大学微积分l知识点总结(二)
微积分(下册)主要知识点汇总
一、第一换元积分法(凑微分法)C x F C u F du u g dx x x g +=+=='⎰⎰)]([)()()()]([ϕϕϕ.二、常用凑微分公式三、第二换元法C x F C t F dt t t f dx x f +=+='=⎰⎰)]([)()()]([)(ψϕϕ,注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下:当被积函数中含有a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c),22a x - 可令 .sec t a x =当有理分式函数中分母的阶较高时, 常采用倒代换tx 1=.四、积分表续 4.3分部积分法xu x u x u x u x u x u a u e u x u x u b ax u x d x f dx xx f x d x f dx xx f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx xx f x d x f dx x x f a b ax d b axf a dx b ax f xx xx x x xx x x arcsin arctan cot tan cos sin ln )(arcsin )(arcsin 11)(arcsin .11)(arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1)(ln .3)0()()(1)(.2)0()()(1)(.1法分积元换一第换元公式积分类型22221==========+=-=-=+-==-=⋅=⋅=⋅=⋅=⋅≠=≠++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-μμμμμμμ分部积分公式:⎰⎰-=vdu uv udv (3.1) ⎰⎰'-='vdx u uv dx v u (3.2)分部积分法实质上就是求两函数乘积的导数(或微分)的逆运算. 一般地, 下列类型的被积函数常考虑应用分部积分法(其中m , n 都是正整数)..arctan arccos arcsin )(ln cos sin cos sin 等mx x mxx mxx x x e x mx e mx e mx x mx x n n n n mx n nx nx n n5.1定积分的概念 5.2定积分的性质两点补充规定:(a) 当b a =时, ;0)(=⎰badx x f (b) 当b a >时,⎰⎰-=abbadx x f dx x f )()(.性质1 .)()()]()([⎰⎰⎰±=±bababadx x g dx x f dx x g x f性质2 ,)()(⎰⎰=baba dx x f k dx x kf (k 为常数).性质3⎰⎰⎰+=bccab a dx x f dx x f dx x f )()()(.性质4 .1a b dx dx ba ba-==⋅⎰⎰性质5 若在区间],[b a 上有),()(x g x f ≤ 则,)()(⎰⎰≤babadx x g dx x f ).(b a <推论1 若在区间],[b a 上,0)(≥x f 则 ,0)(≥⎰badx x f ).(b a <推论2 ).(|)(|)(b a dxx f dx x f baba<≤⎰⎰性质6 (估值定理)设M 及m 分别是函数)(x f 在区间],[b a 上的最大值及最小值,则).()()(a b M dx x f a b m ba-≤≤-⎰性质7 (定积分中值定理) 如果函数)(x f 在闭区间],[b a 上连续,则在],[b a 上至少存在一个点ξ, 使).(),)(()(b a a b f dx x f ba≤≤-=⎰ξξ5.3微积分的基本公式 一、引例二、积分上限的函数及其导数:⎰=Φxadt t f x )()(定理2 若函数)(x f 在区间],[b a 上连续,则函数⎰=Φxadt t f x )()(就是)(x f 在],[b a 上的一个原函数. 三、牛顿—莱布尼兹公式定理3 若函数)(x F 是连续函数)(x f 在区间],[b a 上的一个原函数,则)()()(a F b F dx x f ba-=⎰. (3.6)公式(3.4)称为牛顿—莱布尼茨公式.5.4定积分的换元法积分法和分部积分法 一、定积分换元积分法定理1 设函数)(x f 在闭区间],[b a 上连续,函数)(t x ϕ=满足条件: (1),)(,)(b a ==βϕαϕ且b t a ≤≤)(ϕ;(2))(t ϕ在],[βα(或],[αβ)上具有连续导数,则有⎰⎰'=βαϕϕdt t t f dx x f ba)()]([)(. (4.1)公式(4.1)称为定积分的换元公式.定积分的换元公式与不定积分的换元公式很类似. 但是,在应用定积分的换元公式时应注意以下两点:(1)用)(t x ϕ=把变量x 换成新变量t 时, 积分限也要换成相应于新变量t 的积分限,且上限对应于上限,下限对应于下限;(2) 求出)()]([t t f ϕϕ'的一个原函数)(t Φ后,不必象计算不定积分那样再把)(t Φ变换成原变量x 的函数,而只要把新变量t 的上、下限分别代入)(t Φ然后相减就行了. 二、定积分的分部积分法⎰baudv ⎰-=bab a vdu uv ][ 或 ⎰'badx v u ⎰'-=bab a dx u v uv ][5.5广义积分一、无穷限的广义积分)()(|)()(a F F x F dx x f a a-+∞==∞++∞⎰)()(|)()(-∞-==∞-∞-⎰F b F x F dx x f b b)()(|)()(-∞-+∞==∞+∞-+∞∞-⎰F F x F dx x f二、无界函数的广义积分⎰⎰++→=ba ba dx x f dx x f εε)(lim )(0.)(lim)(0⎰⎰-+→=εεb aba dx x f dx x f5.6定积分的几何应用一、微元法定积分的所有应用问题,一般总可按“分割、求和、取极限”三个步骤把所求的量表示为定积分的形式.可以抽象出在应用学科中广泛采用的将所求量U (总量)表示为定积分的方法——微元法,这个方法的主要步骤如下:(1) 由分割写出微元 根据具体问题,选取一个积分变量,例如x 为积分变量,并确定它的变化区间],[b a ,任取],[b a 的一个区间微元],[dx x x +,求出相应于这个区间微元上部分量U ∆的近似值,即求出所求总量U 的微元 dx x f dU )(=;(2) 由微元写出积分 根据dx x f dU )(=写出表示总量U 的定积分⎰⎰==bab adx x f dU U )(微元法在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用,本节和下一节主要介绍微元法在几何学与经济学中的应用.应用微元法解决实际问题时,应注意如下两点:(1) 所求总量U 关于区间],[b a 应具有可加性,即如果把区间],[b a 分成许多部分区间, 则U 相应地分成许多部分量, 而U 等于所有部分量U ∆之和. 这一要求是由定积分概念本身所决定的;(2) 使用微元法的关键是正确给出部分量U ∆的近似表达式dx x f )(,即使得U dU dx x f ∆≈=)(. 在通常情况下,要检验dx x f U )(-∆是否为dx 的高阶无穷小并非易事,因此,在实际应用要注意dx x f dU )(=的合理性. 二、平面图形的面积(1)直角坐标系下平面图形的面积 (2)极坐标系下平面图形的面积曲边扇形的面积微元 θθd r dA 2)]([21=所求曲边扇形的面积 .)]([212θθϕβαd A ⎰=三、旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体. 这条直线称为旋转轴.旋转体的体积微元 ,)]([2dx x f dV π=所求旋转体的体积 .)]([2⎰=badx x f V π四、平行截面面积为已知的立体的体积:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.体积微元 ,)(dx x A dV = 所求立体的体积 .)(⎰=ba dx x A V5.7积分在经济分析的应用6.1空间解析几何简介 一、空间直角坐标系在平面解析几何中,我们建立了平面直角坐标系,并通过平面直角坐标系,把平面上的点与有序数组(即点的坐标),(y x )对应起来. 同样,为了把空间的任一点与有序数组对应起来,我们来建立空间直角坐标系.过空间一定点O , 作三条相互垂直的数轴, 依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴. 它们构成一个空间直角坐标系Oxyz (图6-1-1). 空间直角坐标系有右手系和左手系两种. 我们通常采用右手系.二、空间两点间的距离.)()()(||21221221221z z y y x x M M -+-+-=三曲面及其方程定义1在空间直角坐标系中,如果曲面S 上任一点坐标都满足方程0),,(=z y x F ,而不在曲面S 上的任何点的坐标都不满足该方程,则方程0),,(=z y x F 称为曲面S 的方程, 而曲面S 就称为方程0),,(=z y x F 的图形空间曲面研究的两个基本问题是:(1) 已知曲面上的点所满足的几何条件,建立曲面的方程; (2) 已知曲面方程,研究曲面的几何形状. 平面平面是空间中最简单而且最重要的曲面. 可以证明空间中任一平面都可以用三元一次方程0=+++D Cz By Ax (1.3)来表示,反之亦然. 其中A 、B 、C 、D 是不全为零常数. 方程(1.3)称为平面的一般方程.柱面定义2 平行于某定直线并沿定曲线C 移动的直线L 所形成的轨迹称为柱面. 这条定曲线C 称为柱面的准线, 动直线L 称为柱面的母线.二次曲面在空间直角坐标系中,我们采用一系列平行于坐标面的平面去截割曲面,从而得到平面与曲面一系列的交线(即截痕),通过综合分析这些截痕的形状和性质来认识曲面形状的全貌. 这种研究曲面的方法称为平面截割法,简称为截痕法.椭球面 1222222=++c z b y a x )0,0,0(>>>c b a (1.4)椭圆抛物面 q y p x z 2222+=(同号与q p ) 双曲抛物面 z qy p x =+-2222 ( p 与q 同号) 单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=+-cz b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x )0,0,0(>>>c b a6.2多元函数的基本概念一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域 二、二元函数的概念定义1 设D 是平面上的一个非空点集,如果对于D 内的任一点),(y x ,按照某种法则f ,都有唯一确定的实数z 与之对应,则称f 是D 上的二元函数,它在),(y x 处的函数值记为),(y x f ,即),(y x f z =,其中x ,y 称为自变量, z 称为因变量. 点集D 称为该函数的定义域,数集}),(),,(|{D y x y x f z z ∈=称为该函数的值域.类似地,可定义三元及三元以上函数. 当2≥n 时, n 元函数统称为多元函数. 二元函数的几何意义三、二元函数的极限定义2 设函数),(y x f z =在点),(000y x P 的某一去心邻域内有定义,如果当点),(y x P 无限趋于点),(000y x P 时,函数),(y x f 无限趋于一个常数A ,则称A 为函数),(y x f z =当),(y x ),(00y x →时的极限. 记为A y x f y y x x =→→),(lim 00.或 A y x f →),( (),(),(00y x y x →) 也记作A P f P P =→)(lim 0或 A P f →)( )(0P P →二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述. 为了区别于一元函数的极限,我们称二元函数的极限为二重极限.四、二元函数的连续性定义3 设二元函数),(y x f z =在点),(00y x 的某一邻域内有定义,如果),(),(lim 0000y x f y x f y y x x =→→,则称),(y x f z =在点),(00y x 处连续. 如果函数),(y x f z =在点),(00y x 处不连续,则称函数),(y x f z =在),(00y x 处间断.与一元函数类似,二元连续函数经过四则运算和复合运算后仍为二元连续函数. 由x 和y 的基本初等函数经过有限次的四则运算和复合所构成的可用一个式子表示的二元函数称为二元初等函数. 