水暖供热系统水力平衡的调节
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/5712083926284b73f242336c1eb91a37f111322e.png)
供热管网水力平衡的调节措施探讨随着城市化进程的加快和居民生活水平的提高,供热管网作为城市基础设施的重要组成部分,承担着为居民提供温暖的重要任务。
在供热管网的运行中,水力平衡是一个重要问题,它直接关系到整个供热系统的运行效率和稳定性。
对供热管网水力平衡的调节措施进行探讨,对于提高供热系统的运行效率和保证居民供热质量有着重要的意义。
一、水力平衡的概念和意义水力平衡是指系统中各分支管道的局部压力、流量和温度等参数的合理调控,使各点的水压、流量和温度能够在规定的范围内保持稳定,并且水力资源得以均衡利用。
在供热管网中,水力平衡是指在整个系统中,各个分支管道的水压、流量和温度等参数能够平衡分布,保证热水能够均匀地传递给各个用户,从而实现供热系统的高效、稳定运行。
水力平衡对于提高供热系统的能效和稳定性具有重要的意义。
二、水力平衡调节措施的必要性1. 提高供热系统的运行效率如果供热管网中存在严重的水力不平衡现象,就会导致系统中部分管道的流量过大,而另一部分管道的流量过小,从而导致热水的传递不均匀,一些用户会得到过热的热水,而另一些用户则会得到过冷的热水。
这不仅会降低供热系统的能效,还会影响用户的供热体验。
2. 保证居民供热质量如果供热管网中存在水力不平衡的问题,就会导致一些用户受到供热质量的影响,有些用户会出现供热不足的情况,而另一些用户则会出现供热过热的情况,这不仅会影响用户的生活质量,还会造成用户的投诉和维修成本的增加。
水力平衡调节措施的必要性无疑是非常明显的,它关系到整个供热系统的运行效率和居民供热质量,是供热系统运行中需要高度重视的问题。
1. 合理设置阀门在供热管网中,合理设置阀门是保证系统水力平衡的必要措施之一。
通过合理设置调节阀和截止阀等,可以实现对供热系统中不同支路的流量、压力、温度等参数的调节和控制,从而达到整个系统的水力平衡。
2. 使用比例阀比例阀是一种根据流量大小自动调节开度的阀门,通过安装比例阀,可以实现对各分支管道流量的自动调节,从而达到供热系统的水力平衡。
供热管网水力平衡调节方法的研究
![供热管网水力平衡调节方法的研究](https://img.taocdn.com/s3/m/c5676a93185f312b3169a45177232f60ddcce790.png)
供热管网水力平衡调节方法的研究随着城市化进程的加快,城市热力供应系统也得到了迅速发展。
而在热力供应系统中,供热管网的水力平衡调节是非常重要的一环。
水力平衡是指在供热管网中,各个支路、回路以及末端用户之间保持合理的压力、流量等参数的均衡状态,以保证整个供热系统的稳定工作和高效能运行。
提高供热管网的水力平衡调节方法显得尤为重要。
本文将对当前供热管网水力平衡调节方法进行研究,并提出一些改进措施,以期能够提高供热系统的运行效率和稳定性。
1. 静态平衡调节方法静态平衡调节方法是最为直接和常见的一种方法,通常是通过合理的管道设计和安装来保证供热管网的水力平衡。
在设计和安装过程中,需要考虑管道的布局、管径、阀门的位置等因素,以确保各个支路和回路在负载均衡时能够保持相对稳定的水力平衡状态。
此方法的优点是操作简单,易于理解和掌握。
但是其缺点也显而易见,即在实际运行中由于用户用热量的变化,会使得管网产生不同程度的水力不平衡,从而影响整个供热系统的运行效率。
2. 动态平衡调节方法动态平衡调节方法是通过安装调节阀、联动阀等设备来实现管网的水力平衡调节。
这些设备能够根据系统的实际运行情况,及时调整水流的分配,从而保证管网的各个部分能够在不同的工况下保持水力平衡。
这种方法相对于静态平衡调节方法来说,能够更加灵活地应对管网运行中可能出现的各种情况,保证整个供热系统的稳定运行。
但是这种方法需要有较高的技术水平和经验来进行操作,同时成本也相对较高,对于一些小型和中小型供热系统来说,可能会存在一定的困难。
1. 结合现代控制技术随着现代控制技术的不断发展,人们可以更加方便地对供热系统进行监控和调节。
结合现代控制技术,可以通过安装传感器、控制阀等设备,对供热管网进行实时监测和调节。
在管网中设置控制节点,通过数据采集和处理,可以根据实际运行情况进行动态调节,及时解决管网中的水力不平衡问题。
这种方法能够更加精确地掌握管网的运行情况,提高供热系统的运行效率和稳定性。
供热管网水力平衡调节方法的研究
![供热管网水力平衡调节方法的研究](https://img.taocdn.com/s3/m/cfea510cbdd126fff705cc1755270722192e59c2.png)
供热管网水力平衡调节方法的研究供热管网是城市供暖的重要设施之一,其稳定运行对于保障居民生活至关重要。
然而,由于管网复杂性、流量变化范围大等因素,常常会出现供热管网的水力失衡问题,严重影响其正常运行。
因此,本文将探讨一些供热管网水力平衡调节方法。
一、管网水力特性分析管网水力特性是管网设计中最基本、最关键的参数,因为它直接决定了管网各处的压力和流量大小。
当供热管网的水力特性不平衡时,会导致管路水压过高或过低,从而影响设备的正常运行、降低供暖效率,同时也会增加土建、设备等方面的运行成本,造成不必要的经济浪费。
二、调节方式1. 阀门调节法阀门调节是常见的管网水力平衡调节方式。
通过调整各处的阀门开启度实现管路水流量的分配均衡。
此法调节简单,现场施工方便,成本低廉,但需要有经验丰富的工程师制定合理的阀门开启度,且维护成本较高。
管网供热泵组调节,是指通过调节管网内的泵组流量或压力,调节管路的水流动力,从而实现供热管网的水力平衡。
该法操作较为复杂,但是操作技能高的人员可以很好地解决问题,在调节某些较远的回路时也可以很有效地调节。
3. 外加水箱法供热管网外加水箱调节是将水箱作为管网的“缓冲器”,通过外加水箱调节管路的压力、水位等参数,实现管网的水力平衡。
该方法可以保持较为稳定的水位及压力,保证系统的安全运行。
