第三章模糊控制(习题)
神经网络与模糊控制考试题及答案

一、填空题1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 13、神经网络的学习方式有导师监督学习、无导师监督学习和灌输式学习4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1);(2)。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。
16、直接型专家控制器、间接型专家控制器17.普通集合可用函数表示,模糊集合可用函数表示。
模糊控制习题2

模糊控制习题1、举出有限论域上的一个模糊集,并用三种形式表示之。
2、设论域 U ={u 1, u 2, u 3, u 4, u 5};A =(0.2 0.1 0.5 1 0.7);B =(0.4 0.8 0.9 0 0.2);C =(0.1 0.7 0.6 0.4 0.3),试求A ∪B ,A ∩B ,A C ,(A ∪B )∩C 。
3、对企业论域 U ={u 1, u 2, u 3, u 4, u 5, u 6},有A =“大企业”=(0.4 0.3 0.7 0.2 0.5 0.8);B =“小企业”=(0.5 0.6 0.5 0.7 0.4 0.3);试求 (1) C =“非大企业”; (2) D =“非小企业”;(3) E =“或大或小企业”; (3) F =“中型企业”。
4、给定模糊集合A 、B 和C ,确定他们的λ切割。
{}221()(2,1),(3,0.8),(4,0.6),(5,0.4),(6,0.2),(7,0.4),(8,0.6),(9,0.8),(10,1)0.2,0.51()0.2,0.5;[0,]1(10)010()0.3,0.5;[0,]10(1(10))A B C x x x x x x x x x μαμαμα-=====∞+-≤⎧===∞⎨>+-⎩ 123451234512351351335{,,,,}{,,,,}0.2{,,,}0.5{,,}0.60.7{,}0.2{}U u u u u u u u u u u u u u u A u u u u u u A λλλλλλ=⎧=⎪=⎪⎪==⎨⎪=⎪=⎪⎩、若, 试用分解定理求。
26{0,1,2,3,4,5}{0,1,2,,25}:() (0.2 0.4 0.8 0.1 1 0.5)()x y f x y x f x x x A f A ==→→== 、设 , 有映射 , 在 中定义 ,求 。
7、双边高斯函数MF ,由下式定义:211111221222221exp 2(,,,,)11exp 2s x c x c gauss x c c c x c x c c xσσσσ⎧⎡⎤⎛⎫-≤⎪⎢⎥-⎪⎪⎢⎥⎝⎭⎣⎦⎪⎪=<<⎨⎪⎡⎤⎛⎫-⎪⎢⎥-⎪⎪≤⎢⎥⎝⎭⎪⎣⎦⎩1)编一个MATLAB 程序实现上述MF ;2)对不同的参数画出这个MF ; 3)找出该MF 的交叉点和宽度。
智能控制(第三版)chap3-模糊控制理论基础

mA(x)
1 0
xA xA
武汉科技大学 信息科学与工程学院
7
为其了中表A称示为模模糊糊概集念合,,引由入0模,1糊及集mA合(x)和构隶成属。函数的概
念m:A(x)表
示
元素
x属
于模
1
糊x集合AA
的程
度
,取
值范
围
为[0, 1],称mmAA((xx))为x(属0,1于) 模x属 糊集于A合的A程 的隶度属度。
0
xA
清晰集合特征函数 模糊集合隶属函数
武汉科技大学 信息科学与工程学院
8
2. 模糊集合的表示 ① 模糊集合A由离散元素构成,表示为:
m m m 这里的A 符 号“1 // ”x 、1 “ +2 ”和/x “2 ∫ ” 是 模i糊/x 集i合 的表
m m m 示于”方。式或,不A 表 示 ( x 数1 , 学1 运) ( 算x 2 ,, ,仅2 ) 代 表, , “( x 构i,成i) ” 或 , “属
② 模糊集合A由连续函数构成,各元素的隶属度就
构成了隶属度函A 数,此m时AA(x表)/示x为:
武汉科技大学 信息科学与工程学院
9
C例好A(”3王.1此。五设时设)=论特三1。域征个三U函人=者数学{张无分习三差成别,别绩为李。总C四A评(,张分王三是五)=张1},三,评9C5A语分(李为,四“李)=成四1绩9,0 分,王五85分,三人的成绩都好,但又有差异。
m mm mm A B A B ( u ) m A ( u ) a B ( , u ) x ) A ( u ( ) B ( u )
武汉科技大学 信息科学与工程学院
17
神经网络与模糊控制考试题及答案

一、填空题1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成2、一个单神经元的输入是1.0 ,其权值是1。
5,阀值是—2,则其激活函数的净输入是-0。
5 ,当激活函数是阶跃函数,则神经元的输出是 13、神经网络的学习方式有导师监督学习、无导师监督学习和灌输式学习4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和.7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1);(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和.知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。
16、直接型专家控制器、间接型专家控制器17.普通集合可用函数表示,模糊集合可用函数表示。
强制转移模糊控制练习与答案

强度转移推理习题:设在论域e(误差)=[-4 4]和控制电压u=[0, 8]上定义的模糊子集的隶属度函数分别如图1所示。
图1 第三大题第2小题图 已知模糊逻辑控制规:规则1 如果误差e 为ZE, 则u 为ZE; 规则2 如果误差e 为PS, 则u 为NS. 试计算出当输入误差e=0.6时, 输出电压u=?解法一:采用最大隶属度平均法进行去模糊化: 1 输入输出模糊化 1) 确定输入输出变量,2) 确定输入输出变量的模糊语言值(模糊集合) 3) 建立隶属度函数方程 对于误差来说:1()(2)022()1()022ze e ps x x x x x x x μμμ-⎧=-≤≤⎪⎪=⎨⎪=≤≤⎪⎩对于控制电压来说:1022()1(4)242()1(2)242()1(6)462NS u ZE y y y y y y y x y y y μμμ⎧⎧≤≤⎪⎪⎪=⎪⎨-⎪⎪-≤≤⎪⎪⎪⎩=⎨⎧⎪-≤≤⎪⎪⎪=⎨⎪-⎪⎪-≤≤⎪⎪⎩⎩2 根据经验建立模糊控制规则:3 模糊推理 (1) 规则匹配已知当前输入误差e=0.6,分别代入所属的隶属函数求隶属度为:(0.6)0,(0.6)0,(0.6)0.7(0.6)0.3,(0.6)0NB NS ZE PS PB μμμμμ=====由此可得到触发的控制规则:(2)每条规则的可信度输出:(3) 模糊系统总的输出:模糊系统总的可信度输出为各条规则可信度推理结果的并集。
{}()max min(0.7,()),in(0.3,())agg ZE NS y y m y μμμ=4 反模糊化采用最大隶属度平均法进行反模糊化由(4)可知,输出电压u 的最大隶属度为0.7.将0.7代入输出电压隶属函数中的()ZE y μ,得:10.7(2)210.7(6)2y y =--=-解得:y1=3.4 y2=4.6采用最大平均法,可得精确输出为:y=4.解法2:采用重心法去模糊化 1 输入输出模糊化 4) 确定输入输出变量,5) 确定输入输出变量的模糊语言值(模糊集合)6) 建立隶属度函数方程 对于误差来说:1()(2)022()1()022ze e ps x x x x x x x μμμ-⎧=-≤≤⎪⎪=⎨⎪=≤≤⎪⎩对于控制电压来说:1022()1(4)242()1(2)242()1(6)462NS u ZE y y y y y y y x y y y μμμ⎧⎧≤≤⎪⎪⎪=⎪⎨-⎪⎪-≤≤⎪⎪⎪⎩=⎨⎧⎪-≤≤⎪⎪⎪=⎨⎪-⎪⎪-≤≤⎪⎪⎩⎩31)根据规则1:规则1、如果误差e 是ZE ,则控制U 为ZE;e有:误差(0.6)0.7ZE μ= 由规则1得到 故控制:10.7U ZE=解得:U 11=3.4, U 12=4.6;2)根据规则2、如果误差e 是PS ,则控制U 为NS;Ue误差(0.6)0.3PS μ=由规则2得到 故控制:20.3U PS=解得:U 21=0.6, U 22=3.4;3)根据重心法,去模糊化输出电压为:00.7 3.40.7 4.60.30.60.3 3.43.40.70.70.30.3U ⨯+⨯+⨯+⨯==+++。
模糊控制的数学基础

