第一章 电路基本元件和基本定律
第一章 电路的基本概念和基本定律
电路的基本概念和基本定律
伏-安关系: 电压电流关系 (u,i关联参考方向下)
i u e
N
d e dt dLi di L dt dt
di u e L dt
电磁感应定律 感应电动势阻碍电流 变化,且其大小与电 流变化快慢有关
对于线性电感
伏安关系
说明1: 电压与电流的变化率成正比,电感是动态元件 当
如果U 、I方向不 一致该如何?
江苏大学电工电子教研室
电路的基本概念和基本定律
二、功率的计算:
U、 I 为关联参考方向时: U、 I 为非关联参考方向时:
P = UI或 p=ui
三、功率性质: 若计算结果 P(p) 0
若计算结果P(p) 0
Hale Waihona Puke + u –+
i
i
u –
P = -UI或 p=-ui
电工技术(电工学I)
第一章 电路的基本概念和基本定律 Basic conception and Laws of circuit
江苏大学电气信息工程学院
School of electric and information,UJS
电路的基本概念和基本定律
内容
1.1 电路的作用与组成
1.2 电路模型 1.3 电流和电压的参考方向 1.4 电路的功率
江苏大学电工电子教研室
电路的基本概念和基本定律
4.关联与非关联参考方向 对任一元件或一段电路 关联方向:
I
与
U
的参考方向一致
a
I U
b
非关联方向:
I
与
U
的参考方向相反
a
电工技术基础2
元件C
1.2 电路基本元件
电路元件按其特性可分为有源元件和无源元件两
种。如果一个元件在任何时刻的物理效应表征为吸收
能量,称该元件为无源元件,否则为有源元件。无源
元件主要有电阻、电感和电容元件,其中电阻元件为 耗能元件,电感和电容元件为储能元件。有源元件主 要有独立电源和受控电源元件。
1.2.1 电阻元件R 在任意时刻,能用u-i平面上一条曲线来描述外部 特性的元件称为电阻元件。它是一种反映消耗电能转 换成其它形式能量物理特征的电路模型。
电压控制电压源 VCVS
电压控制电流源 VCCS
电流控制电压源 CCVS
电流控制电流源 CCCS
1.2.6 开路与短路
开路与短路是电路元件的一种特殊伏安特性。 1.开路 开路是指电路中两点间无论电压如何,其电流恒为零 的物理特征。 1)当 R = ,R相当于开路,如图a所示。 2)当电流源值恒为零时,电流源相当于开路,如图b 所示。 3)理想开关元件可以看成特殊的电阻元件,当它断开 时,电阻无穷大,电流为零,即开路,如图c所示。
R4 = 1, R5 = 2, U S = 30V 。试求电路中电流I。
解
3×5 R1 R2 = =1.5 R6 = R1 R2 R5 3 5 2
电压与电流非关联参考方向
在参考方向条件下,电路分析计算的结果存在两种情况: 1) 计算结果为“+”,说明参考方向与实际方向相同; 2) 计算结果为“-”,说明参考方向与实际方向相反。
例1-1 已知 I1 = 4A,U1 = 2V, I 2 = U 2 = 4V, I 3 = 3A, 4A,
U 3 = 5V 。试说明图中各元件上的电压、电流的参考方
dq i= dt3.Fra bibliotek功率和能量 功率定义为单位时间内所转换的电能,用p表示。 功率p与能量w的关系如下所示
第一章电路的基本概念和基本定律
开关
实际电路
电源
电路模型 3
(1)电源:供给电能的设备。
把其它形式的能量转换为电能。
(2)负载: 消耗电能的设备。
把电能转换为其它形式的能量
(3)中间环节(又称传输控制环节):
各种控制电器和导线,起传输、分 配、控制电能的作用。
4
1.1.2 电路中的物理量 1、电流
定义 电荷有规律的定向运动即形成电流
(2) 列电路方程:
Uab UR E
UR Uab E
IR
UR R
Uab E R
15Leabharlann R aIR E UR
b U
IR
U
R
E
(3) 数值计算
U 3V
IR
3-2 1
1A
(实际方向与假设方向一致)
U 1V
IR
1 2 1
1A
(实际方向与假设方向相反)
16
(共7 个)
31
(一) 克氏电流定律(KCL)
对任何节点,在任一瞬间,流入节点的电流等于由节点
流出的电流, 即: I 入= I 出 或者说,在任一瞬 间,一个节点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I1 I3 I2 I4 0
(二) 克氏电压定律(KVL)
对电路中的任一回路,沿任意循行方向转一周,其 电位升等于电位降。或各电压的代数和为 0。
I1
a
I2
即: U 0
R1
R2
例如: 回路 #3
1 第1章 电路模型和电路定律
电感元件 只具有储 只具有储 存磁能的 存磁能的 电特性
电容元件 只具有储 只具有储 存电能的 存电能的 电特性
理想电压源 输出电压恒 定,输出电 流由它和负 载共同决定
理想电流源 输出电流恒 定,两端电 压由它和负 载共同决定
实际电路与电路模型
S 电 源 负 载 R0 I
+
RL U
电源
+ _US
电路模型(circuit model)
电路模型:由理想电路元件和理想导线互相连接而成。 电路模型:由理想电路元件和理想导线互相连接而成。
实际电路器件品种多,电磁特性多元而复杂, 实际电路器件品种多,电磁特性多元而复杂, 直接画在电路图中困难而繁琐,且不易定量描述。 直接画在电路图中困难而繁琐,且不易定量描述。
p发 = ui
例
U = 5V, I = - 1A 5V,
u
–
P发= UI = 5×(-1) = -5 W 5× p发<0,说明元件实际吸收功率5W <0,说明元件实际吸收功率5W
能量的计算
dw t) ( 两边从根据功率的定义 p(t) = ,两边从-∞到t dt
积分,并考虑w(-∞) = 0,得 积分, 0,
电 电
负 载
–
电
电
电路模型:由理想元件及其组合代表实际电路器件, 电路模型:由理想元件及其组合代表实际电路器件,与 实际电路具有基本相同的电磁性质,称其为电路模型。 实际电路具有基本相同的电磁性质,称其为电路模型。 通常用电路图来表示电路模型
