人教九年级数学上册- 用画树状图法求概率(附习题)
人教版数学九年级上册用列举法求概率画树状图
一个因素中有2种 第一个因素 当试验至少三步(或三个因素)时,用树形图法方便.
∴ P(恰有两个数字相同)= 当一次试验中涉及3个因素或更多的因素时,用列表法就不方便了.
A
B
可能情况;第二个 (2) P(两枚硬币正面朝上而一枚硬币反面朝上)
(课本P137/练习)
因素中有3种可能 你认为她的想法对吗,为什么? 第二个 的情况;第三个因
2022年5月9日星期一
练习:小明和小岗用如图两个转盘做游戏,游戏规则如下:分别 旋转两个转盘所转到的数字之积为奇数时,小明得2分,当所转 到的数字之积为偶数时,小岗得1分,这个游戏公平吗?若公平, 说明理由;若不公平,如何修改规则才公平?
解:列表得:
(2) (1)
1
2
3
1 (1,1) (1,2) (1,3)
1
2
31
2
3
素中有2种可能的
情况,
第三个 a b a b a b a b a b a b
则其树形图如图.
n=2×3×2=12
练习:小明和小岗用如图两个转盘做游戏,游戏规则如下:分别 旋转两个转盘所转到的数字之积为奇数时,小明得2分,当所转 到的数字之积为偶数时,小岗得1分,这个游戏公平吗?若公平, 说明理由;若不公平,如何修改规则才公平?
(1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.
答案:
2. (1)
1 27
(2)
1 9
(3)
7 27
解:画树形图如下:
第
左
直
一
辆
第
二左 直 右 左直 右
辆
右 左直 右
第
三 左直右 左直右
人教版初中九年级上册数学《画树状图求概率》精品课件
5.现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,
B盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸 菜包和一个糖包以及一个馒头.老师就爱吃酸菜包,如果老师从 每个盘中各选一个包子(馒头除外),那请你帮老师算算选的包 子全部是酸菜包的概率是多少?
C B A
解:根据题意,画出树状图如下
解:由表可以看出,甲和乙两位同学猜拳可能出现的 结果有9个,它们出现的可能性相等.其中能确定胜负 的结果有6个,而满足甲同学赢(记为事件B)的结果 有3个,即:锤剪 , 布锤 , 剪布,所以
P(B) 1 . 2
思考 上述问题如果老师想让甲、乙、丙三位同学猜拳(剪
刀、锤子、布) ,由最先一次猜拳就获胜的同学来回答,那 么你能用列表法算出甲同学获胜的概率吗?
方法归纳
当试验包含两步时,列表法比较方便;当然,此时也可以 用树形图法;
当事件要经过多个(三个或三个以上)步骤完成时,应选用 树状图法求事件的概率.
练一练
经过某十字路口的汽车,可能直行,也可能向左转或 向右转.如果这三种可能性大小相同,求三辆汽车经过 这个十字路口时,下列事件的概率:
(1)三辆车全部继续直行; (2)两车向右,一车向左; (3)至少两车向左.
H I H I H I HI H I HI
满足只有两个元音字母的结果有
4个,则
P(两个元音)=
4 12
=
1. 3
母的结果有1个,则 P
(三个元音)=
1. 12
(2)取出的3个小球上全是辅音字母的概率是多少?
甲
A
B
乙C D E C D E
丙H I H I H I H I H I H I
A AA AA A B B B B B B C CD DE E C C D D E E H I H I H I HI H I HI
【初中数学】第2课时 用画树状图法求概率 [人教版九年级上册] (练习题)
第2课时用画树状图法求概率[人教版九年级上册](2912)1.妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是()A.14B.13C.12D.342.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.12B.23C.16D.563.一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为.4.江苏省第20届运动会将在泰州举办,“泰宝”和“凤娃”是运动会吉祥物.在一次宣传活动中,组织者将分别印有这两种吉祥物图案的卡片各2张放在一个不透明的盒子中并搅匀,卡片除图案外其余均相同.小张从中随机抽取2张换取相应的吉祥物,抽取方式有两种:第一种是先抽取1张不放回,再抽取1张;第二种是一次性抽取2张.(1)两种抽取方式抽到不同图案卡片的概率(填“相同”或“不同”);(2)若小张用第一种方式抽取卡片,求抽到不同图案卡片的概率.5.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,下一个人继续摸球.三人摸到球的颜色互不相同的概率是()A.127B.13C.19D.296.某市教育局为提高教师业务素质,扎实开展了“课内比教学”活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有“A”“B”内容的签中,随机抽出一个作为自己的讲课内容.某校有三个选手参加这次讲课比赛,则这三个选手中有两个抽中内容“A”,一个抽中内容“B”的概率是7.甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数.(2)甲、乙二人玩一个游戏,游戏规则是若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏规则公平吗?试说明理由.9.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.10.完成下列各题。
用画树状图法求概率(22张PPT)
⑴.取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? ⑵.取出的3个小球上全是辅音字母的概率是多少?
