第八章生物能学及生物氧化

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B=D
ΔG°′= - 33.47 KJ/mol
则 A=C+D
ΔG°′= - 12.55 KJ/mol
该规则表明一个在热力学上不利的反应,可以与热力 学有利的反应偶联进行,即可以被热力学有利的反应所 驱动而进行。这在生物化学反应中是很多的。
4、能量学用于生物化学反应中的一些规定
1、在稀的水溶液系统中,如果有水作为反应物或产物时, 水的浓度(近似的即活度)为1.0。 2、生物体标准状况的pH规定为7.0。 3、 ΔG°′是 pH为7.0时的标准状况下的的标准自由能。 4、根据国际单位制(Le Systeme international Unut ,简称 SI单位),热和能量的单位用焦耳/摩尔(Joules/mol)。
例题: 反应G-1-PG-6-P在380C达到平衡时, G-1-P占 5%,G-6-P占95%,求Δ G0。如果反应未达到平 衡,设[G-1- P]=0.01mol.L, [G-6-P]=0.001mol.L, 求反应的Δ G是多少?
解:达平衡时
=Keq=19
ΔG°′= - RTlnKeq =-2.3038.314 311 log19
Keq - 平衡常数:
Keq
[C]C [D]d [ A]a[B]b
例:计算磷酸葡萄糖异构酶反应的自由能变化
化学反应自由能的变化和氧化-还原电势的关系
•任何一个氧化-还原反应,在理论上都可以构建成一个原电池。
氧化-还原物质连在一起,都可以有氧化-还原电势产生,任何氧 还电对都有其特定的标准电势原(E0),电池的标准电动势可用下
高能化合物
生化反应中,在水解时或基团转移反应中可 释放出大量自由能(>21千焦/摩尔)的化合物称 为高能化合物。
一、高能化合物的类型
二、ATP的特点及其特殊作用
高 能 化 合 物 类 型
ATP的特点
在pH=7环境中,ATP分子中的三个磷酸基团完 全解离成带4个负电荷的离子形式(ATP4-),具有 较大势能,加之水解产物稳定,因而水解自由能很 大(ΔG°′=-30.5千焦/摩尔)。
O
O
O
腺嘌呤—核糖—
O

P
+ —
第八章 生物能学及生物氧化
主要内容: 一、有关热力学的一些基本概念 二、自由能的概念 三、化学反应中自由能的变化和意义 四、生物体的能流和能量产生的三个阶段 五、 生物氧化的概念 六、呼吸链 七、氧化磷酸化
一、有关热力学的一些基本概念
•体系、环境、状态 •能的两种形式 — 热与功 •热力学第一定律和内能(internal energy)、焓(enthalpy) •热力学第二定律和熵(entropy) •自由能(free energy)
二、自由能(free energy)
物理意义:-ΔG=W* (体系中能对环境作功的能量) 自由能的变化能预示某一过程能否自发进行,即: ΔG<0,反应能自发进行 ΔG>0,反应不能自发进行 ΔG=0,反应处于平衡状态。
自由能的概念对于研究生物化学过程的力能学具有很重要的意义,生物 体用于作功的能量正是体内化学反应释放的自由能,生物氧化释放的能量也 正是为有机体利用的自由能。它不仅可以用来判断机体内某一过程能否自发 进行,而且还可以利用自由能这个函数来计算反应的其它有用参数。
生物系统中的能流
ADP
脂肪
多糖
蛋白质
脂肪酸、甘油
葡萄糖、 氨基酸 其它单糖
乙酰CoA
磷酸化
电子传递 (氧化)
+Pi
e-
三羧酸 循环
生物体内能量产 生的三个阶段
大分子降解 成基本结构
单位
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰
CoA等)
共同中间物进 入三羧酸循环, 氧化脱下的氢由 电子传递链传递 生成H2O,释放 出大量能量,其 中一部分通过磷 酸化储存在ATP 中。
式中:ΔG°′= - RTlnKeq
ΔG′ — 某一化学反应随参加化学反应物质的浓度、发生化学反应
的pH和温度而改变的自由能变化。
Qc
-
浓度商: QC
源自文库
[C]C [D]d [ A]a[B]b
ΔG°′ — 标准条件(T=298OK,大气压为1atm,反应物和生成物浓度为
1mol/L,pH=7.0)下,化学反应自由能的变化。
式计算: 0( ΔE0 ) = E0正极-E0负极
•生物体内的氧化还原物质在进行氧化-还原反应时,基本原理
和原电池一样。
•氧化-还原反应自由能的变化与标准电势的关系如下:
ΔG°′=-nFΔE°′
•氧化-还原反应自由能的变化与标准电势的关系如下: 0( ΔE0 ) = (RT/nF)lnKeq = 2.3 (RT/nF)lgKeq
三、 化学反应中自由能的变化和意义
1、化学反应的自由能变化的基本公式
ΔG=ΔH-TΔS
2、化学反应自由能变化与平衡常数和电势的关系 3、偶联化学反应ΔG°′变化的可加性 4、能量学用于生物化学反应中的一些规定
化学反应自由能的变化和平衡常数的关系
假设有一个化学反应式:aA + bB = cC + dD 恒温恒压下:ΔG′=ΔG°′+ RTlnQc
例:计算NADH氧化反应的ΔG°′
检流计


-
e
+




ZnSO4
CuSO4
盐桥
负极反应: Zn=Zn2++2e
E0
2+ Zn /
Zn=
-
0.76V
正极反应: Cu=Cu2++2e
E0
2+ Cu /
Cu=+
0.34V
ΔE0 = E0正极-E0负极=+0.34V -(-0.76V)=+1.10V
计算磷酸葡萄糖异构酶反应的自由能变化
负极反应:NAD++H++2e NADH E-°′ -0.3
ΔG°′-nFΔE°′ -2×96485×[0.82-(-0.32)]
-220 KJ·mol-1
3、偶联化学反应ΔG°′变化的可加性
在偶联的化学反应中,各反应的标准自由能变化是可以
相加的:例:
A = B+C
ΔG°′= + 20.92 KJ/mol
=-7.6KJ.mol-1
未达平衡时
=Qc=0.1
ΔG′=ΔG°′+ RTlnQc (Qc-浓度商) =-7.6+ 2.3038.314 311 log0.1 =-13.6KJ.MOL-1
例题:计算下反应式ΔG°′ NADH+H++1/2O2====NAD++H2O
正极反应:1/2O2+2H++2e H2O E+°′ 0.82
相关文档
最新文档