对数与对数函数-知识点与题型归纳

合集下载

对数与对数函数知识点及例题

对数与对数函数知识点及例题

对数与对数函数知识点及例题一、知识点1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log aNM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bN a a log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象a <11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.二、例题例1 计算:(1))32(log32-+ (2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-; (3)21lg 4932-34lg 8+lg 245. 解:(1)解法一 利用对数定义求值 设)32(log 32-+=x, 则(2+3)x =2-3=321+=(2+3)-1,∴x=-1. 解法二 利用对数的运算性质求解)32(log 32-+=32log + 321+=32log +(2+3)-1=-1.(2)原式=lg 2(2lg 2+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg 2-1| =lg 2+(1-lg 2)=1.(3)原式=21(lg32-lg49)-34lg81+21lg245 =21 (5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5 =21lg(2×5)= 21lg10=21.例2 求下列函数的单调区间.(1)y=log 2(x-4); (2)y=log 0.5x 2.解:(1)定义域是(4,+∞),设t=x-4,当x >4时,t 随x 的增大而增大,而y=log 2t ,y 又随t 的增大而增大,∴(4,+∞)是y=log 2(x-4)的递增区间.(2)定义域{x |x ∈R ,且x≠0},设t=x 2,则y=log 0.5t当x >0时,t 随x 的增大而增大,y 随t 的增大而减小,∴(0,+∞)是y=log 0.5x 2的递减区间.当x <0时,t 随x 的增大而减小,y 随t 的增大而减小,∴(-∞,0)是y=log 0.5x 2的递增区间.例3 比较大小:(1)log 0.71.3和log 0.71.8.(2)(lg n )1.7和(lgn )2(n >1).(3)log 23和log 53.(4)log 35和log 64.解:(1)对数函数y=log 0.7x 在(0,+∞)内是减函数.因为1.3<1.8,所以log 0.71.3>log 0.71.8.(2)把lgn 看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn 讨论.若1>lgn >0,即1<n <10时,y=(lgn ) x 在R 上是减函数,所以(lgn )1.2>(lgn )2;若lgn >1,即n >10时,y=(lgn )2在R 上是增函数,所以(lgn )1.7>(lgn )2. (3)函数y=log 2x 和y=log 5x 当x >1时,y=log 2x 的图像在y=log 5x 图像上方.这里x=3,所以log 23>log 53.(4)log 35和log 64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log 35>log 33=1=log 66>log 64,所以log 35>log 64.例4 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x 则f (2+log 23)的值为 A.31 B.61 C.121 D.241 解析:∵3<2+log 23<4,3+log 23>4,∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D 例5: 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).注:研究函数的性质时,利用图象会更直观.例6: 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 例7: 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4.例8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1).(1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b .由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0.∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4.∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47. ∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1.例9 (1)已知函数y=log 3(x 2-4mx+4m 2+m+)的定义域为R ,求实数m 的取值范围; (2)已知函数y=log a [x 2+(k+1)x-k+(a >0,且a≠1)的值域为R ,求实数k 的取值范围.解:(1)∵x 2-4mx+4m 2+m+ >0对一切实数x 恒成立,∴△=16m 2-4(4m 2+m+ )=-4(m+ )<0,∴>0.又∵m2-m+1>0,∴m-1>0,∴m>1.(2)∵y∈R,∴x2+(k+1)x-k+ 可取尽一切正实数.∴△=(k+1)2-4(-k+ )≥0,∴k2+6k≥0,∴k≥0,或k≤-6.例10求函数y=log0.5(-x2+2x+8)的单调区间.解.∵-x2+2x+8>0,∴-2<x<4,∴原函数的定义域为(-2,4).又∵函数u=-x2+2x+8=-(x-1)2+9在(-2,1]上为增函数,在[1,4)上为减函数,∴函数y=log0.5(-x2+2x+8)在(-2,1]上为减函数,在[1,4)上为增函数.。

高一 对数与对数函数知识点+例题+练习 含答案

高一 对数与对数函数知识点+例题+练习 含答案

1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结知识点精讲一、对数概念(0)log (01)x a a N N n N a a =>⇔=>≠且,叫做以a 为底N 的对数.注:①0N >,负数和零没有对数;②log 10,log 1a a a ==; ③10lg log ,ln log e N N N N ==. 二、对数的运算性质(1)log ()log log (,);(2)log log log (,);(3)log log ();log (4)log (01,0,01)log a a a a a a n a a c a c MN M N M N R M M N M N R N M n M M R bb a a bc c a+++=+∈⎛⎫=-∈ ⎪⎝⎭=∈=>≠>>≠且且(换底公式)特殊地1log (,01,1)log a b b a b a b a=>≠≠且; log (5)log log (,0,0,1,)(6)(0,01)(6)log (,01).m a n a a NN a nb b a b m a n R ma N N a a a N N R a a =>≠≠∈=>>≠=∈>≠;且;且化常数为指数、对数值常用这两个恒等式.三、对数函数(1)一般地,形如log (01)a y x a a =>≠且的函数叫对数函数. (2)对数函数log (01)a y x a a =>≠且的图像和性质,如表2-7所示.log a y x =1a > 1a <图像题型归纳及思路提示题型1 对数运算及对数方程、对数不等式 思路提示对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正. 一、对数运算例2.56552log 10log 0.25+=( ).0A.1B.2C.4D分析log log log log log ().n m n ma a a a a n x m y x y x y +=+=解析225555552log 10log 0.25log 10log 0.25log (1000.25)log 52+=+=⨯==故选C .评注熟记对数的各种运算性质是求解本类问题的前提. 变式1 已知,x y 为正实数,则( )lg lg lg lg .222x y x y A +=+lg()lg lg .222x y x y B +=⋅ lg lg lg lg .222x y x y C ⋅=+lg()lg lg .222xy x y D =⋅变式2 22(lg 2)lg 4lg5(lg5)+⋅+= ________.. 变式3 222lg5lg8lg5lg 20(lg 2)3++⋅+= ________.. 例2.57274log 81log 8+=________. .解析324327342324433log 81log 3log 3,log 8log 2log 2.3322====== 所以原式4317.326=+= 变式1 = ________.. 例2.58 lg30lg0.515()3⨯= ________.. 分析(,0)log log .c c a b a b a b =>⇒= 解析lg30lg0.515(),3x ⨯=则()lg0.5lg30lg0.5lg30111lg lg 5()lg 5lg lg30lg5lg 0.5lg 333x ⎡⎤⎛⎫=⨯=+=⋅+⋅ ⎪⎢⎥⎣⎦⎝⎭(lg30lg3)lg5(lg5lg10)(lg1lg3)lg5lg3lg5lg 3lg5lg3=+⋅+--=+⋅-⋅+lg15=所以15x = 二、对数方程例2.59解下列方程:22111(1)(lg lg3)lg5lg(10);22(2)log (231) 1.x x x x x --=---+= 分析利用对数的运算性质化简后求解. 解析(1)11(lg lg3)lg5lg(10)22x x -=--,首先方程中的x 应满足10x >,原方程可变形为lg lg32lg5lg(10)x x -=--,即25lg lg310x x =-,得25310x x =-,从而15x =或5x =-(舍),经检验,15x =是原方程的解.(2)221log (231)1x x x --+=,222210112311x x x x x ⎧->-≠⎪⇔⎨-+=-⎪⎩且,解得2x =. 经检验2x =是方程的解.评注解对数方程一定要注意对数方程成立条件下x 的取值范围,是检验求出的解是否为增根的主要依据.变式1 函数2()log (41).xf x ax =+-(1)若函数()f x 是R 上的偶函数,求实数a 的值; (2)若4a =,求函数()f x 的零点.三、对数不等式例2.60设01a <<,函数()2()log 22x x a f x a a =--,则使()0f x <的x 的取值范围是().(,0)A -∞.(0,)B +∞.(,log 3)a C -∞.(log 3,)a D +∞分析先将对数不等式化为同底的形式,再利用单调性转化为指数不等式求解.解析()2()log 220log 1x x a a f x a a =--<=,又01a <<,函数log a y x =在(0,)+∞上单调递减,得22221230(3)(1)0x x x x x x a a a a a a -->-->⇒-+>即,因为10x a +>,故3x a >,又01a <<,所以log 3.a x <故选.C变式1 已知函数()f x 为R 上的偶函数,且在[]0,+∞上为增函数,103f ⎛⎫= ⎪⎝⎭,则不等式13log 0f x ⎛⎫> ⎪⎝⎭的解集为 .例2.61设2554log 4,(log 3),log 5,a b c ===则( ).Aa c b <<.Bb c a << .C a b c <<.Db a c <<分析利用对数函数的单调性来比较对数的大小,通常借助0和1作为分界点. 解析因为5log y x =在(0,)+∞上单调递增,所以25545554log 3log 41,log 51(log 3)log 3log 41log 5b a c <<>⇒<<<<⇒<<且故选D .变式1 设2lg ,(lg ),a e b e c === ).Aa b c >> .B a c b >> .C c a b >>.Dc b a >>变式2 设324log 0.3log 3.4log 3.615,5,5a b c ⎛⎫=== ⎪⎝⎭,则( ).Aa b c >> .Bb a c >> .C a c b >>.Dc a b >>变式4 (2012大纲全国理9)已知125ln ,log 2,x y z eπ-===,则().A x y z << .B z x y << .C z y x <<.D y z x <<题型2 对数函数的图像与性质思路提示研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和方法.图像与性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向. 一、对数函数的图像例2.62如图2-15所示,曲线1234,,,C C C C 是底数分别为,,,a b c d 的对数函数的图像,则曲线1234,,,C C C C 对应的底数,,,a b c d 的取值依次为()11.3,2,,32A11.2,3,,32B11.2,3,,23C11.3,2,,23D分析给出曲线的图像,判定1234,,,C C C C 所对应的,,,a b c d 的值,可令1y =求解.解析如图2-16所示,作直线1y =交1234,,,C C C C 于,,,A B C D ,其横坐标大小为01c d a b <<<<<,那么1234,,,C C C C 所对应的底数,,,abcd的值可能一次为112,3,,32.故选B .评注对数函数在同一直角坐标系中的图像的相对位置与底数大小的关系如图2-16所示,则01c d a b <<<<<.log (01)a y x a a =>≠且在第一象限的图像,a 越大,图像越靠近x 轴;a 越小,图像越靠近y 轴.变式 1 若函数()(01)xf x a a a -=>≠且是定义域为R 的增函数,则函数()log (1)a f x x =+的图像大致是( )变式2 设,,a b c 均为正数,且11222112log ,log ,log 22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则().Aa b c <<.B c b a <<.C c a b <<.Db a c <<例2.63函数log (1)2a y x =++的图像必过定点.分析对数函数log (01)a y x a a =>≠且的图像过定点(1,0),即log 10a =.解析因为log (01)a y x a a =>≠且恒过点(1,0),故令11,0x x +==即时,log (1)0a y x =+=,故log (1)2a y x =++恒过顶点(0,2).变式1 函数log (2)21a y x x =++-的图像过定点. 二、对数函数的性质(单调性、最值(值域))例2.64 设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =( ) 分析本题考查对数函数的单调性和最值.解析因为对数函数的底1a >,所以函数()log a f x x =在区间[],2a a 上单调递增,故max min 1()log 2,()log 1,log 212a a a f x a f x a a ===-=,即1log 22a =解得4a =故选D . 变式1 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 等于( )AB1.4C1.2D 例2.65设21122222(log )7log 30,()log log 24x x x x f x ⎛⎫⎛⎫++≤=⋅ ⎪ ⎪⎝⎭⎝⎭求的最大值和最小值. 解析2111122222(log )7log 30(2log 1)(log 3)0x x x x ++≤⇔+⋅+≤1213log 2x ⇔-≤≤-8x ≤≤.又22222()(log 1)(log 2)(log )3log 2f x x x x x =--=-+.令21log ,32t x ⎡⎤=∈⎢⎥⎣⎦,则2()()32f x g t t t ==-+当3,2t x ==即min max 1();3,8,() 2.4f x t x f x =-===当即时 变式1 已知[]3()2log (1,9)f x x x =+∈,求函数[]22()()()g x f x f x =+的最大值与最小值.例2.66若函数212log (0)()log ()(0)x x f x x x >⎧⎪=⎨-<⎪⎩,且()()f a f a >-则实数a 的取值范围是.解析依题意,函数()f x 的图像如图2-17所示,知()f x 为奇函数,由()()f a f a >-的得()0f a >,解得(1,0)(1,)a ∈-+∞.变式1 已知函数()lg f x x =,若0a b <<,且()()f a f b =,则2a b +的取值范围是( )2,)A +∞).32,B ⎡+∞⎣.(3,)C +∞[).3,D +∞变式2 定义区间[]1212,()x x x x <的长度为21x x -,已知函数12()log f x x =的定义域为[],a b ,值域为[]0,2,则区间[],a b 的长度的最大值与最小值的差为 .题型3 对数函数中的恒成立问题 思路提示(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.例2.67 已知函数124()lg 3x xa f x ++⋅=,若(),1x ∈-∞时有意义,求a 得取值范围.解析因为124()lg 3x x a f x ++⋅=在(),1x ∈-∞上有意义,即12403x xa ++⋅>在(),1-∞上恒成立. 所以1142x x a ⎡⎤⎛⎫⎛⎫>-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦在(),1-∞上恒成立.令()11(),,142x x g x x ⎡⎤⎛⎫⎛⎫=-+∈-∞⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.因为14x y ⎛⎫= ⎪⎝⎭与12xy ⎛⎫= ⎪⎝⎭在(),1-∞上为减函数,故()g x 在(),1-∞上为增函数,所以对任意的(),1x ∈-∞时,3()(1)4g x g <=-.因为1142x x a ⎡⎤⎛⎫⎛⎫>-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦在(),1-∞上恒成立,所以34a ≥-.所以a 的取值范围是3,4⎡⎫-+∞⎪⎢⎣⎭. 评注为了求a 的取值范围,把a 进行了分离,若()g x 存在最大值,则()g x a <恒成立等价于max ()g x a <;若()g x 不存在最大值,设其值域为()(),g x m n ∈,则()g x a <恒成立等价于a n ≥. 变式1 当(1,2)x ∈时,不等式()21log a x x -<恒成立,则a 的取值范围是().(0,1)A .(1,2)B (].1,2C 1.0,2D ⎛⎫⎪⎝⎭变式 2 函数()log (3)(01)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图像上的点时,点(2,)Q x a y --是函数()y g x =图像上的点.(1)写出函数()y g x =的解析式;(2)当[]2,3a a a ∈++时,恒有()()1f x g x -≤,试确定a 的取值范围.最有效训练题1.设0.211221log 2,log 3,2a b c ⎛⎫=== ⎪⎝⎭,则( ).Aa b c <<.B a c b <<.C b c a <<.Db a c <<2.设函数2log (1)(2)()11(2)2x x x f x x -≥⎧⎪=⎨⎛⎫-<⎪⎪⎝⎭⎩,若0()1f x >,则0x 的取值范围是( ).(,0)(2,)A -∞+∞.(0,2)B.(,1)(3,)C -∞-+∞.(1,3)D -3.设定义在区间(,)b b -上的函数1()lg12axf x x+=-是奇函数(,2)a b R a ∈≠且,则b a 的取值范围是( )(.A(.BCD4.已知log (2)a y ax =-在[]0,1上是x 的减函数,则a 的取值范围是( ).(0,1)A.(1,2)B.(0,2)C.(2,)D +∞5.已知lg lg 0a b +=,则函数()xf x a =与函数()log b g x x =-的图像可能是( )6.已知函数()f x 是R 上的偶函数,且(1)(1)f x f x -=+,当[]0,1x ∈时,2()f x x =,则函数5()log y f x x =-的零点个数是( ).3A.4B.5C.6D7.设函数()ln(1)f x x =+,若1()()a b f a f b -<<=且,则a b +的取值范围是________. 8.已知lg lg 2lg(23)x y x y +=-,则23log y x ⎛⎫=⎪⎝⎭________. 9.若函数2log (1)a y x ax =-+在[]1,2上为增函数,则实数a 的取值范围是________..10.已知函数2()log f x x =,正实数,m n 满足m n <,且()()f m f n =,若()f x 在区间2,m n ⎡⎤⎣⎦上的最大值为2,则m n +=________.11.设121()log 1ax f x x -⎛⎫= ⎪-⎝⎭为奇函数,a 为常数. (1)求a 的值;(2)证明:()f x 在区间(1,)+∞内单调递增;(3)若对于区间[]3,4上的每一个x 值,不等式1()2xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.12.已知集合1,22P ⎡⎤=⎢⎥⎣⎦,函数22log (22)y ax x =-+的定义域为Q .(1)若P Q ≠∅,求实数a 的取值范围;(2)若方程22log (22)2ax x -+=在P 内有解,求实数a 的取值范围.。