分析: 前面“两步试验的树状图”的例题和练习其实用“列表 法”也是可以的,但本例当一次试验是从三个口袋中取球时, 列表法就不方便了,为不重不漏地列出所有可能的结果,通常 采用画树状图法.
从树形图可以看出总共有(红1,红2),(红1,蓝1),……12 种等可能情矿,而都是蓝色球体有(蓝1,蓝2),(蓝2,蓝1) 两种,故:
用树状图法求概率的“四个步骤”:
1.定:确定该试验的几个步骤、顺序、每一步可能产生的结果. 2.画:列举每一环节可能产生的结果,得到树状图. 3.数:数出全部均等的结果数m和该事件出现的结果数n. 4.算:代入公式 .
1.学习用树形图法计算概率,并通过比较概率 大小作出合理的决策. 2.会运用树形图法计算事件的概率(重点);能 根据不同情况选择恰当的方法进行列举,解决 较复杂事件概率的计算问题(难点). 3.经历探索知识过程,感受数学知识的价值和 魅力,培养合作学习的意识和探索精神.
问:你知道孙膑给田忌将军的是怎样的建议吗?
6.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每 张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡 片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下 字母,用画树状图的方法,求小玲两次抽出的卡片上的字母相同的 概率. a b c 略解:画出树状图为
a
b
c
a
b
c
第一摸取 第二摸取 共12种等可能的情况;即:A 1 A 2 ,A 1 B2 ,……其中恰好能组
成一张完整图片的结果有4种,则:
新课引入的)
第一场
人教版数学九年级上册. 画树状图求概率课件ppt课件
2. (1) 1
27
(2)
1 9
(3)
7 27
解:画树形图如下: 人教版数学九年级上册. 画树状图求概率课件ppt课件
第
左
直
一
辆
第
二左 直 右 左直
辆
右
右 左直 右
第
三 左直右 左直右 左直右
左直右 左直右
辆
左直右
左直右 左直右 左直右
共有27种行驶方向 (1) P(全部继续直行) 1 27
人教版数学九年级上册. 画树状图求概率课件ppt课件
P(A)=
人教版数学九年级上册. 画树状图求概率课件ppt课件
②如果老师想从甲和乙两位同学中选择一位同 学回答,且由甲和乙两位同学以猜拳一次 (剪刀、锤子、布)的形式谁获胜就谁来回 答,那么你能用列表法求得甲同学获胜的概 率吗?
甲 乙
剪刀
剪刀 剪剪
锤子 锤剪
布 布剪
锤子
剪锤
锤锤
布锤
布
求概率课件ppt课件
3. 用数字1、2、3,组成三位数,求其中恰有2个相同的数
字的概率.
组数开始
百位
1
2
3
十位 1 2 3 1 2 3 1 2 3
个位 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
解: 由树形图可以看出,所有可能的结果有27种,它们出 现的可能性相等. 其中恰有2个数字相同的结果有18个.
人教版数学九年级上册. 画树状图求概率课件ppt课件
甲
A
B
乙C
DE
C
DE
丙H IH IH I H IH IH I
人教版九年级数学上册第25章 概率初步2 用画树状图法求概率
n;
(4)用概率公式计算.
教师讲评
知识点2 选择合适的方法进行概率计算
对于那些可以通过顺序组合多个因素来产生结果的试验或事件,
画树状图法可以帮助更直观地理解和避免重复、遗漏.
列表法的优点在于操作简便、快捷,适合于简单的情况.相比之
下,画树状图法则提供了更加直观的分析方式,有助于避免重
3.分析解题过程,是如何画树状图的?
每一个步骤可能出现的结果,等可能且不分先后分别写到第一行、
第二行、第
三行,把各种可能的结果对应竖写在下面.
自主探究
4.请同学们思考:什么时候选择“列表法”,什么时候选择
“画树状图法”?
当一次试验涉及两个因素,且可能出现的结果数较多时,通常
用列表法;当一次试验涉及三个及三个以上的因素时,通常用
以胜的次数多者为赢.已知在同等级的马中,田
忌的马不如齐王的马,而田忌的上等马能胜齐
王的中等马,田忌的中等马能胜齐王的下等马.
田忌屡败后,接受了孙膑的建议,结果两胜一
负,赢了比赛.
你知道孙膑给出了怎样的建议吗?