一切二元初等函数在其定义区域内是连续的. 这里定义区域是指包含在定义域内的区域或闭区域. 利用这个结论,当要求某个二元初等函数在其定义区域内一点的极限时,只要算出函数在该点的函数值即可.特别地,在有界闭区域D 上连续的二元函数也有类似于一元连续函数在闭区间上所满足的定理. 下面我们不加证明地列出这些定理.定理1(最大值和最小值定理) 在有界闭区域D 上的二元连续函数, 在D 上至少取得它的最大值和最小值各一次.定理2(有界性定理)在有界闭区域D 上的二元连续函数在D 上一定有界.定理3(介值定理)在有界闭区域D 上的二元连续函数, 若在D 上取得两个不同的函数值, 则它在D 上取得介于这两值之间的任何值至少一次. 6.3偏导数一、偏导数的定义及其计算法定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 当y 固定在0y 而x 在0x 处有增量x ∆时, 相应地函数有增量),,(),(0000y x f y x x f -∆+如果xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数),(y x f z =在点),(00y x 处对x 的偏导数, 记为).,(,,00000000y x f z xf xz x y y x x xy y x x y y x x 或======∂∂∂∂例如,有),(00y x f x xy x f y x x f x ∆-∆+=→∆),(),(lim00000.类似地,函数),(y x f z =在点),(00y x 处对y 的偏导数为yy x f y y x f y ∆-∆+→∆),(),(lim00000,记为).,(,,00000000y x f z yfy z y y y x x yy y x x y y x x 或======∂∂∂∂上述定义表明,在求多元函数对某个自变量的偏导数时, 只需把其余自变量看作常数,然后直接利用一元函数的求导公式及复合函数求导法则来计算之. 二、关于多元函数的偏导数,补充以下几点说明:(1)对一元函数而言,导数dxdy可看作函数的微分dy 与自变量的微分dx 的商. 但偏导数的记号xu∂∂是一个整体. (2)与一元函数类似,对于分段函数在分段点的偏导数要利用偏导数的定义来求.(3)在一元函数微分学中,我们知道,如果函数在某点存在导数,则它在该点必定连续. 但对多元函数而言,即使函数的各个偏导数存在,也不能保证函数在该点连续.例如,二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,),(22y x y x y x xyy x f 在点)0,0(的偏导数为,00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆x xf x f f x x x .00lim )0,0()0,0(lim)0,0(00=∆=∆-∆+=→∆→∆yy f y f f x y y 但从上节例5已经知道这函数在点)0,0(处不连续.三、偏导数的几何意义设曲面的方程为),(y x f z =,)),(,,(00000y x f y x M 是该曲面上一点,过点0M 作平面0y y =,截此曲面得一条曲线,其方程为⎩⎨⎧==00),(y y y x f z 则偏导数),(00y x f x 表示上述曲线在点0M 处的切线x T M 0对x 轴正向的斜率(图6-3-1). 同理,偏导数),(00y x f y 就是曲面被平面0x x =所截得的曲线在点0M 处的切线y T M 0对y 轴正向的斜率.四、偏导数的经济意义设某产品的需求量),,(y p Q Q = 其中p 为该产品的价格, y 为消费者收入. 记需求量Q 对于价格p 、消费者收入y 的偏改变量分别为),,(),(y p Q y p p Q Q p -∆+=∆和 ).,(),(y p Q y y p Q Q y -∆+=∆ 易见,pQ p ∆∆表示Q 对价格p 由p 变到p p ∆+的平均变化率. 而pQ p Qp p ∆∆=∂∂→∆0lim 表示当价格为p 、消费者收入为y 时, Q 对于p 的变化率. 称Qp p Q pp Q Q E p p p ⋅∂∂-=∆∆=→∆//lim为需求Q 对价格p 的偏弹性. 同理,yQ y ∆∆表示Q 对收入y 由y 变到y y ∆+的平均变化率. 而yQ y Qy y ∆∆=∂∂→∆0lim 表示当价格p 、消费者收入为y 时, Q 对于y 的变化率. 称 Qy y Q yy Q Q E y y y ⋅∂∂-=∆∆=→∆//lim为需求Q 对收入y 的偏弹性.五、科布-道格拉斯生产函数在商业与经济中经常考虑的一个生产模型是科布-道格拉斯生产函数100,),(1<<>=-a c ycx y x p aa且,其中p 是由x 个人力单位和y 个资本单位生产处的产品数量(资本是机器、场地、生产工具和其它用品的成本)。
大一微积分每章知识点总结
大一微积分每章知识点总结微积分是数学的重要分支之一,用于研究变化率与累积效应。
在大一微积分课程中,我们学习了许多重要的知识点,这些知识点为我们进一步学习高级数学打下了坚实的基础。
本文将对大一微积分每章的知识点进行总结,以帮助读者巩固所学内容。
第一章:函数与极限在这一章中,我们学习了函数的概念与性质,以及极限的定义与运算法则。
函数是一种将一个数集映射到另一个数集的规则,可以用数学公式或图形表示。
极限是函数在某个点无限接近于某个值的情况,是微积分的基础概念之一。
第二章:导数与微分导数是用来描述函数变化率的概念,它表示函数在某一点处的切线斜率。
我们学习了导数的计算方法,包括基本导数公式、加减乘除法则、链式法则等。
微分则是导数的应用,用于计算函数在某一点的近似值,并研究函数的局部特征。
第三章:微分中值定理与导数的应用在这一章中,我们学习了微分中值定理和导数的应用。
微分中值定理是描述函数在某个区间内存在某点的斜率等于该区间的平均斜率的定理,包括拉格朗日中值定理和柯西中值定理。
导数的应用包括函数的单调性、极值点、凹凸性等的判断与求解。
第四章:不定积分不定积分是导数的逆运算,用于求解函数的原函数。
我们学习了不定积分的基本性质和常用的积分公式,包括换元法、分部积分法、有理函数的积分等。
通过不定积分,我们可以求解函数的面积、曲线长度等问题。
第五章:定积分与定积分的应用定积分是用来计算曲线下面积的工具,也可以表示变化率与累积效应。
我们学习了定积分的定义和性质,以及计算定积分的方法,如换元法、分部积分法和定积分的几何应用等。
定积分的应用包括计算曲线的弧长、质量、物体的质心等。
第六章:微分方程微分方程是用导数和未知函数构成的方程,研究函数之间的关系。
我们学习了常微分方程的基本概念和解法,包括一阶线性微分方程和可分离变量的方程等。
微分方程是实际问题建模与求解的重要工具,应用广泛于物理、化学、工程等领域。
通过对大一微积分每章的知识点进行总结,我们回顾了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分与定积分的应用、微分方程等内容,巩固了所学知识,并为之后学习高级数学打下了坚实的基础。
微积分二知识点总结
微积分二知识点总结1. 级数1.1 级数的定义级数可以看作是无穷多个数的和,即将无穷多个数按照一定的顺序加起来。
表示为:S = a₁ + a₂ + a₃ + … + aₙ + …1.2 收敛与发散级数的和是否有限可以分为两种情况: - 如果级数的部分和Sₙ当n趋于无穷大时有极限L,即limₙ→∞ Sₙ = L,则称该级数是收敛的; - 如果级数的部分和Sₙ当n趋于无穷大时无极限,即limₙ→∞ Sₙ不存在,则称该级数是发散的。
1.3 级数的判定法判定一个级数是收敛的还是发散的有多种方法,以下是常见的几种判定法: - 比较判定法:将要求解的级数与一个已知级数进行比较,确定其大小关系。
- 比值判定法:通过求级数的项与前一项的比值或相邻两项的比值的极限来判断级数的收敛性。
- 根值判定法:通过求级数的项的绝对值的n次方根的极限来判断级数的收敛性。
- 积分判定法:将级数转化为函数的积分形式,利用定积分的性质来判断级数的收敛性。
2. 泰勒级数2.1 泰勒级数的定义泰勒级数是一种用函数的无穷多个项的和来表示该函数的级数。
泰勒级数在微积分中起到了重要的作用,可以将一个复杂的函数近似地用一系列较简单的函数表示。
2.2 泰勒级数的求法泰勒级数的求法主要有以下几个步骤: 1. 求函数在某一点的各阶导数; 2. 计算函数在该点的各阶导数值并带入泰勒展开公式中; 3. 按照展开公式的形式将函数以多项式的形式展开。
2.3 常见的泰勒级数展开2.3.1 三角函数的泰勒级数展开•正弦函数的泰勒级数展开式:sin(x) = x - x³/3! + x⁵/5! - x⁷/7! + …•余弦函数的泰勒级数展开式:cos(x) = 1 - x²/2! + x⁴/4! - x⁶/6! + …2.3.2 自然指数函数的泰勒级数展开•自然指数函数的泰勒级数展开式:e^x = 1 + x + x²/2! + x³/3! + …2.3.3 对数函数的泰勒级数展开•自然对数函数的泰勒级数展开式:ln(1 + x) = x - x²/2 + x³/3 - x⁴/4 + …3. 函数的极限3.1 函数的极限的定义函数的极限可以用来描述函数在某一点的取值趋于的结果。
大一微积分高数期末知识点
大一微积分高数期末知识点微积分是大一高数课程中的一门重要学科,涵盖了许多基础的数学知识和计算方法。
在期末考试前,了解和掌握微积分的关键知识点对于取得好成绩至关重要。
本文将为您总结大一微积分高数期末考试中的主要知识点。
一、极限与连续1. 极限的定义和性质极限是微积分的核心概念之一,了解极限的定义和性质是理解微积分的基础。
掌握函数极限和数列极限的定义,熟练运用极限的性质进行计算和证明是必不可少的。
2. 连续的概念与判定了解函数在某一点的连续性的定义和判定方法。
可利用极限的性质判定函数在某一点的连续性。
二、导数与微分1. 导数的定义和计算法则理解导数的定义和计算法则是解决微积分问题的关键。
熟悉基本的导数计算法则,如常数函数、幂函数、指数函数、对数函数、三角函数的导数等,并能够熟练运用。
2. 高阶导数了解高阶导数的概念和计算方法。
能够使用高阶导数解决相关的数学问题。
3. 微分的概念与应用理解微分的概念,能够根据问题应用微分进行计算,如求近似值、求最大值最小值等。
三、积分与不定积分1. 积分的定义和计算法则熟悉积分的定义和计算法则,包括基本积分法则、分部积分法、换元积分法等。
能够运用这些法则解决各种不定积分问题。
2. 定积分了解定积分的概念和几何意义。
能够计算定积分,求解曲线下的面积、弧长、旋转体的体积等。
四、微分方程1. 微分方程的基本概念了解微分方程的定义和基本概念,包括阶数、常微分方程和偏微分方程等。
2. 一阶常微分方程掌握一阶常微分方程的求解方法,如可分离变量法、齐次方程法、一阶线性微分方程法等。
3. 高阶常微分方程了解高阶常微分方程的求解方法,特别是二阶常微分方程的特征方程法和常系数法等。
五、级数与幂级数1. 级数的定义和性质掌握级数的概念及其基本性质,理解级数的敛散性和收敛域的判定方法。
2. 幂级数了解幂级数的定义和性质,掌握幂级数的收敛域和求和方法,熟练运用幂级数求解函数展开和逼近问题。
六、空间解析几何1. 空间直角坐标系与向量理解空间直角坐标系的基本概念和性质,熟悉向量的基本运算法则和坐标表示。
大一微积分知识点总结
大一微积分知识点总结一、引言微积分是高等数学中的一个重要分支,主要研究函数的极限、导数、积分等概念。
对于大学一年级的学生来说,微积分的学习是理解现代科学和工程问题的基础。
本文旨在总结大一微积分课程中的关键知识点。
二、极限与连续性1. 极限的概念:描述函数在某一点附近的行为。
- 极限的定义:如果序列 $\{x_n\}$ 趋向于 $x$,则 $\lim_{n \to \infty} f(x_n) = L$。
- 极限的性质:唯一性、局部有界性、保号性等。
2. 连续函数:在任意点都无间断的函数。
- 连续性的定义:如果 $\lim_{x \to c} f(x) = f(c)$,则称$f(x)$ 在 $c$ 处连续。
- 连续函数的性质:介值定理、闭区间上连续函数的一致连续性。
三、导数1. 导数的定义:函数在某一点的切线斜率。
- 导数的几何意义:曲线在点 $(a, f(a))$ 处的切线斜率。
- 导数的计算:利用极限定义,$f'(a) = \lim_{h \to 0}\frac{f(a+h) - f(a)}{h}$。
2. 常用导数公式:- 幂函数:$(x^n)' = nx^{n-1}$。
- 指数函数:$(e^x)' = e^x$。
- 对数函数:$(\ln x)' = \frac{1}{x}$。
3. 高阶导数:导数的导数。
- 高阶导数的计算:对导数再次求导。
4. 隐函数与参数方程的导数:- 隐函数求导:利用隐函数的导数公式。