利用电路模型研究问题的特点 1.主要针对由理想电路元件构成的集总参数电路, 1.主要针对由理想电路元件构成的集总参数电路, 主要针对由理想电路元件构成的集总参数电路 其中电磁现象可以用数学方式来精确地分析和计算; 其中电磁现象可以用数学方式来精确地分析和计算; 2.研究与实际电路相对应的电路模型, 2.研究与实际电路相对应的电路模型,实质上就是 研究与实际电路相对应的电路模型 探讨各种实际电路共同遵循的基本规律。 探讨各种实际电路共同遵循的基本规律。 集总参数电路元件的特征 元件中所发生的电磁过程都集中在元件内部进行 其次要因素可以忽略的理想电路元件; 其次要因素可以忽略的理想电路元件;任何时刻从元 件两端流入和流出的电流恒等且由元件端电压值确定。 件两端流入和流出的电流恒等且由元件端电压值确定。
电路的基本原理(第一章)
参考方向 实际方向
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UIa 0
I
+ + “发出功率”
-
U_ b
(电源)
(2)当U和I参考方向选择不一致的前提下
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UI 0
I
+
-
+
U_
“发出功率” (电源)
中间环节:连接电源和负载的部分,其传输和分 配电能的作用。例如:输电线路
举例:(电子电路,即信号电路)
放 大 器
电源 (信号源) 中间环节
负载
电路的作用之二:传递和处理信号。
1.2 电路模型
I
电 池
灯 泡
+ E
_
+
RU
_
电源
负载
理想电路元件:在一定条件下,突出其主要电磁性能, 忽略次要因素,将实际电路元件理想化
对任何节点,在任一瞬间,流入节点的电流等于 由节点流出的电流。或者说,在任一瞬间,一个节
点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I I I I 0
1
3
2
4
克氏电流定律的依据:电流的连续性
克氏电流定律的扩展
电流定律还可以扩展到电路的任意封闭面。
例 I1 A
I
a
+
RO
+
U
E_
-
b
I=0
电路原理知识总结
电路原理总结第一章基本元件和定律1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。
2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3.全电路欧姆定律:U=E-RI4.负载大小的意义:电路的电流越大,负载越大。
电路的电阻越大,负载越小。
5.电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0二.基尔霍夫定律1.几个概念:支路:是电路的一个分支。
结点:三条(或三条以上)支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。
网孔:电路中无其他支路穿过的回路称为网孔。
2.基尔霍夫电流定律:(1)定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。
(2)表达式:i进总和=0或:i进=i出(3)可以推广到一个闭合面。
3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
(2)表达式:1或:2或:3(3)基尔霍夫电压定律可以推广到一个非闭合回路三.电位的概念(1)定义:某点的电位等于该点到电路参考点的电压。
(2)规定参考点的电位为零。
称为接地。
(3)电压用符号U表示,电位用符号V表示(4)两点间的电压等于两点的电位的差。
(5)注意电源的简化画法。
四.理想电压源与理想电流源1.理想电压源(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。
理想电压源的输出功率可达无穷大。
(2)理想电压源不允许短路。
2.理想电流源(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。
理想电流源的输出功率可达无穷大。
(2)理想电流源不允许开路。
模拟电路各章知识点总结
模拟电路各章知识点总结第一章:电路基础1.1 电路的基本概念电路是由电气元件(例如电阻、电容、电感等)连接而成的网络。
电路中电流和电压是基本的参数,描述了其中元件之间的相互作用。
电路按照其两个端点的特性可以分为单端口电路和双端口电路。
1.2 电路的基本定律欧姆定律、基尔霍夫定律以及其他电路定律描述了电路中电流和电压之间的关系。
其中欧姆定律描述了电阻元件电流和电压之间的关系,而基尔霍夫定律描述了电路中电流和电压的分布和流动规律。
1.3 电路的等效变换电路中电气元件可以通过等效电路进行简化处理。
例如将若干电阻串并联为一个等效电阻等。
第二章:基本电路元件2.1 电阻电阻是电路中最基本的元件之一,它的作用是阻碍电流的流动。
在电路中,电阻可以通过串联和并联的方式连接。
电阻的阻值与其材料、长度和横截面积有关系。
2.2 电容电容是电路中用来存储电荷的元件,它在电路中具有很多重要的应用。
电容的存储能量与其带电电压和电容量有关。
2.3 电感电感是电路中具有电磁感应作用的元件,其具有对电流变化的响应。
电感的存储能量与其感抗和电流有关。
2.4 理想电源理想电源是电路中常用的元件,可以提供恒定的电压或电流。
其特点是内部阻抗为零或者无穷大。
第三章:基本电路分析方法3.1 直流电路分析直流电路是电路分析中最简单的一种情况。
在直流电路中,电源提供的是恒定电压或电流,不会发生周期性或者随时间改变的变化。
3.2 交流电路分析交流电路分析是在电路中考虑电压和电流随时间变化的情况。
常见的交流电路分析包括使用复数形式进行计算。
3.3 电路的参数测量方法电路中常用的参数测量方法有欧姆表、万用表等。
它们可以测量电阻的阻值、电压的大小以及电流的大小等参数。
第四章:模拟电路设计4.1 放大器设计放大器是模拟电路中广泛应用的电路元件,可以放大电压或者电流的幅值。
常见的放大器有运放放大器、差分放大器等。
4.2 滤波器设计滤波器是可以去除特定频率成分的电路,可以用于信号处理、通信和音频等领域。
第一章-电路及基本元器件PPT课件
.