假设齐王按上中下的顺序出马,而田忌的马随机出阵,则田忌
获胜的概率是多少呢?
荤菜有鸡肉和牛肉,三素有白菜、芹菜和油菜.我们需要在两
复和遗漏,特别是在涉及到多个因素的情况下.
因此,需要根据具体问题的实际情况来选择合适的分析方法.
【题型一】用画树状图法求概率
例1 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向
全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分
别从《童年周恩来》《我心飞扬》《穿过雨林》三部影片中随机选
25.2.2 用树状图求概率(课后练)-初中数学人教版九年级上册课前课中课后同步试题精编
故答案为: .
【点睛】
本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键.
(2)请将条形统计图补充完整;
(3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.
(1)这次共抽取了_________名家长进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是_________.
(2)将条形统计图补充完整;
(3)该学校共有2000名学生家长,估计该学校家长表示“支持”的(A类,B类的和)人数大约有多少人?
(4)D类不支持的家长中有两人是女性,一人是男性,现从这三个人中抽取两人,用树状图或者列表的方式求抽取的两人都是女性的概率.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
8.不透明的口袋里装有红、黄两种颜色的小球(除颜色不同外,其它都相同),其中红球2个,现在从中任意摸出一个球,摸到黄球的概率为 .
参考答案
1.3
【分析】
分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.
【详解】
解:(1)假设袋中红球个数为1,
此时袋中由1个黄球、1个红球,
搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.
25.2.2+用画树状图求概率课件2024-2025学年人教版数学九年级上册
25.2.2 用画树状图求概率 (2)根据题意,列表如下:
由表格可知,共有12种等可能的结果,甲、丁同学都被选为宣传员
的结果有2种,
∴P(甲、丁同学都被选为宣传员)=
2 12
1 6
.
25.2.2 用画树状图求概率
一题多解 根据题意,画树状图如解图: 由树状图可得,共有12种等可能的结果,甲、丁同学都被选为宣传员 的结果有2种, ∴P(甲、丁同学都被选为宣传员)= 2 1
(2)这个游戏不公平.理由如下:画树状图如图,由树状图可知,共有 16种等可能的结果,其中
两数之积为偶数的结果有12种,两数之积为
奇 ∴P数(小的明结胜果)=有412种,3,P(小亮胜)= 4 1
16 4
16 4
∵ 31
44
∴这个游戏不公平
25.2.2 用画树状图求概率
课堂小结
步骤
①确定每一步有几种结果 ②在树状图下面对应写出所有可能的结果 ③利用概率公式进行计算
12 6
25.2.2 用画树状图求概率
4.如图,可以自由转动的转盘被4等分, 指针落在每个扇形内的机会 均等.
(1)若转动转盘一次,求转出的数字是
1
2的概率为____4____;(2)小明、小亮利用这个转盘做游戏.若采用下 列游戏规则,你认为这个游戏公平吗?请利用画树状图或列表的方法 说明理由.
25.2.2 用画树状图求概率
25.2.2 用画树状图求概率
甲
A
B
乙
CDE
CD E
丙 结果:
HIH I H I
A AA A A A C CD D E E HI HI H I
H I HIHI
B B BB B B C C DD E E H I HI H I
九年级数学上册人教版(课件):习题课件 25.2 用列举法求概率 第2课时 用树状图法求概率
解:(1)画树状图(略),所有可能得到的三位数有 24 个,分别为 123, 124,132,134,142,143,213,214,231,234,241,243,312,314, 321,324,341,342,412,413,421,423,431,432 (2)这个游戏规则 不公平.理由如下:组成的三位数中是“伞数”的有 132,142,143,231, 241,243,341,342,共有 8 个,∴甲获胜的概率为284=13,而乙胜的概率 为1264=23,13≠23,∴这个游戏规则不公平
(1)按约定,“小李同学在该天早餐得到两个油饼”是__不可能__事件;(填 “随机”“必然”或“不可能”)
(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包 和油饼的概率.
解:画树状图(略),由树状图可知,所有等可能的结果共有 12 种,满足 条件的结果有 2 种,所以小张同学得到猪肉包和油饼的概率为122=61
况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳 3
,恰好选中一男一女的概率是5____.
5.小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人 中仅有一人出“手心”或“手背”,那么这个人获胜;如果三人都出“手心”或“手 背”,那么不分胜负.在一个回合中,若小明出“手心”,则小明获胜的概率 是多少?(请用画树状图法写出分析过程)
(2)若从报名的 4 名教师中随机选 2 名,用列表或画树状图的方法求出这 2 名教师来自同一所学校的概率.