对数及对数函数知识点总结及题型分析

对数及对数函数知识点总结及题型分析

对数及对数函数1、对数的基本概念(1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数, 记作b N a=log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式(2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln .(3)指数式与对数式的关系:log xa a N x N =⇔=(0>a ,且1≠a ,0N >)(4)对数恒等式:2、对数的性质(1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a3、对数的运算性质(1)如果a >0,a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③M n M a n alog log =(2)换底公式: 推论:① b N N b log 1log =; ② ; ③ 1log log =⋅a b b a4、对数函数的定义:函数 叫做对数函数,其中x 是自变量(1)研究对数函数的图象与性质:由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。

(2)复习)10(≠>=a a a y x且的图象和性质()010log >≠>=N a a N aNa ,且bNN a a b log log log =b mn b a na m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x=xy a =y x =2.对数函数的图像:3.对数函数的性质:【回顾一下】① 定义:函数 称为对数函数,1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数; 4) 函数与函数 ______ 互为反函数.① 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y 轴;当时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ① 函数值的变化特征:题型一、对数式的运算 例题1:填空(1)[])81(log loglog 346=_____ ___; (2)19lg 3lg 2+-= ;(3)04.0log 10log 222+=_____ ___; (4)3log 28log 316161+=_____ ___; (5)=⋅⋅⋅4log 5log 7log 3log 7352例题2:若a y x =-lg lg ,则=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x ( ).A a 3 .Ba 23 .C a .D 2a 题型二 变式、对数运算性质运用 变式1:计算变式2:3128x y ==,则11x y-= .xy a log =)1,0(≠>=a a a y x 且10<<a 1>a 2(lg 2)lg 2lg 50lg 25+⋅+题型三、解对数式方程例题1:已知216log =x ,则=x ( ).A 2 .B 4 .C 8 .D 32例题2:已知 ① 3log 1log 266-=x ,求x 的值 ; ② 2)25(log 22=--x x ,求x 的值。

对数函数(基础知识+基本题型)(含解析)

对数函数(基础知识+基本题型)(含解析)

4.4对数函数(基础知识+基本题型)知识点一 对数函数的概念一般地,我们把函数log (0,a y x a =>且1)a ≠叫做对数函数,其中x 是自变量,函数的定义域是()0,.+∞辨析 (1)对数函数的特征:①log a x 的系数是1;②log a x 的底数是不等于1的正数; ③log a x 的真数仅含自变量.x(2)求对数函数的定义域时,应注意:①对数的真数大于0,底数大于0且不等于1;②对含有字母的式子要分类讨论;③使式子符合实际背景.知识点二 对数函数的图象和性质1.对数函数log (0,a y x a =>且1)a ≠的图象和性质()0,+∞.R 2.对数函数的图象与性质的对应关系①这些图象都位于y 轴右方 ①x 可取任意正数,函数值.y R ∈ ②这些图象都经过点(1,0)②无论a 为任何正数,总有log 10a =③图象可以分为两类:一类图象在区间(0,1)内纵坐标都小于0,在区间()1,+∞内的纵坐标都大于0;另一类图象正好相反③当1a >时01log 0,1log 0;a a x x x x <<⇒<⎧⎨>⇒>⎩ 当01a <<时01log 0,1log 0a a x x x x <<⇒>⎧⎨>⇒>⎩ ④自左向右看,当1a >时,图象逐渐上升;当01a <<时,图象逐渐下降 ④当1a >时,函数log a y x =是增函数; 当01a <<时,函数log a y x =是减函数3.底数对函数图象的影响(1)函数log (0,a y x a =>且1)a ≠的图象无限地靠近y 轴,但永远不会与y 轴相交;(2)在同一平面直角坐标系中,log (0,a y x a =>且1)a ≠的图象与1log (0,ay x a =>且1)a ≠的图象关于x 轴对称.(3)对数函数单调性的记忆口诀:对数增减有思路,函数图象看底数;底数要求大于0,但等于1却不行; 底数若是大于1,函数从左往右增;底数0到1之间,函数从左往右减; 无论函数增和减,图象都过点(1,0).在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)知识点三 指数函数与对数函数的关系指数函数对数函数解析式()10≠>=a a a y x 且)10(log ≠>=a a x y a 且R ()+∞,0①一般地,函数()y f x a b =±±(a 、b 为正数)的图象可由函数()y f x =的图象变换得到。

对数函数题型归纳大全非常完整

对数函数题型归纳大全非常完整

对数与对数函数题型归纳总结知识梳理 1.对数的概念如果a x =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质(1)对数的性质:①a log aN =N ;②log a a b =b (a >0,且a ≠1). (2)换底公式:log a b =log c blog ca (a ,c 均大于0且不等于1,b >0).利用换底公式推导下面的结论 ①ab b a log 1log =.推广log log log log a b c a b c d d ⋅⋅=. ②b mnb a na m log log =,特例:log log n n a a b b = (3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ).3.函数0(log >=a x y a ,且)1≠a 叫做对数函数,x 是自量,函数定义域是(0,)+∞.注意:(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy =都不是对数函数,而只能称其为对数型函数.(2)对数函数对底数的限制:0(>a ,且)1≠a . 4.对数函数的定义、图象与性质结论1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 结论 2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. 5.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 例题分析题型一 对数的运算例题1: (1)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=_____;(2)计算:(1-log 63)2+log 62·log 618log 64=___解析:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.例题2: 设x 、y 、z 为正数,且,则x 、y 、z 之间的关系式为 . 解析:设,由知,取以为底的对数可得,所以,,,所以,所以. 变式1: (1)若lg 2,lg(2x +1),lg(2x +5)成等差数列,则x 的值等于 (2)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =___,b =____ 解析: (1)由题意知lg 2+lg(2x +5)=2lg(2x +1), ∴2(2x +5)=(2x +1)2,(2x )2-9=0,2x =3,x =log 23. (2)设log b a =t ,则t >1,因为t +1t =52,∴t =2,则a =b 2.又a b =b a ,∴b 2b =b b 2,即2b =b 2,又a >b >1,得b =2,a =4. 变式2: 已知1a b >>.若log lo 52g a b b a +=,b a a b =,则a =______,b =____ 分析:进行对数运算常用的方法:(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2lg51+=解析:设log ,1b a t t =>则,所以152t t +=,解得2t =,所以2a b =, 于是由b a a b =,得22b b b b =,所以22b b =, 解得2,4b a ==.题型二 对数函数的定义域346x y z==346x y z t ===0x >1t >t log 3log 4log 61t t t x y z ===1log 3t x =1log 4t y=1log 6t z =1111log 6log 3log 2log 422t t t t z x y -=-===1112z x y-=例题3: 函数y =__________.解析:要使()21log 1y x =-+有意义,则()21log 10x -+≥,即()2log 11x +≤,即012x <+≤,即11x -<≤,即函数()21log 1y x =-+的定义域为(]1,1-.变式3: 函数256()lg 3x x f x x -+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 分析:求函数的定义域主要从三个方面考虑:(1)分式中的分母要求不等于0;(2)偶次根式的被开方数要求非负;(3)对数式的真数要求为正数. 解析:由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解得44,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .题型三 对数函数的值域 例题4: 求下列函数的值域:(1)31log y x =-;(2)()212log 23y x x =--.解析:(1)∵31log 0x -≥∴33log 1log 3x ≤=∴0x <<3,函数的定义域为(]0,3x ∈∵31log 0x -≥函数的值域为[)0,y ∈+∞. (2)∵2230x x -->∴3x >或1x -<所以函数的定义域为()(),13,x ∈-∞-+∞因为2230x x -->,即223x x --能取遍一切正实数,所以()212log 23x x R --∈ 所以函数的值域为y R ∈. 题型四 对数函数的奇偶性例题5: 若函数()f x 为奇函数,当0x >时,()2log f x x =,则12f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭() A .2- B .1- C .0 D .1解析:()()2211log 11log 1022f f f f f ⎛⎫⎛⎫⎛⎫==-=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,选C .变式4: 若函数()2lg 2+1f x a x ⎛⎫= ⎪+⎝⎭为奇函数,则实数a =_______.解析:12-题型五 对数函数的对称性例题6: 若1x 满足522=+x x ,2x 满足5)1(log 222=-+x x ,则=+21x x 解析:x x 252-=,x x 25)1(log 22-=-,即x x -=-2521,x x -=-25)1(log 2,作出12-=x y ,x y -=25,)1(log 2-=x y 的图象(如图).由图知12-=x y 与)1(log 2-=x y 的图象关于1-=x y 对称,它们与x y -=25的交点A 、B 的中点为x y -=25与1-=x y 的交点C ,47221=+=x x x C ,∴2721=+x x题型六 对数函数的单调性例题7: 求函数()20.1log 253y x x =--的递减区间. 解析:先求函数的定义域,由22530x x -->,得12x -<,或3x >.令2253u x x =--,0.1log y u =,∵对数的底数0.11<,∴函数0.1log y u =减函数,由复合函数单调性“同增异减”的规律可知,要求原函数的单调间区间,只需求函数2253u x x =--(12x -<,或3x >)的递增区间即可.∵22549253248u x x x ⎛⎫=--=-- ⎪⎝⎭,∴函数2253u x x =--(12x -<,或3x >)的递增区间()3,+∞,所以函数()20.1log 253y x x =--的递减区间为()3,+∞.变式5: 函数()()2log 45a f x x x =--(1a >)的单调递增区间是() A .(),2-∞- B .(),1-∞- C .()2,+∞ D .()5,+∞分析:复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.解析:由函数()()2log 45a f x x x =--得2450x x -->,得1x <-或5x >, 根据题意,设245u x x =--,则()229u x =--,图象开口向上, 因函数()()2log 45a f x x x =--为单调增函数, 由1a >得:()log a f x u =也是增函数,又因245u x x =--在()5,+∞上是增函数,故x 的取值范围是()5,+∞,故选D . 变式6: 已知函数()212log y x ax a =-+在区间()2,+∞上是减函数,则实数a 的取值范围是___________.分析:(1)忽视真数要求大于0的条件;(2)只注意真数所对应的二次函数的单调性而忽视外层函数的单调性.解析:令2t x ax a =-+,则有函数()f x 在区间()2,+∞上是减函数,可得函数t 在区间()2,+∞上是增函数,且(2)0t >,所以22(2)420at a ⎧≤⎪⎨⎪=->⎩,解得4a ≤所以实数a 的取值范围是4a ≤变式7: 若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎨⎧g (1)>0,a ≥1,即⎩⎨⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2)..变式8: 已知函数 (a >0,且a ≠1),若在区间[1,2]上恒成立,则实数a 的取值范围是________.()()8a f x log ax =-()1f x >解析:当时,在[1,2]上是减函数,由在区间[1,2]上恒成立,则,解之得。