电工电子技术基础 3、二极管的伏安特性曲线(硅管)
.
电工电子技术基础
五、半导体三极管
1、三极管的结构
图1-8
.
电工电子技术基础 2、三极管的电流放大作用 三极管工作在放大状态的条件是:发射结正偏,集电 结反偏。
.
电工电子技术基础
(1)电流分配关系:发射极电流等于基极电流和集电极电
流之和,即:
图1-9
.
电工电子技术基础
(1)输入特性 死区电压:硅管约为0.5V,锗管约为0.2V; 导通电压(发射结):硅管约为0.7V,锗管约为0.3V。 (2)输出特性
截止区: UBE小于死区电压,IC≈ 0,UCE ≈UCC,。
饱和区:集电结正向偏置 ,UCE<UBE, IC≈ UCC/RC 。
放大区:发射结正偏,集电结反偏 , IC≈βIB。
图1-2
.
图1-3
电工电子技术基础
三、电功率和电能
1、电功率
电流通过电路时传输或转换电能的速率称为电功率,
简称为功率,用符号p表示。
当电压与电流为关联参考方向时,功率的计算公
式为:
p dW ui dt
当电压与电流为非关联参考方向时,功率的计算
公式为:
pui
.
电工电子技术基础 2、电能 电路在一段时间内吸收的能量称为电能。在国际单 位制(SI)中,电能的单位是焦耳(J)。1J等于1W的用 电设备在1s内消耗的电能。电力工程中,电能常用“度” 作单位,它是千瓦小时(kWh)的简称,1度等于功率为 1kW的用电设备在1小时内消耗的电能。
图1-23
.
电工电子技术基础 在电子电路中,电源的一端通常是接地的,为了作
电工技术第一章 电路的基本概念和基本定律习题解答
第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
电工基础电路的基本概念和基本定律教案
电工基础-电路的基本概念和基本定律教案第一章:电路的基本概念1.1 电流定义:电流是电荷的流动,单位是安培(A)电流的产生:电压使电荷发生移动形成电流1.2 电压定义:电压是电场力推动电荷移动的能力,单位是伏特(V)电压的产生:电源提供电压,使电荷在电路中流动1.3 电阻定义:电阻是电路对电流阻碍作用的大小,单位是欧姆(Ω)电阻的计算:R = V/I,其中V为电压,I为电流第二章:电路的基本元件2.1 电源定义:电源是提供电压的装置常见电源:电池、发电机、电源适配器等2.2 负载定义:负载是电路中消耗电能的装置常见负载:电灯、电动机、电阻等2.3 开关定义:开关是控制电路通断的装置常见开关:手动开关、自动开关等第三章:基本电路定律3.1 欧姆定律定义:电流I与电压V成正比,与电阻R成反比,公式为I = V/R 应用:计算电路中的电流、电压和电阻3.2 基尔霍夫电压定律(KVL)定义:电路中任意闭合回路电压的代数和等于零应用:分析电路中的电压关系,解决电压问题3.3 基尔霍夫电流定律(KCL)定义:电路中任意节点流入电流的代数和等于流出电流的代数和应用:分析电路中的电流关系,解决电流问题第四章:简单电路分析4.1 串联电路定义:电路中元件依次连接,电流相同,电压分配特点:电流相同,电压分配应用:计算串联电路中的电流、电压和电阻4.2 并联电路定义:电路中元件并行连接,电压相同,电流分配特点:电压相同,电流分配应用:计算并联电路中的电流、电压和电阻第五章:电路测量与实验5.1 测量工具电流表:测量电路中的电流电压表:测量电路中的电压电阻表:测量电路中的电阻5.2 实验步骤与方法实验设计:确定实验目的、电路连接方式等实验操作:按照实验步骤进行测量和数据记录实验分析:根据测量数据进行分析,得出结论第六章:电路的进阶概念6.1 交流电与直流电定义:交流电是电压和电流方向周期性变化的电,直流电是电压和电流方向不变的电特点:交流电有频率和相位,直流电稳定6.2 频率与周期定义:频率是单位时间内交流电变化的次数,周期是一次完整变化所需的时间关系:f = 1/T,其中f为频率,T为周期6.3 相位差定义:交流电中两个电压或电流波形的相对时间差应用:分析电路中波形的相位关系第七章:电路图的绘制7.1 电路图符号电源符号:电池、发电机等负载符号:电灯、电动机、电阻等开关符号:手动开关、自动开关等7.2 电路图绘制规则清晰:符号清晰,连线准确简洁:简化电路,删除多余部分一致:符号一致,电压方向一致7.3 电路图的解读与绘制解读:分析电路元件和连接方式,理解电路功能绘制:根据电路元件和连接方式,绘制电路图第八章:电路仿真软件的使用8.1 电路仿真软件概述定义:电路仿真软件是一种用于电路分析和设计的工具作用:模拟电路运行,验证电路设计,分析电路性能8.2 