第三章 应用多元统计分析答案

合集下载

应用多元统计分析课后答案朱建平版

应用多元统计分析课后答案朱建平版

i 1
n
(Xi - μ)(Xi - μ) 2n(X μ)(X μ) n(X μ)(X μ) i 1
n
(Xi - μ)(Xi - μ) n(X μ)(X μ) i 1
E( S ) n 1
1 n 1
E
n i1
(Xi
-
μ)(Xi
-
μ)
n(X
μ)(X
μ)
1 n 1
n i1
E(Xi
*
*
* ( ij ) 为一正交矩阵,即 ΓΓ I 。
1 n
Ζn ) = X1 X2
Xn Γ ,
由于Xi (i 1, 2,3, 4, n)独立同正态分布,且Γ为正交矩阵
所以 (1 2
n ) 独立同正态分布 。且有
Ζn
1 n
n
Χi , E(Ζn )
i 1
1 n
n
E(Χi )
i 1
其它
2
cov(x1, x2 )
d c
b a
x1
a
2
b
x2
d
2
c
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a )( x2
c)] dx1dx2
(c d )(b a) 36
cov(x1, x2 ) 1
x1 x2
3
(3)解:判断 X1 和 X 2 是否相互独立。 X1 和 X 2 由于 f (x1, x2 ) fx1 (x1) fx2 (x2 ) ,所以不独立。
36573750.00 -199875.00
-736800.00
-35.80

应用多元统计分析课后答案 .doc

应用多元统计分析课后答案 .doc

2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

第三章多元统计分析答案

第三章多元统计分析答案

3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。

其基本思想和步骤均可归纳为: 答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界 值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

均值向量的检验:统计量 拒绝域均值向量的检验:在单一变量中当2σ已知 X z =/2||z z α>当2σ未知 X t =/2||(1)t t n α>-(2211()1n ii S X X n ==--∑作为2σ的估计量)一个正态总体00H =μμ:协差阵Σ已知 212000()()~()T n p χ-'=--X μΣX μ 220T αχ> 协差阵Σ未知 2(1)1~(,)(1)n p T F p n p n p --+-- 2(1)n p T F n pα->-(200(1))]T n -'=---X μS X μ)两个正态总体012H =μμ:有共同已知协差阵 2120()()~()n m T p n mχ-⋅'=--+X Y ΣX Y 220T αχ>有共同未知协差阵 2(2)1~(,1)(2)n m p F T F p n m p n m p+--+=+--+- F F α>(其中 21(2)))T n m -'⎤⎤=+---⎥⎥⎦⎦X Y S X Y )协差阵不等m n = -1()~(,)n p nF F p n p p-'=-Z S Z F F α> 协差阵不等m n ≠ 1()~(,)n p nF F p n p p-'=--Z S Z F F α>多个正态总体k H μμμ=== 210: 单因素方差 (1)~(1,)()SSA k F F k n k SSE n k -=--- F F α>多因素方差 ~(,,1)p n k k Λ==Λ--+E E TA E协差阵的检验 检验0=ΣΣ0p H =ΣI : /2/21exp 2np n e tr n λ⎧⎫⎛⎫=-⎨⎬ ⎪⎩⎭⎝⎭S S00p H =≠ΣΣI : /2/2**1exp 2np n e tr n λ⎧⎫⎛⎫=-⎨⎬ ⎪⎩⎭⎝⎭S S检验12k ===ΣΣΣ 012k H ===ΣΣΣ :统计量/2/2/2/211i i kkn n pn np k iii i nnλ===∏∏SS3.2 试述多元统计中霍特林分布和威尔克斯分布分别与一元统计中t 分布和F 分布的关系。

应用多元统计分析_课后答案

应用多元统计分析_课后答案

图 2.1
Descriptives 对话框
2.
单击 Options 按钮,打开 Options 子对话框。在对话框中选择 Mean 复选框,即计 算样本均值向量,如图 2.2 所示。单击 Continue 按钮返回主对话框。
图 2.2 Options 子对话框 3. 单击 OK 按钮,执行操作。则在结果输出窗口中给出样本均值向量,如表 2.1,即 样本均值向量为(35.3333,12.3333,17.1667,1.5250E2) 。
2.5 解: 依据题意,X= 57000 40200 21450 21900 45000 28350