解:(2)画树状图(略),可知等可能的情况共有 12 种,其中两名教师来自
人教版九年级数学上册第25章25.2.2 用树状图法求概率 同步练习题(含答案,教师版)
人教版九年级数学上册第25章25.2.2 用树状图法求概率同步练习题一、选择题1.有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是(A)A.49B.59C.13D.232.一个不透明的盒子里装有除颜色外其他都相同的四个球,其中1个白球、1个黑球、2个红球,搅匀后随机从盒子中摸出两个球,则摸出两个红球的概率是(C)A.12B.14C.16D.193.衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,则它们取自同一套的概率是(D)A.127B.19C.16D.134.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(D)A.127B.13C.19D.295.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(D)A.23B.12C.13D.146.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为(C)A.15B.25C.35D.457.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为(A)图1 图2A.23B.12C.13D .1 8.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为(C)A.14B.13C.12D.23二、填空题9.甲口袋装有2个相同的小球,分别写有字母a 和b ;乙口袋中装有3个相同的小球,分别写有字母c ,d 和e.从两个口袋中各随机取出一个小球,恰好是一个元音和一个辅音字母的概率是12.(字母a 和e 是元音,字母b ,c 和d 是辅音) 10.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为23. 11.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为23. 12.有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其他都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为415. 三、解答题 13.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用画树状图法,求两人之中至少有一人直行的概率.解:画树状图如下:由树状图可知所有等可能的结果有9种,其中两人之中至少有一人直行的结果有5种,所以P(两人之中至少有一人直行)=59. 14.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样:A :菜包,B :面包,C :鸡蛋,D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是不可能事件(填“随机”“必然”或“不可能”);(2)请用画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.解:画树状图如下:由树状图知共有12种等可能的情况,其中早餐刚好得到菜包和油条的情况有2种,所以P(某顾客该天早餐刚好得到菜包和油条)=212=16. 15.现有A ,B ,C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A ,B ,C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为13; (2)用画树状图的方法,求摸出的三个球中至少有一个红球的概率. 解:画树状图如图所示:共有12种等可能的结果,摸出的三个球中至少有一个红球的结果有10种,∴摸出的三个球中至少有一个红球的概率为1012=56. 16.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,则小颖答对第一道题的概率是13; (2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率;(3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?解:(2)画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”留在第二道题使用时,P(小颖顺利通关)=19. (3)若小颖将“求助”在第一道题使用,画树状图如下:(用Z 表示正确选项,C 表示错误选项)第一题:第二题:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种,∴小颖将“求助”在第一道题使用时,P(小颖顺利通关)=18. ∵18>19, ∴建议小颖在答第一道题时使用“求助”.。
九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版
∵共有 4 种等可能的结果,两次传球后, 球恰在 B 手中的只有 1 种情况,∴两次传球 后,球恰在 B 手中的概率为14.
(2)画树状图得:
∵共有 8 种等可能的结果,三次传球后,球恰在 A 手中的有 2 种情况, ∴三次传球后,球恰在 A 手中的概率为28=14.
摸到相同颜色的小球的概率.(请结合树状图或列表解答)
8.(1)设袋子中白球有 x 个,根据题意,得x+x 1=23,解得 x=2,经检验, x=2 是原分式方程的解,∴袋子中白球有 2 个. (2)画树状图得:
∵共有 9 种等可能的结果,两次都摸到相同颜色的小球的有 5 种情况, ∴两次都摸到相同颜色的小球的概率为59.
13.某市初中毕业女生体育中考考试项目有四项,其中“立定跳
远”“1 000米跑”“篮球运球”为必测项目,另一项从“掷实心
球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实 心球”或“一分钟跳绳”中选择同一个考试项14目的概率是________.
14.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行 涂色,每个区域必须涂色并且只能涂一种颜色,请用树状图法求A, C两个区域所涂颜色不相同的概率.
共 8 种情况,完全相同的有 2 种,则 P(完全相同)=28=14. 1
(3)2n-1.
(请用“画树状图”的方法给出分析过程,并求出结果)
15.画树状图为:
共有 8 种等可能的结果数,其中至少有两瓶为红枣口味的结果数为 4, 所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.