常见的电路仿真软件Multisim:功能强大,操作简单,广泛应用于电路设计和实验教学Proteus:界面友好,兼容性好,支持多种硬件描述语言LabVIEW:基于图形化编程语言,适用于复杂电路系统的研究和开发8.3 电路仿真软件的使用方法打开软件,创建新项目绘制电路图,添加元件设置参数,运行仿真分析结果,优化电路设计第九章:磁路与电磁感应9.1 磁路定义:磁力线在电路中的路径磁阻:磁路对磁力线的阻碍作用磁通量:磁场穿过磁路的面积与磁场强度之积9.2 电磁感应定义:磁通量变化时,产生感应电动势法拉第电磁感应定律:ε= -dΦ/dt,其中ε为感应电动势,Φ为磁通量,t为时间楞次定律:感应电流的方向是阻碍磁通量变化的方向第十章:电机的工作原理与控制10.1 直流电机工作原理:电流通过电枢产生磁场,与磁极相互作用产生转矩控制方式:电压控制、电流控制、转速控制等10.2 交流电机工作原理:电流通过线圈产生磁场,与磁极相互作用产生转矩控制方式:电压控制、频率控制、转速控制等10.3 电机控制系统定义:通过控制电机的工作原理和运行参数,实现对电机的控制应用:电动汽车、工业、风力发电等第十一章:电力电子技术11.1 电力电子器件定义:用于电力转换和控制的电子器件常见器件:二极管、晶体管、晶闸管、GTO、IGBT等11.2 电力电子电路定义:利用电力电子器件实现电能转换和控制的电路应用:变频调速、整流、逆变、斩波等11.3 电力电子技术的应用定义:电力电子技术在电力系统和电气设备中的应用应用领域:电源、电机控制、电力系统、可再生能源等第十二章:电气设备12.1 概述定义:用于发电、输电、变电、配电和用电的设备分类:发电设备、输电设备、变电设备、配电设备、用电设备12.2 发电设备定义:将机械能、热能等转化为电能的设备常见设备:汽轮机、水轮机、风力发电机、太阳能光伏板等12.3 输电设备定义:将电能从发电站输送到用户的设备常见设备:输电线路、变压器、断路器等第十三章:电力系统分析13.1 电力系统的基本组成部分定义:电力系统由发电、输电、变电、配电和用电五个部分组成作用:实现电能的生产、传输、分配和消费13.2 电力系统的稳定性分析定义:分析电力系统在受到扰动时的稳定运行能力稳定性指标:暂态稳定性、静态稳定性、暂态过程中的电压稳定性等13.3 电力系统的经济性分析定义:分析电力系统的运行成本和效率经济性指标:发电成本、输电损耗、用电成本等第十四章:电力系统的保护与控制14.1 电力系统的保护定义:对电力系统进行故障检测和隔离,保护设备和人员安全保护装置:继电保护、差动保护、距离保护等14.2 电力系统的控制定义:对电力系统的运行参数进行调节和控制,保证系统稳定运行控制方法:开关控制、调节控制、最优控制等14.3 电力系统自动化定义:利用计算机技术和自动化装置实现电力系统的运行控制和管理应用:发电控制、输电控制、变电控制、配电控制等第十五章:可再生能源与电力系统15.1 可再生能源概述定义:指在自然界中不断补充的能源,如太阳能、风能、水能等优点:清洁、可再生、减少化石能源依赖等15.2 可再生能源并网技术定义:将可再生能源发电装置接入电力系统,实现电能的互补和利用技术难点:波动性、不稳定、电能质量等15.3 电力系统的可持续发展定义:在满足人类需求的保证电力系统的长期稳定和发展措施:发展可再生能源、提高能源利用效率、减少环境污染等重点和难点解析本文主要介绍了电工基础-电路的基本概念和基本定律,包括电路的基本概念、基本元件、基本电路定律、简单电路分析、电路测量与实验、电路的进阶概念、电路图的绘制、电路仿真软件的使用、磁路与电磁感应、电机的工作原理与控制、电力电子技术、电气设备、电力系统分析、保护与控制以及可再生能源与电力系统等方面的知识。
电路基本概念和基本定律
第一章电路基本概念和基本定律知识要点·了解电路和电路模型的概念;·理解电流、电压和电功率;理解和掌握电路基本元件的特性;·掌握电位和电功率的计算;会应用基尓霍夫定律分析电路。
随着科学技术的飞速发展,现代电工电子设备种类日益繁多,规模和结构更是日新月异,但无论怎样设计和制造,几乎都是由各种基本电路组成的。
所以,学习电路的基础知识,掌握分析电路的规律与方法,是学习电工学的重要内容,也是进一步学习电机、电器和电子技术的基础。
本章的重点阐明有关电路的基本概念、基本元件特性和电路基本定律。
电路和电路模型1.1.1 电路的概念1. 电路及其组成简单地讲,电路是电流通过的路径。
实际电路通常由各种电路实体部件(如电源、电阻器、电感线圈、电容器、变压器、仪表、二极管、三极管等)组成。
每一种电路实体部件具有各自不同的电磁特性和功能,按照人们的需要,把相关电路实体部件按一定方式进行组合,就构成了一个个电路。
