3 超导体微观理论

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3超导体微观理论

超导微观机制

经典理论对超导电性产生的原因无法解释。在量子论建立不久,F.伦敦就指出,超导环内的磁通是量子化的。因此,超导电性是宏观世界的量子现象。1962年,实验证实磁通是量子化的。

同位素效应

所谓同位素效应是指超导体的临界温度依赖于同位素质量的现象。1950年英国H.弗罗利希指出,金属中电子通过交换声子(点阵振动)可以产生吸引作用。他预言超导体的临界温度与同位素的质量之间存在一定的关系。所谓“临界温度”,就是导体从正常导电状态变为超导电状态时的转变温度。果然,弗罗里希的预言得到了实验的证实。

1950年麦克斯韦(E.Maxwell )和雷诺(C.A.Rayhold )各自独立圣测量了水银同位素的临界转变温度。

实验发现:T C ∝М-1/2

,其中М为同位素质量。

同位素效应把晶格振动(其量子称为声子)与电子联系起来了,它告诉人们电子-声子的相互作用与超导电性密切相关。

弗罗利希经过分析后认为,同位素之间的电子分布状态是相同的,而原子质量是不同的,那么,超导电性会不会与晶格原子的性质有关呢?也许,超导的出现(即电阻的消失)是由于电子和晶格原子的相互作用才产生的吧!那么,电子和晶格原子是怎样互相作用的呢?弗

超导能隙(energy gap of superconductors )

实验证明,超导态的电子能谱与正常态不同,在费密能E F (最低激发态与基态之间)附近出现了一个半宽度为Δ能量间隙。Δ≈10-3~10-4eV 。如上图

拆散一个电子对(库珀对)产生两个单电子至少需要能隙宽度2Δ的能量。热运动可以拆散电子对产生单电子。能隙的存在使得在温度T 远低于临界温度T c 时,超导体中单电子(正常电子)的数目按exp(-2Δ/kT)变化。这就导致超导体的电子比热容和热导率按温度指数规律变化。当电磁波(微波或远红外线)的频率足够高(h ν≥2Δ)时,同样可以激发出单电子。此时超导体会强烈地吸收电磁波。在以超导体为一个电极的隧道结中,当结电压足够高(V ≥Δ/e)时,大量的电子对被拆散,形成单电子参与隧道过程,使隧道电流在V=Δ/e处突然上升,若隧道结的两个电极都是超导体,能隙为Δ1、Δ2,则在V =(Δ1+Δ2)/e处突然上升。这些现象都证明能隙的存在,并可用来测定能隙值2Δ。

库珀电子对

1956年,L.N.库珀(L.N.Cooper )从理论上证明了费密面附近的两个电子,只要存在净的吸引作用,不管多么微弱,都可以形成束缚态──库珀对。

库珀发现,如果带电粒子的正则动量(机械运动与场动量之间之和等于零,那么很容易从超导电流密度的基本关系:

J s =-ns e*υs 得到伦敦方程。可见超导态是由正则动量为零的超导电子组成的,它是动量空间的凝聚现象。

相干长度:1953年,皮帕德(A.B.Pippard )证明,当一个电子从金属的正常区移动到2′

超导区时,其波函数不能从它的正常态值突然转变为超导态的值,这种转变只能发生在一个距离ξ上,ξ被称为相干长度。

相干长度和穿透深度是表征超导体的基本参数。

形成库珀电子对的最佳方式是动量相反时自旋相反的两个电子组成。

BCS理论

1956年,L.N.库珀从理论上证明了费密面附近的两个电子,只要存在净的吸引作用,不管多么微弱,都可以形成束缚态──库珀对。第二年,J.巴丁、库珀和J.R.施里弗建立了完整的超导微观理论(BCS理论)。BCS理论是以电子-声子相互作用为基础解释超导电性的经典理论,它能很好地解释金属元素及金属间化合物的超导电性。

BCS理论是以近自由电子模型为基础,是在电子-声子作用很弱的前提下建立起来的理论。对于某些超导体,例如汞和铅,有一些现象不能用它来解释。在BCS理论的基础上发展起来的超导强耦合理论,对这些现象能很好地解释(见强耦合超导体)。

两个基本概念。第一,超导电性的起因是费密面附近的电子之间存在通过交换声子而发生的吸引作用。第二,由于这种吸引作用,费密面附近的电子两两结合成对,叫做库珀对。

关于通过交换声子而发生的吸收作用,可以按如下的图像来理解。一个电子状态发生变化,能量和动量从ε1、p1变为ε1′、p1′。这个状态的改变引起了固体中整个电子气电荷分布的扰动。这种扰动必然牵动点阵振动,即发射声子。点阵振动反过来也可以影响电子气。影响的结果可以使电子气复原,能量和动量为ε1′、p1′的电子恢复到原来的状态ε1、p1,其效果就是电子在运动过程因牵动点阵而增加了惯性,或有效质量。影响的结果也可以是使另一个电子发生状态的变化,从ε2、p2变为ε2′、p2′,这就是声子被另一个电子吸收。后一种情形的结果是一对电子之间发生了能量和动量的交换,也就是发生了以声子为媒介的电子间的间接的相互作用。计算表明,当每一个电子前后状态的能量差小于声子的能量时(按测不准关系,不要求中间过渡的声子服从能量守恒),这种相互作用是吸引的。考虑到费密面以下几乎都是被占据了的状态,以及量子力学的泡利不相容原理,可知只有在费密面附近的电子之间才存在吸引作用。这一部分恰恰也就是呈现超导电性的电子。

吸引作用的强弱,取决于一对电子(ε1、p1)、(ε2、p2)可能转变过去的状态(ε1′、p1′)(ε2′、p2′)的多寡。据此可知,在费密面附近动量相反、自旋也相反的一对电子(p1=p↑,p2=p↓ε1≈ε2≈εF,)之间,存在比其他情形都要强得多的吸引作用。假如这种吸引作用超过了两个电子之间的静电斥力,就会使一对(p↑,-p↓)的电子结合成库珀对,因为这会使电子气的能量下降到低于正常费密分布时的能量。费密面附近的电子两两结合成对,改变了这些电子的能谱。使得在连续的能带态以下,出现一个单独的能级,即结合成对的状态。单独能级与连续能级之间的间隔为Δ,叫做超导体的能隙。把一个电子对拆成不相关的两个单独电子,至少要给予一定的能量,这个能量就叫结合能,其值为2Δ,即至少要给予每个电子以能量Δ。因为拆开之后,两个电子不成为库珀对,每个电子都处在连续能级的状态

相关文档
最新文档