使用此法需要大量调节时间和较高的成本。
4. 管网改建法当管网的设计存在严重问题时,用改建法来解决问题,将管网水流分配再次规划,以实现管网水力平衡。
往往需要专业的设计师对整个管网进行全面的分析和规划。
三、总结供热管网水力平衡调节是供热系统管理的一个重要方面,合理的调节方法能够使管网的供热效果得到最大化。
在调节中,需要根据具体情况采用不同的方法,如阀门调节、泵组调节、外加水箱法和管网改建法来实现管网水力平衡。
同时,管网管理者还需要定期检查系统的水位、压力等参数,以确保系统达到最佳效率,保证供热的人民群众生活的舒适性和安全性。
水力平衡在建筑暖通系统中的调节与优化
![水力平衡在建筑暖通系统中的调节与优化](https://img.taocdn.com/s3/m/fa5d1a59cbaedd3383c4bb4cf7ec4afe05a1b146.png)
水力平衡在建筑暖通系统中的调节与优化随着现代建筑技术的不断发展,建筑暖通系统在人们的生活中起着越来越重要的作用。
而水力平衡作为建筑暖通系统中的一个关键环节,对于系统的运行效果和能源利用效率有着重要影响。
本文将探讨水力平衡在建筑暖通系统中的调节与优化方法,以期提高系统的性能和节能效果。
1. 水力平衡的基本概念与作用水力平衡是指在建筑暖通系统中,通过合理地调节水流量和水压,使得系统中各个部分能够获得适当的水流量和水压,从而实现系统的稳定运行和高效能利用。
水力平衡的主要作用有两个方面:一是保证系统中各个末端设备的供水和回水温度稳定,避免因水流量不均匀而导致的供暖效果差异;二是减小系统中的阻力损失,降低能耗,提高能源利用效率。
2. 水力平衡的调节方法2.1 管道设计与布局在建筑暖通系统的设计过程中,合理的管道设计与布局是实现水力平衡的基础。
首先要根据建筑的结构和功能需求,确定供水和回水的管道尺寸和布置方式。
其次,要避免管道的过长和过多的弯头,减小阻力损失。
最后,对于大型建筑物,可以考虑将系统分成多个独立的回路,以便更好地控制水流量和水压。
2.2 泵站的选择与运行在建筑暖通系统中,泵站的选择和运行对于水力平衡具有重要影响。
首先,要选择合适的泵站类型和规格,以满足系统的需求。
其次,要合理地设置泵站的运行参数,如水泵的转速和流量调节方式,以保证系统的稳定运行和水力平衡。
此外,还可以考虑使用变频调速技术,根据系统的实际负荷情况,调整泵站的运行状态,进一步提高系统的能源利用效率。
2.3 阀门的调节与控制阀门的调节与控制是实现水力平衡的重要手段之一。
通过合理地设置阀门的开度和调节方式,可以调节系统中各个末端设备的水流量和水压,从而实现水力平衡。
在实际操作中,可以采用手动调节阀门的方式,也可以使用自动调节阀门,通过传感器和控制器的反馈信号,实现对水流量和水压的自动调节。
3. 水力平衡的优化方法3.1 系统的动态调节与优化建筑暖通系统的运行状态是时刻变化的,因此,动态调节和优化是实现水力平衡的重要手段之一。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/3c41bad6dc88d0d233d4b14e852458fb770b38bc.png)
供热管网水力平衡的调节措施探讨随着城市供热管网的不断完善和发展,供热管网水力平衡问题也日益引起人们的关注。
水力平衡是指管网中各个分支和末端热量的分配均匀,使热力管网中的水流量和压力保持稳定。
而供热管网水力平衡的调节措施是确保供热系统正常运行的关键,本文将从调节措施的技术原理和应用效果两个方面探讨供热管网水力平衡的调节措施。
一、调节措施的技术原理1. 流量调节阀的安装在供热管网中,通过合理设置流量调节阀实现管网中各个分支和末端热量的分配均匀,保证供热系统水力平衡。
流量调节阀安装在管道上,通过调节阀门的开度来控制管道中的水流量,从而实现供热管网的水力平衡。
这种技术原理简单易行,操作方便,能够有效地调节供热管网的水力平衡。
2. 自动调节阀的应用3. 管网调节技术的优化通过对供热管网的调节技术进行优化,包括管网的设计、安装和维护等方面的措施,能够更好地实现供热管网的水力平衡。
在供热管网的设计中,应根据管道的长度、直径、材质等因素进行合理的布局和设计,确保管网中的水流量和压力均匀分布。
在管网的安装和维护过程中,应加强对管道的维护和管理,及时检测和修复管道中的漏水和堵塞等问题,保证供热系统的正常运行。
二、调节措施的应用效果1. 提高供热系统的稳定性通过采取有效的水力平衡调节措施,能够提高供热系统的稳定性,确保供热管网中各个分支和末端热量的分配均匀。
水力平衡调节措施能够减少管网中的水流量和压力的波动,降低供热系统的运行风险,保证供热系统的安全稳定运行。
2. 减少能源消耗3. 延长设备的使用寿命通过调节措施,能够使供热系统中的设备运行更加稳定,延长设备的使用寿命。
水力平衡调节措施能够降低供热系统中设备的运行压力和负荷,减少设备的磨损和损坏,延长设备的使用寿命。
供热管网水力平衡的调节措施是确保供热系统正常运行的关键。
通过应用流量调节阀、自动调节阀等设备,优化管网调节技术,能够提高供热系统的稳定性,减少能源消耗,延长设备的使用寿命。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/f4e796331611cc7931b765ce050876323012746a.png)
供热管网水力平衡的调节措施探讨1. 引言1.1 研究背景供热管网水力平衡是指在热水供应过程中,各个支路、回路水流量相等,满足各支路、回路热负荷需要的一种状态。
水力平衡是保证供热系统正常运行的基础,是提高供热系统能效的重要手段之一。
在实际运行中,由于供热管网的复杂性和变化性,水力平衡往往会受到各种因素的影响而被破坏,从而导致供热系统运行不稳定、能耗增加等问题。
目前,我国供热管网水力平衡调节方面的研究尚处于起步阶段,对于如何有效地调节供热管网水力平衡还存在一定的不确定性和挑战。
深入研究供热管网水力平衡的调节措施,为提高供热系统运行效率,降低能耗,具有重要的现实意义和价值。
为此,本文将对供热管网水力平衡的调节措施进行深入探讨,以期为供热系统的优化设计和运行管理提供参考和指导。