16.甲、乙、丙、丁四名运动员参加4×100米接力赛,如果甲必须 安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( C )
【初中数学】人教版九年级上册第2课时 用树状图法求概率(练习题)
人教版九年级上册第2课时用树状图法求概率(353)1.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件(填“可能”“必然”或“不可能”);(2)请用树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率2.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.3.A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率4.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V数”.若十位上的数字为5,则从4,6,8中任选两数,能与5组成“V数”的概率是()A.16B.14C.13D.235.十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.356.定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”,如876就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀.重复上面的操作两次,记下数字分别作为十位数字和个位数字,求三次摸球后得到的三位数是“下降数”的概率7.一张圆桌旁有四个坐位,A先坐在如图所示的坐位上,B、C、D三人随机坐到其他三个坐位上.则A与B不相邻而坐的概率是.8.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中恰有两只雌鸟的概率是()A.16B.38C.58D.239.如图,有一个均匀的圆铁片,两面上分别写有1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有1,2,3和1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是()A.12B.13C.16D.1810.掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为11.小刚、小强、小红利用假期到某个社区参加义务劳动,为决定到哪个社区,他们约定用“剪刀、石头、布”的方式确定,在同一回合中,三人都出“剪刀”的概率是12.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,则小明与小红同车的概率是()A.19B.16C.13D.12参考答案1(1)【答案】不可能(2)【答案】解:画树状图如下:由树状图可知,共有12种等可能的结果,其中刚好得到猪肉包和油饼的结果有2种,故小张同学该天早晨刚好得到猪肉包和油饼的概率为212=162(1)【答案】14【解析】:根据题意,画树状图如下:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能的结果,其中小明和小刚都在本周日上午去游玩的结果有(上、上、上),(上、上、下)2种,∴小明和小刚都在本周日上午去游玩的概率为28=14(2)【答案】由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上、上、上),(下、下、下)这2种,∴他们三人在同一个半天去游玩的概率为28=144.【答案】:C【解析】:根据题意,画树状图如下:共有6种等可能的结果,能与5组成“V数”的有2种(即658,856),所以从4,6,8中任选两数,能与5组成“V数”的概率为26=135.【答案】:C【解析】:列表:从表格中可以看出所有可能的结果共有30种,个位和百位上的数字都小于7的有12种结果,因此是“中高数”的概率为1230=25.故选C6.【答案】:解:根据题意,画树状图如下:由树状图可知共有27种等可能的结果,其中组成的“下降数”只有1个,即321,∴三次摸球后得到的三位数是“下降数”(记为事件A)的概率P(A)=1277.【答案】:13【解析】:由题意可画出下列树形图:从上面的树形图可以看出,所有可能性的结果共有6个,其中A与B不相邻而坐的有2个结果,所以其概率为13.8.【答案】:B【解析】:画树状图如图所示:因为所有等可能的情况有8种,其中三只雏鸟中恰有两只雌鸟的情况有3种,所以三只雏鸟中恰有两只雌鸟的概率是389.【答案】:C【解析】:画树状图如下:共有24种等可能情况,面向桌面的三个数字的积为奇数的情况有4种,所以概率为1610.【答案】:38【解析】:画树状图得:∵共有8种等可能的结果,其中有两次正面朝上的情况有3种,∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为3811.【答案】:127【解析】:根据题意画出树状图如下:一共有27种等可能情况,三人都出“剪刀”的情况只有1种,所以P(三人都出“剪刀”)=12712.【答案】:C【解析】:用A,B,C分别表示给九年级安排的三辆车,根据题意,可以画出如下的树状图.∵共有9种等可能的结果,小明与小红同车有3种情况,∴小明与小红同车的概率是39=13。
人教版数学九年级上册 画树状图法求概率
典例精析 例1 甲口袋中装有 2 个相同的小球,它们分别写有 字母 A 和 B;乙口袋中装有 3 个相同的小球,它们分 别写有字母 C,D 和 E;丙口袋中装有 2 个相同的小 球,分别写有字母 H 和 I. 从三个口袋中各随机取出 1 个小球. (1) 取出的 3 个小球上恰好有 1 个,2 个,3 个有元音
当堂小结 ① 关键要弄清楚每一步有几种结果;
关键 ② 在树状图下面对应写着所有可能的结
步骤
果,并找出事件所包含的结果数;
③ 利用概率公式进行计算. 树
状
图
① 弄清试验涉及试验因素个数或试验
步骤分几步; 注意 ② 在摸球试验一定要弄清“放回”还
是“不放回”.
当堂练习 1. 三女一男四人同行,从中任意选出两人,其性别 不同的概率为( C )
红3 红1红3
黑1 红1黑1
黑2 红1黑2
红2 红2红1
红2红3 红2黑1 红2黑2
红3 红3红1 红3红2
红3黑1 红3黑2
黑1 黑1红1 黑1红2 黑1红3
黑1黑2
黑2
黑2红1 黑2红2 黑2红3 黑2黑1
比较一下,用树状图法还是列表法更便捷?
(2) 解:不公平. ∵由树状图可知共有 20 种等可能的结果, ∴两人所取球的颜色相同有 8 种结果,则
(1) 解:先将两个红球分别记为“红1”,“红2”, 然后画树状图如下: 开始
甲
红1
红2
蓝
乙 红1 红2 蓝 红1 红2 蓝 红1 红2 蓝 (2) 解:不公平.
