蝴蝶定理问题
几何之蝴蝶定理一、 基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比等于对应底边之比。
S 1 : S 2 = a : b定理2:等分点结论( 鸟头定理)如图,三角形△AED 的面积占三角形△ABC 的面积的2034153=⨯定理3:任意四边形中的比例关系( 蝴蝶定理)1) S 1∶S 2 =S 4∶S 3 或 S 1×S 3 = S 2×S 4上、下部分的面积之积等于左、右部分的面积之积2)AO ∶OC = (S 1+S 2)∶(S 4+S 3)梯形中的比例关系( 梯形蝴蝶定理)1)S 1∶S 3 =a 2∶b 2上、下部分的面积比等于上、下边的平方比2)左、右部分的面积相等3)S 1∶S 3∶S 2∶S 4 =a 2∶b 2 ∶ab ∶ab4)S 的对应份数为(a+b )2定理4:相似三角形性质1) Hh C c B b A a ===2) S 1 ∶S 2 = a 2 ∶A 2定理5:燕尾定理S △ABE ∶ S △AEC = S △BGE ∶ S △GEC = BE ∶ECS △BGA ∶ S △BGC = S △AGF ∶ S △GFC = AF ∶FCS △ADC ∶ S △DCB = S △ADG ∶ S △DGB = AD ∶DB二、 例题例1、如图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC 的面积是多少平方厘米?例2、有一个三角形ABC 的面积为1,如图,且12AD AB =,13BE BC =,14CF CA =,求三角形DEF 的面积.例3、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.例4如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)例6、如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?例7、(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园陆地的面积是平方千米,求人工湖的面积是多少平方千米?例8、如图:在梯形ABCD中,三角形AOD的面积为9平方厘米,三角形BOC的面积为25平方厘米,求梯形ABCD的面积。
小学几何之蝴蝶定理大全
小学几何之蝴蝶定理大全一、基本知识点定理1:同一三角形中,两个三角形的高相等,则面积之比S i : S2 = a : ba b等于对应底边之比。
定理2:等分点结论(鸟头定理)如图,三角形△AED的面积占三角形△ ABC的面积的20定理3:任意四边形中的比例关系(蝴蝶定理)1) S i : S2 =S4 : S3 或S i X S3 = S2X S4上、下部分的面积之积等于左、右部分的面积之积2 ) AO: OC = (S i+ S2):( S4+ S3)梯形中的比例关系(梯形蝴蝶定理)1) S i : S3 =a2: b2上、下部分的面积比等于上、下边的平方比2) 左、右部分的面积相等B b C3) S i : S3 : S2 : S4 =a2: b2: ab : ab4) S的对应份数为(a+b) 2定理4:相似三角形性质2) S i : S 2 = a 2 : A 2定理5:燕尾定理S AABG:S A AGC : =S A BGE : :S A GEC =BE : ECS A BGA : :S A BGC : =S A AGF :S A GFC =AF : FC S A AGC : :S A BCG : =S A ADG:S A DGB=AD :DB二、例题分析例1、如图,AD DB , AE EF FC ,已知阴影部分面积为 5平方厘米, 多少平方厘米?ABC 的面积是例2、有一个三角形 ABC 的面积为1,如图,且AD - AB , BE21例3、如图,在三角形 ABC 中,,D 为BC 的中点,E 为AB 上的一点,且 BE=—AB,已知四边3例4、例1如图,ABCD 是直角梯形,求阴影部分的面积和。
(单位:厘米)例5、两条对角线把梯形 ABCD 分割成四个三角形。
已知两个三角形的面积(如图所示) 另两个三角形的面积各是多少?(单位:平方厘米)例6、如下图,图中 BO=2DO 阴影部分的面积是 4平方厘米,求梯形 ABCD 勺面积是多少平三角形DEF 的面积.-BC , CF3-CA ,求 4形EDCA 勺面积是35,求三角形 ABC 的面积.,求B方厘米?例7、(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC、BD分成四个部分,△ AOB 面积为1平方千米,△ BOC面积为2平方千米,△ COD的面积为3平方千米,公园陆地的面积是6.92平方千米,求人工湖的面积是多少平方千米?例8、如图:在梯形ABCD中,三角形AOD的面积为9平方厘米25平方厘米,求梯形ABCD的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学几何之蝴蝶定理大全
一、基本知识点
定理1:同一三角形中,两个三角形的高相等,则面积之比
等于对应底边之比。
定理2:等分点结论(鸟头定理)
如图,三角形△AED 的面积占三角形△ABC 的面积的
3 1 3
5 4 20
定理3:任意四边形中的比例关系(蝴蝶定理)
1)S1∶S2 =S4∶S3 或S1×S3 = S 2× S4
上、下部分的面积之积等于左、右部分的面积之
积
2 )AO∶OC = (S1+S2)∶(S4+S3)
梯形中的比例关系(梯形蝴蝶定
理)
1)S1∶S3 =a2∶b2
上、下部分的面积比等于上、下边
的
平方比
2)左、右部分的面积相
等
3)S1∶S3∶S2∶S4
=a 2∶b2
ab∶ab
S1 : S2 = a : b
4)S 的对应份数为(a+b)2
定理 4:相似三角形性质
2) S 1 ∶S 2 = a 2 ∶A 2
定理 5:燕尾定理
S △
ABG ∶ S △AGC = S △
BGE ∶ S △GEC = BE ∶ EC
S △ BGA ∶ S △BGC = S △ AGF ∶ S △GFC = AF ∶
FC
S △
AGC ∶ S △BCG = S △
ADG ∶ S △DGB = AD ∶
DB
二、 例题分析
例 1、如图, AD DB , AE EF FC ,已知阴影部分面积为 5 平方厘米, 多
少平方厘米?