- 参数方程求导:利用链式法则。
四、微分1. 微分的概念:函数的局部线性近似。
- 微分的定义:$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$。
2. 微分的应用:- 线性近似:用于近似计算函数值。
- 相关变化率问题:如速度、加速度等。
五、积分1. 不定积分:求函数原函数的过程。
- 基本积分表:记忆一些基本的积分公式。
大学大一微积分知识点总结
大学大一微积分知识点总结微积分是数学中的重要分支,也是大多数理工科专业学生必修的一门课程。
在大学的微积分课程中,学生们需要掌握一系列基本的知识点,并能够运用这些知识点解决实际问题。
本文将对大学大一微积分课程的知识点进行总结,以帮助学生们更好地理解和掌握微积分的内容。
一、导数与微分1. 导数的定义及求导法则导数表示了函数在某一点上的变化率,可以通过定义或者求导法则来计算。
求导法则包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等。
2. 高阶导数与隐函数求导高阶导数表示导数的导数,可以通过递归地求导来计算。
隐函数求导用于求解含有隐含变量的函数的导数。
二、微分应用1. 最值与极值利用导数的概念和性质,可以求解函数的最值和极值问题。
其中,极值点需要通过导数的一阶和二阶导数条件进行判断。
2. 曲线的凹凸性与拐点利用导数的一阶和二阶导数可以判断曲线的凹凸性和拐点位置,从而帮助分析曲线的性质和形状。
3. 泰勒公式与近似计算泰勒公式是一种利用函数在某一点的导数信息来逼近函数值的方法,可以用于计算函数在某一点的近似值。
三、不定积分与定积分1. 不定积分的定义与性质不定积分表示函数的原函数,可以通过反向计算导数来求解。
不定积分具有线性性质和换元积分法则等特点。
2. 基本积分公式与常见积分表达式基本积分公式包括幂函数积分、三角函数积分、指数函数的积分等常用积分表达式,学生需要熟练掌握。
3. 定积分的概念与性质定积分表示函数在一定区间上的累积效果,可以通过面积的概念来理解。
定积分具有线性性质、积分中值定理等特点。
4. 牛顿-莱布尼茨公式与定积分的应用牛顿-莱布尼茨公式表示定积分与不定积分之间的关系,可以简化定积分的计算。
定积分的应用包括求曲线下的面积、求弧长、求体积等。
四、微分方程1. 微分方程的基本概念与分类微分方程描述了函数与其导数之间的关系,可以根据方程中未知函数的阶数和自变量的个数进行分类。
2. 一阶常微分方程的解法一阶常微分方程的解法包括可分离变量法、齐次方程法、一阶线性方程法等方法。
大一微积分下期期末知识点
大一微积分下期期末知识点微积分是数学的一个重要分支,对于大一学生而言,学习微积分是非常重要的一门课程。
下面我将为大家总结一下大一微积分下学期期末考试的知识点,希望能够帮助大家复习和备考。
一、函数与极限1. 函数的定义与性质- 函数的定义及表示法- 常见函数的性质:奇偶性、周期性、单调性、有界性等2. 极限的定义与性质- 极限的定义与极限存在的条件- 极限的性质:唯一性、局部有界性等- 极限运算法则:四则运算、复合函数、有理函数等3. 极限的计算- 基本初等函数的极限计算- 无穷大与无穷小的概念与计算- 极限存在的判定方法:夹逼准则、单调有界准则等二、导数与微分1. 导数的概念与性质- 导数的定义与几何意义- 导数与函数的连续性、可导性的关系- 常见函数的导数公式与性质2. 导数的计算- 基本初等函数的导数计算- 导数的四则运算法则与复合函数求导法则- 高阶导数的定义与计算3. 微分的概念与性质- 微分的定义与几何意义- 微分的计算与近似计算三、微分中值定理与应用1. 罗尔中值定理与拉格朗日中值定理- 罗尔中值定理的条件与结论- 拉格朗日中值定理的条件与结论2. 泰勒公式与应用- 泰勒公式的定义与表述- 泰勒公式的应用:函数近似、极值、曲线拟合等3. 函数的单调性与曲线的凹凸性- 函数单调性的判定方法- 函数曲线的凹凸性与拐点的判定方法四、不定积分与定积分1. 不定积分的概念与性质- 不定积分的定义与几何意义- 基本积分表与常见公式2. 不定积分的计算方法- 基本积分法与换元积分法- 分部积分法与有理函数积分法3. 定积分的概念与性质- 定积分的定义与几何意义- 定积分的性质:线性性、区间可加性等4. 定积分的计算- 几何应用:面积、体积、弧长等- 基本积分表与常见公式的应用五、微分方程与其应用1. 微分方程的基本概念与分类- 微分方程的定义与基本概念- 一阶微分方程与高阶微分方程的分类2. 一阶微分方程的求解- 可分离变量方程的求解- 齐次方程的求解- 一阶线性微分方程的求解3. 高阶微分方程的求解- 常系数齐次线性微分方程的求解- 非齐次线性微分方程的求解:待定系数法、常数变易法等4. 微分方程的应用- 物理问题中的微分方程建模- 生物问题中的微分方程建模以上就是大一微积分下学期期末考试的知识点总结。
大学微积分l知识点总结(完整版)
大学微积分l 知识点总结【第一部分】大学阶段准备知识 1、不等式:ab 2ba ≥+ab2b a 22≥+3abc 3c b a ≥++ ()n n21n 21...a a a n a ...a a ≥+++abc 3c b a 333≥++2b a 2b a ab b1a 1222+≤+≤≤+b a b a b -a +≤±≤()nn 21n 21n 21n x ...x x y p p x ...x x x ...x x y ⎪⎭⎫⎝⎛+++=+++•••=的最大值为:则为常数,且扩展:若有柯西不等式:设a 1、a 2、...a n ,b 1、b 2、...b n 均是实数,则有:()()()()()()()()()22221222212n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若f (x+a )=±f (x+b ),则f (x )具有周期性;若f (a+x )=±f (b-x ),则f (x )具有对称性。
口诀:“内同表示周期性,内反表示对称性” 2、周期性(1)若f (x+a )=f (b+x ),则T=|b-a| (2)若f (x+a )=-f (b+x ),则T=2|b-a| (3)若f (x+a )=±1/f (x ),则T=2a(4)若f (x+a )=【1-f (x )】/【1+f (x )】,则T=2a (5)若f (x+a )=【1+f (x )】/【1-f (x )】,则T=4a 3、对称性(1)若f (a+x )=f (b-x ),则f (x )的对称轴为x=(a+b )/2(2)若f (a+x )=-f (b-x )+c ,则f (x )的图像关于((a+b )/2,c/2)对称引申双向不等式: 两侧均在ab ≥0或ab ≤0时取等号4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。
微积分二知识点总结
微积分二知识点总结引言微积分是数学中的重要分支,用于研究函数的变化和曲线的性质。
微积分可以分为微分学和积分学两个部分。
本文将总结微积分二中的一些重要知识点,包括泰勒展开、泰勒级数、函数的傅里叶级数展开、常微分方程等内容。
泰勒展开和泰勒级数泰勒展开是函数在某一点附近用幂级数逼近的方法。
假设函数f(x)在x=a处具有n阶导数,那么泰勒展开可以表示为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)其中Rn(x)为余项,它表示当n趋向于无穷大时的误差。
泰勒级数是泰勒展开的一种特殊情况,当a=0时,泰勒展开可以简化为泰勒级数:f(x) = f(0) + f'(0)x + f''(0)x^2/2! + ... + f^n(0)x^n/n! + Rn(x)泰勒级数的应用非常广泛,可以用来近似计算各种函数的值。
傅里叶级数展开傅里叶级数展开是一种将周期函数表示为正弦和余弦函数的线性组合的方法。
假设f(x)是一个周期为2π的函数,傅里叶级数展开可以表示为:f(x) = a0/2 + Σ(an*cos(nx) + bn*sin(nx))其中a0、an和bn为函数f(x)的系数。
傅里叶级数展开的基本思想是将一个周期函数分解成多个简单的正弦和余弦函数的叠加。
这种表示方法在信号处理和频谱分析中非常有用。
常微分方程常微分方程是描述函数的变化规律与函数本身及其导数之间的关系的方程。
常微分方程可以分为一阶和二阶常微分方程。
一阶常微分方程可以表示为:dy/dx = f(x, y)其中f(x, y)为已知函数。
二阶常微分方程可以表示为:d^2y/dx^2 = f(x, y, dy/dx)常微分方程在物理学、工程学和经济学等领域中都有着广泛的应用。
总结微积分二是微积分的进阶课程,涵盖了泰勒展开、泰勒级数、函数的傅里叶级数展开、常微分方程等重要知识点。
微积分1知识点总结
微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。
微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。
微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。
一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。
通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。
函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。
1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。
极限的概念为后续的导数和积分提供了重要的理论基础。
1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。
掌握这些性质对于理解和计算函数的极限具有重要的意义。
1.4 极限的计算计算极限是微积分中的一个重要技能。
常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。
二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。
导数的定义是函数在某一点的切线的斜率。
2.2 导数的计算导数的计算是微积分1中的重要内容。
常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。
2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。
三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。
不定积分的概念是微积分1中的一个重要内容。
3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。
对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。
大一下微积分知识点笔记
大一下微积分知识点笔记微积分是数学中的一个重要分支,也是大一下学期必修的一门课程。
通过学习微积分,我们可以深入理解函数的性质,并且能够运用微积分的方法解决实际问题。
下面是对大一下微积分的知识点进行笔记总结。
一、导数与微分1. 导数的概念导数描述了函数在某一点的变化率,可以通过函数的极限定义来求解。
记作f'(x),表示函数f(x)的导函数。
2. 导数的计算常见的导数运算法则包括常数法则、幂法则、和法则、积法则、商法则、复合函数法则等。
3. 微分的概念微分是导数的一种近似表示,表示函数在某一点的微小变化量。
记作df = f'(x)dx。
二、积分与反导1. 积分的概念积分可以看作导数的逆运算,表示函数在某一区间上的累积量。
记作∫f(x)dx,其中f(x)为被积函数。
2. 不定积分与定积分不定积分是指对函数进行积分,得到的结果是一个含有常数C的表达式。
定积分是指对被积函数在某一区间上进行积分,得到的结果是一个具体的数值。
3. 基本积分公式常见的基本积分公式包括幂函数积分、三角函数积分、指数函数积分等。
4. 定积分的性质定积分具有线性性、区间可加性、公式代换法则等性质。
三、微分方程1. 微分方程的概念微分方程是由函数、它的导数和自变量构成的方程,描述了变量之间的关系。
2. 一阶微分方程一阶微分方程表示未知函数的导数只出现了一次的微分方程,可以通过分离变量、齐次方程、线性方程等方法进行求解。
3. 高阶微分方程高阶微分方程表示未知函数的高阶导数出现的微分方程,可以通过特征方程、待定系数法、常数变易法等方法进行求解。
四、级数1. 级数的概念级数是由无穷多项按一定的规则相加所得的和,通常记作∑an。
2. 收敛与发散级数可以收敛,即和有限;也可以发散,即和为无穷大。