∵由树状图可知共有 9 种等可能的结果,
∴能配成紫色的有 4 种结果,则
∴这个游戏不公平.
类型二:不放回型
例3 小明、小军两同学做游戏,游戏规则是:一个不 透明的文具袋中,装有型号完全相同的 3 个红球和 2 个黑 球,两人先后从袋中取出一个球(不放回) ,若两人所取球 的颜色相同,则小明胜;否则,小军胜; (1) 请用树状图或列表法求出摸球游戏所有可能的结果; (2) 你觉得本游戏规则是否公平,请说明理由.
人教版九年级数学上册用树状图求概率同步练习题
第2课时 用树状图求概率1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113 B .118C .1411D .1432.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ). A .1B .101 C .1001 D .10001 3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么: (1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:(1)三辆车全部直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转. 8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支.12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31 B .41 C .51 D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A .51 B .52 C .53 D .54 14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是 31求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______. 16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:(1)奇数点朝上的概率为;31(2)大于6的点数与小于3的点数朝上的概率相同.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..C.90cm2 D.36cm2或40cm2第5题图第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A.8个 B.6个 C.4个 D.12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图第9题图第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。
人教版九年级数学上导学案画树状图求概率教案课堂练习含配套课时作业每课一测有答案
第六课时:画树状图求概率【教学目标】学习用画树形图法计算概率,并通过比较概率大小作出合理的决策。
【要点呈现】1、当一次试验涉及 的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用 。
2、运用树形图法求概率的步骤如下 ①画 ;②列出结果,确定公式P(A)=nm中m 和n 的值;③利用公式 计算事件概率。
【新知探究】例1、口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C 、D 和E ;丙口袋中2个相同的球,它们分别写有字母H 和I 。
从三个口袋中各随机地取出1个球。
(1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少? (2)取出的三个球上全是辅音字母的概率是多少?变式:一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个。
若从中任意摸出一个球,这个球是白球的概率是0.5。
(1)求口袋中红球的个数;(2)小明认为口袋中有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是31,你认为对吗?请你用列表或画树状图的方法说明理由。
例2、从甲地到乙地有A 1、A 2两条路线,从乙地到丙地有B 1、B 2、B 3三条路线,从丙地到丁地有C 1、C 2两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰好选到B 2路线的概率是多少?变式:有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(用树状图或列表法求解)例3、 如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.变式:2010年上海世博会某展览馆展厅东面有两个入口A ,B ,南面j 西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开. (1)她从进入到离开共有多少种可能的结果?(要求画出树状图) (2)她从入口A 进入展厅并从北出口或西出口离开的概率是多少?【课堂操练】1、 小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A .13B .16C .518D .562、 同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的面的点数中,一个点数能被另一个点数整除的概率是 A.718 B.34 C.1118 D.23363、 在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球,两次摸球所有可能的结果如图所示,则摸出的两个球中,一个是红球,一个是黑球的概率是( ) A .19 B .29C .13 D .494、小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( ) A .12B .18C .38D .111222++ 5、同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为( ). A .91 B .365 C .61 D .3676、中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A (海政)、B (空政)、C (武警)组成种子队,由部队文工团的D (解放军)和地方文工团的E (云南)、F (新疆)组成非种子队.现从种子队A 、B 、C 与非种子队D 、E 、F 中各抽取一个队进行首场比赛.(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A 、B 、C 、D 、E 、F 表示);(2)求首场比赛出场的两个队都是部队文工团的概率P.7、现有一本故事书,姐妹俩商定通过摸球游戏定输赢(赢的一方先看),游戏规则是:用4个完全相同的小球,分别表上1、2、3、4后放进一个布袋内,先由姐姐从布袋中任意摸出一个小球,记下小球的标号后放回并摇匀,再由妹妹任意摸出一个小球,若两人摸第一次第二次红红 黄 黑 黄红 黄 黄 黑红 黄 黑出的小球标号之积为偶数,则姐姐赢,两人摸出的小球标号之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树状图或列表法说明理由.8、 “清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.