15 16 12 8 15 8
27000 18750 12000 13200 21000 12000
144 36 381 190 138 26
′ E(X)= ∑6 α=1 x(α) = (35650,12.33,17325,152.5) n σ1 σ2 ρ2 (x1 −μ1 )2 σ2 1
+
σ2 1
(x2 −μ2 )2 σ2 2 )2
= = [
(x1 −μ1 )2 σ2 1 ρ(x1 −μ1 ) σ1
− −
2ρ(x1 −μ1 )(x2 −μ2 ) σ1 σ2 (x2 −μ2 ) 2 ] σ2
+
E( X ) μ
n→∞
lim E(
1 1 ������) = lim E( ������) = Σ n→∞ ������ n−1
2.7 试证多元正态总体 的样本均值向量 ̅) = E ( ΣX 证明: E(������ (α) ) = E (ΣX (α) ) =
n n 1 1 nμ n 1 n2
exp[−

应用多元统计分析课后答案

应用多元统计分析课后答案

第二章2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。

应用多元统计分析课后习题答案高惠璇三部分习题解答公开课一等奖优质课大赛微课获奖课件

应用多元统计分析课后习题答案高惠璇三部分习题解答公开课一等奖优质课大赛微课获奖课件
(n>p)为来自p维正态总体X样本.似然比统计量为
max
0
L(0,0 )
max
L(
,
0
)
分子
|
1
20
|n/ 2
exp
1 2
n
( X ( )
1
0 )01( X ( )
0 )
|
1
20
|n/ 2
exp
1 2
n
tr[01
1
( X ( )
0 )( X ( )
0 )]
第17页 17
第三章 多元正态总体参数检查
Yr1
X BX
Y Γ BΓΓ
Y HY
(Yr
1
,,
Yn
)
H
22
Yn
由于Y1, …,Yr ,Yr+1 ,…,Yn互相独立,
故X′AX与X′BX互相独立.
第9页
9
第三章 多元正态总体参数检查
3-3 设X~Np(μ,Σ),Σ>0,A和B为p阶对称阵, 试证实 (X-μ)′A(X-μ)与(X-μ)′B(X-μ)互相独立
Np(μ,Σ)随机样本, X和Ax分别表示正态总体X样 本均值向量和离差阵,则由性质1有
Tx2 n(n 1)( X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是p p非退化常数矩阵, d是p 1常向量。
则 Y(i) ~ N p (C d,CC) (i 1,2,..., n)
max L(
, 0 )
max L(, ) ,
分子当ˆ X达最大,且最大值
L( X
, 0 )

最新应用多元统计分析课后习题答案高惠璇PPT课件

最新应用多元统计分析课后习题答案高惠璇PPT课件
X2~N(0,1).
(2) 考虑随机变量Y= X1-X2 ,显然有
YX 1X2 0 X 1X 1,当 估计
P{Y0}P{X11或 X11} P{X11}P{X11} (X1~N(0,1)) 2(1)0.317 04
若(X1 , X2 ) 是二元正态分布,则由性质4可知,
31
第三章 多元正态总体参数的检验
证明 记rk(A)=r.
若r=n,由AB=O,知B= On×n,于是 X′AX与X′BX
若r=0时,则A=0,则两个二次型也是独 立的.
以下设0<r<n.因A为n阶对称阵,存在正 交阵Γ,使得
32
第三章 多元正态总体参数的检验
其中λi≠0为A的特征值(i=1,…,r).于是
P { X 2 x } P { X 1 x } ( x )
当x≥1时, P{X2x}
P{X2 1}P{1X2 1}P{1X2 x}
P{X11}P{1X11}P{1X1x}
P{X1x}(x) 17
第二章 多元正态分布及参数的估计
当-1≤x≤1时,
P{X2 x}P{X2 1}P{1X2 x} P{X1 1}P{xX1 1} P{X1 1}P{1X1 x} P{X1 x}(x)
它的任意线性组合必为一元正态. 但Y= X1-X2 不是正态分布,故(X1 , X2 ) 不是二元正态分布.
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
f(x;μ,Σ)= a
是一个椭球面. (2) 当p=2且
比较上下式相应的系数,可得:
1
2 2
2
1 2