备战高考数学复习考点知识与题型讲解14---对数与对数函数

备战高考数学复习考点知识与题型讲解14---对数与对数函数

备战高考数学复习考点知识与题型讲解第14讲对数与对数函数考向预测核心素养以比较对数函数值大小的形式考查函数的单调性;以复合函数的形式考查对数函数的图象与性质,各种题型均可能出现,中档难度.数学抽象、数学运算一、知识梳理1.对数的概念(1)定义:一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.(2)常用对数与自然对数2.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(MN)=log a M+log a N.(2)log a MN=log a M-log a N.(3)log a M n =n log a M(n∈R).3.换底公式log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0).4.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).5.对数函数的图象及性质a的范围0<a<1a>1图象性质定义域(0,+∞)值域R定点过定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数常用结论1.换底公式的三个重要结论(1)log a b=1log b a;(2)log a m b n=nmlog a b;(3)log a b·log b c·log c d=log a d. 2.对数函数的图象与底数大小的关系如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数. 故0<c <d <1<a <b .由此我们可得到此规律:在第一象限内与y =1相交的对数函数从左到右底数逐渐增大.二、教材衍化1.(人A 必修第一册P 126练习T 3(2)改编)(log 43+log 83)·log 32=________. 解析:(log 43+log 83)·log 32=⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2·lg 2lg 3=56. 答案:562.(人A 必修第一册P 131练习T 1改编)函数y =log 711-3x的定义域为________. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x <133.(人A 必修第一册P 135练习T 2改编)比较下列两个值的大小: (1)log 0.56________log 0.54; (2)log 213________log 123.答案:(1)< (2)=一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若MN >0,则log a (MN )=log a M +log a N .( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =log a x 2与函数y =2log a x 是同一个函数.( ) (4)若M >N >0,则log a M >log a N .( )(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏1.(对数函数图象不清致误)函数f (x )=log a |x |+1(0<a <1)的图象大致为( )解析:选A.由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出当x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位长度即得f (x )的图象,结合图象知选A.2.(对数函数单调性不清致误)函数y =log 23(2x -1)的定义域是________________.解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.答案:⎝ ⎛⎦⎥⎤12,13.(忽视对底数的讨论致误)若log a 34<1(a >0且a ≠1),则实数a 的取值范围是________.解析:当0<a <1时,log a 34<log a a =1,所以0<a <34;当a >1时,log a 34<log a a =1,所以a >1.综上所述,实数a 的取值范围是⎝⎛⎭⎪⎫0,34∪(1,+∞). 答案:⎝ ⎛⎭⎪⎫0,34∪(1,+∞)考点一 对数式的化简与求值(自主练透)复习指导:理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.1.计算:lg 427-lg 823+lg 75=________.解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12.答案:122.计算:(lg 2)2+lg 2·lg 50+lg 25=________.解析:原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 4+lg 25=2. 答案:23.(2022·德州高三期中)声音大小(单位:分贝)取决于声波通过介质时,所产生的压力变化(简称声压,单位:N/m 2).已知声音大小y 与声压x 的关系式为y =10×lg ⎝ ⎛⎭⎪⎫x 2×10-52,且根据我国《城市区域环境噪音标准》规定,在居民区内,户外白昼噪声容许标准为50分贝,夜间噪声容许标准为40分贝,则在居民区内,户外白昼噪声容许标准的声压是户外夜间噪声容许标准的声压的________倍.解析:当y =50时,lg ⎝ ⎛⎭⎪⎫x 2×10-52=5,即⎝ ⎛⎭⎪⎫x 2×10-52=105,解得x =2×10-52,当y =40时,lg ⎝ ⎛⎭⎪⎫x 2×10-52=4,即⎝ ⎛⎭⎪⎫x 2×10-52=104,解得x =2×10-3,所以户外白昼噪声容许标准的声压是户外夜间噪声容许标准的声压的2×10-522×10-3=1012=10倍.答案:104.设2a =5b =m ,且1a +1b=2,则m =________.解析:由2a =5b =m 得a =log 2m ,b =log 5m , 所以1a +1b=log m 2+log m 5=log m 10.因为1a +1b=2,所以log m 10=2.所以m 2=10,所以m =10.答案:10对数式化简与求值的基本原则和方法(1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法①“收”:将同底的两对数的和(差)收成积(商)的对数; ②“拆”:将积(商)的对数拆成同底的两对数的和(差).考点二 对数函数的图象及应用(思维发散)复习指导:理解对数函数概念,掌握对数函数图象的特征并求解有关问题.(1)(链接常用结论2)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1 B.a >1,0<c <1 C .0<a <1,c >1D.0<a <1,0<c <1(2)方程4x=log a x 在⎝⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.【解析】 (1)由该函数的图象通过第一、二、四象限知该函数为减函数,所以0<a <1;因为图象与x 轴的交点在区间(0,1)之间,所以该函数的图象是由函数y =log a x的图象向左平移不到1个单位长度后得到的,所以0<c <1.(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 和函数y =log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a12≤2,解得0<a ≤22. 【答案】 (1)D (2)⎝⎛⎦⎥⎤0,22本例(2)改为若4x <log a x 在⎝⎛⎦⎥⎤0,12上恒成立,则实数a 的取值范围是________.解析:当0<x ≤12时,函数y =4x的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x 的图象过点⎝ ⎛⎭⎪⎫12,2.把点⎝ ⎛⎭⎪⎫12,2代入y =log a x ,得a =22.若函数y =4x 的图象在函数y =log a x 图象的下方,则需22<a <1(如图所示). 当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.答案:⎝ ⎛⎭⎪⎫22,1对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.|跟踪训练|1.(2022·河北高三考试)函数y =1ln (x +1)的大致图象为( )解析:选A.当x =1时,y =1ln 2>0,排除C ,D. 当x =-12时,y =1ln12=1-ln 2<0,排除B.故选A.2.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)考点三 对数函数的性质及应用(多维探究)复习指导:利用对数函数的图象,探索并了解对数函数的单调性,知道指数函数y =a x 与对数函数y =log a x 互为反函数(a >0,a ≠1).角度1 单调性的应用(1)(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( )A .a <c <b B.a <b <c C .b <c <aD.c <a <b(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B.⎝⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D.(0,1)∪(1,+∞)(3)已知m =⎝ ⎛⎭⎪⎫1223,n =4x ,则log 4m =________;满足log n m >1的实数x 的取值范围是________.【解析】 (1)因为a =13log 323<13log 39=23=c ,b =13log 533>13log 525=23=c ,所以a <c <b .(2)由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,同时2a >1,得a >12,所以12<a <1.(3)由于m =⎝ ⎛⎭⎪⎫1223,则log 4m =12log 2m =12log 22-23=12×⎝ ⎛⎭⎪⎫-23=-13;由于m =⎝ ⎛⎭⎪⎫1223=2-23<1,由log n m >1可得m <n <1,则⎝ ⎛⎭⎪⎫1223=2-23<22x <1,则-23<2x <0,解得-13<x <0.【答案】 (1)A (2)C (3)-13⎝ ⎛⎭⎪⎫-13,0角度2 和对数函数有关的复合函数已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间; (2)若f (x )的最小值为0,求a 的值.【解】 (1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,即a =-1, 所以f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1]上单调递增,在[1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1],单调递减区间是[1,3).(2)若f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎨⎧a >0,3a -1a=1,解得a =12.故实数a 的值为12.对数函数性质的应用利用对数函数的性质,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的应用.|跟踪训练|1.(2022·宁夏月考)已知函数f (x )=lg(x 2-2x -3)在(a ,+∞)上单调递增,则a 的取值范围是( )A .(-∞,-1] B.(-∞,2] C .[5,+∞)D.[3,+∞)解析:选D.由题意,得x <-1或x >3,设g (x )=x 2-2x -3,根据二次函数的性质,可得函数g (x )在(3,+∞)上单调递增,根据复合函数的单调性的判定方法,可得函数f (x )的单调递增区间为(3,+∞),又由函数f (x )=lg(x 2-2x -3)在(a ,+∞)上单调递增,可得a ≥3,即实数a 的取值范围是[3,+∞).2.不等式log 2(2x +3)>log 2(5x -6)的解集为________.解析:由⎩⎨⎧2x +3>0,5x -6>0,2x +3>5x -6,解得65<x <3,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪65<x <3.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪65<x <3 3.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是________. 解析:由于a >0,且a ≠1, 所以u =ax -3为增函数,所以若函数f (x )为增函数,则y =log a u 必为增函数, 所以a >1.又u =ax -3在[1,3]上恒为正, 所以a -3>0,即a >3. 答案:(3,+∞)4.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.解析:因为f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则0<m <1,n >1,所以log 12m=-log 12n ,所以mn =1,所以m +3n =m +3m .令h (m )=m +3m,则易知h (m )在(0,1)上单调递减.当m =1时,m +3n =4,所以m +3n >4.答案:(4,+∞)[A 基础达标]1.设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A .a <b <c B.b <a <c C .b <c <aD.c <a <b解析:选D.由题知c =log 0.70.8<1,b =(13)-0.8=30.8,易知函数y =3x 在R 上单调递增,所以b =30.8>30.7=a >1,所以c <a <b ,故选D.2.函数y =ln1|2x -3|的图象为( )解析:选A.易知2x -3≠0,即x ≠32,排除C ,D.当x >32时,函数为减函数;当x <32时,函数为增函数,故选A.3.函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞) B.(-∞,0) C .(2,+∞)D.(-∞,-2)解析:选D.函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.4.(2021·高考全国卷甲)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lg V .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)( )A .1.5 B.1.2 C.0.8D.0.6解析:选C.由题意知4.9=5+lg V ,得lg V =-0.1,得V =10-110≈0.8,所以该同学视力的小数记录法的数据约为0.8.5.已知函数f (x )=⎝⎛⎭⎪⎫log 12x 2+a log 12x +4,若对任意的x ∈⎣⎢⎡⎭⎪⎫14,1,f (x )≤6恒成立,则实数a 的最大值为( )A .-1 B.1 C.-2D.2解析:选A.令t =log 12x ,因为x ∈⎣⎢⎡⎭⎪⎫14,1,所以t ∈(0,2],则问题可转化为对任意的t ∈(0,2],t 2+at +4≤6恒成立,即a ≤2-t 2t=2t-t 对任意的t ∈(0,2]恒成立.因为y =2t-t 在t ∈(0,2]上单调递减,所以y min =1-2=-1,所以a ≤-1,即实数a 的最大值为-1.6.(2022·四川南充月考)已知a =213,b =⎝ ⎛⎭⎪⎫1223,则log 2(ab )=________.解析:由题意,得log 2(ab )=log 2(213·2-23)=log 22-13=-13.答案:-137.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则m =________,n =________.解析:因为f (x )=|log 3x |=⎩⎨⎧-log 3x ,0<x <1,log 3x ,x ≥1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m <n 且f (m )=f (n ),可得⎩⎨⎧0<m <1,n >1,log 3n =-log 3m ,则⎩⎨⎧0<m <1,n >1,mn =1,所以0<m 2<m <1,则f (x )在[m 2,1)上单调递减,在(1,n ]上单调递增,所以f (m 2)>f (m )=f (n ),则f (x )在[m 2,n ]上的最大值为f (m 2)=-log 3m 2=2,解得m =13,则n =3.答案:1338.(2022·甘肃平凉月考)已知a >0且a ≠1,若函数f (x )=log a (ax 2-x )在[3,4]上是减函数,则a 的取值范围是________.解析:令g (x )=ax 2-x ,当a >1时,由题意得⎩⎨⎧12a ≥4,g (4)=16a -4>0,无解,当0<a <1时,由题意得⎩⎨⎧12a ≤3,g (3)=9a -3>0,解得13<a <1,综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.答案:⎝ ⎛⎭⎪⎫13,19.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解:(1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,所以f (-x )=f (x ).所以当x <0时,f (x )=log a (-x +1),所以函数f (x )的解析式为f (x )=⎩⎨⎧log a (x +1),x ≥0,log a (-x +1),x <0.(2)因为-1<f (1)<1,所以-1<log a 2<1,所以log a1a<log a2<log aa .①当a >1时,原不等式等价于⎩⎨⎧1a <2,a >2,解得a >2;②当0<a <1时,原不等式等价于⎩⎨⎧1a >2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝⎛⎭⎪⎫0,12∪(2,+∞).10.设f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1),且f (1)=2. (1)求实数a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2. 由⎩⎨⎧1+x >0,3-x >0,解得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数;当x ∈[1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.[B 综合应用]11.(多选)(2022·湖南长沙期末)设函数f (x )=log 12x ,下列四个命题正确的是( )A .函数f (x )为偶函数B .若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C .函数f (-x 2+2x )在(1,2)上为单调递增函数D .若0<a <1,则|f (1+a )|>|f (1-a )|解析:选BC.A 选项,f (x )的定义域为(0,+∞),所以f (x )是非奇非偶函数,A 错误.B 选项,由于f (a )=|f (b )|,a ≠b ,a >0,b >0,所以log 12a =-log 12b ,log 12a +log 12b =0,log 12ab =0,ab =1,B 正确.C 选项,f (-x 2+2x )=log 12(-x 2+2x ),由-x 2+2x >0,解得0<x <2,又y =-x 2+2x 的开口向下,对称轴为x =1, 根据复合函数单调性同增异减可知函数f (-x 2+2x )在(1,2)上为单调递增函数,C 正确.D 选项,由于0<a <1,所以1+a >1>1-a ,所以|f (1+a )|>|f (1-a )|,则-log 12(1+a )>log 12(1-a ),即log 12(1-a )(1+a )=log 12(1-a 2)<0,由于1-a2∈(0,1),所以log1(1-a2)>0,所以|f(1+a)|>|f(1-a)|不成立,D错2误.12.(多选)已知函数f(x)=log1(2-x)-log2(x+4),则下列结论中正确的是2( )A.函数f(x)的定义域是[-4,2]B.函数y=f(x-1)是偶函数C.函数f(x)在区间[-1,2)上是减函数D.函数f(x)的图象关于直线x=-1对称解析:选BD.函数f(x)=log1(2-x)-log2(x+4)=-log2(2-x)-log2(x+4)=-2[(2-x)(4+x)],由2-x>0,x+4>0,可得-4<x<2,即函数f(x)的定义域为(-log24,2),故A错误;由y=f(x-1)=-log2[(3-x)(3+x)]=-log2(9-x2),定义域为(-3,3),显然y=f(x-1)为偶函数,B正确;由x∈[-1,2),f(-1)=-log29,f(0)=-log8知f(-1)<f(0),故C错误;y=f(x-1)为偶函数,y=f(x-1)向左平移1个2单位得y=f(x),故y=f(x)的图象关于x=-1对称,D正确,故选BD.13.若函数y=log a(x2-ax+1)有最小值,则a的取值范围是( )A.0<a<1 B.0<a<2,a≠1C.1<a<2 D.a≥2解析:选C.当a>1时,y有最小值,则说明x2-ax+1有最小值,故x2-ax+1>0中Δ<0,即a2-4<0,所以1<a<2.当0<a<1时,y有最小值,则说明x2-ax+1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.14.已知函数f(x)=x2+ln(|x|+1),若对于x∈[1,2],f(ax2)<f(3)恒成立,则实数a 的取值范围是________.解析:易知f (x )=x 2+ln(|x |+1)是R 上的偶函数,且在[0,+∞)上为增函数,故原问题等价于|ax 2|<3对x ∈[1,2]恒成立,即|a |<3x 2对x ∈[1,2]恒成立,所以|a |<34,解得-34<a <34.答案:⎝ ⎛⎭⎪⎫-34,34[C 素养提升]15.(2022·日照高三联考)函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <-12,log a(2x +3),x ≥-12的值域为R ,则f ⎝ ⎛⎭⎪⎫12的取值范围是________.解析:当x <-12时,f (x )=x 2+2x =(x +1)2-1≥-1,而f (x )的值域是R ,所以当x ≥-12时,f (x )=log a (2x +3)的取值范围应包含(-∞,-1),又x ≥-12时,2x +3≥2,所以0<a ≤12.此时f ⎝ ⎛⎭⎪⎫12=log a 4∈[-2,0).答案:[-2,0)16.已知奇函数f (x )=log a b +ax1-ax (a >0且a ≠1).(1)求b 的值,并求出f (x )的定义域;(2)若存在区间[m ,n ],使得当x ∈[m ,n ]时,f (x )的取值范围为[log a 6m ,log a 6n ],求a 的取值范围.解:(1)由已知f (x )+f (-x )=0,得b =±1, 当b =-1时,f (x )=log a -1+ax 1-ax=log a (-1),舍去, 当b =1时,f (x )=log a 1+ax 1-ax ,定义域为⎝ ⎛⎭⎪⎫-1a ,1a . 故f (x )的定义域为⎝ ⎛⎭⎪⎫-1a ,1a .(2)当0<a <1时,f (x )=log a 1+ax1-ax =log a ⎝ ⎛⎭⎪⎫21-ax -1在⎝ ⎛⎭⎪⎫-1a ,1a 上单调递减.故有⎩⎪⎨⎪⎧f (m )=log a 1+am1-am =log a6n ,f (n )=log a 1+an 1-an =log a 6m ,而y =1+ax1-ax =21-ax -1在⎝ ⎛⎭⎪⎫-1a ,1a 上单调递增,所以1+am1-am <1+an1-an ,又6m <6n 与⎩⎪⎨⎪⎧1+am1-am =6n ,1+an1-an =6m矛盾,故a >1,所以⎩⎪⎨⎪⎧f (m )=log a 1+am1-am=log a 6m ,f (n )=log a 1+an 1-an =log a 6n .故方程1+ax1-ax =6x 在⎝ ⎛⎭⎪⎫-1a ,1a 上有两个不等实根,即6ax 2+(a -6)x +1=0在⎝ ⎛⎭⎪⎫-1a ,1a 上有两个不等实根. 设g (x )=6ax 2+(a -6)x +1(a >1),则⎩⎪⎪⎨⎪⎪⎧Δ=(a -6)2-24a >0,-1a <-a -612a <1a,g ⎝ ⎛⎭⎪⎫-1a =12a >0,g ⎝ ⎛⎭⎪⎫1a =2>0,化简得⎩⎨⎧a 2-36a +36>0,0<a <18, 解得0<a <18-122,又a >1,故1<a <18-12 2. 所以a 的取值范围是(1,18-122).。