【每课一测】一、选择题(共5小题每题5分)1、有A ,B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是 ( )A .31B .41 C .32 D .43 2、甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为( ).A .94B .95C .32D .97 3、小明打算暑假里的某天到上海世博会一日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个馆, 下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是A .19B .13C .23D .294、小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121 B .61 C .41 D .31 5、将三个均匀的六面分别标有1、2、3、4、5、6的正方体同时掷出,出现的数字分别为a b c 、、,则a b c 、、正好是直角三角形三边长的概率是( ) A .1216B .172C .112D .136二、填空题(共5小题,每题5分)6、张家界国际乡村音乐周活动中,来自中、日、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“美—日—中”顺序演奏的概率是 .7、已知M(a ,b)是平面直角坐标系xOy 中的点,其中a 是从l ,2,3三个数中任取的一个数,b 是从l ,2,3,4四个数中任取的一个数.定义“点M(a ,b)在直线x+y=n 上”为事件Q n (2≤n≤7,n 为整数),则当Q n 的概率最大时,n 的所有可能的值为______.8、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是 ▲ .9、投一枚均匀的小正方体,小正方体的每个面上分别标有数字1、2、3、4、5、6.每次实验投两次,两次朝上的数字的和为7的概率是___________. 10、现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是 . 三、解答题(共3个题,11题15分,12题15分,13题20分)11、分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示)。
数学九年级上册第二十五章概率初步第2课时用树状图法求概率作业课件 新人教版
(2)由于汽车向右转、向左转、直行的概率分别为25 ,130 ,130 ,在绿灯亮的总时间不变的
条件下,可调整绿灯亮的时间如下:左转绿灯亮的时间为 90×130 =27(s);直行绿灯亮的时
间为
3 90×10
=27(s);右转绿灯亮的时间为
2 90×5
=36(s)
第二十五章 概率初步
25.2 用列举法求概率
第2课时 用树状图法求概率
用树状图法求两步试验下的概率
1.(4 分)某校九年级共有 1,2,3,4 四个班, 现从这四个班中随机抽取两个班进行一场篮球
比赛,则恰好抽到 1 班和 2 班的概率是( B )
A.18
B.16
C.38ห้องสมุดไป่ตู้
D.12
2.(4 分)(临沂中考)2018 年某市初中学业水平实
口都会随机选择一条路径,则它获取食物的概率是 _1__________ 3
6.(6分)(锦州中考)对垃圾进行分类投放,能提高垃圾处理和再利用的
效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会
成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,
C,D四个小区进行检查,并且每个小区不重复检查. (1)甲组抽到A小区的概率是 __1______________ 4 (2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C 小区的概率.
验操作考试要求每名学生从物理、化学、生物三
个学科中随机抽取一科参加测试,小华和小强都
抽到物理学科的概率是( D )
A.13
B.14
C.16
D.19
3.(4 分)(泰安中考)一个盒子中装有标号为 1,2,
3,4,5 的五个小球,这些球除标号外都相同,
第25章25.2第2课时用画树状图法求概率-2020秋人教版九年级数学上册作业课件(共27张PPT)
(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率
1
是3
;
(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; 解:用 Z 表示正确选项,C 表示错误选项,画树状图如下:
由树状图可知,共有 9 种等可能的结果,其中小颖顺利通关的结果 有 1 种.
∴在第二道题使用“求助”时,P(顺利通关)=19.
∴P(恰好选出 1 名男生和 1 名女生)=1220=35.
11.传统节日“端午节”的早晨,小文妈妈为小文准备了四个粽子作
早点:一个枣馅粽、一个肉馅粽、两个花生馅粽,四个粽子除内部馅料
不同外,其他一切均相同. 1
(1)小文吃前两个粽子刚好都是花生馅粽的概率为 6 ;
(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两 个粽子都是花生馅粽的可能性是否会增大?请说明理由.
解:会增大.理由:分别用 A,B,C 表示枣馅粽、肉馅粽、花生馅 粽,画树状图如下:
由树状图可知,共有 20 种等可能的结果,两个都是花生馅粽的结果 有 6 种.
∴P(小文吃前两个粽子都是花生馅粽)=260=130. ∵130>16, ∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生 馅粽的可能性会增大.
果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右
转,一辆向左转的概率是
B
()
A.23
B.29
C.13
D.19
2.一个盒子中装有标号为 1,2,3,4,5 的五个小球,这些球除标
号外其他都相同,从中随机摸出两个小球,则摸出的小球标号之和大于 5
的概率为
C
()
A.15
B.25
C.35
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CDE
丙 HI HI HI HI HI HI
用树形图求概率的基本步骤
1.明确试验的几个步骤及顺序; 2.画树形图列举试验的所有等可能的结果; 3.计算得出m,n的值; 4.计算随机事件的概率.
思考 求概率时,什么时候用“列表法”方便? 什么时候用 “树形图”方便?
一般地,当一次试验要涉及两个因素(或两 个步骤),且可能出现的结果数目较多时,可用 “列表法”,当一次试验要涉及三个或更多的因 素(或步骤)时,可采用“树形图法”.
(1)取出的2个球都是黄球;
解:分别从两个盒中随机取出1个球的可能结果 如下图所示.