选择题
模糊控制理论中的核心概念之一是模糊集合,它主要由谁提出?
A. 扎德(Zadeh)(正确答案)
B. 牛顿
C. 莱布尼茨
D. 欧拉
模糊集合论中,用于描述元素属于集合程度的函数是什么?
A. 隶属函数(正确答案)
B. 概率函数
C. 分布函数
D. 密度函数
在模糊逻辑中,处理不确定性和模糊性的基本工具是什么?
A. 模糊规则
B. 模糊推理系统(正确答案)
C. 模糊数
D. 模糊关系
模糊控制中,用于将模糊量转换为精确量的过程称为?
A. 模糊化
B. 清晰化(正确答案)
C. 模糊推理
D. 模糊规则生成
下列哪一项是模糊控制系统中常用的清晰化方法?
A. 最小二乘法
B. 质心法(正确答案)
C. 牛顿法
D. 拉格朗日法
模糊集合的运算中,表示两个模糊集合合并的操作是什么?
A. 模糊交
B. 模糊并(正确答案)
C. 模糊补
D. 模糊蕴含
在模糊逻辑中,用于表示模糊命题之间逻辑关系的运算是什么?
A. 模糊蕴含(正确答案)
B. 模糊加法
C. 模糊减法
D. 模糊乘法
模糊控制器的设计过程中,确定输入输出变量模糊子集及其隶属函数的过程称为?
A. 模糊规则设计
B. 模糊化设计
C. 模糊关系设计
D. 隶属函数设计(正确答案)
模糊控制系统性能的好坏很大程度上取决于什么的设计?
A. 模糊规则库(正确答案)
B. 模糊推理机
C. 模糊化接口
D. 清晰化接口。
第3章 模糊控制

期望值
+ - y
e
ec
ke d/dt kec
E
EC
ห้องสมุดไป่ตู้
模糊
控制器
U
u
ku
图中ke、kec为量化因子,ku为比例因子
量化: 将一个论域离散成确定数目的几小段(量化 级)。每一段用某一个特定术语作为标记,这 样就形成一个离散域。
假设在实际中,误差的连续取值范围是 e=[eL,eH],eL表示低限值,eH表示高限值。 将离散语言变量E的论域定义为{-m,„,-1, 0,1, „,m}。则有量化因子: 2m ke eH eL 量化因子实际上类似于增益的概念,在这 个意义上称量化因子为量化增益更为合适。
i Ri : IF x1 IS A1i AND x2 IS A2 AND xp IS Aip
i i THEN vi a0 a1 x aip x p i 1 , , N
(3 1)
vi 是模糊语言值; xi是一个输入变量;是输 i 出变量;系数集{a j }是待辨识的参数。模型的辨 i i ( N , p ) { A , a 识分两步。即结构参数 的辨识和系数 j j } 的确定。
1、最大隶属度函数法 简单地取所有规则推理结果的模糊集合中隶属 度最大的那个元素作为输出值。即: 当论域 V 中,其最大隶属度函数对应的输出 值多于一个时,简单取最大隶属度输出的平均即 可: U 0 max v (v) v V 为具有相同最大隶属度输出的总数。 此方法计算简单,但丢失信息,控制性能不高。
式中,<>代表取整运算。 模糊控制器的输出U可以通过下式转换为 实际的输出值u:
uH uL u ku U 2
问题的提出 变量量化会导致一定的量化误差。 解决方法 在量化级之间,加入插值运算。对于任意一 个连续的测量值可以通过相邻两个离散值的加 权运算得到模糊度的值。
06级模糊控制试题

机械工程学院2006-2007学年第二学期06级研究生《模糊控制》试题一、叙述两输入单输出的模糊控制器的“模糊控制查询表”的计算过程。
二、设电炉温度设定值为3000度,温度误差E 控制精度为±5‰,误差e~的论域为X ={ -6,-5,-4,-3,-2,-1,-0,0,1,2,3, 4,5,6},误差变化率EC 的基本论域取[-24,24],误差变化率c e ~的论域为Y={ -3,-2,-1,0,1,2,3},控制量U 变化的基本论域为[-36,+36],选取u ~的论域Z={ -6,-5,-4,-3,-2,-1,0,1,2,3, 4,5,6},若用FC ,三个量化因子如何确定?量化值如何计算?三、已知双输入单输出模糊系统,其输入量为x 和y ,输出量为z ,设论域X ={}321,,a a a 、Y ={}321,,b b b 、Z ={}321,,c c c ,其输入输出关系可用如下两条模糊规则描述:1~R :如果x 是1~A and y 是1~B ,则z 是1~C2~R :如果x 是2~Aandy是2~B ,则z 是2~C现已知输入为:x 是'~A andy是'~B ,求输出量z 的模糊集合'~C 。
1~A =32105.01a a a ++,1~B =3212.06.01b b b ++,1~C =32104.01c c c ++2~A =32115.00a a a ++,2~B =3212.06.01b b b ++,2~C =32104.01c c c ++'~A =3215.015.0a a a ++,'~B =3216.016.0b b b ++要求:用手工计算或用编程计算均可。
四、利用模糊逻辑工具箱的图形用户界面GUI 建立模糊推理系统FIS 。
考虑两个输入、一个输出的模糊推理问题。
推理对象可以自己设定,所有模糊语言变量、论域、隶属度函数及其模糊控制规则自己定义。
智能控制复习题.