对数及对数函数-知识点及题型归纳

对数及对数函数-知识点及题型归纳

- .可修编 .●高考明方向1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a>0,且a ≠1).★备考知考情通过对近几年高考试题的统计分析可以看出,本节内容- .可修编 .在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点.一、知识梳理《名师一号》P27注意:知识点一对数及对数的运算性质1.对数的概念一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N(a>0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.- .可修编 .注意:(补充)关注定义---指对互化的依据2.对数的性质与运算法则(1)对数的运算法则如果a>0且a ≠1,M>0,N>0,那么①log a (MN)=log a M +log a N ;②log a M N=log a M -log a N ; ③log a M n =nlog a M(n ∈R);④log a mM n=n m log a M.(2)对数的性质①a logaN =N ;②log a a N =N(a>0,且a ≠1).-.可修编 .(3)对数的重要公式①换底公式:log b N =log a N log a b(a ,b 均大于零且不等于1); ②log a b =1log b a,推广log a b ·log b c ·log c d =log a d. 注意:(补充)特殊结论:log 10,log 1a a a ==知识点二 对数函数的图象与性质1.对数函数的图象与性质(注意定义域!)a>1 0<a<1- .可修编 .2.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.(补充)设y =f(x)存在反函数,并记作y =f -1(x),1) 函数y =f(x)与其反函数y =f -1(x)的图象- .可修编 .关于直线y x 对称.2) 如果点P(x 0,y 0)在函数y =f(x)的图象上,则必有f -1(y 0)=x 0,反函数的定义域、值域分别为原来函数的值域、定义域.3)函数y =f(x)与其反函数y =f -1(x)的单调性相同.二、例题分析:(一)对数式的运算例1.(1)《名师一号》P27 对点自测1(2013·XX 文3)设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A .log a b ·log c b =log c aB .log a b ·log c a =log c b- .可修编 .C .log a (bc)=log a b ·log a cD .log a (b +c)=log a b +log a c解析 由对数的运算性质:log a (bc)=log a b +log a c ,可判断选项C ,D 错误;选项A ,由对数的换底公式知,log a b ·log c b =log c a ⇒lgb lga ·lgb lgc =lga lgc⇒lg 2b =lg 2a ,此式不恒成立,故错误;对选项B ,由对数的换底公式知,log a b ·log c a =lgb lga ·lga lgc =lgb lgc=log c b ,故恒成立. 答案 B- .可修编 .例1.(2) (补充) 计算下列各式的值 (1)2lg 2lg 3111lg 0.36lg823+=++ (2) 温故知新P22 第8题()22log 3lg5lg 2lg504+⋅+= (3)235111log log log 2589⋅⋅=答案:(1) 1 (2)10 (3)-12- .可修编 .注意: 准确熟练记忆对数运算性质多练lg 2lg51+=《名师一号》P28 高频考点 例1【规律方法】 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.例2.(1)《名师一号》P27 对点自测2(2014·XX 卷)已知4a =2,lgx =a ,则x =________.解析 ∵4a =2,∴a =log 42=12.由lgx =12,- .可修编 . 得x =10 12=10.例2.(2)《名师一号》P28 高频考点 例1(1)若x =log 43,则(2x -2-x )2等于( )A.94B.54C.103D.43解析:由x =log 43,得4x =3,即2x =3,2-x =33,-.可修编. ⎝⎭注意:指数与对数的互化a b=N⇔b=logaN(a>0,a≠1,N>0).练习:(补充)已知1135,2a b ka b==+=求k答案:k=例3.《名师一号》P28 高频考点例1(2)- .可修编 .已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,3-x +1,x ≤0,则f(f(1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72因为f(1)=log 21=0,所以f(f(1))=f(0)=2. 因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312+1=3log 32 +1=2+1=3.所以f(f(1))+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.-.可修编 .二、对数函数的图象及性质的应用 例1. (补充)求下列函数的定义域. (1)y =log 0.5(4x -3). (2)y =log (x +1)(16-4x ).解析:(1)由函数定义知:⎩⎪⎨⎪⎧log 0.5(4x -3)≥04x -3>0∴⎩⎪⎨⎪⎧4x -3≤14x -3>0,即34<x ≤1.-.可修编 .故原函数的定义域是{x|34<x ≤1}.(2)由函数有意义知⎩⎪⎨⎪⎧x +1>0x +1≠116-4x>0∴⎩⎪⎨⎪⎧x>-1x ≠0x<2即-1<x<2,且x ≠0.故原函数的定义域为{x|-1<x<0,或0<x<2}. 练习:已知集合(){}22log x y x ax a R =--=XX 数a 的取值X 围.- .可修编 .解析:设f(x)=x 2-ax -a ,则y =log 2f(x), 依题意,f(x)>0恒成立,∴Δ=a 2+4a<0 ∴-4<a<0,即a 的X 围为(-4,0)例2.《名师一号》P27 对点自测5(2014·XX 卷)函数f(x)=log 2x ·log 2(2x)的最小值为________.-.可修编 .解析 根据对数运算性质,f(x)=log 2x ·log2 (2x)=12log 2x ·[2log 2(2x)]=log 2x(1+log 2x)=(log 2x)2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14,当x =22时,函数取得最小值-14.注意:换元后“新元”的取值X 围.练习:1、求下列函数的值域- .可修编 .(1)y =log 15(-x 2+2x +4)[答案] [-1,+∞)(2)f(x)=log 22x -3log 2x 2+2⎝ ⎛⎭⎪⎫12≤x ≤2[解析] 令t =log 2x ,∵12≤x ≤2∴-1≤t ≤1.∴函数化为y =t 2-6t +2=(t -3)2-7∵-1≤t ≤1.∴当t =-1,即x =12时,y max =9.当t =1,即x =2时,y min =-3, ∴函数的值域为[-3,9].2、已知集合(){}22log y y x ax aR =--=XX数a的取值X围.[分析]当且仅当f(x)=x2-ax-a的值能够取遍一切正实数时,y=log2(x2-ax-a)的值域才为R.而当Δ<0时,f(x)>0恒成立,仅仅说明函数定义域为R,而f(x)不一定能取遍一切正实数(一个不漏).要使f(x)能取遍一切正实数,作为二次函数,f(x)图像应与x轴有交点(但此时定义域不再为R)[正解] 要使函数y=log2(x2-ax-a)的值域为R,应使f(x)=x2-ax-a能取遍一切正数,要使f(x)=x2-ax-a能取遍一切正实数,应有Δ=a2+4a≥0,∴a≥0或a≤-4,∴所求a的取值X围为(-∞,-4]∪[0,+∞)-.可修编.- .可修编 .例3. (1)《名师一号》P27 对点自测4已知a >0且a ≠1,则函数y =log a (x +2 015)+2的图象恒过定点________.解析 令x +2 015=1,即x =-2 014时,y =2,故其图象恒过定点(-2 014,2). 练习:- .可修编 .无论a 取何正数(a ≠1),函数()33log a y x =-+恒过定点 【答案】()43, 注意:对数函数()01log ,a y x a a =>≠且图象都经过定点(1, 0)例3. (2) (补充)如右下图是对数函数①y =log a x ,②y =log b x , ③y =log c x ,④y =log d x 的图象,则a 、b 、c 、d 与1的大小关系是 ( ) A .a>b>1>c>d B .b>a>1>d>c C .1>a>b>c>d- .可修编 .D .a>b>1>d>c【答案】B在上图中画出直线y =1,分别与①、②、③、④交于A(a,1)、B(b,1)、C(c,1)、D(d,1),由图可知c<d<1<a<b.注意:(补充)两个单调性相同的对数函数,它们的图象在位于直线x =1右侧的部分是“底大图低”. 利用1log a a =,图象都经过()1,a 点,作直线1y =,-.可修编 .则该直线与图象的交点的横坐标即为底数a 。

高中数学对数与对数函数知识点与经典例题讲解

高中数学对数与对数函数知识点与经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果 a b=N (a > 0,a ≠ 1),那么 b 叫做以 a 为底 N 的对数,记作 log a N=b. (2)指数式与对数式的关系: a b=N log a N=b (a >0,a ≠ 1,N >0).两个式子表示的 a 、b 、N 三个数之间的关系是一样的,并且可以互化 .(3)对数运算性质 : ① log a (MN )=log a M+log a N.② log a M=log a M -log a N.N③ log a M n =nlog a M.(M >0,N > 0,a > 0,a ≠1)④对数换底公式: log b N= loglog a a N (a >0,a ≠1,b >0,b ≠1,N >0).b 2.对数函数(1)对数函数的定义函数 y=log a x (a >0,a ≠ 1)叫做对数函数,其中 x 是自变量,函数的定义域是( 0,+∞) .注意: 真数式子没根号那就只要求真数式大于零 ,如果有根号 ,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0, 或=1 的时候是会有相应 b 的值的。