多元统计分析课后练习答案

多元统计分析课后练习答案

多元统计分析课后练习答案第1章多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

(完整版)多元统计分析课后练习答案

(完整版)多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

应用多元统计分析课后答案朱建平版

应用多元统计分析课后答案朱建平版

nj i1
Σ1 ( Xij
μj)
0(
j
1, 2,..., k)
解之,得
μˆ j
xj
1 nj
nj
xij , Σˆ
i 1
k nj
xij x j
j1 i1
xij x j
n1 n2 ... nk
第三章
3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。 其基本思想和步骤均可归纳为: 答:
解:设 ( X1
X 2 ) 的均值向量为 μ 1
2
,协方差矩阵为
12 21
12
2 2
,则其联
合分布密度函数为
f
(x)
1 2
2
12 21
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x

μ)

2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
n1
S jj ~ Wp (n 1, ) j 1
2.10.设 X i (ni p) 是来自 N p (μi , Σi ) 的简单随机样本, i 1, 2,3, , k ,
(1)已知 μ1 μ2 ... μk μ 且 Σ1 Σ2 ... Σk Σ ,求 μ 和 Σ 的估计。
(2)已知 Σ1 Σ2 ... Σk Σ 求 μ1, μ2 ,...,, μk 和 Σ 的估计。
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)(x2

应用多元统计分析课后答案 (2).doc

应用多元统计分析课后答案 (2).doc

2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和 R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。

3、简述费希尔判别法的基本思想。

从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

朱建平-应用多元统计分析课后答案解析

朱建平-应用多元统计分析课后答案解析

第二章2.1.试叙述多元联合分布和边际分布之间的关系。

解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。

2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。

解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。

2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。

求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。

(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。

应用多元统计分析试题及答案

应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。

通常聚类分析分为 Q型聚类和R型聚类。

4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。

5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。

6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。

二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。

在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

2、简述相应分析的基本思想。

相应分析,是指对两个定性变量的多种水平进行分析。

设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。

对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。

要寻求列联表列因素A和行因素B 的基本分析特征和最优列联表示。

相应分析即是通过列联表的转换,使得因素A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。

把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A 、B 的联系。

3、简述费希尔判别法的基本思想。

从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。

将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。

应用多元统计分析课后答案_暴强整理

应用多元统计分析课后答案_暴强整理

第二章2.1 试述多元联合分布和边缘分布之间的关系。

设X =(X 1,X 2,⋯X p )′是p 维随机向量,称由它的q (<p )个分量组成的子向量X(i)=(X i1,X i2,⋯X iq )′的分布为X 的边缘分布,相对地把X 的分布称为联合分布。

当X 的分布函数为F (x 1,x 2,⋯x p )时,X (1)的分布函数即边缘分布函数为F (x 1,x 2,⋯x p )=P(X 1≤x 1,⋯X q ≤x q ,X q+1≤∞,⋯X p ≤∞) = F (x 1,x 2,⋯x q ,∞,⋯∞)当X 有分布密度f (x 1,x 2,⋯x p )则X (1)也有分布密度,即边缘密度函数为:f (x 1,x 2,⋯x q )=∫⋯+∞−∞∫f (x 1,x 2,⋯x p )dx q+1⋯d +∞−∞x p 2.2 设随机向量X =(X 1,X 2)′服从二元正态分布,写出其联合分布密度函数和X 1,X 2各自的边缘密度函数。

联合分布密度函数12πσ1σ2(1−ρ2)1/2exp{−12(1−ρ2)[(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+f (x 1,x 2)=(x 2−μ2)2σ22]} , x 1>0,x 2>00 , 其他(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22=(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22+ρ2(x 1−μ1)2σ12−ρ2(x 1−μ1)2σ12=[ρ(x 1−μ1)σ1−(x 2−μ2)σ2]2+(1−ρ2)(x 1−μ1)2σ12所以指数部分变为−12{[11√1−ρ2σ1−22√1−ρ2σ2]2+(x 1−μ1)2σ12}令t=22√1−ρ2σ2−11√1−ρ2σ1 ∴dt =√1−ρ2σ22∴f (x 1)=∫f (x 1,x 2)+∞−∞dx 2=12πσ1σ2(1−ρ2)1/2exp{−(x 1−μ1)22σ12∫exp(+∞−∞−12t 2√1−ρ22dt =√2πσexp[−(x 1−μ1)22σ12] √2πσexp[−(x 1−μ1)22σ12] , x 1>0f (x 1)=0 ,其他 同理, √2πσ2exp[−(x 2−μ2)22σ22] , x 2>0f (x 2)=0 ,其他2.3 已知随机向量X =(X 1,X 2)′的联合分布密度函数为f (x 1,x 2)=2[(d−c )(x 1−a )+(b−a )(x 2−c )−2(x 1−a)(x 2−c)(b−a)2(d−c)2,其中,a ≤x 1≤b,c ≤x 2≤d 。