智能控制复习第一章选择题1.智能控制的概念首次由著名学者( D )提出A 蔡自兴B J.S.AlbusC J.M.MendelD 傅京孙2.经常作为智能控制典型研究对象的是( D )A 智能决策系统B 智能故障诊断系统C 智能制造系统D 智能机器人3.解决自动控制面临问题的一条有效途径就是,把人工智能等技术用入自动控制系统中,其核心是( B )A 控制算法B 控制器智能化C 控制结构D 控制系统仿真4.智能自动化开发与应用应当面向( C )A 生产系统B 管理系统C 复杂系统D 线性系统5.不.属于..智能控制是( D )A 神经网络控制B专家控制C 模糊控制D 确定性反馈控制6.以下不属于智能控制主要特点的是( D )A 具有自适应能力B 具有自组织能力C 具有分层递阶组织结构D 具有反馈结构7.以下不属于智能控制的是( D )A 神经网络控制B 专家控制C 模糊控制D 自校正调节器第二章选择题1.地质探矿专家系统常使用的知识表示方法为( D )A 语义网络B 框架表示C 剧本表示D 产生式规则2.自然语言问答专家系统使用的知识表示方法为( B )A 框架表示B语义网络C 剧本表示D 产生式规则3.专家系统中的自动推理是基于( C )的推理。
A 直觉B 逻辑C 知识D 预测4.适合专家控制系统的是( D )A 雷达故障诊断系统B 军事冲突预测系统C 聋哑人语言训练系统D 机车低恒速运行系统5.直接式专家控制通常由( B )组成A 控制规则集、知识库、推理机和传感器B 信息获取与处理、知识库、控制规则集和推理机C 信息获取与处理、知识库、推理机和传感器D 信息获取与处理、控制规则集、推理机和传感器6.专家控制可以称作基于( D )的控制。
A 直觉B 逻辑C 预测D 知识7.直接式专家控制通常由( C )组成A 信息获取与处理、知识库、推理机构和传感器B 信息获取与处理、知识库、控制规则集和传感器C 信息获取与处理、知识库、推理机构和控制规则集D 信息获取与处理、控制规则集、推理机构和传感器8.专家系统的核心部分是( B )A 人机接口、过程接口、推理机构B 知识库、数据库、推理机构C 人机接口、知识获取结构、推理机构 D知识库、数据库、人机接口9.以下不属于专家系统知识表示法的是( C )A 彩色Petri网络B 语义知识表示C 样本分类D 产生式规则10.产生式系统的推理方式不包括( C )A 正向推理B 反向推理C 简单推理D 双向推理11.肺病诊断专家系统使用的知识表示方法为( D )A 语义网络B 产生式规则C 剧本表示D 框架表示12.以下不属于专家系统组成部分的是 ( A )A 专家B 数据库C 知识库D 解释部分13.黑板专家控制系统的组成有( C )A 黑板、数据库、调度器B 数据库、知识源、调度器C黑板、知识源、调度器 D 黑板、规则库、调度器14.建立专家系统,最艰难(“瓶颈”)的任务是( B )A 知识表示B 知识获取C 知识应用D 知识推理15. 在专家系统中, ( D )是专家系统与用户间的人-机接口A 知识库B 数据库C 推理机D 解释机构16. 产生式系统包含的基本组成 ( A )A 知识库、规则库和数据库B 规则库、模型库和控制器C 知识库、规则库和模型库D 规则库、数据库和控制器第三章 模糊控制1. 某模糊控制器输出信息的解模糊判决公式为()()101n i U i i n U i i u u u u m m ==´=åå,该解模糊方法为 ( D )A 最大隶属度法B 取中位数法C 隶属度限幅元素平均法D 重心法2.在温度模糊控制系统中,二维模糊控制器的输入是 ( A )A 温度的误差e 和温度误差变化量d eB 控制加热装置的电压的误差e 和电压误差变化量deC 控制加热装置的电压的误差e 和温度误差变化量d eD 控制加热装置的电压的误差e 和温度误差变化量de3.下列概念中不能用普通集合表示的是 ( D )A 控制系统B 低于给定温度C 工程师D 压力不足4.以下应采用模糊集合描述的是 ( B )A 高三男生B 年轻C 教师D 社会5.总结手动控制策略,得出一组由模糊条件语句构成的控制规则,据此可建立( D )A 输入变量赋值表B 输出变量赋值表C 模糊控制器查询表D 模糊控制规则表6.某模糊控制器的语言变量选为实际温度与给定温度之差即误差e 、误差变化率△e ;以及加热装置中可控硅导通角的变化量u ,故该模糊控制器为( A )A 双输入一单输出B 单输出一单输入C 双输入一双输出D 单输出一双输入7.在论域U 中,模糊集合A 的支集只包含一个点u ,且()A u m =1,则A 称为 ( B )A a 截集B 模糊单点C 核D 支集8.在模糊控制中,隶属度 ( C )A 不能是1或0B 根据对象的数学模型确定C 反映元素属于某模糊集合的程度D 只能取连续值9.模糊集合中,()A u m =0.5对应的元素u 称为 ( A )A 交叉点B 模糊单点C 核D 支集10.在模糊控制器的推理输出结果中,取其隶属度最大的元素作为精确值,去执行控制的方法称为 ( B )A 重心法B 最大隶属度法C 系数加权平均法D 中位数法11.若模糊集合A 表示模糊概念“老”,其隶属度函数为A m ,则模糊概念“略微老”相当于A λμ,其中 λ为, ( C )A 2B 4C 1/2D 1/412. 若对误差、误差变化率论域X 、Y 中元素的全部组合计算出相应的控制量变化ij u ,可写成矩阵()ij n m u ´,一般将此矩阵制成 ( C )A 输入变量赋值表B 输出变量赋值表C 模糊控制器查询表D 模糊控制规则表13.在温度模糊控制系统中,二维模糊控制器的输出是 ( C )A 温度的误差eB 温度误差变化量d eC 控制加热装置的电压UD 控制加热装置的电压的误差e 和温度误差变化量d e14.以下的集合运算性质中,模糊集合不满足的运算性质 ( D )A 交换律B 结合律C 分配律D 互补律15. 以下属于模糊集合表示方法的是 ( B )A 重心法B 扎德法C 系数加权平均法D 中位数法16.在选定模糊控制器的语言变量及各个变量所取的语言值后,可分别为各语言变量建立各自的( C )A 控制规则表B 控制变量赋值表C 语言变量赋值表D 论域量化表17.模糊控制方法是基于( D )A 模型控制B 递推的控制C 学习的控制D 专家知识和经验的控制18. 以下应采用模糊集合描述的是( B )A 学生B 大苹果C 老师D 演员19.若模糊集合A表示模糊概念“老”,其隶属度函数为Am,则模糊概念“极老”相当于A λμ,其中λ为,( D )A 2B 4C 1/2D 1/420.某液位模糊控制系统的语言变量选为实际温度与给定温度之差即误差e以及加热装置中可控硅导通角的变化量u,但不考虑温度误差变化率△e,该模糊控制器应为( B )A 双输入一单输出B 单输入一单输出C 双输入一双输出D 单输入一双输出21.模糊隶属度函数曲线的形状可以为 ( C )A 椭圆形B 平行四边形C 梯形D 圆形22.在选定模糊控制器的语言变量及各个变量所取的语言值后,可分别为各语言变量建立各自的( C )A 控制规则表B 控制查询表C 语言变量赋值表D 基本论域量化表23.某模糊控制器的语言变量选为实际水位与给定水位之差即误差e,以及调节阀门开度的变化量u,故该模糊控制器为( B ).A. 单输出—双输入 B.单输入—单输出C. 双输入—双输出D. 双输入—单输出24.某一隶属度函数曲线的形状可以选为( C )A 椭圆形B 圆形C 三角形D 正方形25.模糊控制器的术语“正中”,可用符合( D )表示A PB B NMC ZED PM26.以下关于模糊关系的正确说法是( B )A 模糊关系是普通关系的一个特例B 模糊关系描述元素之间的关联程度C 模糊关系中的元素都是整数D 模糊关系矩阵一定是方阵27.模糊控制以模糊集合为基础,最早提出模糊集合的学者是( A )A L.A.ZadehB MamdaniC TakagiD Sugeno28.在模糊控制器的推理输出结果中,取其隶属度函数曲线与横坐标围成面积的重心作为输出值,去执行控制的方法称为( A )A 重心法B 最大隶属度法C 系数加权平均法D 中位数法29.下列概念中不能..用普通集合表示的是( D )A 控制系统B 压力不足C 机电工程师D 低于给定温度30.在模糊控制中,隶属度 ( C )A 不能是1或0B 是根据对象的数学模型确定的C 反映元素属于某模糊集合的程度D 只能取连续值31.最适合作为语言变量的值是( A )A 速度B 天气C 特别D 表演32.若模糊集合A表示模糊概念“老”,其隶属度函数为Am,则模糊概念“非常老”相当于A λμ,其中λ为,( C )A 2B 4C 1/2D 1/4第4 章神经网络1. BP网络使用的学习规则是( B )A 相关规则B 纠错规则C 竞争规则D 模拟退火算法2.BP神经网络所不具备的功能是( C )A 自适应功能B 泛化功能C 优化功能D 非线性映射功能3.由于各神经元之间的突触连接强度和极性有所不同并可进行调整,因此人脑才具有( A ) 的功能。
智能控制技术(第3章-模糊控制的数学基础)

二、模糊控制的特点 模糊控制是建立在人工经验基础之上
的。对于一个熟练的操作人员,他往往凭 借丰富的实践经验,采取适当的对策来巧 妙地控制一个复杂过程。若能将这些熟练 操作员的实践经验加以总结和描述,并用 语言表达出来,就会得到一种定性的、不 精确的控制规则。如果用模糊数学将其定 量化就转化为模糊控制算法,形成模糊控 制理论。
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9
10
trimf,P=[3 6 8]
图 高斯型隶属函数(M=1)
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
1
2
3
4
5
6
7
8
9 10
trimf,P=[2 4 6]
图 广义钟形隶属函数(M=2)
1
0.9
0.8
(7)交集 若C为A和B的交集,则
C=A∩B 一般地,
A B A B (u) min( A (u), B (u)) A (u) B (u)
(8)模糊运算的基本性质 模糊集合除具有上述基本运算性质
外,还具有下表所示的运算性质。
运算法则 1.幂等律 A∪A=A,A∩A=A 2.交换律 A∪B=B∪A,A∩B=B∩A 3.结合律 (A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)
4.吸收律 A∪(A∩B)=A A∩(A∪B)=A 5.分配律 A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B) ∪(A∩C) 6.复原律
第三章答案

3)求关系矩阵R
4)由A’,B’,求出D’
5)仿照2),将D’化为列矢量DT’
6)最后求出模糊推理输出
即
不做
2-1设语言变量速度V、误差W、控制电压U的论域分别为【0,200】、【-30,30】、【0,10】。假设各语言变量的离散论域是由相应连续论域十等分后构成。要求根据常规经验法确定在连续域、离散域下速度大、误差为零、控制电压较大这三个语言值的隶属度函数。
把例题方程分解为
2)按照书上公式(2-63)
把例题方程分解为
3)由 解得到
因此根据
得到
其中x2表示0.2到1范围内。
4)由 解得到
式中,[r]表示等式方程的解;(r)表示不等式方程的解
因此根据
得到
因此,此模糊方程的部分解分别为
所以
(2)求 的解
1)、按照书上公式(2-62)
把例题方程分解为
2)按照书上公式(2-63)
上确界(Sup)算子
(1)
(2)
2-5(仿例题2-12)考虑如下逻辑条件语句
如果转角误差远远大于15。 那么 快速减少方向角 其隶属度函数定义为
问:当A’=转角误差大约在20。时方向角应该怎样变化?
设 。(用玛达尼推理法计算)
解
用玛达尼推理法计算
且
由
2-7求解模糊关系方程
的解
解:
(1)、求 的解
1)、按照书上公式(2-62)
第二章模糊控制的理论基础(学时8)
模糊控制的理论基础
重点:模糊集数学理论
1、与模糊控制有关的模糊集理论
2、隶属度函数
3、模糊语言变量
4、模糊逻辑推理
2-1、2-6不做,2-2
智能控制习题答案解析