但是,根据对数定义 : log a a=1 ;如果 a=1 或 =0 那么 log a a 就可以等于一切实数(比如 log 1 1 也可以等于 2 ,3, 4,5,等等)第二,根据定义1运算公式: log a M^n = nlog a M 如果 a<0, 那么这个等式两边就不会成立(比如, log(-2)4^(-2) 就不等于 (-2)*log (-2) 4 ;一个等于 1/16 ,另一个等于 -1/16 )(2)对数函数的图象y yy=l og a x(a> 1)1O 1 x O xy=l og a x(0<a<1)底数互为倒数的两个对数函数的图象关于x 轴对称 .(3)对数函数的性质 :①定义域:( 0,+∞).②值域: R .③过点( 1, 0),即当 x=1 时, y=0.④当 a>1 时,在( 0,+∞)上是增函数;当0<a<1 时,在( 0,+∞)上是减函数 .基础例题1.函数 f(x)=|log2x|的图象是 ?2.若 f -1(x)为函数 f(x)=lg(x+1)的反函数,则 f -1(x)的值域为___________________.23.已知 f( x)的定义域为[ 0,1],则函数 y=f[log 1 ( 3-x)]的定义2域是 __________.4.若 log x 7 y =z,则 x、y、z 之间满足A. y7=x zB.y=x7zC.y=7x zD.y=z x5.已知 1<m<n,令 a=(log n m)2,b=log n m2,c=log n(log n m),则A. a<b< cB.a<c<bC.b<a<cD.c< a<b6.若函数f( x)=logax( 0<a<1)在区间[ a,2a]上的最大值是最小值的 3 倍,则 a 等于A. 2B. 2C. 1D. 14 2 4 27.函数 y=log2|ax-1|( a≠0)的对称轴方程是x=- 2,那么 a 等于(x=-2 非解 )A. 1B.-1C.2D.-22 28.函数 f(x)=log2|x|,g(x) =-x2+2,则 f(x)·g( x)的图象只可能是y yO xOxA By yO x O x C D39.设 f -1(x)是 f(x)=log2( x+1)的反函数,若[ 1+ f -1(a)][1+ f -1(b)]=8,则 f(a+b)的值为A.1B.2C.3D.log2310.方程 lgx+lg (x+3)=1 的解 x=___________________.典型例题【例 1】已知函数 f(x)= (1x2), x4, 则 f(2+log23)的值为f( x 1), x 4 ,A. 1B. 1C. 1D. 13 6 12 24【例 2】求函数 y= log2| x|的定义域,并画出它的图象,指出它的单调区间 .【例 3】已知 f(x)=log 1[3-( x- 1)2],求 f(x)的值域及单调3区间 .4【例 4】已知 y=log a(3-ax)在[ 0,2]上是 x 的减函数,求 a 的取值范围 .【例 5】设函数 f(x)=lg(1- x),g(x)=lg(1+x),在 f(x)和g(x)的公共定义域内比较 |f(x)|与 |g( x)|的大小 .【例 6】求函数 y=2lg(x-2)- lg( x-3)的最小值 .1【例 7】在 f1(x)=x 2 , f2(x)=x2,f3(x) =2x,f4(x)=log 1x 四2个函数中, x > x >1 时,能使1[f(x )+f(x )]< f(x1 x 2)成1 2 1 22 2立的函数是1A. f1(x) =x 2 (平方作差比较 )B.f2 (x)=x2C.f3(x)=2xD.f4(x) =log 1 x25探究创新1.若 f(x)=x2-x+b,且 f(log2a)=b, log2[ f( a)]=2(a≠1).(1)求 f(log2x)的最小值及对应的 x 值;(2)x 取何值时, f(log2x)> f( 1)且 log2[f(x)]< f(1)?2.已知函数 f(x)=3x+k(k 为常数),A(- 2k,2)是函数 y= f -1(x)图象上的点 .(1)求实数 k 的值及函数 f -1(x)的解析式;(2)将 y= f -1( x)的图象按向量a=(3, 0)平移,得到函数y=g(x)的图象,若 2 f -1(x+ m -3)- g(x)≥ 1 恒成立,试求实数 m 的取值范围 .6。

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义

高考数学复习考点知识与题型专题讲解9---对数与对数函数

高考数学复习考点知识与题型专题讲解9---对数与对数函数

高考数学复习考点知识与题型专题讲解对数与对数函数考试要求1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y=a x与对数函数y=log a x(a>0,且a≠1)互为反函数.知识梳理1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.以10为底的对数叫做常用对数,记作lg N.以e为底的对数叫做自然对数,记作ln N.2.对数的性质与运算性质(1)对数的性质:log a1=0,log a a=1,log a Na=N(a>0,且a≠1,N>0).(2)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M (n∈R).(3)换底公式:log a b =log c blog c a(a>0,且a≠1,b>0,c>0,且c≠1).3.对数函数的图象与性质y=log a x a>10<a<1图象定义域(0,+∞)值域R性质过定点(1,0),即x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.常用结论1.log a b·log b a=1,log n m ba =nm log a b.2.如图给出4个对数函数的图象则b >a >1>d >c >0,即在第一象限,不同的对数函数图象从左到右底数逐渐增大. 3.对数函数y =log a x (a >0且a ≠1)的图象恒过点(1,0),(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .(×)(2)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.(×) (3)函数y =log a 1+x1-x与函数y =ln(1+x )-ln(1-x )是同一个函数.(×)(4)函数y =log 2x 与y =121log x的图象重合.(√) 教材改编题1.函数y =log a (x -2)+2(a >0且a ≠1)的图象恒过定点. 答案(3,2) 解析∵log a 1=0, 令x -2=1,∴x =3, ∴y =log a 1+2=2,∴原函数的图象恒过定点(3,2). 2.计算:(log 29)·(log 34)=. 答案4解析(log 29)·(log 34)=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.3.若函数y=log a x(a>0,a≠1)在[2,4]上的最大值与最小值的差是1,则a=.答案12或2解析当a>1时,log a4-log a2=log a2=1,∴a=2;当0<a<1时,log a2-log a4=-log a2=1,∴a=12,综上有a=12或2.题型一对数式的运算例1(1)设2a=5b=m,且1a+1b=2,则m等于()A.10B.10C.20D.100 答案A解析2a=5b=m,∴log2m=a,log5m=b,∴1a+1b=1log2m+1log5m=log m2+log m5=log m10=2,∴m2=10,∴m=10(舍m=-10).(2)计算:log 535+212log 2-log 5150-log 514=.答案2解析原式=log 535-log 5150-log 514+12log (2)2=log 535150×14+12log 2=log 5125-1=log 553-1=3-1=2. 教师备选计算:(1-log 63)2+log 62·log 618log 64=.答案1解析原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.思维升华 解决对数运算问题的常用方法 (1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.跟踪训练1(1)已知a>b>1,若log a b+log b a=52,ab=b a,则a+b=.答案6解析设log b a=t,则t>1,因为t+1t=52,所以t=2,则a=b2.又a b=b a,所以b2b=2b b,即2b=b2,又a>b>1,解得b=2,a=4.所以a+b=6.(2)计算:lg25+lg50+lg2·lg500+(lg2)2=.答案4解析原式=2lg5+lg(5×10)+lg2·lg(5×102)+(lg2)2=2lg5+lg5+1+lg2·(lg5+2)+(lg2)2=3lg5+1+lg2·lg5+2lg2+(lg2)2=3lg5+2lg2+1+lg2(lg5+lg2)=3lg5+2lg2+1+lg2=3(lg5+lg2)+1=4.题型二对数函数的图象及应用例2(1)已知函数f (x )=log a (2x +b -1)(a >0,且a ≠1)的图象如图所示,则a ,b 满足的关系是()A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1 答案A解析由函数图象可知,f (x )为增函数,故a >1.函数图象与y 轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a <b <1. (2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为.答案⎝⎛⎦⎥⎤0,22解析若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x和函数y =log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎨⎧0<a <1,log a 12≤2,解得0<a ≤22.教师备选已知x 1,x 2分别是函数f (x )=e x +x -2,g (x )=ln x +x -2的零点,则1e x +ln x 2的值为()A.e2+ln2B.e+ln2C.2D.4答案C解析根据题意,已知x1,x2分别是函数f(x)=e x+x-2,g(x)=ln x+x-2的零点,函数f(x)=e x+x-2的零点为函数y=e x的图象与y=2-x的图象的交点的横坐标,则两个函数图象的交点为(x1,1e x),函数g(x)=ln x+x-2的零点为函数y=ln x的图象与y=2-x的图象的交点的横坐标,则两个函数图象的交点为(x2,ln x2),又由函数y=e x与函数y=ln x互为反函数,其图象关于直线y=x对称,而直线y=2-x也关于直线y=x对称,则点(x1,1e x)和(x2,ln x2)也关于直线y=x对称,则有x1=ln x2,则有1e x+ln x2=1e x+x1=2.思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 跟踪训练2(1)已知函数f (x )=log a x +b 的图象如图所示,那么函数g (x )=a x +b 的图象可能为()答案D解析结合已知函数的图象可知, f (1)=b <-1,a >1,则g (x )单调递增,且g (0)=b +1<0,故D 符合题意.(2)(2022·西安调研)设x 1,x 2,x 3均为实数,且1e x -=ln x 1,2e x -=ln(x 2+1),3e x -=lg x 3,则()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 3<x 1D .x 2<x 1<x 3答案D解析画出函数y =⎝ ⎛⎭⎪⎫1e x,y =ln x ,y =ln(x +1),y =lg x 的图象,如图所示.数形结合,知x 2<x 1<x 3.题型三 对数函数的性质及应用 命题点1比较指数式、对数式大小 例3(1)设a =log 3e ,b =e 1.5,c =131log 4,则() A .b <a <c B .c <a <b C .c <b <a D .a <c <b 答案D 解析c =131log 4=log 34>log 3e =a . 又c =log 34<log 39=2,b =e 1.5>2, ∴a <c <b .(2)(2022·昆明一中月考)设a =log 63,b =log 126,c =log 2412,则() A .b <c <a B .a <c <b C .a <b <c D .c <b <a 答案C解析因为a ,b ,c 都是正数,所以1a =log 36=1+log 32,1b =log 612=1+log 62,1c =log 1224=1+log 122,因为log 32=lg2lg3,log 62=lg2lg6,log 122=lg2lg12,且lg3<lg6<lg12,所以log 32>log 62>log 122,即1a >1b >1c ,所以a <b <c .命题点2解对数方程不等式例4若log a (a +1)<log a (2a )<0(a >0,a ≠1),则实数a 的取值范围是.答案⎝ ⎛⎭⎪⎫14,1 解析依题意log a (a +1)<log a (2a )<log a 1,∴⎩⎪⎨⎪⎧ a >1,a +1<2a <1或⎩⎪⎨⎪⎧0<a <1,a +1>2a >1,解得14<a <1.命题点3对数性质的应用例5已知函数f (x )=ln2x +12x -1,下列说法正确的是________.(填序号) ①f (x )为奇函数;②f (x )为偶函数;③f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减; ④f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递增. 答案①③解析f (x )=ln 2x +12x -1,令2x +12x -1>0, 解得x >12或x <-12,∴f (x )的定义域为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞, 又f (-x )=ln -2x +1-2x -1=ln 2x -12x +1=ln ⎝ ⎛⎭⎪⎪⎫2x +12x -1-1 =-ln 2x +12x -1=-f (x ), ∴f (x )为奇函数,故①正确,②错误;又f (x )=ln 2x +12x -1=ln ⎝ ⎛⎭⎪⎫1+22x -1, 令t =1+22x -1,t >0且t ≠1,∴y =ln t , 又t =1+22x -1在⎝ ⎛⎭⎪⎫12,+∞上单调递减, 且y =ln t 为增函数,∴f (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递减,故③正确; 又f (x )为奇函数,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,故④不正确. 教师备选1.(2022·安徽十校联盟联考)已知a =log 23,b =2log 53,c =13log 2,则a ,b ,c 的大小关系为()A .a >c >bB .a >b >cC .b >a >cD .c >b >a答案B解析∵a =log 23>1,b =2log 53=log 59>1,c =13log 2<0,∴a b =log 23log 59=lg3lg2×lg5lg9=lg3lg2×lg52lg3=lg52lg2=lg5lg4=log 45>1,∴a >b ,∴a >b >c .2.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为()A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案A解析令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数f (x )在(-∞,1]上单调递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).思维升华 求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.跟踪训练3(1)若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是()A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案C解析根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c <0, 即log 2c <log 2b <log 2a <0,可得c <b <a <1.(2)若函数f (x )=⎩⎨⎧log a x ,x ≥2,-log ax -4,0<x <2存在最大值,则实数a 的取值范围是. 答案⎝⎛⎦⎥⎤0,22 解析当a >1时,函数f (x )=log a x 在[2,+∞)上单调递增,无最值,不满足题意, 故0<a <1.当x ≥2时,函数f (x )=log a x 在[2,+∞)上单调递减,f (x )≤f (2)=log a 2;当0<x <2时,f (x )=-log a x -4在(0,2)上单调递增,f (x )<f (2)=-log a 2-4,则log a 2≥-log a 2-4,即log a 2≥-2=log a a -2,即1a 2≥2,0<a ≤22, 故实数a 的取值范围是⎝ ⎛⎦⎥⎤0,22. 课时精练1.(2022·重庆巴蜀中学月考)设a =12,b =log 75,c =log 87,则()A .a >b >cB .a >c >bC .c >b >aD .c >a >b答案D解析a=12=log77>b=log75,c=log87>log88=12=a,所以c>a>b.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数且f(2)=1,则f(x)等于()A.log2x B.12x C.12log x D.2x-2答案A解析函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.3.函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()①a>1;②0<c<1;③0<a<1;④c>1.A.①②B.①④C.②③D.③④答案C解析由图象可知函数为减函数,∴0<a<1,令y =0得log a (x +c )=0,x +c =1,x =1-c ,由图象知0<1-c <1,∴0<c <1.4.(2022·银川模拟)我们知道:人们对声音有不同的感觉,这与它的强度有关系.一般地,声音的强度用(W/m 2)表示,但在实际测量时,声音的强度水平常用L 1=10lg I I 0(单位:分贝,L 1≥0,其中I 0=1×10-12是人们平均能听到的最小强度,是听觉的开端).某新建的小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,则声音强度I 的取值范围是()A .(-∞,10-7)B .[10-12,10-5)C .[10-12,10-7)D .(-∞,10-5)答案C解析由题意可得,0≤10·lg I I 0<50, 即0≤lg I -lg(1×10-12)<5,所以-12≤lg I <-7,解得10-12≤I <10-7,所以声音强度I 的取值范围是[10-12,10-7).5.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,12log (-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是() A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)答案C解析由题意得⎩⎨⎧a >0,log 2a >12log a 或⎩⎨⎧a <0,12log (-a )>log 2(-a ), 解得a >1或-1<a <0.6.(2022·汉中模拟)已知log 23=a ,3b =7,则log 2156等于() A.ab +3a +ab B.3a +b a +ab C.ab +3a +b D.b +3a +ab答案A解析由3b =7,可得log 37=b ,所以log 2156=log 3(7×23)log 3(3×7)=log 37+log 323log 33+log 37=b +3×1a1+b =ab +3a +ab .7.(2022·海口模拟)log 327+lg25+lg4+7log 27+13(8)-的值等于. 答案72解析原式=log 3323+lg52+lg22+2+133(2)⨯-=32+2lg5+2lg2+2+(-2)=32+2(lg5+lg2)+2+(-2)=32+2+2+(-2)=72.8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是. 答案(4,-1)解析令x -3=1,则x =4,∴y =log a 1-1=-1,故点P 的坐标为(4,-1).9.设f (x )=log 2(a x -b x ),且f (1)=1,f (2)=log 212.(1)求a ,b 的值;(2)当x ∈[1,2]时,求f (x )的最大值.解(1)因为f (x )=log 2(a x -b x ), 且f (1)=1,f (2)=log 212,所以⎩⎪⎨⎪⎧ log 2(a -b )=1,log 2(a 2-b 2)=log 212,即⎩⎪⎨⎪⎧ a -b =2,a 2-b 2=12,解得a =4,b =2. (2)由(1)得f (x )=log 2(4x -2x ), 令t =4x -2x ,则t =4x -2x =⎝ ⎛⎭⎪⎫2x -122-14, 因为1≤x ≤2,所以2≤2x ≤4,所以94≤⎝ ⎛⎭⎪⎫2x -122≤494,即2≤t ≤12, 因为y =log 2t 在[2,12]上单调递增, 所以y max =log 212=2+log 23, 即函数f (x )的最大值为2+log 23.10.(2022·枣庄模拟)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)判断f (x )的奇偶性并予以证明;(2)当a >1时,求使f (x )>0的x 的解集. 解(1)f (x )是奇函数,证明如下:因为f (x )=log a (x +1)-log a (1-x ),所以⎩⎪⎨⎪⎧ x +1>0,1-x >0,解得-1<x <1,f (x )的定义域为(-1,1).f (-x )=log a (-x +1)-log a (1+x )=-[log a (1+x )-log a (-x +1)]=-f (x ),故f (x )是奇函数.(2)因为当a >1时,y =log a (x +1)是增函数,y =log a (1-x )是减函数,所以当a >1时,f (x )在定义域(-1,1)内是增函数,f (x )>0即log a (x +1)-log a (1-x )>0, log a x +11-x >0,x +11-x >1,2x 1-x>0, 2x (1-x )>0,解得0<x <1,故使f (x )>0的x 的解集为(0,1).11.设a =log 0.20.3,b =log 20.3,则()A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b答案B解析∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0. ∵a +b ab =1a +1b =log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab <1,∴ab <a +b <0.12.若实数x ,y ,z 互不相等,且满足2x =3y =log 4z ,则()A .z >x >yB .z >y >xC .x >y ,x >zD .z >x ,z >y答案D解析设2x =3y =log 4z =k >0,则x =log 2k ,y =log 3k ,z =4k ,根据指数、对数函数图象易得4k >log 2k ,4k >log 3k ,即z >x ,z >y .13.函数f (x )=log 2x ·2log (2x )的最小值为.答案-14解析依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14, 当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14. 14.已知函数f (x )=|log 2x |,实数a ,b 满足0<a <b ,且f (a )=f (b ),则a +b 的取值范围是________.答案(2,+∞)解析∵f (x )=|log 2x |,∴f (x )的图象如图所示,又f (a )=f (b )且0<a <b ,∴0<a <1,b >1且ab =1,∴a +b ≥2ab =2,当且仅当a =b 时取等号.又0<a <b ,故a +b >2.15.(2022·贵阳模拟)若3a+log3a=9b+2log9b,则()A.a>2b B.a<2bC.a>b2D.a<b2答案B解析f(x)=3x+log3x,易知f(x)在(0,+∞)上单调递增,∵3a+log3a=32b+log3b,∴f(2b)=32b+log3(2b)>32b+log3b=3a+log3a=f(a),∴2b>a.16.已知函数f(x)=log2(2x+k)(k∈R).(1)当k=-4时,解不等式f(x)>2;(2)若函数f(x)的图象过点P(0,1),且关于x的方程f(x)=x-2m有实根,求实数m的取值范围.解(1)当k=-4时,f(x)=log2(2x-4).由f(x)>2,得log2(2x-4)>2,得2x-4>4,得2x>8,解得x >3.故不等式f (x )>2的解集是(3,+∞).(2)因为函数f (x )=log 2(2x +k )(k ∈R )的图象过点P (0,1), 所以f (0)=1,即log 2(1+k )=1,解得k =1.所以f (x )=log 2(2x +1).因为关于x 的方程f (x )=x -2m 有实根, 即log 2(2x +1)=x -2m 有实根. 所以方程-2m =log 2(2x +1)-x 有实根. 令g (x )=log 2(2x +1)-x ,则g (x )=log 2(2x +1)-x=log 2(2x +1)-log 22x=log 22x +12x =log 2⎝ ⎛⎭⎪⎫1+12x . 因为1+12x >1,log 2⎝ ⎛⎭⎪⎫1+12x >0, 所以g (x )的值域为(0,+∞).所以-2m>0,解得m<0.所以实数m的取值范围是(-∞,0).。