1.2 研究目的研究目的是为了探讨供热管网水力平衡的调节措施,以解决供热系统中存在的水力失衡问题,提高供热效率和节能减排。
通过深入分析供热管网水力平衡的概念和影响因素,我们可以更好地理解水力失衡对供热系统运行的影响,为有效调节提供依据。
本研究旨在提出可行的调节措施,包括优化管网设计和采用智能控制系统,从而实现供热管网水力平衡的动态调节,达到系统运行的最佳状态。
通过本研究的实施,将有助于提升供热系统的整体性能,提高供热质量和用户满意度,为供热行业的可持续发展做出贡献。
1.3 研究意义供热管网水力平衡的调节是保障供热系统运行稳定、高效的关键环节。
随着供热管网规模的不断扩大和复杂程度的增加,供热管网水力平衡的调节变得更加重要。
保持供热管网的水力平衡不仅可以提高供热系统的热效率,降低运行成本,延长设备寿命,还能减少能源消耗,减少碳排放,对于节能减排、可持续发展具有重要的意义。
研究供热管网水力平衡的调节措施,可以为优化供热系统运行提供科学依据,提高系统的整体性能和稳定性。
通过深入研究水力平衡的调节措施,可以为供热系统的设计、施工、运行和维护提供更可靠的技术支持,促进我国供热行业的发展。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/e7c4d68bab00b52acfc789eb172ded630b1c9809.png)
供热管网水力平衡的调节措施探讨【摘要】本文主要探讨了供热管网水力平衡的调节措施。
首先介绍了水力平衡在供热系统中的重要作用,随后分析了影响水力平衡的因素。
然后讨论了三种常见的调节措施:阀门调节、泵站调节和管道设计。
通过对这些措施的比较和分析,可以看出它们在实际应用中各有优劣。
最后总结了调节措施的有效性,并提出了未来研究方向。
通过本文的研究,可以为供热管网水力平衡的调节提供一定的参考和指导,提高供热系统的效率和稳定性。
【关键词】供热管网、水力平衡、调节措施、阀门调节、泵站调节、管道设计、有效性、研究方向。
1. 引言1.1 研究背景供热管网水力平衡是保证供热系统正常运行的重要环节。
随着城市供热规模的不断扩大和供热管网的复杂性增加,水力平衡问题逐渐凸显出来。
供热管网水力不平衡会导致部分区域供热温度不足或者过热,影响用户舒适度,增加供热能耗,降低供热系统的效率,甚至影响供热设备的寿命。
针对供热管网水力平衡的调节措施成为研究的热点。
研究背景部分主要是对供热管网水力平衡问题的现状进行分析和说明,引出对该问题的研究意义和必要性。
目前,国内外对供热管网水力平衡的研究已经取得了一定的进展,但在实际应用中仍然存在着一些问题和挑战。
有必要对供热管网水力平衡的调节措施进行深入探讨,以提高供热系统的运行效率,降低能耗,保障供热质量,推动供热行业的可持续发展。
部分的详细内容会在接下来的章节中逐步展开。
1.2 问题提出在供热管网运行过程中,水力平衡是一个至关重要的问题。
水力平衡不仅影响着管网的运行效率和能耗,还影响着供热系统的稳定性和可靠性。
在实际运行中,供热管网往往存在水力不平衡的情况,这给管网的运行带来了诸多问题。
水力不平衡会导致部分管道流速过大,而部分管道流速过小,这样不仅会影响供热系统的供热效果,还会造成部分管道的过热或过冷。
水力不平衡还会导致供热系统的能耗增加,因为部分管道流速过大会造成能耗浪费,而部分管道流速过小则需要增加泵站的运行来维持供热效果,进而增加系统的能耗。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/4c592823fbd6195f312b3169a45177232f60e4be.png)
供热管网水力平衡的调节措施探讨供热管网水力平衡是保证供热系统正常运行的关键。
水力平衡是指在供热管网中各支管路中的流量分配合理,保证热水在各处均匀流动,达到稳定的工作状态。
如果供热管网水力不平衡,就会导致一些支管路流量过大,一些流量过小,甚至出现死水区,降低供热质量,增加能耗,损害供热系统的长期运行。
1.管网设计中考虑水力平衡:在供热管网的设计中,应考虑各支管路长度、直径、高度差等因素,合理配置管道和阀门,使得流动阻力平衡,尽量避免水力不平衡的出现。
还应考虑到不同季节供热负荷的变化情况,并进行合理的预留和调节。
在设计阶段就要充分考虑这些因素,以减少后期的调整。
2.安装流量控制阀:在供热管网中安装流量控制阀是实现水力平衡的重要手段。
流量控制阀的作用是根据不同支管路的需求,调整和控制流量。
通过适当调节流量控制阀的开度,可以实现各支管路流量的平衡。
还可以根据实际情况进行调节,确保供热系统的稳定运行。
3.增加调节阀和控制阀:在供热管网中,增加调节阀和控制阀可以实现对水流的调节和控制。
调节阀可以根据需要调整阀门的开度,控制流量。
控制阀可以根据需要调整阀门的开度,控制温度。
通过合理设置和调节这些阀门,可以实现供热管网的水力平衡。
4.定期检查和维护:供热管网的水力平衡是一个动态过程,在使用过程中,由于各种原因,管路阻力可能发生变化,导致水力不平衡。
对供热管网进行定期检查和维护非常重要。
通过检查各支管路的流量、压力等参数,及时发现和排除问题,保证供热系统的正常运行。
5.优化供热管网结构:供热管网的结构优化也是保证水力平衡的重要措施。
通过合理调整管道的布置和连接方式,减少水力损失,提高供热效果。
还可以加装节流装置,减少死水区的产生,提高供热管网的流动性。
供热管网水力平衡是供热系统正常运行的基础,通过合理的管网设计、安装流量控制阀和调节阀、定期检查和维护以及优化管网结构等措施,可以有效实现供热管网的水力平衡,确保供热系统的高效运行。
论集中供热系统的水力平衡调节与节能措施
![论集中供热系统的水力平衡调节与节能措施](https://img.taocdn.com/s3/m/7256112e1fb91a37f111f18583d049649b660e07.png)
论集中供热系统的水力平衡调节与节能措施摘要:在我国经济快速发展的背景下,我国采暖模式在近几年有了很大改变,并且越来越重视节能减排的推广与实施。