3.,第一章 绪论1. 什么是智能、智能系统、智能控制?答:“智能”在美国 Heritage 词典定义为“获取和应用知识的能力”。
“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。
“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知 工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。
2.智能控制系统有哪几种类型,各自的特点是什么?答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系 统、学习控制系统等。
各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。
该系统 将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承 了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统 危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
人工神经网络:它是一种模动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的 复杂程度,通过调整部大量节点之间相互连接的关系,从而达到处理信息的目的。
专家控制系统:是一个智能计算机程序系统,其部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的 知识和解决问题的经验方法来处理该领域的高水平难题。
可以说是一种模拟人类专家解决领域问题的计算机程序系统。
多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。
这种结构的 特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。
2.信息在上下级间垂直 方向传递,向下的信息有优先权。
第三章、模糊控制系统

精确量(V0)
∴V0 = 5
当论域V中,其最大隶属度函数对应的输出值多于一个时, 简单取最大隶属度输出的平均即可:
即:当有(v1) µ 2)= L =µc (vJ ) 最大时 µ = (v
1 J 取v0 = ∑ v j J j =1
U 1 , U 2 , L ,U n :输出论域上模糊子集
总的模糊关系: R( 其中:
e , de , u ) = U Ri
n
当ki 取µv (vi )时
重心法
模糊化计算的其它方法:左取大、右取大等。
第二节:模糊控制系统的设计 一、模糊控制器的结构设计 模糊控制器的结构设计包括:输入输出变量选择、模糊化 算法、模糊推理规则和精确化计算方法。 一维模糊控制器 被控对象 输入输出 (按模糊控制器输入变量个数) 变量 多输入多输出 单输入单输出 二维模糊控制器 多维模糊控制器
例:x分成三档(NB、ZE、PB); y y分成两档(NB、PB); 模糊分区形式:
PB NB 0 NB ZE
R1
R2 R4
R3
PB 24
问:在此分档情况下,最大规则数为多少?
x
2 规则库 用一系列模糊条件描述的模糊控制规则就构成模糊控制规则库。 建立 规则库 选择输入变量和输出变量 建立规则(完备性、交叉性、一致性)
完备性:对于任意给定的输入均有相应的控制规则起作用。 交叉性:控制器的输出值总由数条规则来决定。 一致性:规则中不存在相互矛盾的规则。
模糊控制规则建立方法 1)专家经验法: 通过对专家控制经验的咨询形成控制规则库。 实质:通过语言条件语句来模拟人类的控制行为。
模糊控制第三章解析答案课堂

? 模糊集合一般由论域和隶属函数构成。因此, 模糊化的实质就是求取相应概念对应数值域 的模糊集合隶属函数。
? 为了便于工程实现,通常把输入变量范围人 为地定义成离散的若干级,所定义级数的多 少取决于所需输入量的分辨率。定义输入量 的隶属函数可选用吊钟型、梯形和三角形。
? 理论上吊钟型最为理想,但计算复杂。实践 证明:用三角形和梯形函数其性能并没有十 分明显的差别。
36
? 用于描述人们控制经验的基本语句结构有 三种形式,它们分别反映了三种基本的推 理。这三种基本结构和形式如下:
? 这种推理是一种最简单的蕴涵关系,在语
言表达时表示为“如果 A,那么B ”,即
有:if A then B
~
~
37
② ( A? B) ? ( AC ? C)结构
~
~
~
~
? 这种推理较之前一种复杂,这种蕴涵关系在 用语言表达时叙述为“如果 A,那么B;否则 C ”,即有:
38
? 这种推理的前件有两个,这种蕴涵关系在 用语言表述时为“如果 A而且 B那么C ”, 即有:
? 模糊控制规则应具备如下特性: 1. 完备性 ? 通过设计经验和工程知识,使模糊控制规
则具有完备性。所谓完备性,是指对于任 意给定的输入,均有相应的控制作用。要
39
求控制规则的完备性是保证系统能被控制的 必要条件之一。 2. 一致性 ? 控制规则的一致性是指控制规则中不存在 相互矛盾的规则。如果两条规则的条件部 分相同,但结论部分相差很大,则称两条 规则相互矛盾。 3. 交互作用性 ? 如果控制器的输出值总由数条控制规则来 决定,说明控制规则之间是相互联系、相
方法,其基本思想是:首先定义一基础概念 (Genic concept)及其相应的隶属函数, 然后通过语义算子的作用,产生具有相关语 义的新概念及其隶属函数。 ? 常用的语义算子主要有:
智能控制复习题