对数及对数函数 知识点总结及典例

对数及对数函数 知识点总结及典例

对数及对数函数一.知识梳理 (一).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是ba = N ,那么数b 称以a 为底N 的对数,记作log a N = b 其中a 称对数的底,N 称真数。

1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,log e N ,记作N ln ;3)指数式与对数式的互化 ba = N ⇔log a N =b ②基本性质:1)真数N 为正数(负数和零无对数);2)log 10a =;3)1log =a a ;4)对数恒等式:N a Na =log 。

③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=;3)∈=n M n M a na (log log R )。

④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a ;2)b mnb a na m log log =。

(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2三.【例1】比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5【变式训练1】比较大小:4.0lg 4.0log 4.0log 4.0log 3211.0【变式训练2】已知01a <<,log log 0a a m n <<,则( ).A 1n m << .B 1m n << .C 1m n << .D 1n m <<【例2】下列指数式与对数式互化不正确的一组是 ( ) A 、0lg11100==与 B 、3131log 31272731-==-与 C 、39921log 213==与 D 、5515log 15==与【变式训练1】.若()125log -=-x,则x 的值为 ( )A 、25-B 、25+C 、2525+-或D 、52- 【变式训练2】.若()log lg ,x ______x ==20则【变式训练3】=-+7log 3log 49log 212121 。

对数运算,对数函数图像性质题型归纳含详解

对数运算,对数函数图像性质题型归纳含详解

对数运算,对数函数图像性质题型归纳题型一:指数式与对数式互化1、将下列指数式改写为对数式:7/1 γ3 1(1)5'3=125; (2)鼠=4;(3) - =8; (4) 6'2 =-⑸ 54 = 625; (6)2一6(7)3" =27; = 5.732、将下列对数式改写成指数式:(1) log2 64 = 6 ;(2) log3— = -4 ;(3) lg0.001 = -3;81(4)%4 = -2 ⑸ log। 8 = -3 ;(6)ιθgJl +√2) = -1,题型二:对数的简单运算1、求下列各式的值:(1)lθg216j (2) log21 ;(3) log5 25 ;(4) log04 1 ;(5) IglO; (6) IglOO; (7) IgO.Ol;(8) ∣ne>5.2、求下列各式的值:(1) 2一喻3;(2) lθ2⅛35 (3) e3,n7;(4) log392; (5) IglOO2; (6) lg0.0012.3、计算:(1) log927 ;(2) ∣og用81;(3)卜唱方625题型三:求未知数1、求下列各式中工的值:⑴ log;x = -3;(2)logγ49 = 4 ;(3) lg0.00∞l = x j (4) ↑n y fe=-x∙2(5) log64x = -- ;(6) log x8 = 6;(7) lgl∞ = x j(8) -∖ne2 =x-32、求下列各式中X的值:⑴ log2(log5x) = 05(2) log3(lgx) = l.(3)已知Iog2(log3(log4x))=θ,且log4(log2y)=L求五.)口的值.(4) log3(3「l”og3(3i-g题型四:对数计算1、求下列各式的值: ∕1x 2log 32-log 332 + log 38(5)(l °s 2125 +1°8425+⅝85)∙(tog 1258÷log 254+log 52) (6) 1°δ2 25 lθ838 1°g l 27 4、计算下列各式的值:=22)log 256.25 + lgθ.θl + ln√β-2l+lθδz3(3)322log 32-log 3y + log 38-5,°g53 4log 23-log 2^÷7,o ^5÷log 9√3(4)- 4(4) log 3√27+lg25 + lg4 + 7,og72 +(-9.8)°(6) log 525 + lg —+ ln√^ + 2,og23 100(7)322log 32-log 3-+log 38lg5 + lg2-(-^-)^2 +(>∕2-l)0 +log^ 8(8)32、计算下列各式的值:21g 5 + ∣l g 8 + l g 5.1g20÷l g 22(l g 2)3 + 31g2.1g5 + (l g 5)3l g 25÷lg21g 50÷(l g 2)221g5 + ∣lg8 + lg5∙lg20 + (lg2)2 (4) 3(5) lg2×lg50+lg5×l g 20-21g 5×l g 23、计算下列各式的值:log 1 2 + 21g4 + lg→e 3,n2/ A、 ;O(6)lg5.1g20-lg2.1g 50-l g 25∙θg 251 1°g4 5-log 13-log 2 4 + 5,og5 2(2) 2 3(4) Iog23∙log35∙log516j(4) (log32+log92)(Iog 43 + Iog83).题型五:用已知参数表示1、已知48" =24,试用〃表示下列各式: (1) log 48 2 •(2) log 48 3 .一 M 32、设x = log0M, y = log 〃N (。