如何有效开展供暖节能减排工作,保证居民供暖供暖的质量,是目前供热行业的热门话题和不断深入的问题。
探讨了热源、热网、换热站的同步动态平衡调整,目的是更好地做好均衡供暖工作,保证供暖客户的室内温度的相对稳定,为供暖系统的经济、平稳运行奠定了基础。
基于此,本文对集中供热系统的水力平衡调节与节能措施进行了研究,首先分析了热系统水力失调的状况及产生的原因,然后提出了消除水力失调,实现供热系统节能运行的改进方案,以期为相关人员提供参考。
关键词:集中供热;供热系统;水力平衡;平衡调节前言:目前,节能措施是供热管理部门的主要任务,在供热工作中起着关键作用。
但我国供热系统能耗仍然很高,不符合国家绿色节能发展的要求。
因此,有关部门和人员应制定切实可行的节能措施,使供热系统正常、有序、稳定地运行。
为此,应该对集中供热系统的水力平衡调节和节能措施进行研究。
1 供热系统水力失调的状况及产生的原因对供热系统水力失调原因的分析,可分为以下五个方面:泥沙淤积造成水力失调的流量分布不平衡,造成水力失调;循环水泵选型不当,造成运行时间与设定值偏差的水力失调;运行时实际热负荷与原设计热负荷不符,超过或低于原设计热负荷,造成水力失调;因系统高程差或上下游居民高程差,造成垂向水力失调;运行过程中因系统流量变化造成水力失调,如室外温度过低、阀门开启、室外温度过高、阀门关闭,影响其他未安装调节设施的用户,造成水力失调及动态水力失调。
此外,在室外供热管网的支路和主干道上未设置必要的调控装置,导致部分管路腐蚀严重、阀门失效、控制和连接不完善等问题。
这些问题都很明显,每年的运行维护费用都比较高。
另外,由于管道敷设时间较长,管道、管件和阀门的腐蚀比较严重,经常发生泄漏,管道的绝缘层和保护层会受到损坏[1]。
传统的供热管网和热交换站的调节控制一般只以二次热交换站的供回水温度为控制对象。
供热管网水力平衡调节方法分析
![供热管网水力平衡调节方法分析](https://img.taocdn.com/s3/m/94d04ce3b8d528ea81c758f5f61fb7360a4c2b53.png)
供热管网水力平衡调节方法分析摘要:维护供热管网水力平衡,降低供热能耗,必须重视优化供热管网水力平衡调节方法。
目前,邻近调节法颇为常用,这种方法会先从水力失调度最低的用户开始根据邻近顺序实施有序调节,不仅能减少调节次数,而且有助于优化调节结果,加强控制力度。
与此同时,也会采用比例法、温差法、CCR法与综合调节法等。
本文将以建筑供热管网为例,简单分析供热管网水力平衡调节方法,希望能有助于降低能耗。
关键词:供热管网;水力平衡;调节方法从整体上看,供热管网水力失衡的诱因是多方面的,最初的供热管网设计方案不合理,运行调节方法不当均会导致供热管网水力不平衡。
据调查了解,在建筑供热管网实际运行中,不少近端用户的流量值是设计值的两到三倍,而远端用户的流量值却远低于设计值。
为了满足远端用户供热需求,在供热管网系统运行中,通常会采取增加供热参数和系统流量等措施,这样必然会导致近端用户室内温度更高,增加能耗,降低热源效率与造成更多热损问题。
对此,必须全面优化供热管网水力平衡调节方法,提高热源利用率,降低能耗与损失。
一、某建筑供热管网工程项目概况某建筑供热管网工程为社区供热管网系统,其换热站被设置在本小区地上,最初方案为二次网采暖供回水设计的温度在60到85摄氏度之间,供热管网系统选用了补水泵定压模式,在地下一层的热力小室内安装了热力入口装置,在热力入口处安装了温度计、过滤器、压力表和自力式压差平衡阀。
由本换热站供热的高层建筑一共有十栋楼,供热管网系统根据楼层高度分了三个区域,1到11楼为地区,12到22楼为中区,23到33楼为高区,为了满足各楼层用户供暖需求,设计方案指定选用了散热器采暖方案。
在地区,压力参数是0.46MPa,中区的压力参数是0.79MPa,高区的压力参数是1.12MPa,从低向高递增[1]。
在供热管网建设过程中,首先要精选燃气管材,做好管道安全质量检测工作,加强管材采购管理,选购经济实惠、质量合格的供热管道。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/83262e0030126edb6f1aff00bed5b9f3f90f7231.png)
供热管网水力平衡的调节措施探讨供热管网作为城市供热系统的重要组成部分,在运行过程中往往会出现一些水力方面的问题,例如水流量分配不均衡、系统压力过高或过低等问题,影响着整个供热系统的正常运行。
针对这些问题,可以采取一些调节措施来保持供热管网的水力平衡。
本文将就供热管网水力平衡调节的方法和实现效果进行探讨。
1. 增加管道的直径和阀门数量管道直径和阀门数量是影响整个供热系统水力平衡的关键因素。
当管道直径较小或阀门数量较少时,系统中的压力将不易平衡。
可以通过增加管道直径和阀门数量来改善这种情况。
通过增加管道直径,可以有效地增加管道的容积,从而降低管道的运行阻力,提高水的流量。
同时,增加阀门数量也能够更精确地控制水的流动方向和流量,使得整个管网中的水流更加平衡。
2. 采用自平衡管道和自控阀自平衡管道又称为“变阻管道”或“自适应管道”,它是一种能够自动调节水流量和阻力的管道系统。
在这种管道中,中央的导流板会随着水流量的变化而自动调整其位置,使管道中的水流达到平衡状态。
自控阀则能够通过调整阀门的开度和阻力来控制系统内的压力和流量。
采用自平衡管道和自控阀能够有效地提高供热系统的效率,降低能耗,并且避免了管道直径和阀门数量无法满足供热需求的情况。
3. 增加调节阀控制设备调节阀是供热管网中用来控制水流量的设备。
通过增加调节阀控制设备,能够更加精确地控制供热管网中的水流动,使得整个系统的水力平衡更加稳定。
调节阀控制设备可以分为电动调节阀和手动调节阀两种,其中电动调节阀可以实现自动调节水流量和压力的功能,手动调节阀则需要人工监测和调节。
4. 使用不同材质的管道供热管网中采用不同材质的管道,对于调节系统的水力平衡也是有影响的。
例如,钢管的运行阻力较大,铜管的运行阻力较小,能够在一定程度上优化供热管网的水力平衡。