智能控制复习第一章 选择题1. 智能控制的概念首次由着名学者 D 提出A 蔡自兴BCD 傅京孙2.经常作为智能控制典型研究对象的是 DA 智能决策系统B 智能故障诊断系统C 智能制造系统D 智能机器人3.解决自动控制面临问题的一条有效途径就是,把人工智能等技术用入自动控制系统中, 其核心是 BA 控制算法B 控制器智能化C 控制结构D 控制系统仿真4.智能自动化开发与应用应当面向 CA 生产系统B 管理系统C 复杂系统D 线性系统 5.不属于...智能控制是 DA 神经网络控制B 专家控制C 模糊控制D 确定性反馈控制6.以下不属于智能控制主要特点的是 DA 具有自适应能力B 具有自组织能力C 具有分层递阶组织结构D 具有反馈结构7.以下不属于智能控制的是 DA 神经网络控制B 专家控制C 模糊控制D 自校正调节器第二章 选择题1. 地质探矿专家系统常使用的知识表示方法为 DA 语义网络B 框架表示C 剧本表示D 产生式规则2.自然语言问答专家系统使用的知识表示方法为 BA 框架表示B 语义网络C 剧本表示D 产生式规则3. 专家系统中的自动推理是基于 C 的推理;A 直觉B 逻辑C 知识D 预测4.适合专家控制系统的是 DA 雷达故障诊断系统B 军事冲突预测系统C 聋哑人语言训练系统D 机车低恒速运行系统5.直接式专家控制通常由 B 组成A 控制规则集、知识库、推理机和传感器B 信息获取与处理、知识库、控制规则集和推理机C 信息获取与处理、知识库、推理机和传感器D 信息获取与处理、控制规则集、推理机和传感器6.专家控制可以称作基于 D 的控制;A 直觉B 逻辑C 预测D 知识7.直接式专家控制通常由 C 组成A 信息获取与处理、知识库、推理机构和传感器B 信息获取与处理、知识库、控制规则集和传感器C 信息获取与处理、知识库、推理机构和控制规则集D 信息获取与处理、控制规则集、推理机构和传感器8.专家系统的核心部分是 BA 人机接口、过程接口、推理机构B 知识库、数据库、推理机构C 人机接口、知识获取结构、推理机构 D知识库、数据库、人机接口9.以下不属于专家系统知识表示法的是 CA 彩色Petri网络B 语义知识表示C 样本分类D 产生式规则10.产生式系统的推理方式不包括 CA 正向推理B 反向推理C 简单推理D 双向推理11.肺病诊断专家系统使用的知识表示方法为 DA 语义网络B 产生式规则C 剧本表示D 框架表示12.以下不属于专家系统组成部分的是 AA 专家B 数据库C 知识库D 解释部分13.黑板专家控制系统的组成有 CA 黑板、数据库、调度器B 数据库、知识源、调度器C黑板、知识源、调度器 D 黑板、规则库、调度器14.建立专家系统,最艰难“瓶颈”的任务是 BA 知识表示B 知识获取C 知识应用D 知识推理15.在专家系统中, D 是专家系统与用户间的人-机接口A 知识库B 数据库C 推理机D 解释机构16.产生式系统包含的基本组成 AA 知识库、规则库和数据库B 规则库、模型库和控制器C 知识库、规则库和模型库D 规则库、数据库和控制器第三章模糊控制1. 某模糊控制器输出信息的解模糊判决公式为101niU i i nUii u u u u ,该解模糊方法为 DA 最大隶属度法B 取中位数法C 隶属度限幅元素平均法D 重心法2.在温度模糊控制系统中,二维模糊控制器的输入是 AA 温度的误差e 和温度误差变化量d eB 控制加热装置的电压的误差e 和电压误差变化量deC 控制加热装置的电压的误差e 和温度误差变化量d eD 控制加热装置的电压的误差e 和温度误差变化量de3.下列概念中不能用普通集合表示的是 DA 控制系统B 低于给定温度C 工程师D 压力不足4.以下应采用模糊集合描述的是 BA 高三男生B 年轻C 教师D 社会5.总结手动控制策略,得出一组由模糊条件语句构成的控制规则,据此可建立DA 输入变量赋值表B 输出变量赋值表C 模糊控制器查询表D 模糊控制规则表6.某模糊控制器的语言变量选为实际温度与给定温度之差即误差e 、误差变化率△e ;以及加热装置中可控硅导通角的变化量u ,故该模糊控制器为AA 双输入一单输出B 单输出一单输入C 双输入一双输出D 单输出一双输入 7.在论域U 中,模糊集合A 的支集只包含一个点u ,且A u =1,则A 称为 BA 截集B 模糊单点C 核D 支集8.在模糊控制中,隶属度 CA 不能是1或0B 根据对象的数学模型确定C 反映元素属于某模糊集合的程度D 只能取连续值9.模糊集合中,A u =对应的元素u 称为 AA 交叉点B 模糊单点C 核D 支集10.在模糊控制器的推理输出结果中,取其隶属度最大的元素作为精确值,去执行控制的方法称为 BA 重心法B 最大隶属度法C 系数加权平均法D 中位数法11.若模糊集合A 表示模糊概念“老”,其隶属度函数为A ,则模糊概念“略 微老”相当于A λμ,其中 λ为, CA 2B 4C 1/2D 1/412. 若对误差、误差变化率论域X 、Y 中元素的全部组合计算出相应的控制量变化ij u ,可写成矩阵ij n m u ,一般将此矩阵制成 CA 输入变量赋值表B 输出变量赋值表C 模糊控制器查询表D 模糊控制规则表13.在温度模糊控制系统中,二维模糊控制器的输出是 CA 温度的误差eB 温度误差变化量d eC 控制加热装置的电压UD 控制加热装置的电压的误差e 和温度误差变化量d e14.以下的集合运算性质中,模糊集合不满足的运算性质 DA 交换律B 结合律C 分配律D 互补律15. 以下属于模糊集合表示方法的是 BA 重心法B 扎德法C 系数加权平均法D 中位数法16.在选定模糊控制器的语言变量及各个变量所取的语言值后,可分别为各语言变量建立各自的 CA 控制规则表B 控制变量赋值表C 语言变量赋值表D 论域量化表17.模糊控制方法是基于 DA 模型控制B 递推的控制C 学习的控制D 专家知识和经验的控制18. 以下应采用模糊集合描述的是 BA 学生B 大苹果C 老师D 演员19.若模糊集合A 表示模糊概念“老”,其隶属度函数为A ,则模糊概念“极老”相当于A λμ,其中 λ为, DA 2B 4C 1/2D 1/420.某液位模糊控制系统的语言变量选为实际温度与给定温度之差即误差e 以及加热装置中可控硅导通角的变化量u ,但不考虑温度误差变化率△e ,该模糊控制器应为 BA 双输入一单输出B 单输入一单输出C 双输入一双输出D 单输入一双输出21.模糊隶属度函数曲线的形状可以为 CA 椭圆形B 平行四边形C 梯形D 圆形22.在选定模糊控制器的语言变量及各个变量所取的语言值后,可分别为各语言变量建立各自的 CA 控制规则表B 控制查询表C 语言变量赋值表D 基本论域量化表23.某模糊控制器的语言变量选为实际水位与给定水位之差即误差e ,以及调节阀门开度的变化量u ,故该模糊控制器为 B .A. 单输出—双输入 B .单输入—单输出C. 双输入—双输出D. 双输入—单输出24.某一隶属度函数曲线的形状可以选为 CA 椭圆形B 圆形C 三角形D 正方形25. 模糊控制器的术语“正中”,可用符合 D 表示A PB B NMC ZED PM26. 以下关于模糊关系的正确说法是 BA 模糊关系是普通关系的一个特例B 模糊关系描述元素之间的关联程度C 模糊关系中的元素都是整数D 模糊关系矩阵一定是方阵27.模糊控制以模糊集合为基础,最早提出模糊集合的学者是 AB MamdaniC TakagiD Sugeno28.在模糊控制器的推理输出结果中,取其隶属度函数曲线与横坐标围成面积的重心作为输出值,去执行控制的方法称为 AA 重心法B 最大隶属度法C 系数加权平均法D 中位数法 29.下列概念中不能..用普通集合表示的是 DA 控制系统B 压力不足C 机电工程师D 低于给定温度30.在模糊控制中,隶属度 CA 不能是1或0B 是根据对象的数学模型确定的C 反映元素属于某模糊集合的程度D 只能取连续值31.最适合作为语言变量的值是 AA 速度B 天气C 特别D 表演32.若模糊集合A 表示模糊概念“老”,其隶属度函数为A ,则模糊概念“非常老”相当于A λμ,其中 λ为,C A 2B 4C 1/2D 1/4第4 章 神经网络1. BP 网络使用的学习规则是 BA 相关规则B 纠错规则C 竞争规则D 模拟退火算法2.BP 神经网络所不具备的功能是 CA 自适应功能B 泛化功能C 优化功能D 非线性映射功能3. 由于各神经元之间的突触连接强度和极性有所不同并可进行调整,因此人脑才具有 A 的功能;A 学习和存储信息B 输入输出C 联想D 信息整合4. 采用单层拓扑结构的神经网络是 AA Hopfield 网络B 生物神经网络C BP 网络D 小脑模型网络5. 单层神经网络,有两个输入,两个输出,它们之间的连接权有 BA 6个B 4个C 2个D 8个6. 神经网络直接逆控制是一种 B 控制;A 反馈B 前馈C 串级D 混合7.误差反向传播算法属于 B 学习规则A 无导师B 有导师C 死记忆D 混合 8.以下不属于...人工神经网络主要特点的是 BA 便于用超大规模集成电路或光学集成电路系统实现B 网络中含有神经元C 信息分布在神经元的连接上D 可以逼近任意非线性系统9.最适宜用于联想记忆的神经网络 DA BP 神经网络B 感知器网络C 自适应线性神经网络D Hopfield 网络10.PID 神经网络控制中,控制器使用了 CA CMAC 神经网络B Hopfield 网络C PID 神经网络 D 感知器网络11.下面哪个方程最好描述了Hebb 学习规则 AA 两个神经元同时兴奋或同时抑制时,它们之间连接权的强度增强B 两个神经元同时兴奋或同时抑制时,它们之间连接权的强度减弱C 两个神经元,一个兴奋,另一个抑制,它们之间连接权的强度增强D 两个神经元,一个兴奋,另一个抑制,它们之间连接权的强度不变12.在神经网络内模控制结构中,神经网络辨识器用来获得 AA 被控对象的正模型B 被控刘象的逆模型C 线性滤波器D 控制器13.单层神经网络,有三个输入,三个输出,它们之间的连接权有 BA 6个B 9个C 16个D 25个 14.多层前向神经网络与单层感知器相比较,下面 C 不是..多层网络所特有的特点A 采用误差反向传播算法B 含有一层或多层的隐层神经元C 神经元的数目可达到很多D 隐层激活函数采用可微非线性函数15.单层感知器网络可以 BA 解决异或问题B 实现样本分类C 进行优化计算D 实现函数逼近16.能够用于无导师学习的神经网络模型是 AA Hopfield 网络B CMAC 神经网络C BP 神经网络D 自适应线性神经网络17.连续型Hopfield 网络 BA 是前馈神经网络B 是单层反馈型非线性神经网络C 具有函数逼近问题D 是多层反馈型非线性神经网络18.离散Hopfield 网络 CA 是多层反馈网络B 是多层反馈网络C 具有联想记忆功能D 具有函数逼近功能19.神经网络PID 控制是一种 BA 前馈控制B 反馈控制C 开环控制D 混合控制20.单层感知器网络可以 DA 解决异或问题B 实现函数逼近C 进行优化计算D 实现样本分类21.连续型Hopfield 网络的神经元转移函数采用 AA .对称型Sigmoid 函数B .对称型阶跃函数C .分段线性转移函数D .阈值型转移函数22.在间接神经网络模型参考自适应控制中, BA 需要一个神经网络控制器B 需要一个神经网络控制器及一个神经网络辨识器C 需要两个神经网络控制器及一个神经网络辨识器D 需要一个神经网络控制器及两个个神经网络辨识器23.生物神经元的突触连接相当于神经元之间的 DA 输入连接B 输出连接C 绝缘D 输入输出接口24. 在间接神经网络模型参考自适应控制结构中,神经网络辨识器用来获得 AA 被控对象的正模型B 被控刘象的逆模型C 线性滤波器D 控制器25.生物神经元的组成包括细胞体、轴突、树突和 CA 轴突末梢B 细胞核C 突触D 细胞膜26.以下不属于人工神经网络主要特点的是 BA 信息并行处理B 网络中含有神经元C 信息分布在神经元的连接上D 可以逼近任意非线性系统27.一般认为,人工神经网络最适用于 BA 线性系统B 非线性系统C 多输入多输出系统D 多变量系统28.在直接神经网络模型参考自适应控制中, AA 需要一个神经网络控制器B 需要一个神经网络控制器及一个神经网络辨识器C 需要两个神经网络控制器及一个神经网络辨识器D 需要一个神经网络控制器及两个个神经网络辨识器29.离散型Hopfield网络的神经元转移函数采用 D A.对称型Sigmoid函数 B.对称型阶跃函数C.分段线性转移函数 D.阈值型转移函数30.采用单层拓扑反馈结构的神经网络是 AA Hopfield网络B BP网络C PID神经网络D 小脑模型神经网络31.基于多层前向神经网络的PID控制系统结构有 D 内含神经网络的环节;A 一个B 四个C 三个D 两个32.最早提出人工神经网络模型的学者是 BA HebbB McCulloch和 PittsC RosenblattD Hopfield33.神经网络内模控制具有 CA 直接逆控制的优点和缺点B 直接逆控制的优点C 直接逆控制的优点,但无直接逆控制的缺点D 直接逆控制的缺点第5章遗传算法1.最早提出遗传算法概念的学者是 AD2.遗传算法的基本操作顺序是 CA 计算适配度、交叉、变异、选择 B计算适配度、交叉、选择、变异C计算适配度、选择、交叉、变异 D 计算适配度、选择、交叉、变异3.能够往种群中引入新的遗传信息是以下哪种遗传算法的操作 DA 交叉B 复制C 优选D 变异4.哪一种说法是对遗传算法中复制操作的描述 AA 个体串按照它们的适配值进行复制B 随机改变个体串的适配度函数值C 随机改变一些串中的一小部分D 为权值随机产生小的初始值5.遗传算法中,关于变异操作的最好叙述是 AA 随机改变一些“串”中的一小部分B 随机挑选新“串”组成下一代C 为权随机产生新的初始值D 从两个“串”中随机组合遗传信息6.哪种遗传算法的操作,能够从种群中淘汰适应度值小的个体 CA 交叉B 优选C 复制D 变异7.遗传算法将问题的求解表示成“染色体”,“染色体”实际上是 DA 基因B 适应度函数C 种群D 用编码表示的字符串8.哪种遗传算法的操作,可以从父代双亲中继承部分遗传信息,传给子代 AA 交叉B 变异C 复制D 共享9.下面哪种类型的学习能够用于移动机器人的路径规划 DA 多层前向神经网络B PID神经网络C 自适应线性神经网络D 遗传算法10.轮盘赌技术可用于 BA 选择最好的“染色体”B 随机选择“染色体”C 交叉所选择的“染色体”D 变异“染色体”的适应度11.遗传算法将问题的求解表示成“染色体”,“染色体”实际上是 CA 种群B 存在于细胞核中能被碱性染料染色的物质C 用编码表示的字符串D 各种数值12.在遗传算法中,复制操作可以通过 B 的方法来实现 A 解析B 随机C 交叉匹配D 变异判断题第一章绪论1.与传统控制相比较,智能控制方法可以较好地解决非线性系统的控制问题; √2.智能控制系统采用分层递阶的组织结构,其协调程度越高,所体现的智能也越高; √3.分层递阶智能控制按照自下而上精确程度渐减、智能程度渐增的原则进行功能分配; √4.智能系统是指具备一定智能行为的系统; √5.智能控制的不确定性的模型包括两类,一类是模型未知或知之甚少;另一类是模型的结构和参数可能在很大范围内变化; √第二章专家系统1.在专家系统中,数据库是领域知识的存储器,是系统的核心部分之一;√2.在设计专家系统时,知识工程师的任务是提供解决问题的知识和经验;×3.数据库和推理机是专家系统的核心部分;应为知识库×4.按照执行任务分类,专家系统有解释型、预测型、诊断型、调试型、维修型等多种类型; √5.专家系统实质上是一种数学计算系统; ×6.在设计专家系统时,知识工程师的任务是模仿人类专家,运用他们解决问题的知识和经验; √第三章模糊控制1.模糊控制只是在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,还需要建立数学模型; ×2.在模糊控制中,为把输入的确定量模糊化,需要建立模糊控制规则表; 应该是确定模糊集合×3.在模糊集合的向量表示法中,隶属度为0的项必须用0代替而不能舍弃;√4.从模糊控制查询表中得到控制量的相应元素后,乘以比例因子即为控制量的变化值; √5.与传统控制相比,智能模糊控制所建立的数学模型因具有灵活性和应变性,因而能胜任处理复杂任务及不确定性问题的要求; ×6.在模糊语言变量中,语义规则用于给出模糊集合的隶属函数; √7.模糊控制对被控对象参数的变化不敏感,可用它解决非线性、时变、时滞系统的控制; √8.普通关系是模糊关系的推广,它描述元素之间的关联程度; ×9.模糊控制就是不精确的控制; ×10.在模糊控制中,为把输入的确定量模糊化,需要建立语言变量赋值表;√11.模糊控制规则是将人工经验或操作策略总结而成的一组模糊条件语句√12.通常,模糊控制器的输入、输出语言变量分别取为控制系统的误差和误差变化率; ×13.模糊控制器的输入语言变量一般可取控制系统的误差及其变化率;√14.模糊控制只是在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,还需要建立数学模型; ×15.T-S模糊控制系统采用系统状态变化量或输入变量的函数作为IF-THEN模糊规则的后件,不可以描述被控对象的动态模型;×16.Mamdani型模糊控制器,通过模糊推理得到的结果是精确量; ×17.在模糊控制中,隶属度是根据对象的数学模型来确定的; ×18.模糊控制中,语言变量的值可用“负大、负小、零”等表示; √19.模糊控制在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,不需要建立数学模型; √第四章神经网络1.可以充分逼近任意复杂的非线性函数关系是神经网络的特点之一;√2.一般情况下,神经网络系统模型的并联结构可以保证系统辨识收敛;×3.反馈型神经网络中,每个神经元都能接收所有神经元输出的反馈信息;√4.运算效率高,收敛速度快是BP神经网络的主要特点之一; ×5. 神经元的各种不同数学模型的主要区别在于采用了不同的转移函数,从而使神经元具有不同的信息处理特性; √6.离散Hopfield网络的两种工作方式是同步和异步工作方式; √7.神经网络已在多种控制结构中得到应用,如PID控制、内模控制、直接逆控制等; √8.一般情况下,神经网络系统模型的串-并联型结构不利于保证系统辨识模型的稳定性; ×9.BP神经网络是一种多层全互连型结构的网络; ×10.离散型单层感知器的转移函数一般采用阈值符号函数; √ 11.Hopfield网络的吸引子是指网络的稳定状态; √12.两关节机械手的控制可应用小脑神经网络直接逆模型控制; √13.神经网络用于系统正模型辨识的结构只有串联结构一种; ×14.连续型Hopfield网络是多层前馈型神经网络,每一节点的输出均反馈至节点的输入; ×第五章遗传算法1.遗传算法的复制操作可以通过随机方法来实现,可使用计算机,也可使用轮盘赌的转盘; √2.在遗传算法中,初始种群的生成不能用随机的方法产生; ×3.遗传算法的复制操作有严格的程序,不能通过随机方法来实现;×4.遗传算法具有进化计算的所有特征,其主要用途是数值计算; ×5.遗传算法中,适配度大的个体有更多机会被复制到下一代; √ 6.在遗传算法中,初始种群的生成不能用随机的方法产生; ×名词解释第一章1. 智能控制有知识的“行为舵手”,它把知识和反馈结合起来,形成感知-交互集、以目标为导向的控制系统;第二章1. 专家系统一种包含知识和推理的人工智能的计算机程序系统,这些程序软件具有相当于某个专门领域专家的知识和经验水平,同时具有处理该领域问题的能力2. 语义网络通过概念及相互间语义关系,图解表示知识网络;3. 专家控制系统应用专家系统的概念、原理和技术,模拟人类专家的控制知识和经验而建造的控制系统;第三章1. 模糊控制模糊控制是把人类专家对特定的被控对象或过程的控制策略总结成一系列的控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程;它无需建立系统模型,是解决不确定系统的一种有效途径;2. 模糊系统一种基于知识或基于规则的系统;它的核心就是有IF-THEN 规则形成的知识库;3. 模糊集合论域U 上的模糊集A 用一个在区间0,1上取值的隶属度函数Au 来表示;4. 隶属度某元素属于模糊集合A 的程度称为隶属度,用隶属度函数Ax 描述;隶属度函数的值是闭区间0,1上的一个数,表示元素x 属于模糊集合A 的程度;5. 模糊关系X 与Y 直积 (){},|, X Y x y x X y Y ⨯=∈∈中一个模糊子集R ,称为从X 到Y 的模糊关系;第四章1.神经网络神经元互连组成的网络,从微观结构和功能上对人脑抽象、简化,是模拟人类智能的一条重要途径,反映人脑功能的若干特征,如并行处理、学习联想、分类等;2.小脑模型神经网络由局部调整、相互覆盖接收域的神经元组成,模拟人的小脑学习结构;是一种基于表格查询式输入输出多维非线性映射能力;3. Hopfield 神经网络全连接型反馈动态神经网络,分为离散型和连续型两种,网络达到稳定状态时,其能量函数达到最小;第五章1.变异操作模拟生物在自然遗传环境下由于各种偶然因素引起的基因突变,它以很小的概率随机改变遗传基因表示染色体的符号串的某一位的值;2.适应度函数遗传算法中某个个体对环境的适应程度,适应值函数可由目标函数变换而成;3.遗传算法建立在自然选择和群体遗传学机理基础上的随机迭代和进化,具有广泛适用性的搜索方法;简答题第一章1.智能控制的主要功能特点是什么;1多层递阶的组织结构2多模态控制3自学习能力4自适应能力5自组织能力2.智能控制的研究对象具备哪些特点3.不确定性的模型;高度的非线性;复杂的任务要求;4.与传统控制相比,智能控制的主要特点是什么1处理复杂性、不确定性问题的能力;2描述系统的模型更为广泛;3具有学习、适应、组织的功能;4具有分层信息处理和决策机构;5控制其与对象、环境没有明显的分离;5.智能控制有哪些主要类型(1)模糊控制(2)神经网络控制(3)专家控制(4)分层递阶智能控制第二章1.专家系统中,知识表示方法有哪些常用形式2.3.;1.设max max max,则比例因子K u= u max/n2.设计一个模糊控制器必须要解决哪三个关键问题1 设计模糊控制器要解决的第一个问题是如何把确定量转换为对应的模糊量;2 根据操作者的控制经验制定模糊控制规则,并执行模糊逻辑推理,以得到一个输出模糊集合,这一步称为模糊控制规则形成和推理;3 需要为模糊输出量进行解模糊判决,实现控制;3.在模糊控制器的设计中,常用的模糊判决方法有哪些(1)最大隶属度法(2)加权平均法(3)重心法(4)取中位数法4.模糊控制中,描述语言变量常见的语言值有哪几种语言变量常见的语言值是负大NB、负中NM、负小NS、负零NO、正零PO、正小PS、正中PM、正大PB;。
第三章模糊控制题