高中数学对数和对数函数知识点与例题讲解

高中数学对数和对数函数知识点与例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。

但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结知识点精讲一、对数概念a xN(N 0) n log a N(a 0且a 1) ,叫做以 a 为底 N 的对数. 注:① N 0,负数和零没有对数;② log a 1 0,log a a 1 ;③lg N log 10 N,ln N log e N .二、对数的运算性质(1) log a (MN) log a M log a N(M,N R ); (2)log a M log a M log a N(M,N R );N(3) log a M nnlog a M(M R ); (4) log a b log cb (a 0且a 1,b 0,c 0且c 1() 换底公式) log c a(5) log a mb nn log a b(a,b 0,m 0,a 1,n R); am (6) a loga NN(N 0,a 0且a 1);(6)log a a NN(N R,a 0且a 1). 化常数为指数、对数值常用这两个恒等式 .三、对数函数1)般地,形如 y log a x(a 0且a1) 的函数叫对数函数特殊地 log a b1 log b a(a,b0且a 1,b 1);题型归纳及思路提示题型 1 对数运算及对数方程、对数不等式 思路提示对数的有关运算问题要注意公式的顺用、逆用、变形用等 .对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正 . 一、对数运算例 2.56 2log 510 log 5 0.25 (解析 2log 510 log 5 0.25 log 5 102 log 5 0.25 log 5 (100 0.25) 故选 C .评注 熟记对数的各种运算性质是求解本类问题的前提 变式 1 已知 x, y 为正实数,则(A.2lg x lg y 2lg x 2lgyB.2lg( x y)解析 5lg30 (1)lg0.5 x,3A.0B.1C.2D.4分析 nlog a x mlog a y log a x nlog am n mymlog a (x ny m).log 5 5222lg x 2lgy 2lgx 2lg y变式 2 (lg 2)2lg4变式 3lg522lg83 例 2.57log2781log 48解析log 27 81 log 33 34所以原式 4 3 17.(lg 2)243,log 4 8 log 22 2332log2 2变式 1log 2 ( 6 4 2 6 4 2)例 2.58 5lg30 (1)lg0.53分析 a b(a,b 0) log c a log c b.lg5 lg 20264 3log 33lg5 (lg5) 2C.2lg x lgy 2lgx 2lg yD.2lg(xy) 32)若 a 4,求函数 f(x)的零点 .三、对数不等式log a a 2x2a x2 ,则使 f(x) 0的 x 的取值范围是()A.( ,0)B.(0, )C.( ,log a 3)D.(log a 3, )分析 先将对数不等式化为同底的形式,再利用单调性转化为指数不等式求解 . 解析 f(x) log a a 2x 2a x 2 0 log a 1,又 0 a 1,函数 y log a x 在 (0, )上单调递减,得则lg x lg 5lg30 ( 1)lg0.5lg 5lg30lg13lg0.5lg30 lg5 lg 0.5 lg 1(lg30 lg3) lg5 (lg5 lg10)(lg1 lg3) lg5 lg3 lg5 lg 3 lg5 lg3lg15所以 x 二、对数方程 例 2.59 解下列方151(1) (lg x lg3) lg5 2 2 (2)log x 2 1(2x 23x 1)1lg(x 10); 2 1.分析 利用对数的运算性质化简后求解 .11解析(1) (lg x lg3) lg5 lg(x22xlgx lg3 2lg5 lg(x 10) ,即lg10) lg ,首先方程中的 x 应满足x 10,原方程可变形为 25 x 2525 ,得 x 25 ,从而 x 15或 x 5(舍),经检验,x 10 3 x 10x 15 是原方程的解 .2( 2)log x 21(2x 3x1) 1 ,x 21 0且 x 212x 23x 1 x 21,解得 x 2.1经检验 x 2 是方程的解 . 评注解对数方程一定要注意对数方程成立条件下 x 的取值范围,是检验求出的解是否为增根的主要依据变式 1 函数 f (x) log 2(4x 1)ax.1)若函数 f (x) 是R 上的偶函数,求实数a 的值;例 2.60 设 0 a 1,函数 f (x)所以 x log a 3. 故选 C.的解集为 .例 2.61 设 a log 5 4,b (log 5 3)2,c log 45,则()A.a c bB.b c aC.a b c Db. a c分析利用对数函数的单调性来比较对数的大小,通常借助 0和 1作为分界点解析 因为y log 5 x 在 (0, )上单调递增,所以log 5 3 log 54 1,且 log 4 5 1 (log 5 3)2log 53 log 54 1 log 45 b a c故选 D .变式1设a lg e,b (lg e)2,c lg e ,则( )A.a b cB.a c bC.c a b Dc. b alog 3 0.3变式 2 设 a 5log 23.4,b 5log 43.6,c1 5,则( )A.a b cB.b a cC.a c bD.ca b1, y log 5 2,z e 2,则()变式4(2012 大纲全国理 9) 已知x lnA.x yz B.z xyC.z y xD.y z x题型 2 对数函数的图像与性质思路提示研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和方法 问题是数和形结合的护体解释 .它为研究函数问题提供了思维方向、对数函数的图像 例 2.62如图 2-15所示,曲线 C 1,C 2,C 3,C 4是底数分别为 a,b,c,d 的对数函数的图像, 对应的底数 a, b, c, d 的取值依次为()a 2x2a x2 1即a 2x2a x3 0 (a x3)(a x1) 0,因为 a x1 0 ,故 a x3 ,又 0 a 1,变式 1 已知函数 f (x ) 为R 上的偶函数,且在 0, 上为增函数,10 ,则不等式 3log 1 x 0.图像与性质则曲线 C 1,C 2,C 3,C 4分析 给出曲线的图像,判定 C 1,C 2,C 3,C 4所对应的 a,b,c,d 的值,可令 y 1求解.解析如图 2-16所示,作直线 y 1交C 1,C 2,C 3,C 4于A,B,C,D ,其横坐标大小为 0 c d 1 a b , 11 那么C 1,C 2,C 3,C 4所对应的底数 a,b,c,d 的值可能一次为 2,3, , .故选 B .32评注对 数函数 在同一 直角坐标系中 的图像的相对位置与底数大小的关系如图 2-16 所示,则 0 c d 1 a b .ylog a x(a 0且a 1)在第一象限的图像, a 越大,图像越靠近 x 轴; a 越小, 图像越靠近 y 轴.变式 1 若函数 f(x) a x (a 0且a 1)是定义域为 R 的增函数,则函数 f (x) log a (x 1)的图像大 致是( )11A.3, 2, ,32 11C.2,3, 1 , 123 B.2,3, 1,13,2D.3, 2, 21 , 1323y log a (x 1) 2恒过顶点 (0, 2) .变式 1 函数 y log a (x 2) 2x 1 的图像过定点 二、对数函数的性质(单调性、最值(值域) )分析本题考查对数函数的单调性和最值变式 2 设 a,b,c 均为正数,且 2alog 1 a, 2log 1 b, 21log 2 c,则A.a b C.c a cB.c b a b Db. ac 例 2.63 函数 y log a (x 1) 2的图像必过定点 分析 对数函数 y log a x(a 0且a 1)的图像过定点 (1,0) ,即 log a 1 0.解析因为 y log a x(a 0且a 1) 恒 过点 (1,0) ,故令 x 1 1,即 x 0 时 , y log a (x 1) 0 ,故例 2.64 设 a 1,函数 f (x) log a x 在区间 a,2a上的最大值与最小值之差为1,则 a ( ) 2令t log 2 x12,3,则 f (x)2g(t) t 23t 2当t 3 ,即 x 222时, f ( x) min 11;当t 3,即 x48时, f ( x)max 2.变式 1 已知f (x) 2 log 3 x(x1,9 ) ,求函数 22g(x) f (x) f (x 2) 的最大值与最小值又 f (x) (log 2 x 1)(log 2 x 2) 3log 2 x 2.(log 2 x)2解析因 为 对 数 函 数 的 底 a 1 , 所以函数f (x) log a x 在 区 间a,2a 上 单 调 递 增 , 故 f (x)maxlog a 2a, f(x)minlog a a1,log a 2a1,即 log a 2 1 解得 22a 4 故选 D .变式 1若函数 f (x)log a x(0 a1)在区间 a,2a 上的最大值是最小值的 3倍,则 a 等于( )A. 2 4B. 22C.14D.12例 2.65 设 2(log 1 x)2 27log 1 x20,求f(x)log 2 x log 2 x 24的最大值和最小值 .解析 2(log 1 x)227log 1 x2(2log 1 x 21) (log 1 x 3) 023 log 1 x212解得8.3xxx xlog 2 x(x 0)log ( x)(x 0),且f(a) f( a) 则实数 a 的取值范围是 .2C.(3, )D. 3,0,2 ,则区间 a,b 的长度的最大值与最小值的差为 题型 3 对数函数中的恒成立问题思路提示 (1)利用数形结合思想,结合对数函数的图像求解; (2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题,1 上恒成立 .解析依题意,函数 f (x)的图像如图 2-17所示,知 f (x)为奇函数,由 f(a) f( a) 的得 f(a) 0 ,解得A.(2 2, )B. 3 2,a b ,且 f (a) f (b) ,则2b 的取值范围是(例 2.67 已知函数 f(x) lg 1 2 a 4 ,若 x ,1 时有意义,a 得取值范围 .解析 因为f(x) lgxx 1 2x a 4x 在x3,1 上有意义,即1 2x40 在 ,1 上恒成立 .令g(x),x ,1 .例 2.66 若函数 f (x)变式 2 定义区间x 1,x 2 (x 1 x 2) 的长度为 x 2 x 1 ,已知函数 f(x) log 1 x 的定义域为 a,b 2,值域为所以 axx若 g(x) 存在最大值, 则 g(x) a 恒成立等价于 g(x)max a ;A.(0,1)B.(1,2)C. 1,2D. 0,121在2 ,1 上 为减函数 ,故 g(x) 在 ,1 上为增 函数, 所以对 任意的,1 时, g(x) g(1)因为 a ,1 上恒成立,所以 a所以 a 的取值范围是3,4若 g(x) 不存在最大值,设其值域为 g(x)m,n ,则 g(x) a 恒成立等价于 a n .变式 1 当 x (1,2) 时,不等式2x1log a x 恒成立,则 a 的取值范围是()1.设 a log 1 2,b log 1 3,c,则( )222A.a b cB.a c bC.b c aDb. a clog 2 ( x 1)(x 2)2.设函数 f(x)x1 12 1(x 2),若 f (x 0) 1 ,则 x 0 的取值范围是()A.( ,0) U(2,) B.(0,2)C.( , 1)U (3, )D.( 1,3)3.设定义在区间 (1 axb,b)上的函数 f (x) lg 是奇函数 (a,b R 且a1 2x2),则 A. 1, 2B. 0, 2C.(1, 2)D.(0, 2)4.已知 y log a (2ax) 在 0,1 上是 x 的减函数,则a 的取值范围是()最有效训练题0.2a b的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2, )评注 为了求 a 的取值范围, 把a 进行了分离, 变式 2 函数 f (x) log a (x 3a)(a0且a 1),当点 P(x, y) 是函数 y f(x)图像上的点时,点Q(x 2a, y)是函数 y g(x) 图像上的点 .1) 写出函数 y g(x) 的解析式; 2) 当 a a 2,a 3 时,恒有f(x) g(x) 1,试确定 a 的取值范围2y f (x) log 5 x 的零点个数是()A.3B.4C.5D.67.设函数 f(x) ln(x 1) ,若 1 a b 且f(a) f(b),则 a b 的取值范围是 ___________________ .8.已知 lg x lg y 2lg(2 x 3y) ,则 log 2 y ________________ .3x29.若函数 y log a (x 1 2 ax 1)在 1,2 上为增函数,则实数 a 的取值范围是 _____________ ..1 ax11.设 f(x) log 1 为奇函数, a 为常数 .2 x 1(1)求 a 的值;(2)证明: f(x)在区间 (1, )内单调递增;3)若对于区间 3,4 上的每一个 x 值,不等式 f (x)1212.已知集合 P,2 ,函数 y log 2( ax 22x 2) 的定义域为 Q .1)若 PI Q,求实数 a 的取值范围;2)若方程 log 2 ( ax 2 2x 2) 2在 P 内有解,求实数 a 的取值范围则函数2x ,10.已知函数f (x) log2x ,正实数m,n满足m n,且f(m) f(n),若f(x) 在区间m2,n 上的最大值为2 ,则m n __________________ .m 恒成立,求实数m 的取值范围2。

对数与对数函数题型归纳

对数与对数函数题型归纳

对数与对数函数题型归纳题型一 对数式的化简与求值 【题型要点】对数运算的一般思路(1)转化:①利用a b =N ⇔b =log a N (a >0,且a ≠1)对题目条件进行转化. ②利用换底公式化为同底数的对数运算.(2)恒等式:关注log a 1=0,log a a N =N ,a log aN =N 的应用.(3)拆分:将真数化为积、商或底数的指数幂形式,正用对数的运算法则化简..(4)合并:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂的运算.【例1】(2019·全国卷Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax ,若f (ln 2)=8,则a =________. 【例2】设2a =5b =m ,且1a +1b =2,则m 等于________.【例3】已知log 23=a ,3b =7,则log 37221的值为________.【例4】.计算log 29×log 34+2log 510+log 50.25等于( ) A .0 B .2 C .4D .6题型二 对数函数的图象及应用【题型要点】1.对数函数图象的特征(1)底数与1的大小关系决定了图象的升降,即a >1时,图象上升;0<a <1时,图象下降.(2)对数函数在同一直角坐标系中的图象如图,其中图象的相对位置与底数大小有关,图中0<c <d <1<a <b . 在x 轴上侧,图象从左到右相应的底数由小变大; 在x 轴下侧,图象从右到左相应的底数由小变大. (无论在x 轴的上侧还是下侧,底数都按顺时针方向变大) 2.利用对数函数的图象可求解的三类问题(1)对数型函数图象的识别.解此类问题应从对数函数y =log a x 的图象入手,抓住图象上的三个关键点(a,1),(1,0),⎪⎭⎫⎝⎛11,a ,特别地要注意a >1和0<a <1的两种不同情况. (2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【例1】已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则函数f (x )=a x 与g (x )=-log b x 的图象可能是( )【例2】在同一直角坐标系中,函数y =1a x ,y =log a ⎪⎭⎫ ⎝⎛+21x (a >0,且a ≠1)的图象可能是( )题型三 对数函数的性质及应用 命题角度一 比较大小【题型要点】比较对数值大小的常见类型及解题方法50.5A .a <c <b B .a <b <c C .b <c <aD .c <a <b【例2】已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c的大小关系为()A .a >b >cB .b >a >cC .c >b >aD .c >a >b命题角度二 解对数不等式【题型要点】求解对数不等式的两种类型及方法【例3】设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【例4】已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________. 命题角度三 与对数函数有关的函数性质问题【题型要点】1.解与对数函数有关的函数性质问题的三个关注点 (1)定义域,所有问题都必须在定义域内讨论. (2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的. 2.解决与对数函数有关的函数的单调性问题的具体步骤【例5】函数y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .(2,+∞)【例6】.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log ax ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.【例7】已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.题型四 数形结合法在对数函数问题中的应用【例1】设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1【例2】设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.二、高效训练突破 一、选择题1.设函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤0,log 2x ,x >0,则⎪⎭⎫⎝⎛21f =( ) A .-1 B .1 C .-12D.222.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A .a <b <c B .a <c <b C .c <a <bD .b <c <a3.已知a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .a <c <bD .a <b <c4.函数f (x )=|log a (x +1)|(a >0,且a ≠1)的大致图象是( )5.设a =log 0.30.4,b =log 30.4,则( ) A .ab <a +b <0 B .a +b <ab <0 C .ab <0<a +bD .a +b <0<ab6.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1 B .10.1 C .lg 10.1D .10-10.17.若log 2x =log 3y =log 5z <-1,则( ) A .2x <3y <5z B .5z <3y <2x C .3y <2x <5zD .5z <2x <3y8.已知2log 311=x x 1=log 132,x 2=2-12,x 3满足331x ⎪⎭⎫ ⎝⎛=log 3x 3,则( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 1<x 2二、填空题1.已知函数f (x )=x 3+a log 3x ,若f (2)=6,则⎪⎭⎫⎝⎛21f =________. 2.已知2x =72y =A ,且1x +1y=2,则A 的值是________.3.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.4.已知函数f (x )=|log 3 x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.5.已知函数y =log a (x -1)(a >0,且a ≠1)的图象过定点A ,若点A 也在函数f (x )=2x +b 的图象上,求f (log 23) 6.已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________.7.若函数f (x )=log a (x 2-ax +1)(a >0且a ≠1)没有最小值,则a 的取值范围是________. 8.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)单调递减,则a 的取值范围为________. 三 解答题1.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡230,上的最大值.2.已知函数f(x)=log a x(a>0且a≠1)的图象过点(4,2).(1)求a的值;(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域;(3)在(2)的条件下,求g(x)的单调减区间.。