(完整版)多元统计分析课后练习答案

(完整版)多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。

其中最典型的就是0-1标准化和Z 标准化。

2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。

在二维和三维空间中的欧氏距离的就是两点之间的距离。

缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。

每个坐标对欧氏距离的贡献是同等的。

当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。

当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。

它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。

没有考虑到总体变异对距离远近的影响。

马氏距离表示数据的协方差距离。

为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。

由标准化数据和中心化数据计算出的二点之间的马氏距离相同。

马氏距离还可以排除变量之间的相关性的干扰。

缺点:夸大了变化微小的变量的作用。

受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。

3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。

如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。

应用多元统计分析课后习题答案高惠璇

应用多元统计分析课后习题答案高惠璇
3 解三:两次配方法
2 1 2 2 2 (1)第一次配方: 2 x12 2 x1 x2 x2 ( x1 x2 ) 2 x12
2 1 x1 2 1 1 1 1 1 因2 x 2 x1 x2 x ( x1 , x2 ) , 而 BB, 1 1 x2 1 1 1 0 1 0 y1 1 1 x1 x1 x2 2 2 2 2 令y , 则 2 x 2 x x x y y 1 1 2 2 1 2 y x x 1 0 2 1 2
类似地有

1 2 2 ( 2 x1 22 x1 65 x1 14 x1 49 ) 2
f 2 ( x2 )
X 2 ~ N (3,2).

f (x , x )dx
1 2 1
1 2 2
e
1 ( x2 3) 2 4
10
第二章
多元正态分布及参数的估计
1 e 2
1 2 ( 2 x1 22 x1 65) 2

e
1 2 ( x2 2 x2 ( x1 7 ) ( x1 7 ) 2 ) 2
dx2 e
1 ( x1 7 ) 2 2
9
第二章
多元正态分布及参数的估计
1 ( x2 x1 7 ) 2 2
1 e e dx2 2 1 2 1 ( x 8 x 16 ) ( x2 x1 7 ) 2 1 1 1 1 2 e 2 e dx2 2 2 1 ( x1 4 ) 2 1 e 2 X1 ~ N (4,1). 2
u1 x1 4 令 u2 x2 3

《应用多元统计分析》各章作业题及部分参考答案

《应用多元统计分析》各章作业题及部分参考答案

60.6
16.5
2 76
58.1
12.5
3 92
63.2
14.5
4 81
59.0
14.0
5 81
60.8
15.5
6 84
59.5
14.0
解:作如下假设 H0 : μ = μ0 , H1 : μ ≠ μ0
经计算,求的样本均值向量 x = (82.0, 60.2,14.5) ' ,x − μ0 = (−8, 2.2, −1.5) ' ,样本协差阵
x2
+
1 2
x3
+
1 2
x4 。
(2)第一主成分的贡献率为
λ1
+
λ2
λ1 +
λ3
+ λ4
= 1+ 3ρ 4
≥ 95% ,得 ρ
≥ 0.933 。
第 7 章 因子分析
1、设 x = (x1, x2 , x3 )′ 的相关系数矩阵通过因子分析分解为
⎛ ⎜
1