第2章模糊控制3.1模糊控制的基本思想研究和考虑人的控制行为特点,对于无法构造数学模型的对象让计算机模拟人的思维方式,进行控制决策。
将人的控制行为,总结成一系列条件语句,运用微机的程序来实现这些控制规则。
在描述控制规则的条件语句中的一些词,如“较大”、“稍小”、“偏高”等都具有一定的模糊性,因此用模糊集合来描述这些模糊条件语句,即组成了所谓的模糊控制器。
3.2模糊集合的定义模糊集合的定义:给定论域U,U到[0,1]闭区间的任一映射μAμA:U→[0,1]都确定U的一个模糊集合A,μA称为模糊集合且的隶属函数。
μA(x)的取值范围为闭区间[0,1],μA(x)接近1,表示x属于A的程度高;μA(x)接近0,表示x 属于A的程度低。
3.3常用的3种模糊集合的表示方法,(1)Zadeh表示法用论域中的元素xi 与其隶属度μA(x i)按下式表示A,则在Zadeh表示法中,隶属度为零的项可不写入。
(2)序偶表示法用论域中的元素xi 与其隶属度μA(x i)的构成序偶来表示且,则在序偶表示法中,隶属度为零的项可省略。
(3)向量表示法用论域中元素xi 的隶属度μA(x i)构成向量来表示,则在向量表示法中,隶属度为零的项不能省略。
3.4凸模糊集的定义若A是以实数R为论域的模糊集合,其隶属函数为μA(x),如果对任意实数a<x<b,都有则称A为凸模糊集。
凸模糊集实质上就是其隶属函数具有单峰值特性。
1⎪b - a (x - a ), a ≤ x < b μ (x ) = ⎨ (x - c ), b ≤ x ≤ c⎪ ⎩ ⎪b - x μ (x ) = ⎨ , a < x ≤ b⎪第 2 章 模糊控制3.5 常见的4种隶属函数(1)正态型正态型是最主要也是最常见的一种分布,表示为其分布曲线如图2-4所示。
图 2-4 正态型分布曲线(2)三角型 ⎧ 1 ⎪ ⎪ 1 b - c⎪0, 其它 ⎪(3) 降半梯形⎧1,x ≤ a b - a⎪⎩0, b < x(4)升半梯形2⎪ x - a μ (x ) = ⎨ , a < x < b⎪ ⎪ x ⎣ ⎦ ⎢0. 5 ∧ 0. 2 0. 5 ∧ 0. 3 0. 5 ∧ 0. 6 0. 5 ∧ 1. 0 ⎢0. 2 0. 3 0. 5 0. 5 ⎥ ⎣ ⎦ ⎣ ⎦第 2 章 模糊控制⎧0,0 ≤ x ≤ a b - a⎩1, b ≤ x3.6 己知两个模糊向量分别如下所示,试求它们的笛卡儿乘积x =[0.9 0.5 0.2],y=[0.2 0.3 0.6 1]解:由定义,有⎡0. 9⎤x ⨯ y @ T o y = ⎢0. 5⎥ ο [0. 2 0. 3 0. 6 1. 0]⎢0. 2⎥= = ⎡0. 9 ∧ 0. 2 0. 9 ∧ 0. 3 0. 9 ∧ 0. 6 0. 9 ∧ 1. 0 ⎤ ⎥⎢ ⎥⎢0. 2 ∧ 0. 2 0. 2 ∧ 0. 3 0. 2 ∧ 0. 6 0. 2 ∧ 1. 0 ⎥⎡0. 2 0. 3 0. 6 0. 9 ⎤ ⎢ ⎥⎢0. 2 0. 2 0. 2 0. 2 ⎥ 3.7 模糊向量的内积与外积设有1×n 维模糊向量x 和1×n 维模糊向量y ,则定义为模糊向量x 和y 的内积。
模糊控制作业