对数与对数函数_及经典题

对数与对数函数_及经典题

对数与对数函数二、知识要点梳理知识点一、对数及其运算我们在学习过程遇到2x=4的问题时,可凭经验得到x=2的解,而一旦出现2x=3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算.(一)对数概念:1. 如果,那么数b叫做以a为底N的对数,记作:log a N=b.其中a叫做对数的底数,N叫做真数.2. 对数恒等式:3. 对数具有下列性质:(1)0和负数没有对数,即;(2)1的对数为0,即;(3)底的对数等于1,即.(二)常用对数与自然对数通常将以10为底的对数叫做常用对数,.以e为底的对数叫做自然对数,.(三)对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a,b,N三个字母在不同的式子中名称可能发生变化.(四)积、商、幂的对数已知(1);推广:(2);(3).(五)换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0,a≠1,M>0的前提下有:(1)令log a M=b,则有a b=M,(a b)n=M n,即,即,即:.(2) ,令log a M=b,则有a b=M,则有即,即,即当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:.知识点二、对数函数1. 函数y=log a x(a>0,a≠1)叫做对数函数.2. 在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0<a<1时,对数函数的图象随a的增大而远离x轴.(见图1)(1)对数函数y=log a x(a>0,a≠1)的定义域为(0,+∞),值域为R(2)对数函数y=log a x(a>0,a≠1)的图像过点(1,0)(3)当a>1时,三、规律方法指导容易产生的错误(1)对数式log a N=b中各字母的取值范围(a>0 且a≠1,N>0,b∈R)容易记错.(2)关于对数的运算法则,要注意以下两点:一是利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.二是不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,loga.(3)解决对数函数y=log a x (a>0且a≠1)的单调性问题时,忽视对底数a的讨论.(4)关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1);(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a≠1,k∈R).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】若log m3.5>log n3.5(m,n>0,且m≠1,n≠1),试比较m ,n的大小.解:(1)当m>1,n>1时,∵3.5>1,由对数函数性质:当底数和真数都大于1时,对同一真数,底数大的对数值小,∴n>m>1.(2)当m>1,0<n<1时,∵log m3.5>0,log n3.5<0,∴0<n<1<m也是符合题意的解.(3)当0<m<1,0<n<1时,∵3.5>1,由对数函数性质,此时底数大的对数值小,故0<m<n<1.综上所述,m,n的大小关系有三种:1<m<n或0<n<1<m或0<m<n<1.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性.(1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握. 类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u 能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●高考明方向1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).★备考知考情通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点.一、知识梳理《名师一号》P27注意:知识点一对数及对数的运算性质1.对数的概念一般地,对于指数式a b=N,我们把“以a为底N的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.注意:(补充)关注定义---指对互化的依据2.对数的性质与运算法则(1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a M N =log a M -log a N ;③log a M n =n log a M (n ∈R);④log a m M n =n m log a M .(2)对数的性质①a log aN =N ;②log a a N =N (a >0,且a ≠1).(3)对数的重要公式①换底公式:log b N =log a N log a b(a ,b 均大于零且不等于1); ②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 注意:(补充)特殊结论:log 10,log 1a a a ==知识点二 对数函数的图象与性质1.对数函数的图象与性质(注意定义域!)2.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.(补充)设y=f(x)存在反函数,并记作y=f-1(x),1) 函数y=f(x)与其反函数y=f-1(x)的图象关于直线y x对称.2) 如果点P(x0,y0)在函数y=f(x)的图象上,则必有f-1(y0)=x0,反函数的定义域、值域分别为原来函数的值域、定义域.3)函数y=f(x)与其反函数y=f-1(x)的单调性相同.二、例题分析:(一)对数式的运算例1.(1)《名师一号》P27 对点自测1(2013·陕西文3)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()A.log a b·log c b=log c aB.log a b·log c a=log c bC.log a(bc)=log a b·log a cD.log a(b+c)=log a b+log a c解析由对数的运算性质:log a(bc)=log a b+log a c,可判断选项C,D错误;选项A,由对数的换底公式知,log a b·log c b=log c a⇒lg blg a·lg blg c=lg alg c⇒lg2b=lg2a,此式不恒成立,故错误;对选项B,由对数的换底公式知,log a b·log c a=lg b lg a ·lg a lg c =lg b lg c=log c b ,故恒成立. 答案 B例1.(2) (补充) 计算下列各式的值 (1) 2lg 2lg 3111lg 0.36lg823+=++ (2) 温故知新P22 第8题()22log 3lg5lg 2lg504+⋅+= (3) 235111log log log 2589⋅⋅=答案:(1) 1 (2)10 (3)-12注意:多练lg 2lg51+=《名师一号》P28 高频考点 例1【规律方法】 在对数运算中,要熟练掌握对数式的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量化成同底的形式.例2.(1)《名师一号》P27 对点自测2(2014·陕西卷)已知4a =2,lg x =a ,则x =________.解析 ∵4a =2,∴a =log 42=12.由lg x =12, 得x =10 12 =10.例2.(2)《名师一号》P28 高频考点 例1(1)若x =log 43,则(2x -2-x )2等于( )A.94B.54C.103D.43解析:由x =log 43,得4x =3,即2x =3,2-x =33, 所以(2x -2-x )2=⎝ ⎛⎭⎪⎫2332=43. 注意:指数与对数的互化a b =N ⇔b =log a N (a >0,a ≠1,N >0).练习:(补充)已知1135,2a b k a b==+=求k答案: k =例3.《名师一号》P28 高频考点 例1(2)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值 是( )A .5B .3C .-1 D.72因为f (1)=log 21=0,所以f (f (1))=f (0)=2.因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312 +1 =3log 32+1=2+1=3.所以f (f (1))+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.二、对数函数的图象及性质的应用例1. (补充)求下列函数的定义域.(1)y =log 0.5(4x -3).(2)y =log (x +1)(16-4x ).解析:(1)由函数定义知:⎩⎪⎨⎪⎧ log 0.5(4x -3)≥04x -3>0∴⎩⎪⎨⎪⎧ 4x -3≤14x -3>0,即34<x ≤1. 故原函数的定义域是{x |34<x ≤1}. (2)由函数有意义知⎩⎪⎨⎪⎧ x +1>0x +1≠116-4x >0∴⎩⎪⎨⎪⎧ x >-1x ≠0x <2即-1<x <2,且x ≠0.故原函数的定义域为{x |-1<x <0,或0<x <2}. 练习:已知集合(){}22log x y x ax a R =--= 求实数a 的取值范围.解析:设f (x )=x 2-ax -a ,则y =log 2f (x ), 依题意,f (x )>0恒成立,∴Δ=a 2+4a <0∴-4<a <0,即a 的范围为(-4,0)例2.《名师一号》P27 对点自测5(2014·重庆卷)函数f (x )=log 2x ·log 2(2x )的最小值为________.解析 根据对数运算性质,f (x )=log 2x ·log 2 (2x )=12log 2x ·[2log 2(2x )]=log 2x (1+log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14,当x =22时,函数取得最小值-14.注意:换元后“新元”的取值范围.练习:1、求下列函数的值域(1)y =log 15(-x 2+2x +4)[答案] [-1,+∞)(2)f (x )=log 22x -3log 2x 2+2⎝ ⎛⎭⎪⎫12≤x ≤2 [解析] 令t =log 2x ,∵12≤x ≤2∴-1≤t ≤1. ∴函数化为y =t 2-6t +2=(t -3)2-7∵-1≤t ≤1.∴当t =-1,即x =12时,y max =9. 当t =1,即x =2时,y min =-3,∴函数的值域为[-3,9].2、已知集合(){}22log y y x ax a R =--=求实数a 的取值范围.[分析]当且仅当f (x )=x 2-ax -a 的值能够取遍一切正实数时,y =log 2(x 2-ax -a )的值域才为R .而当Δ<0时,f (x )>0恒成立,仅仅说明函数定义域为R ,而f (x )不一定能取遍一切正实数(一个不漏).要使f (x )能取遍一切正实数,作为二次函数,f (x )图像应与x 轴有交点(但此时定义域不再为R )[正解] 要使函数y =log 2(x 2-ax -a )的值域为R ,应使f (x )=x 2-ax -a 能取遍一切正数,要使f (x )=x 2-ax -a 能取遍一切正实数,应有Δ=a 2+4a ≥0,∴a ≥0或a ≤-4,∴所求a 的取值范围为(-∞,-4]∪[0,+∞)例3. (1)《名师一号》P27 对点自测4已知a >0且a ≠1,则函数y =log a (x +2 015)+2的图象恒过定点________.解析 令x +2 015=1,即x =-2 014时,y =2,故其图象恒过定点(-2 014,2).练习:无论a 取何正数(a ≠1),函数()33log a y x =-+恒过定点【答案】()43,注意:对数函数()01log ,a y x a a =>≠且图象都经过定点(1, 0)例3. (2) (补充)如右下图是对数函数①y =log a x ,②y =log b x ,③y =log c x ,④y =log d x 的图象,则a 、b 、c 、d与1的大小关系是 ( )A .a >b >1>c >dB .b >a >1>d >cC .1>a >b >c >dD .a>b>1>d>c【答案】B在上图中画出直线y =1,分别与①、②、③、④交于A (a,1)、B (b,1)、C (c,1)、D (d,1),由图可知c <d <1<a <b .注意:(补充)两个单调性相同的对数函数,它们的图象在位于直线x =1右侧的部分是“底大图低”. 利用1log a a =,图象都经过()1,a 点,作直线1y =, 则该直线与图象的交点的横坐标即为底数a 。

例3.(3)《名师一号》P28 高频考点 例2(1)(2014·福建卷)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )A B C D答案: B.例4.《名师一号》P28 高频考点 例3已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.解析:(1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1.这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,函数f (x )的定义域为(-1,3).令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).(2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧ a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.练习:温故知新P32 第5题三、比较大小例1.《名师一号》P29 特色专题 典例,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b【规范解答】 方法1:在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法2:∵log 3103>log 33=1,且103<3.4, ∴log 3103<log 33.4<log 23.4. ∵log 43.6<log 44=1,log 3103>1, ∴log 43.6<log 3103. ∴log 23.4>log 3103>log 43.6. 由于y =5x 为增函数,故a >c >b .注意:《名师一号》P28 问题探究 问题3比较幂、对数大小有两种常用方法:①数形结合;②找中间量结合函数单调性.练习:1、若0<x <y <1,则( )A .3y <3xB .log x 3<log y 3C .log 4x <log 4y D. ⎝ ⎛⎭⎪⎫14x <⎝ ⎛⎭⎪⎫14y解析:∵0<x <y <1,①由y =3u 为增函数知3x <3y ,排除A ;②∵log 3u 在(0,1)内单调递增,∴log 3x <log 3y <0,∴log x 3>log y 3,∴B 错.③由y =log 4u 为增函数知log 4x <log 4y ,∴C 正确.④由y =⎝ ⎛⎭⎪⎫14u 为减函数知⎝ ⎛⎭⎪⎫14x >⎝ ⎛⎭⎪⎫14y ,排除D. 答案:C2、对于0<a <1,给出下列四个不等式①log a (1+a )<log a (1+1a );②log a (1+a )>log a (1+1a );③a 1+a <a 1+1a ;④a 1+a >a 1+1a .其中成立的是( )A .①与③B .①与④C .②与③D .②与④答案:D解析:由于0<a <1⇒a <1a ⇒1+a <1+1a ,∴log a (1+a )>log a (1+1a ),a 1+a >a 1+1a .∴选D.四、对数方程与不等式例1.(1)(补充)方程log 3(x 2-10)=1+log 3x 的解是___.[答案] x =5[解析] 原方程化为log 3(x 2-10)=log 3(3x ),由于log 3x 在(0,+∞)上严格单增,则x 2-10=3x ,解之得x 1=5,x 2=-2.∵要使log 3x 有意义,应有x >0,∴x =5.注意:依据对数函数恒单调求解。

相关文档
最新文档