3. 常见级数的性质常见级数的性质包括级数收敛的判定方法、级数的运算性质、调和级数等。
五、多元函数与偏导数1. 多元函数的概念多元函数表示自变量有多个的函数,可以用n维空间中的曲面来表示。
大一微积分期末知识点总结
大一微积分期末知识点总结微积分作为数学的重要分支,是应用广泛且基础性强的学科。
在大一学习微积分,我们需要熟练掌握一些基础知识点,以便能够在期末考试中取得好成绩。
本文将对大一微积分期末知识点进行总结,以帮助同学们更好地复习。
1. 极限与连续1.1 极限的定义及运算法则在微积分中,极限是一个基本的概念,可以描述函数在某一点的趋近情况。
极限的定义为:当自变量趋近于某个确定值时,函数的极限是一个确定值。
常见的极限运算法则有加减乘除法则、复合函数极限法则等等。
1.2 连续函数的概念连续函数是极限的重要应用,指的是在一个区间上,函数的值能够无间断地接近于函数的极限值。
连续函数的特点是:函数在定义域上无间断点,满足极限的条件。
2. 导数与微分2.1 导数的定义及运算法则导数是描述函数变化率的概念,用来衡量函数在某一点的瞬时变化率。
导数的定义为:在自变量趋近于某一点时,函数在该点的极限。
常见的导数运算法则有常数倍法则、和差法则、乘积法则、商法则等等。
2.2 微分的概念及应用微分是导数的基本应用之一,可以对函数进行近似线性化处理。
微分的定义为:函数在某点的导数乘以自变量与该点的差值。
微分在求解一些极值问题中有重要的应用。
3. 不定积分与定积分3.1 不定积分的概念及基本公式不定积分是微积分的重要内容之一,也称为原函数。
不定积分的定义为:求导数为原函数的过程。
常用的不定积分公式有基本初等函数积分公式、换元积分法等。
3.2 定积分的概念及性质定积分是微积分中对曲线下面的面积进行求解的方法。
定积分的计算方法有基本定积分的计算法则、曲线的参数方程法、曲线的极坐标方程法等。
4. 微分方程4.1 微分方程的基本概念与分类微分方程是微积分的重要应用领域,用来描述未知函数及其导数之间的关系。
常见的微分方程类型有一阶微分方程、高阶微分方程、线性微分方程等。
4.2 解微分方程的基本方法解微分方程是微积分的核心内容,可以通过分离变量法、齐次线性微分方程法、变化常数法等方法来求解微分方程。
微积分大一下册知识点总结
微积分大一下册知识点总结微积分是数学中的一门重要课程,它是研究函数的变化率的一门学科。
一学期的微积分学习涵盖了许多重要的知识点,这些知识点对我们理解函数的性质和应用具有重要的指导作用。
在这篇文章中,我将总结微积分大一下册的一些重要知识点。
一、导数与微分导数是微积分中最基本的概念之一,它描述了函数在某一点处的变化率。
我们可以通过极限的方式来定义导数,即某一点的导数等于函数在这一点的极限。
导数不仅能够告诉我们函数在某一点的变化率,还可以帮助我们研究函数的凸凹性和极值点。
通过求导,我们可以得到函数的驻点和拐点,从而更好地理解函数的形状和性质。
微分是导数的一个重要应用,它可以用来近似计算函数的变化量。
微分与导数的关系是微积分中的一个重要定理,它告诉我们微分就是导数乘以自变量的变化量。
通过微分,我们可以建立起函数与自变量之间的关系,从而更好地研究函数的性质。
二、积分与不定积分积分是微积分中的另一个重要概念,它是函数的一个反运算。
积分可以帮助我们计算函数的面积、弧长和体积等,它在物理学、经济学和工程学等领域都有重要的应用。
不定积分是积分的一种形式,它是求解原函数的方法。
对于给定的函数f(x),不定积分可以得到f(x)的一个原函数F(x)。
不定积分的结果通常还包含一个常数C,这是因为不同的原函数之间相差一个常数。
定积分是积分的另一种形式,它可以帮助我们计算函数在给定区间上的总变化量。
定积分可以用来求解曲线下的面积、弧长和体积等,它在几何学和物理学中有广泛的应用。
三、微分方程微分方程是微积分中的另一个重要概念,它描述了未知函数与它的导数之间的关系。
微分方程在物理学、工程学和生物学等领域都有重要的应用,它是建立数学模型的重要工具。
常微分方程是微分方程中最常见的一类,它描述了未知函数与它的导数之间的关系是使用函数本身的形式。
常微分方程通常可以通过分离变量、线性方程和常数变易等方法进行求解。
四、级数级数是微积分中的另一个重要概念,它是无穷求和的一种形式。
微积分(下册)主要知识点汇总
微积分(下册)主要知识点汇总一、第一换元积分法(凑微分法):对于形如$\int g[\phi(x)]\phi'(x)dx$的积分,可以令$u=\phi(x)$,则$du=\phi'(x)dx$,将原式转化为$\int g(u)du$的形式,然后进行积分,最后再将$u$用$\phi(x)$表示回去,即可得到结果$\int g[\phi(x)]\phi'(x)dx=F[\phi(x)]+C$。
二、常用凑微分公式:1.积分类型换元公式:int x^\mu(x^\mu-1)f(x)dx=\int x^\mu d(x^{\mu-1})$$当$\mu\neq 1$时成立。
int x^3f(\ln x)dx=\int x^3d(\ln x)=\int x^3\frac{1}{x}dx$$int e^xf(e^x)dx=\int e^xd(e^x)=e^xf(e^x)$$int_a^b f(x)dx=\int_{\ln a}^{\ln b}f(e^t)e^tdt$$当$a,b>0$时成立。
int \frac{f(\sin x)\cos x}{\sqrt{1-\sin^2 x}}dx=\int f(\sin x)d(\cos x)$$int \frac{f(\cos x)\sin x}{\sqrt{1-\cos^2 x}}dx=-\int f(\cos x)d(\sin x)$$int \frac{f(\tan x)}{\cos^2 x}dx=\int f(\tan x)d(\tan x)$$int \frac{f(\cot x)}{\sin^2 x}dx=-\int f(\cot x)d(\cot x)$$int f(\arctan x)\frac{1}{1+x^2}dx=\int f(t)dt$$int f(\arcsin x)\frac{1}{\sqrt{1-x^2}}dx=-\int f(t)dt$$三、第二换元法:对于形如$\int f(x)dx=\intf[\psi(t)]\psi'(t)dt=F(t)+C=F[\phi(x)]+C$的积分,可以令$\psi(t)=x$,则$\psi'(t)dt=dx$,将原式转化为$\intf[\psi(t)]\psi'(t)dt$的形式,然后进行积分,最后再将$t$用$\phi(x)$表示回去,即可得到结果。
微积分II全书整理
第一部分 多变量微分学一、多元函数极限论 1. 多元函数极限的定义:(1)邻域型定义:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点)(0P U D P δ⋂∈时,都有ε<-A P f )(,那么就称常数A 为函数)(P f 当0P P →时的极限,记作.)(lim 0A P f P P =→(2)距离型定义:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点P D ∈,且δρ<<),(00P P 时,都有ε<-A P f )(,那么就称常数A 为函数)(P f 当0P P →时的极限,记作.)(lim 0A P f P P =→注:①这里给出的是数学分析中国际通用的定义,已自然排除了0P 邻域内的无定义点; ②极限存在的充要条件:点P 在定义域内以任何方式或途径趋近于0P 时,)(P f 都有极限; ③除洛必达法则、单调有界原理、穷举法之外,可照搬一元函数求极限的性质和方法,常用的有:等价无穷小替换、无穷小×有界量=无穷小、夹挤准则等;④若已知)(lim 0P f P P →存在,则可以取一条特殊路径确定出极限值;相反,如果发现点P 以不同的方式或途径于0P 时,)(P f 区域不同的值,则可断定)(lim 0P f P P →不存在.⑤二元函数的极限记为A y x f y x y x =→),(lim ),(),00(或A y x f y y x x =→→),(lim 0.2. 多元函数的连续性:设函数)(P f 的定义域为D ,0P 是D 的聚点,如果0P D ∈,且有)()(lim 00P f P f P P =→,则称)(P f 在0P 处连续;如果)(P f 在区域E 的每一点处都连续,则称)(P f 在区域E 上连续.注:①如果)()(lim 00P f P f P P ≠→,只称“不连续”,而不讨论间断点类型;②在有界闭区域上的连续函数拥有和一元函数类似的性质,如有界性定理、一致连续性定理、最大值最小值定理、介值定理等. 3.二重极限与累次极限累次极限与二重极限的存在性之间没有任何必然的联系,但若某个累次极限和二重极限都存在,则它们一定相等;反之,若两个累次极限存在而不相等,则二重极限一定不存在,又若两个累次极限存在且相等,称累次极限可以交换求极限的顺序.二、偏导数、全微分1.偏导数、全微分的相关理论问题 (以二元函数为例讨论)(1)偏导数的存在性:讨论对某个变量的偏导数,则将其他变量当作常数.),('),(),(lim 0000000y x f x x y x f y x f x x x ∆→=--;),('),(),(lim 0000000y x f y y y x f y x f y y y ∆→=--. (2)可微性:记),(),(0000y x f y y x x f z -∆+∆+=∆,则仅当0)()()(lim22=∆+∆∆+∆-∆→→y x y B x A z y x 时,),(y x f 在),(00y x 处可微,否则不可微.其中),('00y x f A x =,),('00y x f B y =. 注:等价于()22)()(y x o y B x A z ∆+∆+∆+∆=∆ 即()220000)()()(),(),(y x o y B x A y x f y y x x f ∆+∆=∆+∆--∆+∆+又即()()2020********)()())(,('))(,('),(),(y y x x o y y y x f x x y x f y x f y x f y x -+-=-+---记dy yzdx x z y B x A dz ∂∂+∂∂=∆+∆=为全微分),(y x f 在),(y x 处的全微分. 中值定理推广为:.1,0,),('),('2121<<∆∆++∆∆+∆+=∆θθθθy y y x f x y y x x f z y x (3)偏导数的连续性:讨论偏导连续性,先用定义求),('00y x f x 和),('00y x f y ,用公式求),('y x f x 和),('y x f y ,判断),('),('lim 000y x f y x f x x y y x x =→→和),('),('lim 0000y x f y x f y y y y x x =→→是否都成立,如果都成立则偏导数连续. ④逻辑关系:极限存在偏导存在可微连续偏导连续⇒⇓⇑⇒2.多元函数微分法: (1)链式求导法则:①从题目中的复合关系画出从起始变量经过中间变量到终变量的复合结构图;②求偏导就是“走路”的过程,有几条路,等号后就有几项;每条路上有几段,每项中就会有几部分相乘(注意:偏导写偏微分符号“∂”, 不偏则写微分符号“d ”); ③严格遵守用位置表示偏导数的规则,注意避免符号混乱和歧义;④对于求高阶偏导数的问题,不论对谁求导,也不论求了几阶导,求导后的新函数仍具有与原来函数相同的复合结构(注意若偏导连续则相等,要合并同类项).(2)全微分形式不变性:仅一阶全微分可以使用,高阶全微分不再成立. (3)隐函数存在性及求导法则:①一个方程的情形(以三个变量为例):设),,(z y x F 在点),,(000z y x 某邻域内偏导连续,且0),,(000=z y x F ,0),,('000≠z y x F z ,则方程0),,(=z y x F 在点),,(000z y x 内某邻域内可唯一确定单值函数),(y x z z =,这个函数在),(00y x 的某邻域内具有连续的偏导数,且''z x F F x z-=∂∂,''z y F F y z -=∂∂.结论不难推广到一般情形. ②方程组的情形:一般地,设方程组),2,1(0),,,;,,,(2121m i u u u x x x F m n i ==可确定m 个n 元函数),,,(21n i i x x x u u =.当雅可比行列式0),,,(),,,(11112212121112121≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂=m m m m m m m u F u F u F u F u F u F u F u F u F u u u F F F J时,可以确定JJ x u j i *-=∂∂,其中*J 由将),,,(),,,(2121m m u u u F F F J ∂∂=分母中的第i 个元素替换成j x 得到.