模糊控制理论与应用专业:姓名:学号:指导教师:完成时间:二〇一一年八月1、设在论域e(误差)={-4,-2,0,2,4}和控制电压u={0,2,4,6,8}上定义的模糊子集的隶属度函数分别如图1、2所示。
图1图2已知模糊控制规则:规则1:如果误差e 为ZE ,则u 为ZE ; 规则2:如果误差e 为PS ,则u 为NS 。
试应用玛达尼推理法计算当输入误差e=0.6时,输出电压u=?(精确化计算采用重心法) 采用重心法去模糊化 解答:(1)输入输出模糊化 1) 确定输入输出变量,2) 确定输入输出变量的模糊语言值(模糊集合) 3) 建立隶属度函数方程 对于误差来说:1()(2)022()1()022ze e ps x x x x x x x μμμ⎧=--≤≤⎪⎪=⎨⎪=≤≤⎪⎩对于控制电压来说:1022()1(4)242()1(2)242()1(6)462NS u ZE y y y y y y y x y y y μμμ⎧⎧≤≤⎪⎪⎪=⎪⎨⎪⎪--≤≤⎪⎪⎪⎩=⎨⎧⎪-≤≤⎪⎪⎪=⎨⎪⎪⎪--≤≤⎪⎪⎩⎩(2(3)1)根据规则1:规则1、如果误差e 是ZE ,则控制U 为ZE;μ有:误差(0.6)0.7ZE μ=由规则1得到 故控制:10.7U ZE=解得:U 11=3.4,U 12=4.6;2)根据规则2、如果误差e 是PS ,则控制U 为NS;u μeμ 误差(0.6)0.3PS μ=由规则2得到 故控制:20.3U PS=解得:U 21=0.6,U 22=3.4;3)根据重心法,去模糊化输出电压为:00.7 3.40.7 4.60.30.60.3 3.43.40.70.70.30.3U ⨯+⨯+⨯+⨯==+++2、已知某一加炉炉温控制系统,要求温度保持在600℃恒定。
目前此系统采用人工控制方式,并有以下控制经验(1)若炉温低于600℃,则升压;低得越多升压越高。
(2)若炉温高于600℃,则降压;高得越多降压越低。
模糊控制的数学基础习题