R
=
⎜ ⎜
−1 3
⎜ ⎜⎜⎝
2 3
−1 3 1
54.58
11.67
产品净值率 10.7
6.2
21.41
11.67
7.90
2、 设 G1, G2 , G3 三个组,欲判别某样品 x0 属于何组,已知 p1 = 0.05, p2 = 0.65, p3 = 0.3,
应用多元统计分析
pofeel@
3
f1 (x0 ) = 0.10, f2 (x0 ) = 0.63, f3 (x0 ) = 2.4 ,假定误判代价矩阵为:
⎢⎣ 4.5 ⎥⎦
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
任意
任意
n1 1 (1, n1 , n2 ) ~ F (n2 , n1 ) n2 (1, n1 , n2 )
n1 1 1 (2, n1 , n2 ) ~ F (2n2 , 2(n1 1)) n2 (2, n1 , n2 )
2
任意
任意
3.3 试述威尔克斯统计量在多元方差分析中的重要意义。 答:威尔克斯统计量在多元方差分析中是用于检验均值的统计量。
z t
( X 0 )
( X 0 ) n S

n
| z | z / 2
| t | t / 2 (n 1)
1 n ( X i X )2 作为 2 的估计量) n 1 i 1
一个正态总体 H 0:μ μ 0 协差阵 Σ 已知 协差阵 Σ 未知
T02 n( X μ0 ) Σ 1 ( X μ0 ) ~ 2 ( p) (n 1) p 1 2 T ~ F ( p, n p) (n 1) p
3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。 其基本思想和步骤均可归纳为: 答: 第一,提出待检验的假设 和 H1; 第二,给出检验的统计量及其服从的分布; 第三,给定检验水平,查统计量的分布表,确定相应的临界 值,从而得到否定域; 第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出 决策(拒绝或接受) 。 均值向量的检验: 统计量 均值向量的检验: 在单一变量中 当 2 已知 当 2 未知 ( S2 拒绝域
( T (n 1)[ n ( X μ 0 )S
2 1
2 T02 n p 2 T F (n 1 ) p
n ( X μ 0 )] )
两个正态总体 H 0:μ1 μ 2 有共同已知协差阵 有共同未知协差阵
T02
协差阵不等 n m 协差阵不等 n m
2
相互独立, n p ,则称统计量
的分布为非中心霍特林 T2 分布。
若 X ~ N p (0, Σ) , S ~ Wp (n, Σ) 且 X 与 S 相 互 独 立 , 令 T 2 nXS1X , 则
n p 1 2 T ~ F (p n , p 1。 ) np
(2)威尔克斯 分布在实际应用中经常把 统计量化为 T 统计量进而化为 F 统计量, 利用 F 统计量来解决多元统计分析中有关检验问题。 与 F 统计量的关系
统计量 k n np / 2
np / 2
Si
i 1
k
ni / 2
S
n/2
n
i 1
k
i
pni / 2
3.2 试述多元统计中霍特林 系。 答: (! )霍特林
分布和威尔克斯 分布分别与一元统计中 t 分布和 F 分布的关
分布是 t 分布对于多元变量的推广。
n( X )2 S ~ Wp (n, Σ) 且 X 与 S t n( X )(S 2 )1 ( X ) 而若设 X ~ N p (μ , Σ) , 2 S
2
p
n1
任意
n2
1
F 统计量及分别
任意
n1 p 1 1 ( p, n1 ,1) ~ F ( p, n1 p 1) p ( p, n1 ,1)
任意
任意
2
n1 p 1 ( p, n1 , 2) ~ F (2 p, 2(n1 p )) p ( p, n1 , 2)
H 0:μ1 μ 2 μ k
H1:至少存在i j使μi μ j
E E ~ ( p, n k , k 1) T AE
给定检ห้องสมุดไป่ตู้水
用似然比原则构成的检验统计量为
平 ,查 Wilks 分布表,确定临界值,然后作出统计判断。
协差阵的检验 检验 Σ Σ 0
H 0:Σ I p
1 n/2 e exp trS S 2 n
np / 2
1 n/2 e H 0:Σ Σ0 I p exp trS* S* 2 n 检验 Σ1 Σ 2 Σ k H 0:Σ1 Σ 2 Σ k
nm 2 Σ 1 X T02 (X Y ) ( Y ) ~ 2p ( ) nm (n m 2 ) p 1 2 F F F T ~ F( p , n m p1 ) (n m 2 ) p nm nm 2 ( X Y) S 1 ( X Y) ) (其中 T (n m 2) nm nm (n p )n F F F ZS-1Z ~ F ( p, n p) p
F
(n p )n ZS-1Z ~ F ( p, n p) p
F F
多个正态总体 H 0:1 2 k 单因素方差
F
SSA (k 1 ) ~F( k 1 n, k SSE (n k )

)
F F
多因素方差
E E ~ (p ,n k , k 1 ) T AE
相关文档
最新文档