如果某个电路元器件数很多且电路结构较为复杂时,通常又把这些电路称为电网络。
手电筒电路、单个照明灯电路是实际应用中的较为简单的电路,而电动机电路、雷达导航设备电路、计算机电路,电视机电路是较为复杂的电路,但不管简单还是复杂,电路的基本组成部分都离不开三个基本环节:电源、负载和中间环节。
电源是向电路提供电能的装置。
它可以将其他形式的能量,如化学能、热能、机械能、原子能等转换为电能。
在电路中,电源是激励,是激发和产生电流的因素。
负载是取用电能的装置,其作用是把电能转换为其他形式的能(如:机械能、热能、光能等)。
通常在生产与生活中经常用到的电灯、电动机、电炉、扬声器等用电设备,都是电路中的负载。
中间环节在电路中起着传递电能、分配电能和控制整个电路的作用。
最简单的中间环节即开关和联接导线;一个实用电路的中间环节通常还有一些保护和检测装置。
复杂的中间环节可以是由许多电路元件组成的网络系统。
图1-1所示的手电筒照明电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
电流的参考方向
i
R
则欧姆定律写为
u
u –R i
+
i –G u
公式和参考方向必须配套使用!
② 功率和能量
功率:
i
R
+
i
u
R
-
p u i i2R u2 / R p –u i –(–R i) i i2 R
-
u
+
–u(–u/ R) u2/ R
上述结果说明电阻元件在任何时刻总是消耗功率的。
(2) 若以c点为参考点,再求以上各值
c
b 0
Wab 8 a 2V q 4
解
(1)
以b点为电位参考点
U ab a b 2 0 2 V U bc b c 0 ( 3) 3 V
Wcb Wbc 12 c 3 V q q 4
(2)上式中u(t0)称为电容电压的初始值,它反映电 容初始时刻的储能状况,也称为初始状态。
③ 电容的功率和储能
功率
u、 i 取关
联参考方向
du p ui u C dt
(1)当电容充电, u>0,d u/d t>0,则i>0,q , p>0, 电容吸收功率。 (2)当电容放电,u>0,d u/d t<0,则i<0,q , p<0, 电容发出功率.
dw u dq
dq i dt
dw dw dq p ui dt dq dt
功率的单位:W (瓦) 能量的单位: J (焦) (Watt,瓦特) (Joule,焦耳)
2. 电路吸收或发出功率的判断
u, i 取关联参考方向
+
电路知识点总结pdf
电路知识点总结pdf第一章电路基础知识1.1 电路的定义电路是指由电源、导线、电器元件(例如电阻、电容、电感等)等组成的通电路径。
在电路中,电流经过电器元件后可以被改变,不同的电路结构和元件组合可以实现不同的电学功能。
1.2 电路的基本元件电路中的基本元件包括电源、导线、电阻、电容和电感等。
电源用于提供电流,导线用于连接各个元件,电阻用于限制电流,电容用于存储电荷,电感用于储存电能。
1.3 电路的基本定律欧姆定律、基尔霍夫定律和法拉第定律是电路中的三大基本定律。
欧姆定律描述了电压、电流和电阻之间的关系,基尔霍夫定律描述了电路中的电流和电压的分布规律,法拉第定律描述了电感和电流之间的关系。
1.4 电路的分类根据电路中的元件和连接方式,电路可以分为直流电路和交流电路,串联电路和并联电路等不同类型。
第二章电阻电路2.1 电阻的基本性质电阻是电路中用于限制电流的元件,具有一定的电阻值。
电阻的电阻值与电阻本身的材料、长度和截面积等有关。
2.2 串联电阻和并联电阻串联电阻指多个电阻按照一定方向依次连接在一起,相同电流依次通过各个电阻,串联电阻的总电阻等于各个电阻的电阻之和。
并联电阻指多个电阻同时连接在一点上,电流依次分流通过各个电阻,并联电阻的总电阻等于各个电阻电阻值的倒数之和的倒数。
2.3 电阻的功率和能量利用电阻的电压和电流可以计算出电阻消耗的功率,电阻会将电能转换成热能,电阻的功率和电能的关系可以用来计算电阻的热效应。
2.4 电桥电桥是一种利用电阻比值测量未知电阻值的方法,常见的电桥有维恩桥和韦斯通桥等。
第三章电容电路3.1 电容的基本性质电容是电路中用于存储电荷和电能的元件,具有一定的电容值。
电容的电容值与电容本身的材料、形状和尺寸等有关。
3.2 并联电容和串联电容并联电容指多个电容同时连接在一点上,电荷依次分流通过各个电容,而串联电容指多个电容按照一定方向依次连接在一起,相同电压依次加在各个电容上。
大一电路知识点第一章
大一电路知识点第一章电路是电子学的基础,大一学生学习电路是打开电子学大门的第一步。