1) BCH
ABC 的面积是
例2、有一个三角形ABC 的面积为1,如图,且AD 1 AB,2
1
ABC中,,D为BC的中点, E 为AB上的一点,且BE= AB,已知四
边3
形EDCA的面积是35 ,求三角形ABC的面积.
例4、例 1 如图,ABCD 是直角梯形,求阴影部分的面积和。
(单位:厘米)
例5、两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)
例6、如下图,图中BO=2DO,阴影部分的面积是 4 平方厘米,求梯形ABCD的面积是多少平
B
三角形DEF 的面积.
BE 1BC ,
3
1
CF CA ,求
4
例3、如图,在三角形
方厘米?
例7、(小数报竞赛活动试题)
如图,某公园的外轮廓是四边形ABCD ,被对角线AC、BD 分成四个
部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,
△COD 的面积为 3 平方千米,公园陆地的
面积是 6.92 平方千米,求人工湖的面积是多少平方千米?
例8、如图:在梯形ABCD 中,三角形AOD 的面积为9 平方厘米,
25 平方厘米,求梯形ABCD 的面积。
例9、(2003 北京市第十九届小学生“迎春杯”数学竞赛)
四边形ABCD的对角线AC与BD交于点O (如图)所示。
1
如果三角形ABD的面积等于三角形BCD 的面积的,且
3
AO 2,DO 3,那么CO的长度是DO的长度的
_____________________________________________________________
倍。
例10、左下图所示的ABCD的边BC 长10cm,直角三角形BCE的直角边EC长8cm,
已知
两块阴影部分的面积和比△ EFG 的面积大10cm2,求CF 的长。
例11、长方形ABCD 的面积为36 平方厘米,E、F、G 分别为边AB 、BC、CD 的中点,H 为AD 边上的任一点。
求图中阴影部分的面积是多少?
例12、如图,甲、乙两图形都是正方形,它们的边长分别是
分的面积。
例13 、如图,大正方形ABCD的边长为6,依以下条件求三角形BDF的面积。
例14 、(右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30 公顷,问图中阴影部分的面积是多少?
例15、如下图,已知D是BC的中点,E是CD的中点,F是AC的中点,且ADG的面积比
10 厘米和12 厘米,求阴影部
EFG 的面积大 6 平方厘米。
ABC的面积是多少平方厘米?
C
三、练习题
1、如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC 的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少?
2、如图所示,BD,CF将长方形ABCD分成 4 块,△ DEF的面积是 4 cm 2,△ CED的面积是
6cm2。
问:四边形ABEF的面积是多少平方厘米?
3、如右图BE=1 BC,CD=1 AC,那么三角形AED的面积是三角形ABC面积的____
34
D
E
6、 如右图, ABCD 是梯形, ABED 是平行四边形,己知三角面积如下图所示 (单位:平方
厘米 ) ,阴影部分的面积是多少平方厘米。
8、 已知 ABC 中, AB AC 12cm , ABC 的面积是 cm 2
,P 是 BC 上任意一点, P
到
5、如图所示,已知 ABCD 是长方形, AE : ED = CF : FD = 1 : 2 ,三角形 DEF 的面积是 16 平方厘米,求三角形 ABE 的面积是多少平方厘米?
7、正方形 ABFD 的面积为 100 平方厘米,直角三角形 的面积大 30 平方厘米,求 DE 的长是多少? ABC 的面积,比直角三角形( CDE
AB,AC 的距离是x, y ,那么x y
9、如右图所示,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。