模糊控制的数学基础习题1、比较模糊集合与普通集合的异同。
2、已知年龄的论域为[0.200],且设“年老O ”和“年轻Y ”两个模糊集的隶属函数分别为()⎪⎩⎪⎨⎧≤<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+≤≤=--200505501500 012O a a a a μ ()⎪⎩⎪⎨⎧≤<⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+≤≤=-200255251250 112Y a a a a μ 求:“很年轻W ”、“不年老也不年轻 V ”两个模糊集的隶属函数。
3、设误差的离散论域为【-30,-20,-10,0,10,20,30】,且已知误差为零(ZE )和误差为正小(PS )的隶属函数为()()300203.010103.0100200300300200104.001104.0200300ZE ++++-+-+-=++++-+-+-=e e PS μμ 求:(1)误差为零和误差为正小的隶属函数()()e e PS μμ ZE ;(2)误差为零和误差为正小的隶属函数()()e e PS μμ ZE 。
4、已知模糊矩阵P 、Q 、R 、S 为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0.50.60.20.1S 0.70.70.30.2R 0.40.10.70.5Q 0.70.20.90.6P 求:(1)()R Q P ;(2)()S Q P ;(3)()()S Q S P 。
5、考虑如下条件语句:如果 转角误差远远大于15○ 那么快速减小方向角其隶属度函数定义为A=转角误差远远大于15○=0/15 + 0.2/17.5 + 0.5/20 + 0.8/22.5 + 1.0/25B=那么快速减小方向角=1/-20 + 0.8/-15 + 0.4/-10 + 0.1/-5 + 0/0问:当A ‘=转角误差大约在20○时方向角应该怎样变化?设A ‘=转角误差大约在20○的隶属函数=0.1/15 + 0.6/17.5 + 1/20 + 0.6/22.5 + 0.1/25。
研究生模煳控制试题

机械工程学院2011-2012学年第二学期2011级研究生《模糊控制》试题一、叙述“两输入一输出”模糊控制器的“模糊控制查询表”的计算过程。
(10分)答:目前,模糊控制器的“两输入一输出”多取两输入为偏差e 和偏差变化率e ,一输出为u 。
下图为模糊控制查询表建立的一般过程。
1、精确量的模糊化定义模糊控制器由两个输入E 、Ec 和一个输出U ,设偏差E 采用8个语言变量(即8个模糊子集1~A ~8~A ) PL (正大) 、PM (正中) 、PS (正小) 、PO (正零) 、NO (负零) 、NS (负小) 、NM (负中) 、NL (负大) ,偏差变化率Ec 和输出控制量U 采用7个语言变量(即7 个模糊子集1~B ~7~B 和1~C ~7~C ) PL (正大) 、PM (正中) 、PS (正小) 、OO (零) 、NS (负小) 、NM (负中) 、NL (负大) ,其中E 的论域为{ - 6 , - 5 , - 4 , - 3 , - 2 , - 1 , - 0 ,0 ,1 , 2 ,3 ,4 ,5 ,6} , Ec 的论域为{ - 3 , - 2 , - 1 ,0 ,1 ,2 ,3 ,} ,U 的论域为{ - 6 , - 5 , - 4 , - 3 , - 2 , - 1 ,0 ,1 ,2 ,3 ,4 ,5 ,6} 。
设隶属度函数均采用正态分布函数,通过实际对象及操作者的实践经验总结,可得模糊变量E 、Ec 、U 的不同等级的隶属度值,从而定义了各模糊变量的模糊子集,即偏差量e 、偏差变化率)(~k e 和控制量u 的模糊子集1~A 、1~B 和1~C 。
由双输入单输出的模糊条件语句if E ~and C E ~ then U ~,得出一组由56 条模糊条件语句构成的规则,即模糊控制状态表,假设某系统的控制规则如表1所示。
2、模糊控制算法的建立首先,确定每个变量的论域后,先经限幅处理,再经量化处理就得到偏差量e 、偏差变化率e ~的比例因子Ke 、Kec 及其控制量E 、Ec 的值。
第三章模糊控制(习题)

如果衣服不很脏,那么洗涤时间应该为: 如果衣服不很脏,那么洗涤时间应该为:
1 1 0.91 0.5 0.5 B = + + + + 1 2 3 4 5
'
1 − 1 1 − 0.25 1 − 0.01 1 − 0 1 − 0 A = + + + + 1 2 3 4 5 0 0.75 0.99 1 1 = + + + + 1 2 3 4 5
'
B ' = A' R 0 0.3 0.8 1 0 0.5 0.5 0.5 0.5 0.5 = [0 0.75 0.99 1 1]0.9 0.9 0.9 0.36 0.1 1 0.91 0.36 0#39; R 0 0 .3 0 .8 1 0 0.5 0.5 0.5 0.5 0.5 = [0 0.75 0.99 1 1]0.9 0.9 0.9 0.36 0.1 1 0.91 0.36 0 1 1 1 0.91 0.36 0 = [1 1 0.91 0.5 0.5]
解:由于“很”是集中化算子。因此 由于“ 是集中化算子。 C=【不很长】=1- 很长】=1C=【不很长】=1-【很长】=1-【长】2 即:
1 1 0.91 0.36 0 C= + + + + 1 2 3 4 5
“如果衣服脏,那么洗涤时间应长,否则洗涤时 如果衣服脏,那么洗涤时间应长, 间不必很长”的模糊推理关系可表示为: 间不必很长”的模糊推理关系可表示为:
R = ( A × B) ∪ ( A × C )
C
1 0 0 .5 0 A × B = 0.1[0 0 0.3 0.8 1] = 0 0 0 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由于“很”是集中化算子。因此 由于“ 是集中化算子。 C=【不很长】=1- 很长】=1C=【不很长】=1-【很长】=1-【长】2 即:
1 1 0.91 0.36 0 C= + + + + 1 2 3 4 5
“如果衣服脏,那么洗涤时间应长,否则洗涤时 如果衣服脏,那么洗涤时间应长, 间不必很长”的模糊推理关系可表示为: 间不必很长”的模糊推理关系可表示为:
0 0.5 0.9 1 1 A = 1− A = + + + + 1 2 3 4 5
0 0 0 0 0 .5 0.5 0.5 0.5 C A × C = 0.9[1 1 0.91 0.36 0] = 0.9 0.9 0.9 1 1 0.91 1 1 1 1 0.91 0 0.36 0.36 0.36 0.36 0 0 0 0 0
1 0.5 0.1 A = [衣服脏] = + + 1 2 3 0.3 0.8 1 B = [洗涤时间长】= + + 3 4 5
求:(1)“如果衣服脏,那么洗涤时间应长,否则洗涤 :(1)“如果衣服脏,那么洗涤时间应长, 如果衣服脏 时间不必很长”的模糊关系。 时间不必很长”的模糊关系。 如果衣服不很脏, (2) 如果衣服不很脏,试利用模糊推理判定洗涤 时间如何调节? 时间如何调节?
R = ( A × B) ∪ ( A × C )
C
0 0.3 0.8 1 0 0.5 0.5 0.5 0.5 0.5 = 0.9 0.9 0.9 0.36 0.1 1 0.91 0.36 0 1 1 1 0.91 0.36 0
【衣服不很脏】=1-【衣服很脏】=1-【衣服脏】2 衣服不很脏】 【衣服很脏】 【衣服脏】 衣服不很脏】即为: 【衣服不很脏】即为:
B ' = A' R 0 0 .3 0 .8 1 0 0.5 0.5 0.5 0.5 0.5 = [0 0.75 0.99 1 1]0.9 0.9 0.9 0.36 0.1 1 0.91 0.36 0 1 1 1 0.91 0.36 0 = [1 1 0.91 0.5 0.5]
如果衣服不很脏,那么洗涤时间应该为: 如果衣服不很脏,那么洗涤时间应该为:
1 1 0.91 0.5 0.5 B = + + + + 1 2 3 4 5
'
1 − 1 1 − 0.25 1 − 0.01 1 − 0 1 − 0 A = + + + + 1 2 3 4 5 0 0.75 0.99 1 1 = + + + + 1 2 3 4 5
'
ห้องสมุดไป่ตู้
B ' = A' R 0 0.3 0.8 1 0 0.5 0.5 0.5 0.5 0.5 = [0 0.75 0.99 1 1]0.9 0.9 0.9 0.36 0.1 1 0.91 0.36 0 1 1 1 0.91 0.36 0
第三章 模糊控制
练 习 题
习题3-1
对洗衣机的洗涤调节一般为:“如果衣服脏, 对洗衣机的洗涤调节一般为: 如果衣服脏, 那么洗涤时间应长,否则洗涤时间不必很长” 那么洗涤时间应长,否则洗涤时间不必很长”。设 论域X=Y[1,2,3,4,5] A∈X, ∈Y,并且 X=Y[1,2,3,4,5], 论域X=Y[1,2,3,4,5],A∈X,B ∈Y,并且
R = ( A × B) ∪ ( A × C )
C
1 0 0 .5 0 A × B = 0.1[0 0 0.3 0.8 1] = 0 0 0 0 0
C
0 0 .3 0 .8 1 0 0 .3 0 .5 0 .5 0 0.1 0.1 0.1 0 0 0 0 0 0 0 0