此外,不同管道材料的膨胀系数也不一样,这也会在温度变化过程中影响到管道系统的水力平衡。
因此,在选择管道材料时,需要考虑到管道的运行阻力、材料的膨胀系数以及管道的使用寿命等因素。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/a3153eaf846a561252d380eb6294dd88d0d23d28.png)
供热管网水力平衡的调节措施探讨供热管网水力平衡是指在供热系统中,各个分支管道和末端散热器之间,通过合理的设计和调节,使得水流量均匀分布,确保每个散热器都能够得到足够的热水供应,达到舒适的供热效果。
水力平衡的调节是保障供热系统正常运行的重要环节,下面就供热管网水力平衡的调节措施进行探讨。
1. 确保管道设计合理供热管网的设计应该充分考虑到水力平衡的要求,合理设置管道的直径、长度、高度差等参数,以确保整个系统在设计阶段就具备良好的水力平衡特性。
设计阶段可以利用专业的水力计算软件进行模拟计算,找出系统中可能存在的流速过高或者过低的地方,进一步优化管道设计,减少水力不平衡的可能性。
2. 采用节流阀进行调节在供热管网中,通过在末端散热器或者管道上安装节流阀,可以调节流量,平衡供热系统中的水力压力。
通过适当调节节流阀的开度,可以在不同的散热器上实现流量的均衡分配,从而提高供热系统的热效率。
3. 采用自动流量控制阀自动流量控制阀是一种集流量调节和测量于一体的装置,通过集成的控制系统,可以根据散热器的实际需求自动调节流量,实现水流的动态平衡。
这种自动化调节设备能够根据系统的实际运行状态进行动态调整,大大提高了供热系统的水力平衡效果,减少了能源的浪费。
4. 定期清洗管道和散热器供热管网系统在长时间运行后会产生水垢、杂质等,这些杂质会堵塞管道、散热器,影响水流的流畅性,导致水力不平衡。
定期对管道和散热器进行清洗维护,保持系统畅通,保证水流的均匀分布,有助于提高水力平衡的效果。
5. 增加管道的支路在供热管网系统中,通过增加一些支路,可以有效地分流和合流水流,有针对性地调节管道中的流量分布,改善整个系统的水力平衡。
通过这种方法,可以在不改变整体管道布局的情况下,提高系统的水力平衡性能。
6. 使用智能调节设备随着科技的不断进步,智能调节设备的应用也在供热管网中逐渐增多。
智能调节设备能够实时监测管道流量、压力等参数,并根据实际情况进行智能调节,及时解决系统中可能存在的水力不平衡问题。
供热管网水力平衡调节方法的研究
![供热管网水力平衡调节方法的研究](https://img.taocdn.com/s3/m/f3a9297f5b8102d276a20029bd64783e08127d4d.png)
供热管网水力平衡调节方法的研究【摘要】本文主要研究供热管网水力平衡调节方法,通过分析水力平衡的基本概念和供热管网水力失衡原因,提出了一些有效的水力平衡调节方法。
通过案例分析和效果评价,验证了这些方法的可行性和效果。
最后总结了供热管网水力平衡调节方法的优缺点,并提出了未来研究方向。
这些研究成果对于提高供热管网运行效率和节能减排具有重要意义,有望在未来的供热系统中得到广泛应用。
【关键词】供热管网、水力平衡、调节方法、案例分析、效果评价、研究背景、研究目的、研究意义、基本概念、失衡原因、结论、未来研究方向、应用前景。
1. 引言1.1 研究背景随着城市供热系统的不断发展和扩张,供热管网水力平衡调节越来越受到人们的关注。
供热系统水力平衡是指在不同工况下,管网内各个支路和末端用户的流量和压力能够保持在合理的范围内,从而实现系统稳定、高效运行的状态。
在实际工程中,供热管网往往存在水力失衡的问题,导致部分支路流量过大或过小,影响系统的热力性能和能耗效率。
目前,国内外对供热管网水力平衡调节方法的研究还处于起步阶段,存在许多问题和挑战。
针对这一情况,有必要开展深入的研究,探讨供热管网水力平衡调节的理论与方法,为提高供热系统运行效率和节能降耗提供技术支持。
本文旨在对供热管网水力平衡调节方法进行系统研究和探讨,为解决实际工程问题提供理论基础和实用方法。
1.2 研究目的研究目的是为了深入探讨供热管网水力平衡调节方法,以解决供热系统中存在的水力失衡问题。
通过研究分析供热管网水力失衡的原因,并提出有效的调节方法,旨在优化供热系统运行,提高能源利用效率,降低运行成本,延长设备寿命,提升供热服务质量。
本研究旨在为供热管网水力平衡调节提供理论支持和实际指导,促进供热管网系统的稳定运行,推动供热行业的可持续发展。
通过深入研究水力平衡调节方法,探索出适合不同供热管网实际情况的调节方案,为实际工程应用提供参考,并为相关领域的研究者提供有益的借鉴和启发。
供热管网水力平衡调节方法的研究
![供热管网水力平衡调节方法的研究](https://img.taocdn.com/s3/m/52c22f9da48da0116c175f0e7cd184254a351b65.png)
供热管网水力平衡调节方法的研究一、引言随着城市化的不断发展,供热系统在城市中扮演着至关重要的角色。
由于城市规划、建设和管网维护等方面的原因,供热管网存在着水力不平衡的问题,这会导致供热系统的能效降低、运行成本增加和供热效果不佳等一系列问题。
对供热管网进行水力平衡调节是提高供热系统运行效率和性能的关键。
本文旨在对供热管网水力平衡调节方法进行研究,以期为解决供热管网水力不平衡问题提供参考。
二、供热管网水力不平衡问题的原因1. 管网设计不合理:供热系统的管道设计在水力计算、布置等方面存在不合理的情况,导致部分管道的水流速度过快,而部分管道的水流速度过慢。
2. 管网安装不当:在供热管网的安装过程中,可能存在管道连接不严密、管道走向不合理等问题,造成管网水力不平衡。
3. 管网运行过程中的问题:在供热系统长时间运行后,管道内可能会出现结垢、腐蚀等问题,导致管道断面积变小,阻力增大,从而影响管网的水力平衡。
以上原因导致的供热管网水力不平衡会导致供热系统运行效率降低、管道泄漏、设备损坏、供热效果不佳等问题。
三、供热管网水力平衡调节方法1. 水力平衡阀调节法通过设置水力平衡阀进行调节,使得供热管网各个支路的流量分配达到平衡。