(雅可比行列式在横向上改变各自变量,纵向上改变各函数名称) 注:①求导前应事先判断,a 个变元,b 个方程可确定b 个)(a b -元函数; ②有些比较简单的问题不必使用此通法,可以考虑利用全微分形式不变性. ③经验结论:由0),(),,,(),,,(===v u F z y x v z y x u ψϕ确定的隐函数),(y x z z =,求22x z∂∂时,有0'')'(222221222=∂∂+∂∂+⎪⎭⎫⎝⎛∂∂x v F x u F x u F A ;求y x z ∂∂∂2时,有0'')'(222122=∂∂∂+∂∂∂+∂∂∂∂y x vF y x u F yu x u F A ; 求22yz∂∂时,有0'')'(222221222=∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂y vF y u F y u F A , 其中=A 222112211122")'("''2")'(F F F F F F F +-.(0),(=y x F 的曲率:()232221)'()'(F F A+)三、多元微分学的几何学应用(以下的讨论主要为了计算,条件未必严格)1.曲线的切线和法平面:设曲线()()()⎪⎩⎪⎨⎧===t z z t y y t x x l : 在0P 处()()()000'''t z t y t x ,,都存在且不为0,则曲线l 在0P 处的: (1)切线方程为()()()000000'''t z z z t y y y t x x x -=-=-: (2)法平面方程为()()()0)(')(')('000000=-+-+-z z t z y y t y x x t x . 注:若曲线以⎩⎨⎧==0),,(0),,(z y x G z y x F 形式给出,切向量为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧,,,''''''''''''y x y x x z x z z y z y G G F F G G F F G G F F .2.曲面的切平面与法线:设曲面∑由方程0),,(=z y x F 确定,),,(z y x F 在点0P ),,(000z y x 处可微,且'''z y x F F F ,,不为0,则曲面∑在0P 处的:(1)切平面方程为0)(')(')('000=-+-+-z z F y y F x x F z y x (导数已经代入0P 坐标); (2)法线方程为'''000z y x F z z F y y F x x -=-=-. 注:二元函数在某点处的全微分等于其在这点处切平面竖坐标的增量. 3.方向导数: (1)定义式:0)()(limPP P f P f lu P P P -=∂∂→→(2)若函数),,(z y x f 在点0P 处可微,那么),,(z y x f 在点0P 处沿所有方向的方向导数存在,且γβαcos cos cos 0zfy f x f lf P ∂∂+∂∂+∂∂=∂∂→,其中γβαcos ,cos ,cos 为→l 的方向余弦.注:沿所有方向的方向导数存在不能推出可微,偏导数存在不能推出各方向导数存在. 4.梯度:(1)计算:gra d u =x u ∂∂i +y u ∂∂j +xu∂∂k ; (2)grad u是)(P u 在点P 的变化量最大的方向,其模等于这个最大变化率; (3)梯度的运算法则和一元函数的求导法则相似; (4)方向导数等于梯度在该方向上的投影.四、极值与最值问题1.二元函数的非条件极值问题(1)极值的必要条件:对偏导数存在的函数),(y x f ,在),(00y x M 处有极值的必要条件是0),(),(0000=∂∂=∂∂yy x f x y x f .(可推广到三元及以上)(2)极值的充分条件:设),(00y x M 为函数),(y x f 的驻点,且),(y x f 在),(00y x 处连续,记AC B y x f A C y x f B y x f A yy xy xx -=∆====2000000),,("),,("),,(",则: ①0<∆时,),(00y x 是极值点,当0>A 时,),(00y x f 为极小值;当0<A 时,),(00y x f 为极大值;②0>∆时,),(00y x 不是极值点; ③0=∆时,此法失效,另谋它法.注:本方法不可推广到三元及以上,三元及以上的充分条件中,要求黑塞矩阵正定或负定.(本知识不做要求,在出题人手下不会出现三元以上的极值判断问题) 2.条件极值与拉格朗日乘数法(1)一般情况下的拉格朗日乘数法:求函数),,,(21n x x x f u =在条件),,,(21n i x x x ϕ下的条件极值),,2,1(n m m i <= ,可以从函数),,,(),,,(),,,,,(2112111n i mi i n n n x x x x x x f x x F ϕλλλ∑=+=的驻点中得到可能的条件极值的极值点. 步骤:①构造辅助函数;(注意:变量均为独立变量) ②求各变量的一阶导并令其为零,联立得到方程组; ③解方程组得到所有驻点.(解无定法,尽量利用观察法) (2)对“条件极值”的解读:事实上,只利用拉格朗日乘数法求条件极值无异于掩耳盗铃.由于对于多元函数,构造拉格朗日函数后会出现至少三个变量,在数学上欲判断求得的驻点是否是极值点需要利用三阶以上的黑塞矩阵.而出题人为了回避这一知识点,通常以实际问题的形式来考察拉格朗日乘数法.由于在实际问题的背景下必存在最值,可以认为“所得即所求”,但是实际上求出的并不是真正的条件极值,而是在条件下的最值.所以,出题人通常在题目中会以“最值”来代替极值进行考察.五、习题1.已知方程02222=∂∂+∂∂y u x u 有⎪⎭⎫⎝⎛=x y u ϕ形式的解,求出此解.2.已知二元函数),(y x f z =可微,两个偏增量:,3)32(322222x y x xy x y x z x ∆+∆+∆+=∆.2233y x y y x z y ∆+∆=∆且,1)0,0(=f 求).,(y x f3.设0),(222=++++z y x z y x F 确定),(y x z z =,其中F 有二阶连续偏导数,求.2yx z∂∂∂ 4.已知函数),(y x f z =可微,且有,0≠∂∂xz满足方程.0)(=∂∂+∂∂-y z y x z z x 现在将x 作为z y ,的函数,求.yx∂∂ 5.设),,(t x f y =t 是由方程0),,(=t y x F 确定的x ,y 的函数,其中F 和f 均有一阶连续的偏导数,求.dxdy 6.设),,(),,(),,(v u f z v u y v u x ===ψϕz 是x ,y 的二元函数,求x z ∂∂及.yz∂∂ 7.求函数)ln(22z x e w y+=-在点),1,(2e e 处沿曲面uv v u v u e z e y e x ===-+,,的法线向量的方向导数.8.求g ra d[c ·r +21ln(c ·r )],其中c 为常向量,r 为向径,且c ·r >0. 9.设二元函数f 在),(000y x P 点某邻域内偏导数'x f 和'y f 都有界,证明:f 在此邻域内连续. 10.设),(00'y x f x 存在,),('y x f y 在),(00y x 处连续,证明:),(y x f 在),(00y x 处可微.11.证明:函数⎪⎩⎪⎨⎧≠≠+-=)0,0(),(0)0,0(),(),(2233y x y x y x y x y x f ,,在原点处偏导数存在但不可微.12.设),(y x z z =是由方程⎪⎭⎫⎝⎛=z y z x ϕ确定的二元函数,其中ϕ有连续的二阶导函数,证明:.222222⎪⎪⎭⎫⎝⎛∂∂∂=∂∂⋅∂∂y x z y z x z 13.证明:曲面)2(2z y f ezx -=-π是柱面,其中f 可微.第二部分 多变量积分学一、各类积分的计算公式及意义(一)二重积分 1.计算公式①直角坐标系下的二重积分:()()()⎰⎰⎰⎰⎰⎰==)()()()(2121,,,y x y x dcbax y x y Ddx y x f dy dy y x f dx dxdy y x f②极坐标系下的二重积分:()()()⎰⎰⎰⎰⎰⎰==)()()()(2121.sin ,cos sin ,cos ,r r bar r Dd r r f rdr rdr r r f d dxdy y x f ϕϕβαθθθθθθθθ③二重积分的变量替换:()[]dudv v u y x v u y v u x f dxdy y x f uvxy),(),(),(),,(,∂∂=⎰⎰⎰⎰σσ2.几何意义:()0,≥y x f 时,表示以0=z 为底,以()y x f z ,=为顶的曲顶柱体的体积. 3.物理意义:各点处面密度为()y x f ,的平面片D的质量. (二)三重积分 1.计算公式①直角坐标系下的三重积分: (1)柱型域:投影穿线法(先一后二法):()()()()⎰⎰⎰⎰⎰⎰=y x z y x z Vdz z y x f dxdy dV z y x f xy,,21,,,,σ(2)片型域:定限截面法(先二后一法):()()⎰⎰⎰⎰⎰⎰=zD z z Vdxdy z y x f dz dV z y x f ,,,,21②柱面坐标系下的三重积分:()()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==βαθθθθθθθθ2121,,,sin ,cos ,sin ,cos ,,r r r z r z VVdzz r r f rdr d dz rdrd z r r f dV z y x f ③球面坐标系下的三重积分:()()()()()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==ϕθϕθθϕθϕβαϕθϕθϕϕϕθϕθϕϕθϕθϕ,,222121cos ,sin sin ,cos sin sin sin cos ,sin sin ,cos sin ,,r r VVdrr r r r f d d drd d r r r r f dV z y x f④三重积分的变量替换:()[]dudvdw w v u z y x w v u z w v u y w v u x f dV z y x f uvwxyzV V ),,(),,(),,(),,,(),,,(,,∂∂=⎰⎰⎰⎰⎰⎰2.物理意义:各点处体密度为()z y x f ,,的几何形体Ω的质量.(三)第一型曲线积分: 1.计算公式①平面曲线的情形:(1)()()b t a t y y t x x C ≤≤⎩⎨⎧==,,:则()()()()()().,,22⎰⎰'+'=b aC dt t y t x t y t x f ds y x f(2)()b x a x g y C ≤≤=,:则()()()()⎰⎰+=baCdx x g x g x f ds y x f .'1,,2(3)()βθαθ≤≤=,:r r C 则()()()()()()⎰⎰'+=βαθθθθθθθ.sin ,cos ,22d r r r r f ds y x f C②空间曲线的情形:()()()b t a t z z t y y t x x C ≤≤⎪⎩⎪⎨⎧===,,,::()()()()()()()().',,,,222⎰⎰+'+'=βαdt t z t y t x t z t y t x f ds z y x f C2.几何意义:以C 为准线,母线平行于z 轴的柱面介于0=z 与()y x f z ,=间的面积. 3.物理意义:各点处线密度为()y x f ,(或()z y x f ,,)的曲线C 的质量. (四)第一型曲面积分: 1.计算公式:()()().1,,,,,22⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=xydxdy y z x z y x z y x f dS z y x f Sσ 2.物理意义:各点处面密度为()z y x f ,,的曲面S 的质量. (五)第二型曲线积分:1.计算公式:①平面曲线的情形:()()b t a t y y t x x C ≤≤⎩⎨⎧==,,:⎰⎰+=+baCt dy t y t x Q t dx t y t x P dy y x Q dx y x P )())(),(()())(),((),(),(②空间曲线的情形:()()()b t a t z z t y y t x x C ≤≤⎪⎩⎪⎨⎧===,,,:)())(),(),(()())(),(),(()())(),(),((),,(),,(),,(t dz t z t y t x z t dy t z t y t x Q t dx t z t y t x P dz z y x R dy z y x Q dx z y x P baC ⎰⎰++=++2.