在本章中,我们将介绍一些大一电路学习的基本知识点,包括电路的基本概念、基本元件以及基本电路定律等内容。
1. 电路的基本概念电路是由电子元件、导线和电源等组成的系统。
通常,电路可以分为两类:闭合电路和开放电路。
闭合电路是指由连通的导线、电子元件和电源组成的电路,其中电流可以流动。
开放电路是指其中一个或多个元件的两个端子未连接,电流无法流动。
2. 电流、电压和电阻电流是电荷在电路中的流动,用单位时间内通过某一截面的电荷量来表示。
电流的单位是安培(A)。
电压是电荷在电路中受到的推动力或压力,用伏特(V)来表示。
电阻是电路对电流流动的阻碍,用欧姆(Ω)来表示。
3. 电子元件电子元件是构成电路的基本组成部分。
常见的电子元件包括电阻、电容、电感和二极管等。
其中,电阻用来阻碍电流流动,电容用来存储电荷,电感用来存储磁能,而二极管用来控制电流的流动方向。
4. 基本电路定律在学习电路时,我们需要了解一些基本的电路定律。
其中,欧姆定律是最基本的电路定律之一,它描述了电压、电流和电阻之间的关系。
欧姆定律可以表示为V = I * R,其中V代表电压,I代表电流,R代表电阻。
除了欧姆定律,基尔霍夫定律也是电路分析中常用的定律。
基尔霍夫定律包括节点定律和回路定律,可以用来分析复杂电路中的电流和电压分布。
5. 串联和并联电路在电路中,元件的连接方式可以分为串联和并联。
串联是将元件依次连接在一起,电流只有一个路径可以流动。
并联是将元件的一个端子相连接,电流可以选择不同的路径流动。
串联和并联电路的分析方法也不同。
在串联电路中,电流保持不变而电压分布依次;而在并联电路中,电压保持不变而电流分布不同。
6. 电路等效电路等效是指将复杂电路简化为等效电路,以便分析和计算。
等效电路是能够代替原始电路在性质上相等的简化电路。
常见的电路等效包括电阻的串并联、电源的理想化等。
《电路基本概念》PPT课件
第1章 电路的基本概念和基本定律
i 参考方向
i
参考方向
实际方向
(a)
实际方向
(b)
a
b
a
b
iab
iba
(c)
(d)
图1.2 电流的参考方向
第1章 电路的基本概念和基本定律
1.2.2 电压及其参考方向
电路中A、 B两点间的电压是单位正电荷在电场力的作 用下由A点移动到B点所减少的电能, 即
uAB lqi m 0 WqABddW AqB
第1章 电路的基本概念和基本定律
第1章 电路的基本概念和基本定律
1.1 电路和电路模型 1.2 电流电压及其参考方向 1.3 电功率和电能 1.4 电阻元件和欧姆定律 1.5 电容和电感元件 1.6 基尔霍夫定律
第1章 电路的基本概念和基本定律
开关
干 电 池
(a)
小灯泡
S
Ri
+
R
Us
-
(b)
图1.1 电路的组成
p uiiLdi dt
1.6
第1章 电路的基本概念和基本定律
基尔霍夫定律是集中参数电路的基本定律, 它包括电流定 律和电压定律。为了便于讨论, 先介绍几个名词。
(1)支路: 电路中流过同一电流的一个分支称为一条支 路。
(2)节点: 三条或三条以上支路的联接点称为节点。 (3) 回路: 由若干支路组成的闭合路径,其中每个节点只
A
BA
B
+u -
u
(a)
(b)
图1.3 电压的参考方向
第1章 电路的基本概念和基本定律
元件的电压参考方向与电流参考方向是一致的, 称为关联参
考方向。
i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章电路基本元件和基本定律§1.1 电路和电路模型电能或电信号的发生器称为电源,用电设备称为负载。
由于电路中的电压、电流是在电源的作用下产生的,因此电源又称为激励;由于激励而在电路中产生的电压、电流称为响应。
有时,根据激励与响应之间的因果关系,把激励称为输入,响应称为输出。
图1-1(a)所示为一个简单的实际电路,这是一个由干电池通过连接导线向灯泡供电的装置,可以用图1-1(b)所示电路作为其电路模型。
在这模型中的电阻元件R作为灯泡的电路模型,反映了将电能转换为热能和光能这一物理现象;干电池用电压源U和电阻元件S R的串联组合作为模型,分别反映了电池内S储化学能转换为电能以及电池本身耗能的物理过程。
连接导线用理想导线(电阻为零)表示。
(a)(b)图1-1 一个实际的电路和它的电路模型电路理论中的一些理想元件,如电阻、电感、电容等,都分别集总地表现实际电路中的电场或磁场的作用。
每一种具有两个端子的元件中有确定的电流,端子间有确定的电压。
这样的元件称为集总参数元件,由集总参数元件构成的电路称为集总参数的电路。
用理想电路元件或它们的组合模拟实际器件就是建立其模型,简称建模。