水力平衡阀的调节可以根据实际情况进行手动或自动进行调节,保证供热管网各个支路的流量平衡,从而达到整个供热系统的水力平衡。
2. 系统调节法通过对供热管网系统进行整体的水力计算和调节,优化管网布置、管径选择等措施,使得供热管网在运行时水力平衡得以维持。
系统调节法是从整体系统的角度出发,采取措施对供热管网进行水力平衡调节,具有较好的效果。
3. 管道清洗法对供热管网进行定期的管道清洗,清除管道内附着的结垢、腐蚀产物等,恢复管道内的原始状态。
通过管道清洗可以有效提高管道的流通能力,减小管道的阻力,从而维持供热管网的水力平衡。
4. 节能改造法通过对供热系统进行节能改造,减小供热系统的运行阻力和损耗,从而提高供热系统的运行效率和性能,维持供热管网的水力平衡。
供热系统热网水力平衡调节分析
![供热系统热网水力平衡调节分析](https://img.taocdn.com/s3/m/b8eaebef0342a8956bec0975f46527d3240ca68f.png)
供热系统热网水力平衡调节分析关键词:热量平衡调节法;三级解耦;周期热量平衡分析供热的目的:是为了获得舒适的室内温度,同时满足节能、降耗、减排的要求。
所以区分不同供热对象的热量平衡是实现供热目的的保证。
热量平衡的前提是热力平衡,热力平衡的前提又是水力平衡。
一、传统平衡调节的存在的主要问题1、传统供热调节方法不能实现按需供热随着室外温度的变化,要求网路的供回水温度也要相应变化,也就是说,锅炉要通过调节燃料和风量变负荷运行,来满足网路所要求的供回水温度,如果没有监控系统的参与支持,人工运行是很难实现这一点的。
充其量运行大中小几个负荷点,再省事的就是间歇运行,温度高了就关,温度低了就开。
锅炉的运行不看效率、不看负荷、单看温度,何谈按需供热,何谈供热节能。
多年来我们就是拿落后当经验,再拿着经验当技术去务实的。
2、大流量小温差的运行模式弊端多多采用大流量小温差的设计模式,供热管径增大。
不但是供热管径增大,同时管理阀门、水箱、分水箱、分水器、除污器等都要加大,投资费用和施工劳动强度都要加大。
大流量小温差的供热运行模式不适合计量供热的用户自主调节。
温差越小散热器的调节性能越差,也就是说在大流量运行时,即使流量改变很大,也不能变化多少散热量,散热器的供回水温差越大,流量变化引起的散热量的变化越明显。
3、源网共泵顾此失彼传统的供热模式是:热源和热网共用一个集中循环泵,外网和热源的循环流量绑架在一起,互相钳制。
往往是满足了外网的水力平衡流量就会不满足热源的额定循环流量,满足了热源的流量对于外网来说不是大了就是小了,大了就是大流量小温差的不经济的运行模式,小了又不能满足外网的水力平衡,所以说是顾此失彼。
虽然热源可以通过旁通管或旁通锅炉的方式缓解外网流量大于锅炉循环流量的问题,但电能和热量的损耗又会不可避免。
另外这种工艺模式下外网的调节性也很不好。
4、温度管理以偏概全传统的控制策略可以归纳为“温度管理模式”,它表现为根据室外温度控制一次供水温度、一次回水温度、二次供水温度、二次供回水平均温度,或者采用调节一次网阀门控制二次供回水温差等多种方式。
论集中供热系统的水力平衡调节与节能措施
![论集中供热系统的水力平衡调节与节能措施](https://img.taocdn.com/s3/m/4ed50e28b94ae45c3b3567ec102de2bd9705de5b.png)
论集中供热系统的水力平衡调节与节能措施发布时间:2022-02-16T08:33:04.676Z 来源:《中国电业》(发电)》2021年第16期作者:刘军[导读] 随着经济快速发展,科技水平不断提高,推动我国供热系统实现全面优化升级、供热工作的重要性不断提高。
与此同时,相关人员在供热过程中需要提高节能减排工作的关注度,推动供热工作高效、安全进行。
本文通过分析供热系统运行情况,分析水利平衡调节问题,针对性地提出相应解决措施,希望可以为供热系统良好运行提供一些建议,推动我国供热工作的稳定发展。
刘军大唐保定供热有限责任公司河北保定 071000摘要:随着经济快速发展,科技水平不断提高,推动我国供热系统实现全面优化升级、供热工作的重要性不断提高。
与此同时,相关人员在供热过程中需要提高节能减排工作的关注度,推动供热工作高效、安全进行。
本文通过分析供热系统运行情况,分析水利平衡调节问题,针对性地提出相应解决措施,希望可以为供热系统良好运行提供一些建议,推动我国供热工作的稳定发展。
关键词:集中供热系统;水力平衡调节;节能措施引言:当今时代,我国不仅重视经济发展速度,还对环境保护方面提出更高要求。
因此,在供热系统运行过程中,相关部门应制定有效措施,推动供热系统高效运行的同时,对节能减排工作进行落实,从而做到优化资源配置,提高资源利用率,为环境保护做出贡献。
1.供热系统水力失调的产生原因导致供热系统水利失调的原因众多,主要包括以下方面:(1)在供热过程中,因压头过多导致水流分配不均衡,导致水力失衡;(2)选择循环水泵时,因型号不匹配导致运行过程产生数值与预计数值存在较大差异,进而引发水力失衡;(3)供热过程中,实际运行产生的热负荷与预计数值不相符,导致热负荷过大或者过小的情况产生,从而导致水利失调;(4)供热环节存在高程差问题,或者是在高层建筑中,因较高层与较低层存在垂直差异,导致高程差情况产生,从而构成垂直水利失调;[1](5)在供热过程中,系统流量随时处于变化状态,若出现电动调节、温度调控设施未正常运行的情况,则会导致阀门随气温变化而产生改变,当气温降低时,阀门开合程度偏大,反之,气温偏高时,则阀门开合程度偏小,进而导致动态水利失衡。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/77a98271effdc8d376eeaeaad1f34693daef1080.png)
供热管网水力平衡的调节措施探讨供热管网水力平衡是指在供热系统中各个分支管路的流量、压力、温度等参数处于合理的状态,确保热量能够均匀传递到各个用户处。
水力平衡的调节措施是为了实现这一目标,保障供热系统的正常运行。
本文将从调节阀的选择、管网结构设计和调节方法等方面进行探讨,以期为供热系统水力平衡的调节提供一定的参考。