物理意义:力场F =P(x,y ,z )i + Q (x,y ,z )j +R (x ,y,z )k 沿有向曲线C 所做的功.(六)第二型曲面积分: 1.计算公式:.)),(,,()),(,,()),(,,(),,(),,(),,(⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫⎝⎛∂∂-+⎪⎭⎫ ⎝⎛∂∂-±=++xy dxdy y x z y x R y x z y x Q y z y x z y x P x z dxdyz y x R dzdx z y x Q dydz z y x P Sσ 2. 物理意义:流速场v=P (x ,y,z )i + Q (x,y ,z )j+R (x ,y,z)k 单位时间通过有向曲面S流向指定一侧的净通量.二、各种积分间的联系1. 第一型曲线积分与第二型曲线积分:[]⎰⎰++=++CCds R Q P Rdz Qdy Pdx .cos cos cos γβα2. 第一型曲面积分与第二型曲面积分:[].cos cos cos ⎰⎰⎰⎰++=++SSdS R Q P Rdxdy Qdzdx Pdydz γβα3. 第二型曲线积分与二重积分(Gr een 公式):.dxdy y P x Q Qdy Pdx D C ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+4. 第二型曲面积分与三重积分(Gaus s公式):.dV z R y Q x P Rdxdy Qdzdx Pdydz S V ⎰⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=++5. 第二型曲线积分与第二型曲面积分(Stokes 公式):.dxdy y P x Q dzdx x R z P dydz z Q y R Rdz Qdy Pdx S C ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=++⎰⎰⎰ 三、各种积分的通用性质1.黎曼积分的性质1°()()[]()().⎰⎰⎰ΩΩΩΩ±Ω=Ω±d P g d P f d P g P f βαβα2°()()()⎰⎰⎰ΩΩΩΩ+Ω=Ω21d P f d P f d P f ,其中Ω=Ω⋃Ω21,且1Ω与2Ω无公共内点.3°若()()P g P f ≤,Ω∈P ,则()().⎰⎰ΩΩΩ≤Ωd P g d P f若()()()()P g P f P g P f ≠≤,,且()()P g P f ,连续,Ω∈P ,则()().⎰⎰ΩΩΩ<Ωd P g d P f4°()().⎰⎰ΩΩΩ≤Ωd P f d P f5° 若()P f 在积分区域Ω上的最大值为M ,最小值为m ,则().Ω≤Ω≤Ω⎰ΩM d P f m6° 若()P f 在有界闭区域Ω上连续,则至少有一点Ω∈*P ,使()().Ω=Ω*Ω⎰P f d P f7° 若2R ⊂Ω关于坐标轴对称,当()P f 关于垂直该轴的坐标是奇函数则为0;若3R ⊂Ω关于坐标平面对称,当()P f 关于垂直该平面坐标轴的坐标是奇函数时为0.8° 将坐标轴重新命名,如果积分区域不变,则被积函数中的x ,y ,z 也同样作变化后,积分值保持不变.2.第二型积分的性质1° 设-Ω是与Ω方向相反的几何体,则.)()(→Ω→→Ω→Ω-=Ω⎰⎰-d P A d P A2° ()()()().⎰⎰⎰Ω→→Ω→→Ω→→Ω±Ω=Ω⎥⎦⎤⎢⎣⎡±d P B d P A d P B P A βαβα3°若21Ω+Ω=Ω,则.)()()(21→Ω→→Ω→→Ω→Ω+Ω=Ω⎰⎰⎰d P A d P A d P A4°若e p ()P A →⊥,,Ω∈P 则.0)(=Ω→Ω→⎰d P A5°设,Ω∈P e p ={}P P P γβαcos cos cos ,,,()P A →={})(),(),(P R P Q P P ,则[]⎰⎰Ω→Ω→Ω++=Ωd P R P Q P P d P A P P Pγβαcos )(cos )(cos )()(6° 将坐标轴重新命名,如果曲线或曲面的方程不变,则被积函数中的x,y ,z 也同样作变化后,积分值保持不变.四、各种积分的应用1.形心坐标公式:(),ΩΩ=⎰Ωxd M x μ()().,ΩΩ=ΩΩ=⎰⎰ΩΩzd M z yd M y μμ质心坐标公式:()(),⎰⎰ΩΩΩΩ=d M xd M x μμ()()()().,⎰⎰⎰⎰ΩΩΩΩΩΩ=ΩΩ=d M zd M z d M yd M y μμμμ2.转动惯量:()().2⎰ΩΩ=d M r M I μ 3.旋度:r otF (M)= ⎪⎪⎭⎫⎝⎛∂∂-∂∂z Q y R i +⎪⎭⎫ ⎝⎛∂∂-∂∂x R z P j +⎪⎪⎭⎫⎝⎛∂∂-∂∂y P x Q k.4.散度:div F (M)= .Mz R y Q x P ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂ 五、习题1.计算,2dxdy y D⎰⎰其中D由横轴和摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 的一拱)0,20(>≤≤a t π围成. 2.计算,)(sin 12dxdy y x D⎰⎰+-其中D: .0,0ππ≤≤≤≤y x 3.计算,222dxdy y x a D⎰⎰--其中D : .0,,22>≥≤+a x y ay y x 4.计算,22dxdy y x D⎰⎰+ 其中D : .0,0a y a x ≤≤≤≤5.计算[],)(1⎰⎰⎰+VdV z xf y 其中V 是由不等式组2230,1,11y x z y x x +≤≤≤≤≤≤-所限定的区域,)(z f 为任一连续函数.6.计算,222⎰⎰⎰+VdV z y x 其中V 是由不等式组1)1(,1222222≤-++≥++z y x z y x 所确定的空间区域. 7.计算,1222⎰⎰⎰-++VdV z y x 其中V 是由锥面22y x z +=和平面1=z 围成的立体.8.计算,)32(⎰⎰⎰++VdV z y x 其中V是顶点在)000(,,处,底为平面3=++z y x 上以)111(,,为圆心,1为半径的圆的圆锥体.8.计算,⎰lxds 其中l 为双曲线1=xy 上点)2,21(到)1,1(的弧段.9.计算⎰++Lds xy zx yz ,)222(其中L 是空间圆周.232222⎪⎩⎪⎨⎧=++=++az y x a z y x10.计算,ds z y x z D⎰⎰),,(ρ其中S 是椭球面122222=++z y x 的上半部分,点π,),,(S z y x P ∈为S 在点P处的切平面,),,(z y x ρ为原点)000(,,到平面π的距离.11.计算,cos )sin 1(2⎰--+ly y xdx e dy x e x 其中l 是由由原点沿2x y =到点)1,1(的曲线.12.计算⎰Γ+++++,)()()(222222dz y x dy x z dx z y 其中(),024:22222>⎪⎩⎪⎨⎧=+=++Γz xy x xz y x从z 轴正向看Γ取逆时针方向.13.计算,)()(22⎰+++-ly x dy y x dx y x 其中l 为摆线⎩⎨⎧-=--=ty t t x cos 1sin π从0=t 到π2=t 的弧段. 14.计算,)6()22(22223ydxdy z dzdx x z y x zy dydz e xx S-+++--⎰⎰-π其中S 是由抛物面224y x z --=,坐标面xo z,yo z及平面1,1,21===y x y z 所围成的立体表面的外侧. 15.计算,)()()(232323dxdy x z dzdx z y dydz y x S-+-+-⎰⎰其中S 是由锥面22z x y +=与半球面)0(222>--+=R z x R R y 构成的闭曲面的外侧.16.计算,dxdy y x f y z z dzdx y x f dydz y x f y x ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎰⎰∑其中∑是由122++=z x y 和229z x y --=所围立体表面的外侧, )(u f 是有连续导数的函数.17.计算,4)1(2)18(2dxdy yz dzdx y xdydz y S ⎰⎰--++其中S 是由()3101≤≤⎪⎩⎪⎨⎧=-=y x y z 绕y 轴旋转一周所得到的曲面,它的法向量与y 轴正向夹角恒大于.2π18.计算,222dzdx z x Sy ⎰⎰+其中S是曲面22z x y +=及1=y ,2=y 所围立体表面外侧.19.求闭曲面z a z y x 32222)=++(所围成的立体体积. 20.求锥面222x z y =+含在圆柱面222a y x =+内部分的面积.21.求由曲线L :)21(ln 2142≤≤-=x x x y 绕直线8943-=x y 旋转形成的旋转曲面的面积. 22.求平面曲线段l :)10(233≤≤+=x x x y 绕直线L:x y 34=旋转形成的旋转曲面的面积. 23.设函数)(x f 在区间]1,0[上连续,并设,)(1⎰=A dx x f 求⎰⎰110.)()(xdy y f x f dx24.求线密度为x 的物质曲线()0222222≥⎪⎩⎪⎨⎧=+=++z Rxy x Rz y x 对三个坐标轴转动惯量之和. 25.设r =x i +yj +z k , r=|r |.(1)求)(r f ,使div[)(r f r ]=0;(2)求)(r f ,使di v[grad )(r f ]=0.26.设函数)(x f 在区间]1,0[上连续、正值且单调下降,证明:.)()()()(110210102⎰⎰⎰⎰≤dx x f dxx f dxx xf dxx xf27.设函数)(t f 连续,证明:⎰⎰⎰--=-DAAdt t A t f dxdy y x f .|)|)(()(28.证明:()),0()323(31085335>+≤+++≤⎰⎰∑a a a dS a z y x a ππ其中∑是球面:.022222222=+---++a az ay ax z y x29.设Γ是弧长为s 的光滑曲线段,函数),,(),,,(),,,(z y x R z y x Q z y x P 在Γ上连续,且.max 222R Q P M ++=Γ证明:.Ms Rdz Qdy Pdx ≤++⎰Γ30.设在上半平面{}0|),(>=y y x D 内函数),(y x f 具有连续偏导数,且对任意的0>t ,都有).,(),(2y x f tty tx f -=证明:0),(),(=-⎰dy y x xf dx y x yf L,其中L 是D 内任意分段光滑的有向简单闭曲线.第三部分 无穷级数一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0. 2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变. 5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i)当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii)当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i)当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii)当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim>=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容)另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p-级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim 1>=+∞→r u u n n n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n nu与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在R x x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim 1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n n nx x a在Rx x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n n x x ,∑∞=-=+022)1(11n nn x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1].⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1].⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1]. (2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx n nxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin nnxdx x n nxdx x n nxdx x nn n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e axax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.五、习题1.判断下列数项级数的敛散性,若收敛,不是正项级数的指出是绝对收敛还是条件收敛. (1)∑∞=⎪⎭⎫ ⎝⎛+1212n nn n ;(2)nn n βα∑∞=1,其中β非负;(3)∑⎰∞=140tan n n n xdx λπ,其中0>λ;(4)np n n n1111)1(+∞=-∑-;(5)n n nnn !)(1∑∞=-α,其中0>α; (6)!)!12(!)!32()1(2---∑∞=n n n n.2.求幂级数nn n n x n ∑∞=+132的收敛域. 3.求幂级数nn n n x n b n a ∑∞=⎪⎪⎭⎫ ⎝⎛+1的收敛域,其中b a ,为正数.4.将下列函数展开成x 的幂级数. (1)xx 21-;(2)x arcsin ;(3)x x x x -+-+arctan 2111ln 41. 5.求下列幂级数的收敛域及和函数.(1)n n n x n ∑∞=+-121)1(;(2))12()1(211--∑∞=-n n x n n n ; (3)()∑∞=03!3n nn x ; 6.求数项级数∑∞=-⋅-1212)!2(2)1(n nn n n 的和. 7.设(),arctan )(2x x f =分别求出)0()12(-n f 和)0()2(n f .8.求极限∑⎰∞=+→+112sin 0202)sin(lim n n n xx n x dt t . 9.求极限.)!14(!11!7!31)!34(!9!51lim 448444840-++++-++++--→n n n n x ππππππ10.将函数⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=l x l x l l x x x f 2,20,)(展开成正弦级数.11.将函数⎪⎪⎩⎪⎪⎨⎧≤≤≤≤=l x l l x l x x f 2,020,cos )(π展开成余弦级数. 12.将函数)arcsin(sin )(x x f =展开成傅里叶级数. 13.证明:幂级数n n n k x n k ∑∑∞==112)!2()!(在)3,3(-内绝对收敛. 14.求函数⎰-+=πππdt t x f t f x F )()(1)(的傅里叶系数nn B A ,,其中)(x f 是以π2为周期的连续函数,n n b a ,是其傅里叶系数.并证明:).(2)(1212202n n n b a a dt t f ++=∑⎰∞=-πππ。
知识点总结微积分下册
知识点总结微积分下册微积分的发展可以追溯到古希腊时期,当时的数学家阿基米德首先提出了用无穷小和无穷大的概念来研究曲线和面积的方法。
随后,牛顿和莱布尼兹对微积分的发展做出了巨大的贡献,他们分别独立地发明了微分学和积分学,并建立了微积分的基本理论。
微积分在数学中有着重要的地位,它不仅是数学本身的一个重要分支,而且还被广泛应用于物理、工程、经济学等各个领域。
微积分的基本概念和方法对于理解自然界的变化规律和解决实际问题都具有重要意义。
微积分的学习通常分为两个部分,即微分学和积分学。
微分学主要研究函数的导数和微分的概念,它是微积分的基础部分。
而积分学则主要研究函数的不定积分、定积分和曲线积分等问题,它是微积分的延伸和应用部分。
在微积分的学习中,首先需要了解函数的概念。
在数学中,函数是一种用来描述变量之间关系的数学工具,它把一个输入值映射到一个输出值。
函数通常用公式或图形来表示,例如y=f(x)就是一个函数的表达方式,其中x和y分别表示输入值和输出值,f(x)表示函数的取值。
函数是微积分学习的基础,它涉及到函数的定义域、值域、图像、单调性、奇偶性等概念。
在微积分中,导数是一个重要的概念。
导数可以理解为函数在某一点处的变化率,它描述了函数的变化趋势。
导数的计算方法有很多种,常见的有用差商的定义、隐函数求导、参数方程的导数等。
导数的应用也非常广泛,例如在物理学中描述物体的速度、加速度等变化规律,在经济学中描述收入的增长率等等。
积分是微积分的另一个重要概念,它是导数的逆运算。
积分可以理解为曲线下的面积,它也可以用来表示函数的累积变化量。
在微积分中,积分有不定积分和定积分之分。
不定积分是对函数的积分运算,它的结果是一个不定积分函数,而定积分则是对函数在一个区间上的积分,它可以用来计算曲线下的面积和函数在区间上的平均值等。
微积分的应用非常广泛,它不仅可以用来解决数学中的问题,还可以用来解决物理、经济、工程等各个领域的实际问题。
有关微分与积分章节知识点的总结2
有关微分与积分章节常识点的总结姜维谦PB08207063一元函数的积分一.求不定积分1. 积分根本公式2. 换元积分法凑微分法∫f(u(x))u ’(x)dx =∫f(u(x))du(x)=F(u(x))+C第二换元法∫f(x)dx=∫f(u(t))u ’(t)dt=F(u-1(x))+C注意:x=u(t)应单调〔可以反解〕—不单调时应分类讨论(e:g 开方去绝对值时)3. 分部积分法∫u(x)dv(x)=u(x)v(x)-∫v(x)du(x)适用于解异名函数“反对幂三指〞〔与dx 结合性递增〕应用:解二元方程,递推式e.g:①In=∫(lnx)n(次方)dx,n>=1②In=∫dx/(x2+a2)^n(次方),n>=14. 模式函数:有理函数类⑴整形分式—局部分式法〔通解〕∫P(x)/Q(x)dx ——别离常数得既约真分式与多项式——Q(x)因式分解化为局部分式和 ——待定系数后比拟系数〔还可以结合赋值,求导数,取极限等〕——化为Ik=∫dx/(x-a)^k(次方)类与Jk=∫(Bx+C)/(x2+bx+c)^k(次方)dx 类积分 ⑵三角有理式㈠万能代换〔通解〕㈡特殊代换 R(cosx,sinx)=-R(cosx,-sinx)R(cosx,sinx)=-R(-cosx,sinx)R(cosx,sinx)=R(-cosx,-sinx)⑶可有理化的无理式㈠三角换元㈡代数换元 ∫R(x,(ax+b)/(cx+d)^1/m(次方))∫R(x,(ax2+bx+c)^1/2(次方))——Euler 代换消除平方项注:三角有理式,可有理化的无理式均可以通过代换转化为尺度有理函数形式后积分, 但通解过程均较繁琐。
故而在求解有理函数类积分时应适当考虑凑配,变形等技巧并 操纵上述1.2.3.常用方法简化运算 详见书P103一.求定积分1.N-L 公式〔形式直接易求〕∫在[a,b]上持续,x 在[a,b]上)(积分形式的微积分根本定理)~微分形式:F(x)=是f(t)的一个原函数 2.Riemann 积分步调:分割——求和近似——取极限~求极限〔T (注意x 对应的上下限)3.换元法 ’(t)dt注:①只需注意上下限的变化〔不同积分变元〕②变量代换思路:被积函数,积分上下限,无穷积分与常义积分的转化③不雅察操纵被积函数在积分区间上的对称关系4e.g:Im=次方)dx5.∫ f=lim ∫ ∫ f=lim(∫广义积分也可以用上述注:求定积分时应结合分项积分与分段积分二.积分的性质运用1.单调性2.有界性3.积分绝对值三角不等式〔Riemann 和理解〕——用于放缩为“易积分形式〞如常值积分——有关积分不等式的证明结合微分中值定理结合Rolle 定理7.线性 8.对称性F '(x)=( 〕’=f(Ψ(x))φ’(x)-f(φ(x))φ’(x) ---~1.研究函数极值、拐点、单调性2.结合R ’H 法那么求极限3.Rolle 定理五.定积分的应用举例〔详见书〕一元函数的微分一.导数的求解1. 按照 导数的定义F’(x 0)=lim(f(x )-f(x 0))/(x-x 0)(x ->x 0)~间断点可导性判断:比拟limf ’(x 0)〔x ->x 0〕与lim(f(x )-f(x 0))/(x-x 0)(x->x 0)2. 复合函数〔f-1(y 0)〕’=1/f ’(x 0)(f(x)=f-1(y))3.高阶导数㈠Leibniz 定理 〔uv 〕^(n)(n 阶导数)=Σ㈡化积商形式为和差形式e.g:y=Pn(x)y=㏑(ax+b)&(c/(ax+b))^(n)sinx^(n)=sin(x+nπ/2)~求递推关系三.重要定理的运用Rolle——证明ε存在性的等式〔微分式的转化〕注意①辅助函数的构造②f(a)=f(b)形式Lagrange中值——证明不等式求不决式极限求函数导数~研究函数性质——单调性—不等式证明求极小〔大〕值、最值凹凸性判断㈠定义㈡f’’(x)渐近线求法①垂直渐近线②非垂直渐近线Cauchy中值——证明不等式求不决式极限L’H法那么注:①l可以无穷大,x0任意②适用于0/0、∞/∞型,其他形式不决式应做适当转化Taylor公式——等价无穷小量有关ε的恒等式证明四.求不决式极限㈠R’H法那么〔仅适用于不决式〕㈡中值定理㈢重要极限~幂指函数的转化㈣等价无穷小量〔因子替换〕㈤Taylor展开---统一形式注:各种极限求法各有其使用范围,在具体求解过程中还应考虑比拟优化、综合运用结语:由于个人对常识的理解有限,所以只能在常识点方面作出一点总结,而无法就某个方面作深入的探讨。
微积分二知识点总结
微积分二知识点总结微积分二是大学数学的一门重要的基础课程,它是微积分的延伸和拓展。
在微积分一中,我们学习了函数的极限、连续性、导数和积分等基本概念和定理,而微积分二则进一步研究函数的微分方程、级数、多元函数及其常微分方程的计算方法等内容。
本文将对微积分二的一些重要知识点进行总结。
1. 级数级数是微积分二中的重要概念,它由一列数相加而成。
我们学习了级数的定义、收敛性判定准则(比较判别法、求和公式、积分判别法等)、级数运算(加法、乘法等)以及收敛级数的性质等。
2. 函数的多元极限在微积分一中,我们已经学习了函数的一元极限。
而在微积分二中,我们将进一步研究多元函数的极限。
多元极限研究的是当函数的自变量趋于某个值时,函数的取值趋于的情况。
我们学习了多元极限的定义、极限存在性的判定方法(夹逼准则、两变量函数的极限、多元函数的极限等)以及多元极限的性质等。
3. 偏导数偏导数是微积分二中的重要概念。
它用于描述多元函数在给定点上的变化率。
我们学习了偏导数的定义、求导法则(如多元复合函数的求导法则、高阶偏导数等)以及偏导数应用于切线、法线及极值等问题的求解。
4. 多元函数的微分微分是微积分二的重要内容之一。
我们学习了多元函数的微分定义、微分的性质(如线性性质、乘积规则、链式法则等)以及微分在函数近似计算中的应用等。
5. 多元积分多元积分在微积分二中有着重要的地位。
我们学习了二重积分和三重积分的定义以及性质,如积分的可加性、线性性质、换序性质等。
我们还学习了极坐标和球坐标系下的坐标变换和应用于积分计算的方法。
6. 常微分方程常微分方程是微积分二的重要内容。
我们学习了一阶线性微分方程和高阶线性微分方程的求解方法,如分离变量法、常系数线性齐次微分方程的求解法、特殊非齐次微分方程的求解法等。
我们也学习了常微分方程在生活中的应用,如人口增长问题和生物钟模型等。
通过对微积分二的这些重要知识点的总结,我们可以更好地理解微积分的基本原理和方法,并且能够应用于实际问题的求解。
大一微积分基本知识点总结
大一微积分基本知识点总结微积分是数学的一个分支,主要研究函数的变化、极限、导数和积分等概念和性质。
作为大一学习的一门重要课程,微积分的基本知识点对于理解和应用数学具有重要的意义。
本文将对大一微积分的基本知识点进行总结。
一、函数与极限函数是微积分的研究对象,它是一个变量与变量之间的对应关系。
函数的极限是函数在某一点上的特定值。
在大一微积分中,主要包括以下几个知识点:1. 无穷小与无穷大:无穷小是指当自变量趋于某一点时,函数值趋于零的特殊函数。
无穷大是指当自变量趋于某一点时,函数值趋于正无穷或者负无穷的特殊函数。
2. 极限的定义与性质:极限的定义是指当自变量趋于某一点时,函数值趋于一个确定的值。
极限的性质包括四则运算法则、夹逼定理等。
3. 连续性:函数在某一点上连续,意味着函数在该点的极限存在,并且等于函数在该点的取值。