建模时必须考虑工作条件,并按不同准确度的要求把给定工作情况下的主要物理现象和功能反映出来。
§1.2 电流和电压的参考方向1.2.1 电流的参考方向图1-2表示一个电路的一部分,其中的方框表示一个二端元件。
流过这个元件的电流为i,其实际方向或是由A到B,或是由B到A。
图1-2中在导线上标示的箭头表示电流的参考方向,它不一定就是电流的实际方向。
指定参考方向的用意在于把电流看成代数量。
如果电流i的实际方向是由A到B,如图1-2(a)中虚线箭头所示,它与参考方向一致,则电流为正值,即0>i。
在图1-2(b)中,指定的电流参考方向自B到A(见实线箭头),如果电流的实际方向是由A到B(见虚线箭头),两者不一致,故电流为负值,即0<i。
这样,在指定的电流参考方向下,电流的正和负就可以反映出电流的实际方向。
电流的参考方向可以任意指定,一般用箭头表示,也可以用双下标表示,例如0>ABi表示参考方向是由A到B。
电路元件或一段电路的电流无参考方向,其值的正负无意义;分析电路的过程中,参考方向一旦选定,中途不得更改。
元件元件(a) (b)图1-2 电流的参考方向1.2.2 电压的参考方向对电路中两点之间的电压也可以指定参考方向或参考极性。
两点之间的电压参考方向可以用正(+)、负(-)极性表示,正极指向负极的方向就是电压的参考方向,如图1-3。
指定电压参考方向后,电压就成为一个代数量。
在图1-3中,如果A点电位高于B点电位,即电压的实际方向是由A到B,两者的方向一致,则0>u。
当实际电位是B点高于A点,两者相反,则0<u。
有时为了方便,可用一个箭头表示电压的参考方向(图1-3)。
还可用双下标表示电压,如ABu表示A到B之间电压参考方向是由A指向B。
图1-3 电压的参考方向1.2.3 电流和电压的关联参考方向一个元件的电流或电压的参考方向可以独立地任意指定。
如果指定流过元件的电流参考方向是从电压正极性的一端指向负极性的一端,即两者的参考方向一致,则把电流和电压的这种参考方向称为关联参考方向,如图1-4,即沿电流参考方向为电压降低的参考方向;当两者不一致时,称为非关联参考方向。
人们常常习惯采用关联参考方向。
元件图1-4 关联参考方向在国际单位制(SI)中,电流的单位为A(安培,简称安),电荷的单位为C(库仑,简称库),电压的单位为V(伏特,简称伏)。
§1.3 电功率和能量电功率与电压和电流密切相关。
当正电荷从元件上电压的“+”极经元件运动到电压的“-”极时,与此电压相应的电场力要对电荷作功,这时,元件吸收能量;反之,正电荷从电压“-”经元件运动到电压的“+”极时,电场力作负功,元件向外是释放电能。
从t到t的时间内,元件吸收的能量可根据电压的定义(A、B两点的电压在数值上等于电场力将单位正电荷由A点移动到B点时所作的功)求得为⎰=)()(0t q t q udq W 由于dt dqi =,所以⎰=t t d i u W0)()()(ξξξ(1-1) 式中i 和u 都是时间的函数,并且是代数量,因此,电能W 也是时间的函数,且是代数量。
功率是能量对时间的导数,能量是功率对时间的积分。
由式(1-1)可知,元件吸收的功率可写为)()()(t i t u t p =(1-2)式中p 是元件吸收的功率。
当0>p 时,元件确实吸收功率;0<p 时,元件实际发出功率。
在指定电压和电流的参考方向后,应用(1-2)求功率时应当注意:当电压和电流的参考方向为关联参考方向时,乘积“ui ”表示元件吸收的功率,此时,当p 为正值时,表示该元件确实吸收功率。
如果电压和电流的参考方向为非关联参考方向时,乘积“ui ”表示元件发出的功率,此时,当p 为正值时,表示该元件确实发出功率。
一个元件若吸收功率为10W ,也可以认为它发出功率为-10W ,同理,一个元件若发出功率为10W ,也可以认为它吸收功率为-10W 。
§1.4 电路元件1.4.1 电阻元件线性电阻元件是这样的理想元件:在电压和电流取关联参考方向时,在任何时刻其两端的电压和电流服从欧姆定律Ri u =(1-3)线性电阻元件的图形符号如图1-5(a )所示。
上式中R 为电阻元件的参数,称为元件的电阻。
R 是一个正实常数。
当电压单位用V ,电流单位用A 时,电阻的单位为Ω(欧姆,简称欧)。
(a )(b ) 图1-5 电阻元件及其伏安特性曲线令R G 1=,式(1-3)变成Gu i =(1-4) 式中G 称为电阻元件的电导。
电导的单位是S (西门子,简称西)。
R 和G 都是电阻元件的参数。
由于电压和电流的单位是伏和安,因此电阻元件的特性称为伏安特性。
图1-5(b )画出线性电阻元件的伏安特性曲线,它是通过原点的一条直线。
直线的斜率与元件的电阻R 有关。
线性电阻元件经过i u -平面的直线有两个特殊的情况,一是直线与u 轴重合,二是直线与i 轴重合。
当直线与u 轴重合时,流过它的电流恒为零值,就把它称为“开路”。
开路的伏安特性曲线在i u -平面上与电压轴重合,它相当于∞=R 或0=G ,如图1-6(a )所示。
当直线i 轴重合时,它的端电压恒为零值,就把它称为“短路”。
短路的伏安特性曲线在i u -平面上与电流轴重合,它相当于0=R 或∞=G ,如图1-6(b )所示。
如果电路中的一对端子11'-之间呈断开状态,如图1-6(c )所示,这相当于11'-之间接有∞=R 的电阻,此时称11'-处于“开路”。
如果把端子11'-用理想导线(电阻为零)连接起来,称这对端子11'-被短路,如图1-6(d )所示。
(a ) (b )图1-6 开路和短路的伏安特性曲线当电压u 和电流i 取关联参考方向时,电阻元件消耗的功率为 G i Gu R u Ri uip 2222===== (1-5)R 和G 是正实常数,故功率p 恒为非负值。
所以线性电阻元件是一种无源元件。
实际电阻器消耗的功率都有规定的限度,超过规定值就会使电阻器因过热而损坏。
所以实际使用电阻器时,既要使电阻值大小符合要求,又要注意消耗的功率不要超过其允许值。
电阻元件从0t 到t 的时间内吸收的电能为 ⎰=tt d Ri W 0)(2ξξ电阻元件把吸收的电能转换成热能。
非线性电阻元件的电压电流关系不满足欧姆定律,而遵循某种特定的非线性函数关系。
其伏安特性一般可写为)(i f u = 或 )(u g i =如果一个电阻元件具有以下的电压电流关系:)()()(t i t R t u = 或 )()()(t u t G t i =这里u 和i 仍是比例关系,但比例系数R 是随时间变化的,故称为时变电阻元件。
线性电阻元件的伏安特性曲线位于第一、三象限。
如果一个电阻元件的伏安特性曲线位于第二、四象限,则此元件的电阻为负值,即0<R ,那么就是有源的。
负电阻元件实际上是一个发出电能的元件。
如果要获得这种元件,一般需要专门设计。
1.4.2 电容元件线性电容元件的图形符号如图1-7(a )所示,当电压参考极性与极板储存电荷的极性一致时,线性电容元件的元件特性为Cu q =(1-6)式中C 是电容元件的参数,称为电容,它是一个正实常数。
在国际单位制(SI )中,当电荷和电压的单位分别为C 和V 时,电容的单位为F (法拉,简称法)。
在实用中,这个单位太大,常用微法(F μ)、皮法(pF )作为电容的单位,F F 6101-=μ,F pF 9101-=。
图1-7(b )中,以q 与u 为坐标轴画出电容元件的库伏特性曲线。
线性电容元件的库伏特性曲线是一条通过原点的直线。
u(a ) (b )图1-7 电容元件及其库伏特性曲线1.4.3 电感元件为表示载流回路中电流产生磁场的作用,引入电感元件。
图1-8示出一个线圈,其中的电流i 产生的磁通LΦ与N 匝线圈交链,则磁通链L L N Φ=ψ。
L Φ与Lψ的方向与电流i 的参考方向成右手螺旋关系。
当磁通链L ψ随时间变化时,在线圈的端子间产生感应电压。
如果感应电压u 的参考方向与Lψ成右手螺旋关系(即从端子A 沿导线到端子B 的方向与Lψ成右手螺旋关系),则根据电磁感应定律,有dt d u L ψ=(1-14)由该式确定感应电压的真实方向时,与楞次定律的结果是一致的。
电感元件是实际线圈的一种理想化模型,它反映了电流产生磁通和磁场能量储存这一物理现象,其元件特性是磁通链L ψ与电流i 的代数关系。
线性电感元件的图形符号如图1-9(a )所示,一般在图中不必也难以画出)(L L Φψ的参考方向,但规定L ψ与电流i 的参考方向满足右手螺旋关系。
对于线性电感元件,其元件特性为Li =ψ(1-15)其中L 为电感元件的参数,称为自感系数或电感,它是一个正实常数。
线圈电感的大小决定于线圈的形状、几何尺寸、匝数和线圈周围磁介质的磁导率。
线圈的电感可以根据电磁学的理论计算得出,还可以用量测电感的仪器测量得出。
在国际单位制(SI )中,磁通和磁链的单位是Wb (韦伯,简称韦),当电流单位为A 时,电感的单位是H (亨利,简称亨)。
u +-(a ) (b )图1-9 电感元件及其韦安特性曲线1.4.4 独立电源1.电压源电压源是一个理想电路元件,它的端电压)(t u 为)()(t ut u S =(1-22)式中)(t u S 为给定的时间函数,称为电压源的激励电压。
电压源电压)(t u 与通过元件的电流无关,总保持为给定的时间函数,而电流的大小则由外电路决定。