第一个盒
第二个盒
记取出的2个球都是黄球为事件A.
P
(
A)
1 6
.
(2)取出的2个球中1个白球,1个黄球. 解:分别从两个盒中随机取出1个球的可能结果如下图所示.
第一个盒
第二个盒
取出的2个球中1个白球,1个黄球(记为事件B).
AB 甲
E CD
乙
HI 丙
பைடு நூலகம்
(1)取出的3个小球上恰好有1个、2个、3个
元音字母的概率分别是多少? ?
本题中,A,E、 I是元音字母,B,C、 D,H是辅音字母.
AB 甲
E CD
乙
HI 丙
分析:
如何能不重不漏地列出所
①本次试验涉及有到可能3出现个的因结素果,呢用?列表法 不能 (能
或不能)列举所有可能出现的结果.
剪断的两张分别为B1,B2.
A2 B2
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1
B1
A2
B2
课堂小结
等可能事件 概率求法
直接列举法 列表法
画树状图法
(1)你帮妞妞算算爸爸出“石头”手势的概率是多少?
1 3
(2)妞妞决定这次出“布”手势,妞妞赢的概率有多大?13
(3)妞妞和爸爸出相同手势的概率是多少? 列举出妞妞和爸爸出的手势结果如下:
记两人出相同手势为事件A.
P(
A)
3 9
1 3
.
综合应用
5.第一个盒中有2个白球、1个黄球,第二个盒中有1 个白球、1个黄球,这些球除颜色外无其他差别.分别 从每个盒中随机取出1个球,求下列事件的概率: (1)取出的2个球都是黄球; (2)取出的2个球中1个白球,1个黄球.
随堂演练
基础巩固
1.学校新开设了航模、彩绘、泥塑三个社团,如 果征征、舟舟两名同学每人随机选择参加其中一
个社团,那么征征和舟舟选到同一社团的概率是
( C)
2
1
1
1
A. 3
B.2
C. 3
D. 4
2.有一箱子装有3张分别标示4、5、6的号码牌,已知小 武以每次取一张且取后不放回的方式,先后取出2张牌, 组成一个二位数,取出第1张牌的号码为十位数,第2张 牌的号码为个位数,若先后取出2张牌组成二位数的每 一种结果发生的机会都相同,则组成的二位数为6的倍 数的概率为( A )
丙
解:记取出的3个小球上恰好有1个、2个、3个元
音字母分别为事件A、B、C.
P(A)=
5 12
.
P(B)=
4 12
=
1 3
.
P(C)=
1 12 .
甲
A
B
乙
CDE
CDE
丙
HI HI HI HI HI HI
(2)取出的3个小球全是辅音字母的概率是多少?
P(三个辅音)=
2 12
=
1 6
.
甲
A
B
乙 CDE
25.2 用列举法求概率
第2课时 用画树状图法求概率
新课导入
猜一猜:假定鸟卵孵化后,雏鸟为雌与为雄的 概率相同.如果3枚卵全部成功孵化,则3只雏 鸟中恰有3只雌鸟的概率是多少? 你能用列表法列举所有可能出现的结果吗?
推进新课
例3 甲口袋中有2个相同的小球,它们分别写有字母 A和B;乙口袋中装有3个相同的小球,它们分别写有 字母C,D和E;丙口袋中装有2个相同的小球,它们分 别写有字母H和I.从三个口袋中各随机取出1个小球.
②摸甲口袋的球会出现 2 种结果,摸乙口袋的球 会出现 3 种结果,摸丙口袋的球会出现 2 种结果.
AB 甲
E CD
乙
HI 丙
画树状图法:
甲
A
AB B
甲
乙
CDE
C
D
E
E CD
乙 丙 HI HI HI HI HI HI
HI
显然,一共有12 种可能出现的结果.
这些结果出现的可能性 相等 (相等/不相等)
P(B)
3 6
1 2
.
拓展延伸
6. 两张图片形状完全相同,把两张图片全部从中间剪断, 再把四张形状相同的小图片混合在一起.从四张图片 中随机地摸取一张,接着再随机地摸取一张,则两张 小图片恰好合成一张完整图片的概率是多少?
提示:设第一张图片为A,剪断的两张
分别为A1,A2;第二张图片为B, A1 B1
A. 1
B. 1
C. 1
D. 1
6
4
3
2
3.从1、2、-3三个数中,随机抽取两个数相乘,
积是负数的概率是
2 3
.
4.妞妞和爸爸玩“石头、剪刀、布”游戏.每次用一只手
可以出“石头”“剪刀”“布”三种手势之一,规则是“石
头”赢“剪刀”、“剪刀”赢“布”、“布”赢“石头”,若两
人出相同手势,则算打平.