二、导数与微分导数是函数在某一点上的变化率,用来描述函数曲线的斜率。
微分是导数的微小变化,可以理解为函数在某一点上的线性近似。
在大一微积分中,主要包括以下几个知识点:1. 导数的定义与性质:导数定义为函数变化率的极限,导数的性质包括四则运算法则、复合函数求导法则等。
2. 高阶导数与导数应用:高阶导数是对导数的重复求导,导数应用包括切线与法线方程、函数的极值与凹凸性等。
3. 微分与近似计算:微分可以用来进行函数的线性化近似,常用于计算近似值和误差估计。
三、积分积分是导数的逆运算,是求函数曲线下面积的数学工具。
在大一微积分中,主要包括以下几个知识点:1. 不定积分与定积分:不定积分是指求导数为给定函数的原函数,定积分是指计算函数曲线下面积。
2. 定积分计算方法:定积分的计算方法包括换元积分法、分部积分法、定积分的几何意义等。
3. 积分应用:积分应用包括求曲线长度、曲线旋转体体积、求平均值等。
四、微分方程微分方程是函数与其导数之间的关系方程,是微积分与方程的结合。
在大一微积分中,主要包括以下几个知识点:1. 常微分方程:常微分方程是指不依赖于自变量的微分方程,包括一阶和二阶常微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【第五部分】不定积分1.书本知识(包含一些补充知识)(1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。
(2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表⎰⎰+==c x dx dx 1c x dx x +⋅+∂=⋅+∂∂⎰111(α≠1,α为常数) c dx xx +=⋅⎰ln 1()()()⎰⎰⎰⎰⎰+-⋅=⋅+-=⋅-+-=⋅++=⋅≠+=⋅cx x x dx x cx x dx xc x arc x dx xc e dx ea a a c a a dx a x xxxln ln arccos arcsin 11cot arctan 1110ln 22或或为常数,,> ()c xa xa a dx x a c axa dx x a c axdx x a cx x dx x +-+⋅=⋅-+=⋅++=⋅-+++=⋅+⎰⎰⎰⎰ln 211arctan 11arcsin 11ln 1122222222c x xxd cshx dx chx cchx dx shx +-=-+=⋅+=⋅⎰⎰⎰cos ln cos coscx dx x c x dx x cx dx x +=⋅+=⋅+-=⋅⎰⎰⎰cos ln tan sin cos cos sin c x dx x +=⋅⎰sin ln cotcx dx x x c x dx x x cx dx x c x dx x c x x dx x c x x dx x c x x dx x c x x dx x cx x dx x c x x dx x +-=⋅⋅+=⋅⋅+-=⋅+=⋅+--=⋅+-=⋅++=⋅+-=⋅+-=⋅++=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰csc cot csc sec tan sec cot csc tan sec cot cot tan tan 2sin 412cos 2sin 412sin cos csc ln csc tan sec ln sec 222222c x dx ax a x ++=⋅++⎰22ln122(4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则[]⎰⎰⎰⎰⎰⋅±⋅=⋅±⋅⋅=⋅⋅dxx g dx x f dx x g x f dxx f a dx x f a )()()()()()(②①(7)[][]c x F dx x x f +=⋅⎰)()(')(ϕϕϕ复合函数的积分:cb x F dx b x fc b ax F a b axd b ax f a dx b ax f ++=⋅+++⋅=+⋅+⋅=⋅+⎰⎰⎰)()()(1)()(1)(一般地,(9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。
(10)不定积分的计算方法①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性数乘运算加减运算线性运算(8)ta x dx a x t a x dx a x ta x dx x a tan sec sin 222222⋅=⇒⋅+⋅=⇒⋅-⋅=⇒⋅-⎰⎰⎰③分部积分法: ⎰⎰⎰⎰⎰⎰⋅-⋅=⋅⋅⋅-⋅=⋅⋅⋅⋅⋅⋅==duv v u dv u dx x v x u x v x u dx x v x u dx x v x u dx x v x u x v v x u u 简写为:并有:也存在存在,则均可导,且若)()(')()()(')()(')()()(')(),(【解释:一阶微分形式不变性】 释义:函数(11)对应:y=f(u)du u f du y dy ⋅=⋅=)(''功能:说明:[][][]()[]变性。
这称为一阶微分形式不,均有是自变量还是中间变量因此,无论带入得:因为的微分形式为:为中间变量,自变量为那么复合函数复合函数求导得:,即变量为函数即为复合函数。
自是中间变量,即如果的微分形式为:是自变量,则函数此时如果设函数为du u f dy u duu f dy du dx x g x g u dx x g x g f dx y dy u x g x x g f y x g x g f y x g y x x g u u duu f du y dy u f y u u f y ⋅=⋅==⋅=⋅⋅=⋅===⋅===⋅=⋅===)(')('.)('),(.)(')(''')()().(')('',)(:),()('')(),(c x dx ax a x ++⇒⋅++⎰22ln122(12)分段函数的积分 例题说明:{}dx x ⋅⎰2,1max()需要调整连续的原则,需要说明的一点,依据)>()()<()>()()<(解:321322132222,,1323111-1-3231),1max(111-11-,1max c c c x c x x c x x c x dx x x x x x x x ⎪⎪⎩⎪⎪⎨⎧++≤≤++-=⋅⎪⎩⎪⎨⎧≤≤=⎰在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一⎰⎰⋅-=⋅xd x dx x dx cos sin sin 23的部分。
如次方处理到最后化简的目的。
并以达到再进行计算或将二者合量将其转化成同一次方要通过三角函数公式尽则需情况同时出现且指数不同的与,若遇到)在做不定积分问题时(,cosx sinx 14 2xcos 2x sin 2sinx sinx 15⋅=的问题,则中,如果单独遇到)在计算不定积分过程((16)隐函数求不定积分 例题说明:,带入。
所以:所以:解法带入。
,则:令解法确定的隐函数,试求是由方程例题:设∂∂=∂∂+∂=∂=-∂=-⇒=-+-⇒=--=-==-⋅=-⎰cos sin ;cos sin sin sin 1cos )(11)()(2,1,113y-x 1)(2222222232y x yxy x yxy x x y x y t ty t t x t y x dx x y x y y (17)三角有理函数积分的万能变换公式2222222212tan 2tan ,12sin 11cos 12)12,11(2tan )cos ,(sin t t x x t t t x t t x dt t t t t t R x t dx x x R -=→=⎪⎪⎩⎪⎪⎨⎧+=+-=⋅+⋅++-=⋅⎰⎰其中:令(18)某些无理函数的不定积分()()() (1111)21141822122221t t 222222222=⋅⎪⎭⎫ ⎝⎛-++-=⋅-+-=⋅--⋅⋅+--+=⋅-+=⎰⎰⎰⎰dt t t dt t t t dt t tt t t x x t dx x x x A A 令例如:,即个根号变为(根号),变形时将整①无理函数中带有②欧拉变换at t c b x ax tx a t c bx ax c xt c bx ax c x a t c bx ax a c bx ax -⋅+=+-=++⎪⎩⎪⎨⎧=++=++++222222222-0-0对于②可得:对于①可得:②,令>若①,令>若的积分含有其他形式的不定积分c x f x xf dx x f x f x x df x dx x f x +-=⋅-⋅=⋅=⋅⋅⎰⎰⎰)()(')(')(')(')(''①()()()()x x I I x dx I I dxx x xI dxxx xI c A x A x A e dx e B x B x B cA x A x A e dx e x c x e A x e A dx x e x x x x x x x cos 2sin ln 21cos 2sin cos cos 2sin sin cos sin sin 212121322122213221221+=+-=⋅=+⋅+=⋅+=++⋅+⋅=⋅⋅+⋅+⋅++⋅+⋅=⋅⋅+⋅⋅+⋅⋅=⋅⋅⎰⎰⎰⎰⎰⎰⑤组合法:④③待定系数法②2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总1、不定积分的定义及一般积分方法(1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。
其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c被积表达式积分变量被积函数积分号→⋅→→→⎰dx x f x x f )()(dxx f k dx x f dxx f k x f ni i i i ni i ⋅⋅=⋅⋅⋅=⎰∑⎰∑==)()()()(11则:推论:若(2)一般积分方法值得注意的问题:第一,一般积分方法并不一定是最简便的方法,要注意综合使用各种积分方法,简便计算;第二,初等函数的原函数并不一定是初等函数,因此不一定都能够积出。
不能用普通方法积出的积分:()......10sin 1111ln 1sin ,sin ,223422<<例如:K dx x k dxx dxxdxx dxx dx x x dx e x⋅⋅⋅-⋅+⋅+⋅⋅⋅⋅⎰⎰⎰⎰⎰⎰⎰-2、特殊类型不定积分求解方法汇总 (1)多次分部积分的规律()dxvuvuvuvudxvuvuvudxvuvudxvunnnnnnnnnnn⋅⋅⋅-++⋅+⋅-⋅==⋅⋅+⋅-⋅=⋅⋅-⋅=⋅⋅⎰⎰⎰⎰++----+)1(1)2()1()()1()1()()()()1(1...'''......'''')'sincos()sincos(sincossincossincos2xdxcBxdxcAxbxadxxdxcxbxa⋅+⋅⋅+⋅+⋅=⋅+⋅⋅⋅+⋅⋅+⋅⎰求解方法为:令的积分)对于(dxxxxx⋅+-⎰sincossincos3例如:求即可解:令)'sin(cos)sin(cossincos3xxBxxAxx+++=-(3)简单无理函数的积分被积函数为简单式的有理式,可以通过根式代换化为有理函数的积分()的最小公倍数是其中令③令②设①nmpbaxtdxbaxbaxxRdcxbaxtdxdcxbaxxRbaxtdxbaxxRpmnnnnn,,,,,),(+=→⋅++++=→⋅⎪⎪⎭⎫⎝⎛+++=→⋅+⎰⎰⎰[]dxbxaxbxaxbaIkbadxbxaxdxI⋅⎥⎦⎤⎢⎣⎡+⋅++-+⋅-=≠-⋅+⋅+=⎰⎰)sin()sin()()(sin)sin(1,)sin()sin(4解法:π其中)求(nnnn n bx a x t dx bx a x b x a x I n dx b x a x dxI --=⋅----=⋅-⋅-=⎰⎰-+令解法:为自然数其中,)求:(,))((1,)()(511tx dxc bx ax x I m 162=⋅++⋅=⎰解法:令)求(cbx b bx a b a e dx bx e I c bx b bx a ba e dx bx e I ax axax ax+⋅+⋅⋅+=⋅⋅=+⋅-⋅⋅+=⋅⋅=⎰⎰)sin cos (cos )cos sin (sin 7222221)统一公式(t x x x t x x x t x x x tx x x cos arccos 1sin arcsin 1sin 1tan 182222=-=-=-=+时,令和④同时出现时,令和③同时出现时,令和②同时出现时,令和①同时出现)计算技巧( dxx a x a x a x a a I dx xa ⋅-⋅+-++⋅=⋅-⎰⎰)()()()(211922解法:令)求(小结:几分钟含有根号,应当考虑采用合适的方法去掉根号再进行计算。