一、调节阀的选择1. 阀门种类在供热管网的水力平衡中,调节阀的种类选择十分重要。
目前常用的调节阀主要包括手动调节阀和自动调节阀两种。
手动调节阀需要人工操作,根据实际情况进行调节,操作简单但需要经常维护和调整;自动调节阀则可以根据管网的水力平衡情况自动调节,减少人工干预,提高供热系统的稳定性和效率。
2. 阀门大小在选择调节阀的时候,阀门大小也是需要重点考虑的因素。
阀门大小应该根据管道的流量和压力来确定,在满足流体通过要求的前提下,尽量选择较小的阀门,以减少系统的能耗和运行成本。
二、管网结构设计1. 管网布局供热管网的布局对水力平衡具有重要影响。
合理的管网布局应该考虑到管道长度、管径大小、管道材质等因素,尽量减小管道的水头损失,确保各个分支管道流量均匀,从而实现系统的水力平衡。
2. 阀门设置在供热管网的设计中,阀门的设置非常关键。
通过合理设置阀门,可以在不同的分支管道上实现水力平衡调节,确保水流量和压力的均衡分配。
合理设置阀门还可以减小系统的管网阻力,降低能耗,提高系统的运行效率。
三、调节方法1. 静态调节静态调节是指在供热管网安装阀门后,通过对阀门的调节来实现系统水力平衡。
静态调节通常需要通过测量和分析管网的水力参数,对阀门进行逐个调整,以达到系统的水力平衡状态。
2. 动态调节动态调节是指在管网运行过程中,通过监测管网的参数变化情况,及时对阀门进行调节,以实现系统的水力平衡。
动态调节可以根据实时的管网运行情况,自动调整各个分支管道的流量和压力,保证系统的稳定运行。
四、水力平衡问题解决1. 管网清洗在供热管网运行一段时间后,管道内部往往会出现杂质、锈垢等污物,导致管道内径减小、摩擦阻力增大,影响水力平衡。
供热管网水力平衡调节方法的研究
![供热管网水力平衡调节方法的研究](https://img.taocdn.com/s3/m/6f486c08ce84b9d528ea81c758f5f61fb73628c5.png)
供热管网水力平衡调节方法的研究供热管网是指将热能从供热站输送到用户处的管网系统,它是供热系统中至关重要的一部分。
在供热管网中,水力平衡是一个重要的问题,它对供热系统的正常运行和能效有着重要的影响。
水力不平衡会导致供热管网中的一些支路流量过大,而另一些支路流量过小,甚至出现停水现象,影响整个供热系统的正常运行。
如何进行供热管网的水力平衡调节是供热系统运行中需要解决的重要问题。
本文将对供热管网水力平衡调节方法进行研究,探讨当前供热系统中存在的水力不平衡问题,并结合实际案例分析供热管网水力平衡调节的方法及其效果。
一、供热管网水力平衡的影响供热管网的水力平衡对供热系统的能效和运行稳定性有着重要的影响。
水力不平衡会导致供热系统中部分支路流量过大,而另一些支路流量过小,严重影响了供热系统的正常运行。
具体表现在以下几个方面:1. 能耗增加:水力不平衡会导致供热系统中部分支路流量过大,而另一些支路流量过小,使得供热系统的运行效率下降,从而增加了能耗。
2. 系统压力波动:水力不平衡还会导致供热系统中的压力波动,影响供热管网的稳定运行,甚至影响到用户的取暖效果。
3. 设备损坏:水力不平衡还会导致供热系统中部分设备负荷过重,长期运行下去会导致设备的损坏,增加了系统的维修成本。
解决供热管网的水力不平衡问题对于提高供热系统的能效、保证系统的稳定运行至关重要。
1. 阀门调节法:通过在供热管网中设置调节阀门,可以控制支路的流量,从而达到水力平衡的目的。
对于流量较大的支路,适当关闭阀门降低其流量;对于流量较小的支路,适当打开阀门增加其流量,从而使得各个支路的流量均衡。
2. 管网改造法:对于部分支路流量过大或过小的问题,需要对供热管网进行改造和优化,例如增加支路管道的直径、增加支路的数量等,从而调节各支路的流量,实现水力平衡。
3. 自动化调节法:利用现代智能控制系统,通过对供热管网进行实时监测和控制,可以实现对供热管网的水力平衡自动调节,保持各支路流量的平衡稳定。
供热管网水力平衡的调节措施探讨
![供热管网水力平衡的调节措施探讨](https://img.taocdn.com/s3/m/40b0923ecd7931b765ce0508763231126edb77a9.png)
供热管网水力平衡的调节措施探讨随着供热系统的发展和完备,供热管网的水力平衡成为保障供热质量和节能减排的重要环节。
供热管网在运行时,由于各种原因(如管道长度不同、管径不一、高层低层水流率不同等)会导致管网内的水流不平衡,从而影响供暖效果甚至造成热损失等问题。
因此,如何调节供热管网的水力平衡成为了供热系统运行中的重点问题。
1、管道的选择和设计为避免管道长度不均和直径的不同等问题影响供热管网的水力平衡,应在管道的选择和设计阶段注重此类问题。
尽可能缩短管道长度、选择相同口径的管道,或通过补偿管等方式解决长度和直径不一致的问题。
此外,应避免采用过长的水平采暖支线管和采用转弯等增加水流阻力的设计,以减少管网的压力损失。
2、安装调节阀和平衡阀调节阀和平衡阀是实现供热管网水力平衡的重要设备。
在管网内选择合适的位置安装调节阀和平衡阀,通过对阀门的开度进行调节,使得水流量符合设计要求,从而实现整个管网的水力平衡。
调节阀应放置在供水管的支路处,平衡阀则应该放置在回水管的支路处,以达到最佳的水力平衡。
此外,调节阀和平衡阀的选择应合理,选用质量好、性能稳定、调节范围大的制品,才能达到最佳调节效果和稳定的运动状况。
3、采用泵组调速、控制室设定压力等手段在实际运行中,难免会出现一些变化,如用户的对供热的需求增减、环境温度变化等,这些变动都可能对管网的水流平衡产生影响。
为避免这些变化带来的影响,可以采用泵组调速、联动控制等控制手段,根据实时的用户要求和温度变化,设定合适的水压和水流量,从而保持管网的水力平衡。
此外,应建立热力管网运行的监控系统,设计合理的报警机制,随时监测供热管网的运行情况,提前预防和排除故障,确保供热管网的水力平衡和系统运行的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用户
流量
用户1
用户2
用户3
用户4
总流量(m3/h)
用户实测流量(m3/h)
14
12
9
8
43
设计流量
10
10
10
10
40
实测流量与
设计流量比较
实测>设计
实测>设计
实测<设计
实<设计
为保证静态水力
平衡采取的措施
安装静态水力平衡设备,并通过一定的调试方法,使各个末端用户的实际流量比值与设计要求的流量比值一致,再将系统总流量调至设计总流量
一、水力平衡的基本概念:
1、静态水力失调和静态水力平衡:
静态水力失调是系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调。静态水力失调是系统本身所固有的。它是由于设计、施工、管材等原因导致的。
通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端用户流量同时达到设计流量,实现静态水力平衡。
表1
用户
流量
用户1
用户2
用户3
用户4
总流量(m3/h)
用户实测流量(m3/h)
14
12
9
8
43
设计流量
10
10
10
10
40
实测流量与
设计流量比较
实测>设计
实测>设计
实测<设计
实测<设计
为保证设计流量
必须采取的措施
必须通过增大水泵流量的方法
以保证用户4的流量达到设计流量
水泵流量增大后的流量数值(m3/h)
2、动态水力失调和动态水力平衡:
动态水力失调实际上是系统运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调。动态水力失调是在系统运行过程中产生的。
通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度改变引起水流量变化时,通过动态水力平衡设备的屏蔽作用,自身的
衡。
实现静态水力平衡的判断依据是:当系统所有的自力式阀门均设定到设计参数位置,所有末端用户散热设备的控制阀均处于全开位置时,系统所有末端用户散热设备的流量均达到设计流量。
从上可以看出,实现静态水力平衡的目的是使系统能均衡地输送足够的水量到各个末端用户,并保证各末端用户同时达到设计流量。
但是,大部分用户需要的流量都小于设计流量(为满足底楼用户的供热需求,上楼用户的设计流量往往大于实际需要量)。因此,系统不但要实现静态水力平衡,还要实现动态水力平衡。
2、动态水力平衡的实现:
通过在相应部位安装动态水力平衡设备,使系统达到动态水力平衡。
实现动态水力平衡的判断依据是:在系统各末端用户的流量达到各末端用户实际瞬时负荷要求流量的同时,各末端用户流量的变化只受用户室内热负荷变化的影响,而不受系统压力波动的影响,即系统中各个末端用户流量的变化不互相干扰。
变流量系统的动态水力平衡在保证系统供给和需求水量瞬时一致性(这个功能是由各类调节阀门来实现的)的同时,避免了各用户流量变化的相互干扰,从而保证系统能高效稳定地将用户在各个时刻所须的流量准确地输送过去。
17.5
15
11.25
10
53.75
由上表可见,设计总流量为40(m3/h),但为了保证最不利环路达到设计流量,实际水泵所需的最小流量为53.75(m3/h),大于设计总流量。这样的系统既不节能,也不舒适,因此必须安装静态水力平衡设备对系统进行改造。
⑵、静态水力平衡系统的流量计算:
表2为安装了静态水力平衡阀并调试合格前后的末端设备流量的实测数值。
由上可见,由于二环路的调节导致一环路偏离平衡状态,也就是二环路对一环路产生了干扰,因此这两个环路间存在动态水力失调。对于多环路系统,任何一个环路的调节都会对其它环路产生干扰,同时任何一个环路都会受到其它环路调节的影响,系统越大,这种影响就越明显,也就是动态水力失调的程度就越大,因此系统很难调到平衡状态,即使到了平衡状态,要想维持稳定也很难。
四、水力平衡和水力失调系统的比较:
1、静态水力平衡与水力失调系统的比较:
图1为静态水力不平衡系统改造图。上图为该系统在静态水力平衡前后的阻力分布线图。下图为系统流程图,其中左侧为水泵及热源,右侧为四户末端热用户散热设备,四户末端热用户的设计流量均为10m3/h;
⑴、静态水力失调系统的流量计算:
在未安装静态水力平衡设备前,现场测得的末端设备流量及通过改造水泵来满足流量的计算结果如表1所示,该系统为静态失调的水力系统
一、水力平衡的基本概念……………………………………1
二、定流量系统的静态水力平衡……………………………2
三、变流量系统的全面水力平衡……………………………2
四、水力平衡和水力失调系统的比较………………………3
五、结束语……………………………………………………9
水暖供热系统水力平衡的调节
供热管网是一个复杂的水力系统,系统中各环路间水力状况的变化相互影响和制约。因此,在供热工程中,水力平衡的调节是个重要的问题。通过调节系统水力平衡,可以实现供热水力系统的舒适性和节能性。
区域二还处于不稳定状态,目标区域的温度T2为24℃,低于设定温度27℃,这时测量温度和设定温度在温度控制器进行比较,输出信号将电动调节阀开大以增加流过区域二散热设备的热水量,使测量温度T2升高,接近设定温度;但与此同时,系统立管C、D二点的压差会增大,一环路电动调节阀二端的压差相应增大,电动调节阀流量增大,区域一的热流量增大,导致区域一室内温度升高,偏离平衡状态。
如图2所示,为一组多台散热设备并联环路(图中只画出2路、已实现静态平衡),每环路通过电动调节阀调节目标区域的流量来控制热用户的室内温度,其中区域一的设定温度为25℃,区域二的设定温度为27℃。
图2:动态水力失调的电动调节阀环路
假定区域一已调至平衡状态,即目标区域的温度T1已稳定在25℃,这时电动调节阀的开度维持在某一位置以输出一个恒定的流量。
静态水力平衡后
的实测流量(m3/h)
10
10
10
10
40
由上表可见,设计总流量为40(m3/h),系统静态水力平衡后的实际总流量也是40(m3/h),且各个末端设备的流量同时达到设计流量。因此这种系统实现了静态水力平衡,并且舒适节能。
2、全面平衡水力系统与动态失调水力系统的比较:
⑴、动态失调水力系统(采用传统的电动调节阀调控散热设备流量的多环路并联系统)水力特性分析: