新课标数学必修4第2章平面向量教案
(完整版)高中数学必修4第二章平面向量教案完整版
高中数学必修 4 第二章平面向量教课设计( 12课时 )本章内容介绍向量这一看法是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具 .向量看法引入后,全等和平行(平移)、相似、垂直、勾股定理即可转变为向量的加(减)法、数乘向量、数目积运算,从而把图形的基天性质转变为向量的运算系统.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实质背景.在本章中,学生将认识向量丰富的实质背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数目积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.而后介绍本节从物理上的力和位移出发,抽象出向量的看法,并说了然向量与数目的差别,了向量的一些基本看法 . (让学生对整章有个初步的、全面的认识 .)第 1课时§2.1 平面向量的实质背景及基本看法教课目标:1.认识向量的实质背景,理解平面向量的看法和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等看法;并会划分平行向量、相等向量和共线向量 .2.经过对向量的学习,使学生初步认识现实生活中的向量和数目的实质差别.3.经过学生对向量与数目的鉴别能力的训练,培育学生认识客观事物的数学实质的能力.教课要点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的看法,会表示向量.教课难点:平行向量、相等向量和共线向量的差别和联系.学法:本节是本章的入门课,看法许多,但难度不大.学生可依据在原有的位移、力等物理看法来学习向量的看法,联合图形实物划分平行向量、相等向量、共线向量等看法.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、情形设置:如图,老鼠由 A 向西北逃跑,猫在 B 处向东追去,设问:猫能否追到老鼠?(画图)C结论:猫的速度再快也没用,因为方向错了.A DB 解析:老鼠逃跑的路线AC 、猫追赶的路线BD 实质上都是有方向、有长短的量 .前言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的看法:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数目与向量有何差别?2、如何表示向量?3、有向线段和线段有何差别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为 1 的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向同样或相反,这组向量有什么关系?7、假如把一组平行向量的起点所有移到一点O,这是它们能否是平行向量?这时各向量的终点之间有什么关系?(三)研究学习1、数目与向量的差别:数目只有大小,是一个代数目,可以进行代数运算、比较大小;向量有方向,大小,两重性,不可以比较大小.2.向量的表示方法:a①用有向线段表示;②用字母a、bA(起点)(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;B (终点)④向量 AB 的大小――长度称为向量的模,记作| AB |.3.有向线段:拥有方向的线段就叫做有向线段,三个因素:起点、方向、长度.向量与有向线段的差别:(1)向量只有大小和方向两个因素,与起点没关,只要大小和方向同样,则这两个向量就是同样的向量;(2)有向线段有起点、大小和方向三个因素,起点不一样,尽管大小和方向同样,也是不一样的有向线段 .4、零向量、单位向量看法:①长度为 0 的向量叫零向量,记作0. 0 的方向是任意的.注意 0 与 0 的含义与书写差别.②长度为 1 个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都不过限制了大小.5、平行向量定义:①方向同样或相反的非零向量叫平行向量;②我们规定0 与任一直量平行.说明:( 1)综合①、②才是平行向量的完好定义;( 2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向同样的向量叫相等向量.说明:( 1)向量a与b相等,记作a=b;( 2)零向量与零向量相等;( 3)任意两个相等的非零向量,都可用同一条有向线段来表示,而且与有..向线段的起点没关.........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同向来线上(与有向线段的......起点没关)..... .说明:( 1)平行向量可以在同向来线上,要差别于两平行线的地点关系;(2)共线向量可以相互平行,要差别于在同向来线上的线段的地点关系.(四)理解和牢固:例1 书籍 86页例 1.例2判断:(1)平行向量能否必定方向同样?(不必定)(2)不相等的向量能否必定不平行?(不必定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同向来线上,则这两个向量必定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向同样)(7)共线向量必定在同向来线上吗?(不必定)例 3 以下命题正确的选项是()A. a与b共线,b与c共线,则a与 c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四极点C.向量a与b不共线,则a与b都是非零向量D.有同样起点的两个非零向量不平行解:因为零向量与任一直量都共线,所以 A 不正确;因为数学中研究的向量是自由向量,所以两个相等的非零向量可以在同向来线上,而此时就构不行四边形,根本不行能是一个平行四边形的四个极点,所以 B 不正确;向量的平行只要方向同样或相反即可,与起点能否同样没关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来下手考虑,倘若a与b不都是非零向量,即a与b最少有一个是零向量,而由零向量与任一直量都共线,可有a与b共线,不吻合已知条件,所以有a与b都是非零向量,所以应选 C.例 4如图,设O是正六边形ABCDEF 的中心,分别写出图中与向量OA 、 OB 、 OC 相等的向量 .变式一:与向量长度相等的向量有多少个?(11 个)变式二:能否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(CB, DO, FE )课堂练习:1.判断以下命题能否正确,若不正确,请简述原由.①向量 AB 与 CD 是共线向量,则A、 B、 C、D 四点必在向来线上;②单位向量都相等;③任一直量与它的相反向量不相等;④四边形 ABCD 是平行四边形当且仅当AB = DC⑤一个向量方向不确立当且仅当模为0;⑥共线的向量,若起点不一样,则终点必定不一样.解:①不正确.共线向量即平行向量,只要求方向同样或相反即可,其实不要求两个向量AB 、 AC 在同向来线上.②不正确 .单位向量模均相等且为1,但方向其实不确立.③不正确 .零向量的相反向量还是零向量,但零向量与零向量是相等的. ④、⑤正确 .⑥不正确 .如图AC与BC共线,虽起点不一样,但其终点却相同. 2.书籍 88 页练习三、小结:1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.四、课后作业:书籍 88 页习题 2.1 第 3、5 题第 2课时§向量的加法运算及其几何意义教课目标:1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法规和平行四边形法规作两个向量的和向量,培育数形联合解决问题的能力;3、经过将向量运算与熟习的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,浸透类比的数学方法;教课要点:会用向量加法的三角形法规和平行四边形法规作两个向量的和向量.教课难点:理解向量加法的定义.学法:数能进行运算,向量能否也能进行运算呢?数的加法启示我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生理所应当接受向量的加法定义.联合图形掌握向量加法的三角形法规和平行四边形法规 .联系数的运算律理解和掌握向量加法运算的交换律和联合律.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、设置情形:1、复习:向量的定义以及相关看法重申:向量是既有大小又有方向的量.长度相等、方向同样的向量相等.所以,我们研究的向量是与起点没关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移就任何地点2、情形设置:A B C(1)某人从 A 到 B ,再从 B 按原方向到C,则两次的位移和:AB BC AC(2)若上题改为从 A 到 B,再从 B 按反方向到 C, C A B 则两次的位移和:AB BC ACC (3)某车从 A 到 B ,再从 B 改变方向到 C,则两次的位移和:AB BC AC A BC (4)船速为AB,水速为BC,则两速度和:AB BC AC二、研究研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.A B2、三角形法规(“首尾相接,首尾连” )如图,已知向量a、b .在平面内任取一点 A ,作 AB =a,BC=b,则向量AC叫做a 与b的和,记作a+b,即a+bAB BC AC ,规定: a + 0-= 0 + aaaaC bbaa+ b bA a+ bbaB研究:( 1)两相向量的和还是一个向量;( 2)当向量a与b不共线时, a + b 的方向不一样向,且|a + b |<|a |+| b |;( 3)当a与b同向时,则a + b、a、b同向,O a A且| a + b |=| a |+|b |,当a与b反向时,若 | a |>|b |,bb b a则 a + b 的方向与 a 同样,且| a + b |=| a |-| b |;若a B | a |<| b |,则a + b的方向与b同样,且 | a +b|=| b |-| a |.( 4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推行到n个向量连加3.例一、已知向量 a 、 b ,求作向量 a + b作法:在平面内取一点,作OA a AB b ,则 OB a b .4.加法的交换律和平行四边形法规问题:上题中 b + a 的结果与 a + b 能否同样?考据结果同样从而获得:1)向量加法的平行四边形法规(对于两个向量共线不适应)aa +b = b + a2)向量加法的交换律:5.向量加法的联合律:( a + b ) + c = a + ( b + c )证:如图:使AB a ,BC b ,CD c则( a + b ) + c = AC CD AD , a + ( b + c ) =AB BD AD∴( a + b ) + c = a + ( b + c )从而,多个向量的加法运算可以依据任意的次序、任意的组合来进行.三、应用举例:例二( P94— 95)略练习: P95四、小结1、向量加法的几何意义;2、交换律和联合律;3、注意: | a + b | ≤ | a | + | b |,当且仅当方向同样时取等号.五、课后作业:P103 第2、3题六、板书设计(略)七、备用习题1、一艘船从 A 点出发以23km/ h 的速度向垂直于对岸的方向行驶,船的实质航行的速度的大小为4km/ h ,求水流的速度.2、一艘船距对岸 4 3km ,以23km / h 的速度向垂直于对岸的方向行驶,到达对岸时,船的实质航程为8km ,求河水的流速.3、一艘船从 A 点出发以v1的速度向垂直于对岸的方向行驶,同时河水的流速为v 2,船的实质航行的速度的大小为4km/ h ,方向与水流间的夹角是60,求v1和 v2.4、一艘船以5km/h的速度内行驶,同时河水的流速为2km/h ,则船的实质航行速度大小最大是km/h ,最小是km/h5、已知两个力F1,F2的夹角是直角,且已知它们的合力 F 与F1的夹角是60,|F|=10N 求 F1和 F2的大小 .6、用向量加法证明:两条对角线相互均分的四边形是平行四边形第 3课时§2.2.2 向量的减法运算及其几何意义教课目标:1.认知趣反向量的看法;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.经过论述向量的减法运算可以转变为向量的加法运算,使学生理解事物之间可以相互转变的辩证思想 .教课要点:向量减法的看法和向量减法的作图法.教课难点:减法运算时方向的确定.学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上联合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教具:多媒体或实物投影仪,尺规讲课种类:新讲课教课思路:一、复习:向量加法的法规:三角形法规与平行四边形法规向量加法的运算定律:DCB BA BA例:在四边形中,.解: CB BA BA CB BA AD CDA B二、提出课题:向量的减法1.用“相反向量”定义向量的减法( 1)“相反向量”的定义:与 a 长度同样、方向相反的向量.记作a( 2)规定:零向量的相反向量还是零向量. ( a) = a.任一直量与它的相反向量的和是零向量.a + ( a) = 0假如 a、 b 互为相反向量,则 a =b, b = a, a + b = 0( 3)向量减法的定义:向量 a 加上的 b 相反向量,叫做 a 与 b 的差 .即: a b = a + (b)求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若 b + x = a,则 x 叫做 a 与 b 的差,记作 a b3.求作差向量:已知向量a、 b,求作向量∵ (a b) + b = a + ( b) + b = a + 0 = a a O作法:在平面内取一点O,bba bBCa作 OA = a,AB = b则 BA = a b即 a b 可以表示为从向量 b 的终点指向向量 a 的终点的向量 .注意: 1AB 表示a b.重申:差向量“箭头”指向被减数2 用“相反向量”定义法作差向量, a b = a + ( b)明显,此法作图较繁,但最后作图可一致.B’a bB a+ ( b)Ob ab bAB4.研究:1)假如从向量 a 的终点指向向量 b 的终点作向量,那么所得向量是 b a.a ab a bbO B A B’O BAa ab a bb O A b B BO A2)若 a∥b,如何作出 a b?三、例题:例一、( P97例三)已知向量a、b、 c、 d,求作向量 a b、 c d.解:在平面上取一点O,作OA = a,OB = b,OC = c,OD = d,作 BA ,DC ,则BA= a b,DC = c db aA BD dcCOD CA B例二、平行四边形ABCD 中,AB a,AD b ,用 a、 b 表示向量AC 、 DB .解:由平行四边形法规得:,DB= AB AD= a bAC = a + b变式一:当 a, b 满足什么条件时,a+b 与 a b 垂直?( |a| = |b|)变式二:当 a, b 满足什么条件时,|a+b| = |a b|?( a, b 相互垂直)变式三: a+b 与 a b 可能是相当向量吗?(不行能,∵对角线方向不一样)练习:P 98四、小结:向量减法的定义、作图法|五、作业: P103 第 4、5题六、板书设计(略)七、备用习题:1.在△ABC中,BC=a,CA=b ,则AB等于 ()A. a+bB.- a+(- b) D. b-a为平行四边形ABCD平面上的点,设OA=a,OB=b,OC=c,OD=d ,则A. a+b+c+d=03 .如图,在四边形B.a-b+c-d=0 C.a+b -c-d=0ABCD 中,依据图示填空:D.a-b -c+d=0a+b=, b+c=,c-d=, a+b+c-d=.4、以以下图,O 是四边形ABCD内任一点,试依据图中给出的向量,确立a、b 、 c、d 的方向(用箭头表示),使a+b=AB ,c-d=DC,并画出 b -c 和a+d.第3题平面向量的基本定理及坐标表示第 4课时§ 2.3.1 平面向量基本定理教课目标:(1)认识平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实质问题的重要思想方法;(3)可以在详尽问题中合适地采用基底,使其余向量都可以用基底来表达.教课要点:平面向量基本定理.教课难点:平面向量基本定理的理解与应用.讲课种类:新讲课教具:多媒体、实物投影仪教课过程:一、复习引入:1.实数与向量的积:实数λ与向量 a 的积是一个向量,记作:λa(1)|λa |=|λ ||a |;( 2)λ >0 时λa与a方向同样;λ <0 时λa与a方向相反;λ =0 时λa =02.运算定律联合律:λ ( μa )=( λ μ);分配律: (λ +μ)=λa +μ,λ ( a +b)= λa+λba a a3. 向量共线定理向量 b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa.二、讲解新课:平面向量基本定理:假如e1, e2是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ1,λ 2 使a=λ 1e1+λ2e2.研究:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,要点是不共线;(3)由定理可将任一直量 a 在给出基底e1、e2的条件下进行分解;(4)基底给准时,分解形式唯一 . 1λ,λ2是被a,e1,e2独一确立的数目三、讲解模范:例 1 已知向量e1,e2求作向量 2.5 e1 +3 e2 .例 2如图ABCD的两条对角线交于点M ,且AB = a,AD = b ,用a, b 表示 MA , MB , MC 和 MD例 3 已知 ABCD 的两条对角线 AC 与 BD 交于 E, O 是任意一点,求证: OA + OB + OC + OD =4 OE例 4( 1)如图,OA,OB不共线,AP =t AB(t R)用OA,OB表示OP.uuur uur( 2 )设OA、OB不共线,点P 在 O、A、B所在的平面内,且uuur uuur uuurR) .求证:A、B、P三点共线.OP(1t )OA tOB (t例 5已知 a=2 e121212不共线,向量12-3e , b= 2e +3e ,此中 e , e c=2e -9e,问能否存在这样的ur r r实数、 ,使 d a b 与c共线.四、课堂练习:1.设 e 、 e 是同一平面内的两个向量,则有()12A. e1、 e2必定平行1、 e2的模相等C.同一平面内的任一直量 a 都有 a =λe1+μe2 (λ、μ∈ R )D.若 e1、 e2不共线,则同一平面内的任一直量 a 都有 a =λe1+ue2(λ、 u∈R )2.已知矢量 a = e1-2e2, b =2e1+e2,此中 e1、 e2不共线,则a+b 与 c =6 e1-2e2的关系A. 不共线B.共线C.相等D. 没法确立3.已知向量e1、e2不共线,实数x、y 满足 (3x-4y)e1+(2x-3y)e2=6e1+3e2,则 x-y 的值等于 ( )4.已知 a、b 不共线,且 c =λ1a+λ2b(λ1,λ2∈ R),若 c 与 b 共线,则λ1=.5.已知λ1> 0,λ2> 0,e1、e2是一组基底,且 a =λ1e1+λ2e2,则 a 与 e1_____,a 与 e2_________( 填共线或不共线 ).五、小结(略)六、课后作业(略):七、板书设计(略)八、课后记:第 5课时§—§ 2.3.3 平面向量的正交分解和坐标表示及运算教课目标:(1)理解平面向量的坐标的看法;(2)掌握平面向量的坐标运算;(3)会依据向量的坐标,判断向量能否共线.教课要点:平面向量的坐标运算教课难点:向量的坐标表示的理解及运算的正确性.讲课种类:新讲课教具:多媒体、实物投影仪教课过程:一、复习引入:1.平面向量基本定理:假如e1, e2是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ1,λ 2 使a=λ 1 e1+λ2e2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,要点是不共线;(3)由定理可将任一直量a在给出基底e1、e2的条件下进行分解;(4)基底给准时,分解形式唯一 . λ1,λ2是被a,e1,e2独一确立的数目二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y轴方向同样的两个单位向量基底 .任作一个向量 a ,由平面向量基本定理知,有且只有一对实数x 、y,使得i 、j 作为a xi yj ○1我们把 ( x, y) 叫做向量 a 的(直角)坐标,记作a ( x, y) ○2此中 x 叫做 a 在 x 轴上的坐标,y 叫做a在 y 轴上的坐标,○2式叫做向量的坐标表示 .与a相等的向量的坐标也为( x, y)............特别地, i(1,0) , j(0,1), 0 (0,0) .如图,在直角坐标平面内,以原点O 为起点作OA a ,则点A的地点由 a 独一确立.设 OA xi yj ,则向量OA的坐标(x, y)就是点 A 的坐标;反过来,点 A 的坐标(x, y)也就是向量 OA 的坐标.所以,在平面直角坐标系内,每一个平面向量都是可以用一对实数独一表示 .2.平面向量的坐标运算(1)若a ( x1 , y1 ),b ( x2 , y2 ),则 a b(x1x2 , y1y2 ),a b( x1x2 , y1y2 )两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为 i 、 j ,则 a b( x1i y1 j ) ( x2 i y2 j ) ( x1x2 )i ( y1y2 ) j即 a b(x1x2 , y1y2 ) ,同理可得a b(x1x2 , y1y2 )(2)若A (x1,y1), B( x2 , y2 ) ,则AB x2x1 , y2y1一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB= OB OA=( x 2,y2)(x1, y1)= (x2x1,y2y1)(3)若a(x, y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘本来向量的相应坐标.设基底为 i 、j ,则a( xi yj )xi yj ,即 a ( x, y)三、讲解模范:uuur例 1 已知 A(x 1, y1), B(x 2, y2),求AB的坐标 .r r r r r r r r例 2 已知a =(2 ,1),b =(-3 ,4) ,求a + b,a - b,3 a +4 b的坐标.例 3 已知平面上三点的坐标分别为 A( 2, 1), B( 1, 3), C(3, 4),求点 D 的坐标使这四点构成平行四边形四个极点 .解:当平行四边形为 ABCD 时,由 AB DC 得 D 1=(2, 2)当平行四边形为ACDB 时,得 D 2=(4 , 6),当平行四边形为 DACB 时,得 D 3=( 6, 0)例 4 已知三个力 F 1 (3, 4), F 2 (2, 5), F 3 (x , y)的合力 F 1 + F 2 + F 3 = 0 ,求 F 3 的坐标 .解:由题设 F 1 + F 2 +F 3=0得: (3, 4)+ (2 , 5)+(x , y)=(0 , 0)32 x 0x 5 ∴ F 3 ( 5,1)即:5 y∴14 y四、课堂练习 :1.若 M(3 , -2)N(-5 , -1) 且 MP1MN ,求 P 点的坐标22.若 A(0 , 1), B(1, 2),C(3 , 4) ,则AB 2BC = .3.已知:四点 A(5 , 1), B(3, 4), C(1, 3),D(5 , -3), 求证:四边形 ABCD是梯形 .五、小结 (略)六、课后作业 (略)七、板书设计 (略)八、课后记:第 6课时§ 2.3.4 平面向量共线的坐标表示教课目标:( 1)理解平面向量的坐标的看法;( 2)掌握平面向量的坐标运算;( 3)会依据向量的坐标,判断向量能否共线.教课要点: 平面向量的坐标运算教课难点: 向量的坐标表示的理解及运算的正确性讲课种类: 新讲课教 具:多媒体、实物投影仪教课过程 :一、复习引入:1.平面向量的坐标表示分别取与 x 轴、 y轴方向同样的两个单位向量 i、 j.a ,由平面作为基底 任作一个向量 向量基本定理知,有且只有一对实数x 、 y ,使得 axiyj把 (x, y) 叫做向量 a 的(直角)坐标,记作 a ( x, y)此中 x 叫做 a 在 x 轴上的坐标,y 叫做 a 在 y 轴上的坐标,特别地,i (1,0) , j (0,1) , 0(0,0) .2.平面向量的坐标运算若 a ( x 1 , y 1 ) , b ( x 2 , y 2 ) ,则 a b(x1x , y1y ) ,a b(x1x , yy ) ,a ( x, y).22212若 A( x 1 , y 1 ) , B(x 2 , y 2 ) ,则 AB x 2 x 1 , y 2 y 1二、讲解新课:a ∥b ( b 0 )的充要条件是 x 1y 2-x 2y 1=0设a =(x 1,y ), b=(x 2,y )此中 b a.12x 1 x 2 由 a =λ b 得, (x 1, y 1) = λ (x 2, y 2)消去λ, x 1y 2-x 2y 1=0y 1y 2研究:( 1)消去λ时不可以两式相除,∵y 1, y 2 有可能为0, ∵ b 0∴ x 2, y 2 中最少有一个不为 0( 2)充要条件不可以写成y 1 y 2 ∵ x 1, x 2 有可能为 0x 1x 2(3) 从而向量共线的充要条件有两种形式:a ∥ b( b 0ab)x 1 y 2 x 2 y 1 0三、讲解模范:例 1 已知 a =(4 ,2) , b =(6 , y),且 a ∥ b ,求 y.例 2 已知 A(-1 , -1) , B(1 ,3) , C(2 , 5),试判断 A , B , C 三点之间的地点关系 .例 3 设点 P 是线段 P1P2上的一点, P1、P2的坐标分别是 (x1, y1), (x2, y2).(1)当点 P 是线段 P1P2的中点时,求点 P 的坐标;(2) 当点 P 是线段 P1P2的一个三均分点时,求点P 的坐标 .例 4 若向量a =(-1 ,x) 与b =(-x , 2)共线且方向同样,求x解:∵ a =(-1,x)与b=(-x,2)共线∴ (-1)×2- x?(-x)=0∴ x=±2∵ a与b方向同样∴ x=2例 5 已知A(-1 , -1), B(1 , 3), C(1, 5) , D(2 , 7) ,向量AB与CD平行吗?直线AB与平行于直线CD吗?解:∵AB =(1-(-1),3-(-1))=(2 ,4),CD=(2-1 , 7-5)=(1 , 2)又∵ 2× 2-4× 1=0∴ AB∥ CD又∵AC =(1-(-1),5-(-1))=(2,6), AB =(2,平行∴A ,B,C 不共线∴AB与CD不重合四、课堂练习:1.若 a=(2 , 3), b=(4, -1+ y) ,且 a∥ b,则 y=()4),2× 4-2× 6 0∴AB ∥ CD∴ AC与AB不2.若A(x, -1) , B(1,3) ,C(2,5)三点共线,则x 的值为()3.若AB=i+2 j ,DC=(3- x)i+(4- y)j(此中i 、j的方向分别与x、y 轴正方向同样且为单位向量). AB与 DC共线,则x、 y的值可能分别为()A.1 , 2, 24.已知 a=(4 , 2),b=(6, y),且5.已知 a=(1 , 2),b=( x, 1),若6.已知□ABCD 四个极点的坐标为, 2 D.2 ,4a∥b,则 y=.a+2b 与 2a-b 平行,则x 的值为.A(5, 7),B(3, x),C(2,3), D(4, x),则x=.五、小结(略)六、课后作业(略)七、板书设计(略)八、课后记:§ 平面向量的数目积第7课时一、 平面向量的数目积的物理背景及其含义教课目标:1.掌握平面向量的数目积及其几何意义;2.掌握平面向量数目积的重要性质及运算律;3.认识用平面向量的数目积可以办理相关长度、角度和垂直的问题;4.掌握向量垂直的条件 .教课要点:平面向量的数目积定义教课难点:平面向量数目积的定义及运算律的理解和平面向量数目积的应用讲课种类:新讲课教具:多媒体、实物投影仪内容解析:本节学习的要点是启示学生理解平面向量数目积的定义,理解定义以后即可指引学生推 导数目积的运算律, 而后经过看法辨析题加深学生对于平面向量数目积的认识 .主要知识点: 平面向量数目积的定义及几何意义; 平面向量数目积的5 个重要性质; 平面向量数目积的运算律 .教课过程:一、复习引入:1. 向量共线定理向量 b 与非零向量 a 共线的充要条件是:有且只有一个非零实数λ, 使b =λ a .2.平面向量基本定理:假如e 1 , e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任一直量 a ,有且只有一对实数λ 1,λ 2 使a =λ 1 e 1 +λ 2 e 23.平面向量的坐标表示分别取与 x 轴、 y 轴方向同样的两个单位向量 i 、 j.a ,由平面向作为基底 任作一个向量 量基本定理知,有且只有一对实数x 、 y ,使得 a xi yj把 (x, y)叫做向量 a 的(直角)坐标,记作 a ( x, y)4.平面向量的坐标运算若 a( x1 , y1 ), b( x2, y2 ) ,则a b(x1x2 , y1y2 ) ,a b( x1x2 , y1y2 ),a (x,y).若 A( x1 , y1 ) , B(x2 , y2 ) ,则AB x2x1 , y2y15.a∥b( b0 )的充要条件是x1y2-x2y1=06.线段的定比分点及λP1,P2是直线l 上的两点,P 是l 上不一样于P1,P2的任一点,存在实数λ,使P1 P= λPP2,λ 叫做点P分P1 P2所成的比,有三种情况:λ>0( 内分 )(外分 ) λ <0 ( λ <-1)( 外分 )λ <0(-1<λ <0)7.定比分点坐标公式:若点P 1 (x1, y1 ) ,P2 (x2, y2) ,λ为实数,且P1P =λPP2,则点P 的坐标为(x1x2 ,y1y2),我们称λ为点P分P1P2所成的比. 118.点 P 的地点与λ的范围的关系:①当λ>0时, P1 P 与 PP2同向共线,这时称点P 为P1P2的内分点 .②当λ<0 (1)时, P1P 与 PP2反向共线,这时称点P 为P1P2的外分点 .9.线段定比分点坐标公式的向量形式:在平面内任取一点O,设OP1=a,OP2=b,a b1b .可得OP=a11110.力做的功:W = |F| |s|cos ,是 F 与 s 的夹角 .二、讲解新课:1.两个非零向量夹角的看法已知非零向量a与b,作 OA =a, OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角 .说明:( 1)当θ=0时,a与b同向;( 2)当θ=π时,a与b反向;( 3)当θ=时,a与b垂直,记a⊥b;2( 4)注意在两向量的夹角定义,两向量一定是同起点的.范围0 ≤ ≤180C2.平面向量数目积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数目|a||b|cos叫a与b的数目积,记作 a b,即有 a b = |a||b|cos,(0≤θ≤π) .并规定0 与任何向量的数目积为0.研究:两个向量的数目积与向量同实数积有很大差别(1)两个向量的数目积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数目积称为内积,写成个向量的数目的积,书写时要严格划分也不可以用“×”取代.a b;今后要学到两个向量的外积a× b,而 ab 是两.符号“·”在向量运算中不是乘号,既不可以省略,(3)在实数中,若b=0.因为此中cosa 0,且有可能为a b=0,则0.b=0;但是在数目积中,若 a 0,且 a b=0,不可以推出(4)已知实数a、 b、 c(b0),则ab=bc a=c .但是 a b = b c a = c如右图: a b = |a||b|cos= |b||OA|, b c = |b||c|cos = |b||OA|a b = b c但a c(5) 在实数中,有( a b)c = a(b c),但是 (a b)c a(b c)明显,这是因为左端是与 c 共线的向量,而右端是与 a 共线的向量,而一般 a 与c 不共线.3.“投影”的看法:作图。
新人教版高中数学第2章平面向量教案必修四
高中数学第2章平面向量教案新人教版必修4 目标定位:向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力.这部分内容的教育价值主要体现在以下几个方面.1.通过力和力的分析等实例,了解向量的实际背景,理解平面向量以及向量相等的含义,理解向量的几何表示.2.掌握平面向量的加法、减法和向量数乘的运算,并理解其几何意义,理解两个向量共线的含义.3.了解平面向量基本定理及其意义,理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算,理解用坐标表示的平面向量共线的条件.4.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义,体会向量的数量积与投影间的关系,掌握数量积的坐标表达式,会用平面向量的数量积解决有关角度和垂直的问题.5.经历向量(及其运算)的建构的过程,以及用向量方法解决某些简单的实际问题(几何问题、力学问题等)的过程,了解向量的实际背景,理解向量及其运算的意义,并从中了解到数学和现实世界的深刻联系,体会数学研究方法的模式化特点,感受理性思维的力量,培养学生的理性思维的能力、运算能力和解决实际问题的能力.教材解读:向量既是重要的数学模型,又是重要的物理模型.是刻画和描绘现实世界的重要数学模型.数学模型是从现实原型中抽象出来的,它高于原型,可用于研究和解决包括原型在内的更加广泛的一类问题.学习数学模型的最好方法是经历数学建模过程,即“问题情景—建立模型—解释、应用与拓展”.本章立足于现实生活,根据学生的生活经验,创设丰富的情境,从大量的实际背景中抽象出向量的概念(数学模型),然后用数学的方法研究向量及其运算的性质,再运用数学模型去解决实际问题.这样处理体现了数学知识产生和发展的过程,突出了数学的来龙去脉,有助于学生理解数学的本质,形成对数学完整的认识,达到培养学生的创新思维和理性思维的目的.力、速度、位移等在实际生活中随处可见,这些都是向量的实际背景,也可以用向量加以刻画和描述.本章突出向量的实际背景与应用,这样有助于学生认识到向量与实际生活的紧密联系,以及向量在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式去观察、分析现实世界,去解决日常生活和其他学科学习中的问题,发展数学应用意识.向量作为代数对象,可以如同数和字母一样进行运算.运算对象的不断扩展是数学发展的一条重要线索.数的运算,字母运算,向量运算,函数运算,映射、变换、矩阵运算等都是数学中的基本运算.从数的运算、字母运算到向量运算,是运算的一次飞跃,向量运算使运算对象从一元扩充到多元,对于进一步理解其它数学运算具有基础作用.本章要求学生掌握向量的线性运算(加、减、数乘)和数量积的运算,有助于学生体会数学运算的意义,感悟运算、推理在探索和发现数学结论,以及建立数学体系中的作用,发展学生的运算能力和推理能力,提高学生的数学素养.“平面向量”的主背景源于前一章“三角函数”,仍然从圆周上一点的表示(r,θ)出发,导出“既要考虑大小(r),又要考虑方向(θ)”;而自然界广泛地存在着“既要考虑大小,又要考虑方向”的现象,如力、速度.接着提出问题:用什么样的数学模型来刻画力、速度这样的量;这就明确了任务:建构这样的数学模型,同时也指明了教学起点:对向量的数学(分析)研究.另外,本章特别注意从丰富的物理背景和几何背景中引人向量概念.本章的章头图中,矫健的银燕连同它身后的航迹,像利箭直插天穹.它使人联想到下面的问题:怎样表示运动物体的位移和速度呢?于是建构向量的思维活动就此展开了.引言(章首语)首先说明了本章的研究课题是前一章“三角函数”研究内容的拓展.三角函数可以看成是圆周上一点P绕圆周运动的数学模型,而向量则是为了刻画更一般的运动而建立的数学模型.这时,只有同时考虑点P的方向和大小才能确定点P的位置.接着引言又指出,在生活中,既有大小又有方向的量是很多的,如位移、速度、力等等都是.这样就从知识结构和现实生活两个方面为向量的研究提供了广阔的背景.在此基础上,引言提出了问题:用什么样的数学模型来刻划位移、速度、力这样的量?这个数学模型有什么性质与应用?这就是本章的中心问题,也是本章的知识增长点.与“函数”、“三角函数”类似,本章也是对一种数学模型的研究.教材是按照对数学模型研究的一般程序即“建构模型——研究模型——应用模型”的顺序展开的.这样的顺序不仅符合向量知识的发展过程,而且可以唤起学生在“函数”、“三角函数”学习中获得的经验,有助于发挥学生在学习中的主动权.。
必修4第二章平面向量2.2平面向量的线性运算教案1
2.2从位移的合成到向量的加法(2课时)一、教学目标:1.知识与技能(1)掌握向量加法的概念;能熟练运用三角形法则和平行四边形法则做几个向量的和向量;能准确表述向量加法的交换律和结合律,并能熟练运用它们进行向量计算.(2)了解相反向量的概念;掌握向量的减法,会作两个向量的减向量(3)通过实例,掌握向量加、减法的运算,并理解其几何意义.(4)初步体会数形结合在向量解题中的应用.2.过程与方法教材利用同学们熟悉的物理知识引出向量的加法,一方面启发我们利用位移的合成去探索两个向量的和,另一方面帮助我们利用物理背景去理解向量的加法. 然后用“相反向量”定义向量的减法;最后通过讲解例题,指导发现知识结论,培养学生抽象概括能力和逻辑思维能力.3.情感态度价值观通过本节内容的学习,使同学们对向量加法的三角形法则和平行四边形法则有了一定的认识,进一步让学生理解和领悟数形结合的思想;同时以较熟悉的物理背景去理解向量的加法,这样有助于激发学生学习数学的兴趣和积极性,实事求是的科学学习态度和勇于创新的精神.二.教学重、难点重点: 向量加法的概念和向量加法的法则及运算律.难点: 向量的减法转化为加法的运算.三.学法与教学用具学法:(1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教学用具:电脑、投影机.四.教学设想【创设情境】一、提出课题:向量是否能进行运算?1.某人从A到B,再从B按原方向到C,则两次的位移和:−→−AB+−→−BC=−→−AC2.若上题改为从A到B,再从B按反方向到C,则两次的位移和:−→−AB+−→−BC=−→−AC3.某车从A到B,再从B改变方向到C,则两次的位移和:−→−AB+−→−BC=−→−AC4.船速为AB,水速为BC,则两速度和:−→−AB+−→−BC=−→−ACA BCA BCA BC提出课题:向量的加法 【探究新知】1.定义:求两个向量的和的运算,叫做向量的加法。
人教A版高中数学必修四新课标优秀教案示范教案平面向量的实际背景及基本概念
第二章平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.整体设计教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.推进新课新知探究提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB 的两个端点中,规定一个顺序,假设A 为起点、B 为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作.起点要写在终点的前面.已知,线段AB 的长度也叫做有向线段的长度,记作|AB |.有向线段包含三个要素:起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B 的有向线段,对应的向量记作:AB . 这里要提醒学生注意的方向是由点A 指向点B,点A 是向量的起点.2°用字母a ,b ,c ,…表示.(一定要学生规范书写:印刷用黑体a ,书写用)3°向量(或a )的大小,就是向量(或a )的长度(或称模),记作||(或|a |).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a >b 就没有意义,而|a |>|b |有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a →来表示,或用表示向量的有向线段的起点和终点字母表示,如、CD.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出=a,=b,=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例例1 如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C 两地的位移.(精确到1 km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:表示A地至B地的位移,且||≈232 km;(AB长度×8 000 000÷100 000)表示A地至C地的位移,且||≈296 km.(AC长度×8 000 000÷100 000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100 m到达B点,然后改变方向,沿南偏东15°方向又走了100 m到达C点,求此人从C点走回A点的位移.图6解:根据题意画出示意图,如图6所示.||=100 m,|BC|=100 m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴||=100 m,即此人从C点返回A点所走的路程为100 m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100 m.图7例2 判断下列命题是否正确,若不正确,请简述理由.(1)ABCD中,与是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以AB∥CD.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3 如图8,设O是正六边形ABCDEF的中心,分别写出图中所示向量与相等的量.活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断与,与是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解:OA=CB=DO;OB=DC=EO;OC=AB=ED=FO.点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练本例变式一:与向量OA长度相等的向量有多少个?(11个)本例变式二:是否存在与向量长度相等、方向相反的向量?(存在)例4 下列命题正确的是( )A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b 共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.两个点D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是( )A.一个点B.两个点C.一个圆D.一条线段答案:B知能训练课本本节练习.解答:1.通过具体的例子,让学生动手画两个方向不同、大小不等的力(向量),图略.2.|AB|,|BA|,这两个向量的长度相等,但它们不等.点评:向量是既有大小,又有方向的量.长度相等的两个向量未必是两个相等的量.3.||=2,|CD|=2.5,||=3,|GH|=22.点评:方格纸是学生学习几何、向量等内容的好工具.在方格纸中,长度和角度非常容易表现.建议在向量内容的学习中把方格纸作为重要的学具.4.(1)它们的终点相同;(2)它们的终点不同.点评:方向相同的两个向量,如果它们的起点相同,它们的终点只与长度有关.课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.作业课本习题2.1 1、2.设计感想本节是平面向量的第一节,显然属于“概念课”,概念的理解无疑是重点,但也是难点.本教案设计的指导思想是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念和基本解题方法都明了了不少,应该有很多的成功之处或收获.对失败或教训之处可能是由于一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补过来的.作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机.通过本节具体问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和代数与几何相结合的习惯,为后面学习打下基础.。
高中数学必修4第二章平面向量教案完整版
§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点) B (终点)aO A B a a a b b b §2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;(3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加 3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=.4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aA B C a +b a +b a a b b a b b aa2)向量加法的交换律:a +b =b +a5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a ) = a.任一向量与它的相反向量的和是零向量.a + (-a ) = 0如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0(3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差.即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.2. 用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b3. 求作差向量:已知向量a 、b ,求作向量∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O ,作OA = a , AB = b 则BA = a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b -a. O ab B a b a -b2)若a ∥b , 如何作出a - b§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a方向相反;λ=0时λa =02.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量a -b A A B B B’ O a -b a a b b O A O B a -b a -b B A O -b§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=. 如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定. 设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=二、讲解新课:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0 探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠0)01221=-=⇔y x y x b a λ§2.4平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b,可得OP =b a b a λλλλλ+++=++1111. 10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅ca = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.C4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 0C3︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a 证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a 数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅.设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。
高中数学 第二章 平面向量教案 新人教版必修4
第二章平面向量2.1平面向量的实际背景及基本概念2.1.1 向量的物理背景与概念2.1.2 向量的几何表示2.1.3 相等向量与共线向量●三维目标1.知识与技能(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.(3)学会区分平行向量、相等向量和共线向量.2.过程与方法通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.情感、态度与价值观通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.●重点、难点重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.●教学建议1.本节的教学应当特别注意从向量的物理背景、几何背景入手,从学生熟悉的矢量概念引出向量概念,还可以要求学生自己举出一些“既有大小,又有方向的量”,从而使学生更好地把握向量的特点.2.本节介绍了两种向量的表示方法:几何表示和字母表示.几何表示为用向量处理几何问题打下了基础,而字母表示则利于向量运算,这两种方法需要学生熟练掌握.教科书用黑体字母表示向量,如a ,在手写时可用a →表示.用有向线段表示向量时,要提醒学生注意AB →的方向是由点A 指向点B ,点A 是向量的起点.3.相等向量是长度相等且方向相同的向量,相等向量是一类向量的集合. 任何一组平行向量都可以移动到同一直线上,因此平行向量与共线向量是等价的,这一点值得特别注意.还要注意平行向量与平行线段的区别.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量,当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.教学中,可以借助信息技术,通过向量的平移来说明向量的相等与起点无关.讲解中要求学生辨析“向量就是有向线段,有向线段就是向量”的说法是否正确,目的是引导学生体会向量只与方向及模的大小有关而与起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.●教学流程错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!(见学生用书第34页)课标解读1.理解向量的有关概念及向量的几何表示.(重点)2.理解共线向量、相等向量的概念.(难点) 3.正确区分向量平行与直线平行.(易混点)向量及其几何表示1.在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 【提示】 面积、质量只有大小,没有方向;而速度和位移既有大小又有方向. 2.对既有大小又有方向的量,如何形象、直观地表示出来? 【提示】 利用有向线段来表示. 1.向量与数量(1)向量:既有大小,又有方向的量叫做向量.(2)数量:只有大小,没有方向的量称为数量. 2.向量的几何表示(1)带有方向的线段叫做有向线段.它包含三个要素:起点、方向、长度.(2)向量可以用有向线段表示,向量AB →的大小也就是向量 AB →的长度(或称模),记作|AB →|.向量也可以用字母a 、b 、c …表示,也可以用有向线段的起点和终点字母表示,如AB →、CD →.3.向量的有关概念 零向量 长度等于0的向量,记作0 单位向量 长度等于1的向量 平行向量 (共线向量)方向相同或相反的非零向量 向量a ,b 平行,记作a ∥b 规定:零向量与任一向量平行 相等向量长度相等且方向相同的向量 向量a ,b 相等,记作a =b(见学生用书第34页)向量的有关概念的判断下列说法正确的有________.(1)若|a |=|b |,则a =b 或a =-b ;(2)向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一条直线上; (3)向量AB →与BA →是平行向量; (4)任何两个单位向量都是相等向量.【思路探究】明确向量的有关概念,根据定义进行判定.【自主解答】(1)错误.由|a|=|b|仅说明a与b模相等,但不能说明它们方向的关系.(2)错误.共线向量即平行向量,只要方向相同或相反,并不要求两个向量必须在同一直线上,因此点A、B、C、D不一定在同一条直线上.(3)正确.向量是长度相等,方向相反的两个向量.(4)错误.单位向量不仅有长度,而且有方向;单位向量的方向不一定相同,而相等向量要求长度相等,方向相同.【答案】(3)1.单位向量、零向量是用向量的长度来定义的,共线向量是用表示向量的有向线段所在直线平行或重合来定义的.相等向量是用向量的长度和方向共同定义的.2.对于概念性题目,关键把握好概念的内涵与外延,正确理解向量共线、向量相等的概念,清楚它们的区别与联系.判断下列说法是否正确,并简要说明理由:(1)零向量只有大小没有方向;(2)相等向量一定是平行向量,平行向量不一定是相等向量;(3)若向量a与向量b同向,|a|>|b|,则a>b;(4)若a=b,b=c,则a=c.【解】(1)不正确,零向量的长度为零,方向是任意的,并不是没有方向.(2)正确,相等向量的方向相同,因此必是平行向量,但平行向量的长度不一定相等,因此不一定是相等向量.(3)不正确,向量不能比较大小.(4)正确.∵a=b,∴a,b的长度相等且方向相同;又∵b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c.向量的表示及应用一辆消防车从A地去B地执行任务,先从A地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶2千米才到达B 地图2-1-1(1)画出AD →,DC →,CB →,AB →;(2)求B 地相对于A 地的位置向量.【思路探究】 按要求用直尺作出向量,解答时既要考虑向量大小,又要考虑其方向及起点.【自主解答】 (1)向量AD →,DC →,CB →,AB →如图所示.(2)由题意知AD →=BC →,∴AD 綊BC ,则四边形ABCD 为平行四边形.∴AB →=DC →,则B 地相对于A 地的位置向量为“北偏东60°,6千米”.1.作向量的一般步骤是:首先确定向量的起点,再确定向量的方向,最后根据向量的长度确定向量的终点.2.用向量知识解决实际问题的关键是将实际问题转化为数学模型,然后解决数学问题.在某军事演习中,红方一支装甲分队为完成对蓝军的穿插包围,先从A 处出发向西迂回了100 km 到达B 地,然后又改变方向向北走了120 km 到达C 地,最后又改变方向,向南偏东45°突进80 2 km 到达D 处,完成了对蓝军的包围.(1)在如图2-1-2所示的坐标纸上,用直尺和圆规作出向量AB →,BC →,CD →;图2-1-2(2)求出|AD →|.【解】 (1)向量AB →,BC →,CD →如图所示:(2)|AD →|=202+402=20 5 (km).相等向量与共线向量如图所示,O 是正六边形ABCDEF 的中心,且O A →=a ,O B →=b .图2-1-3(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些? (3)与a 共线的向量有哪些?(4)请一一列出与a ,b 相等的向量.【思路探究】 借助几何图形的性质及向量相关概念进行判断.【自主解答】 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有O D →,B C →,A O →,F E →.(3)与a 共线的向量有E F →,B C →,O D →,F E →,C B →,D O →,A O →,D A →,A D →.(4)与a 相等的向量有E F →,D O →,C B →;与b 相等的向量有D C →,E O →,F A →.1.寻找相等向量,先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线;寻找共线向量,先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量.2.向量的相关概念性质与几何知识交汇,要注意联系几何图形的相关性质,使向量与几何图形有机地结合起来.若将本例中的正六边形ABCDEF 改为如图2-1-4所示的▱ABCD ,则图2-1-4(1)与O A →的模相等的向量有多少个?(2)与O A →的模相等,方向相反的向量有哪些?(3)写出与A B →共线的向量.【解】 (1)与O A →的模相等的向量有O C →,A O →,C O →三个向量.(2)与O A →的模相等且方向相反的向量为O C →,A O →.(3)与A B →共线的向量有D C →,C D →,B A →.(见学生用书第36页)对向量的有关概念理解不清致误下列说法正确的个数是( )①向量a,b共线,向量b,c共线,则a与c也共线;②任意两个相等的非零向量的起点与终点都分别重合;③向量a与b不共线,则a与b都是非零向量;④有相同起点的两个非零向量不平行.A.1 B.2 C.3 D.4【错解】向量共线具有传递性,相等向量的各要素相同(包括起点、终点),同起点共线向量不是平行向量.【答案】B或C或D【错因分析】对共线向量的概念理解不清,零向量与任一向量都是共线向量,共线向量也是平行向量,它与平面几何中的共线和平行不同.【防范措施】正确理解共线向量、相等向量以及非零向量的概念及其性质是关键.【正解】事实上,对于①,由于零向量与任意向量都共线,因此①不正确;对于②,由于向量都是自由向量,则两个相等向量的始点和终点不一定重合,故②不正确;对于④,向量的平行只与方向有关,而与起点是否相同无关,故④不正确;a与b不共线,则a与b 都是非零向量,否则,不妨设a为零向量,则a与b共线,与a与b不共线矛盾,从而③正确.【答案】 A1.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑.2.共线向量与平行向量是一组等价的概念,两个共线向量不一定要在同一条直线上.当然,同一直线上的向量也是平行向量.3.向量与数量的区别在于向量有方向而数量没有方向;向量与向量模的区别在于向量的模是指向量的长度,是数量,可以比较大小,但向量不能比较大小.(见学生用书第36页)1.下列说法正确的是( ) A .若|a |>|b |,则a >b B .若|a |=|b |,则a =b C .若a =b ,则a 与b 共线 D .若a ≠b ,则a 一定不与b 共线【解析】 A 中,向量的模可以比较大小,因为向量的模是非负实数,虽然|a |>|b |,但a 与b 的方向不确定,不能说a >b ,A 不正确;同理B 错误;D 中,a ≠b ,a 可与b 共线.故选C.【答案】 C2.在同一平面内,把平行于某一直线的一切向量的始点放在同一点,那么这些向量的终点所构成的图形是( )A .一条线段B .一条直线C .圆上一群孤立的点D .一个半径为1的圆【解析】 由于向量的始点确定,而向量平行于同一直线,所以随向量模的变化,向量的终点构成一条直线.【答案】 B3.如图所示,在四边形ABCD 中,AB →=DC →,且|AB →|=|AD →|,则四边形ABCD 为________.图2-1-5【解析】 ∵AB →=DC →, ∴AB 綊DC ,∴四边形ABCD 是平行四边形.∵|AB →|=|AD →|,∴平行四边形ABCD 是菱形. 【答案】 菱形4.如图所示四边形ABCD 与ABEC 都是平行四边形.图2-1-6(1)写出与向量AB →共线的向量;(2)写出与向量A B →相等的向量.【解】 (1)与向量AB →共线的向量是BA →,DE →,ED →,DC →,CD →,CE →,EC →;(2)与向量AB →相等的向量是CE →,DC →.一、选择题1.下列各量中是向量的是( ) A .密度 B .电流 C .面积 D .浮力【解析】 只有浮力既有大小又有方向. 【答案】 D2.(2013·杭州高一检测)下列说法正确的是( ) A .若a ∥b ,则a 与b 的方向相同或相反 B .若a ∥b ,b ∥c ,则a ∥cC .若两个单位向量平行,则这两个单位向量相等D .若a =b ,b =c ,则a =c 【解析】选项 对否 原因分析 A 、B × 当b =0时均错误C × 两个单位向量平行但方向不一定相同 D√本结论实际是向量相等的传递性【答案】3.图2-1-7如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( ) A.AB →=DC → B .|AB →|=|DC →|C.AB →>DC →D.AB →<DC →【解析】 |AB →|与|DC →|表示等腰梯形两腰的长度,故相等. 【答案】 B4.如图所示,在正方形ABCD 中,可以用同一条有向线段表示的向量是( )图2-1-8A.DA →与BC →B.AB →与DC →C.DC →与DA →D.BC →与AB →【解析】 ∵AB →=DC →,∴AB →与DC →可用同一条有向线段表示. 【答案】 B5.如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC ,AB ,BC 的中点,则与E F →的模相等的向量共有( )图2-1-9A .6个B .5个C .4个D .3个【解析】 ∵E 、F 、D 分别是边AC 、AB 和BC 的中点, ∴EF =12BC ,BD =DC =12BC .又∵AB ,BC ,AC 均不相等,从而与EF →的模相等的向量是:FE →,BD →,DB →,DC →,CD →. 【答案】 B 二、填空题6.如图所示,B 、C 是线段AD 的三等分点,分别以图中各点为起点或终点,与AC →相等的向量是________.图2-1-10【解析】 以AD 的13为单位长度,则|AC →|=2,由图知|BD →|=2且与AC →的方向相同.【答案】 BD →7.如图所示,四边形ABCD 和ABDE 都是平行四边形.图2-1-11(1)与向量ED →相等的向量为________; (2)若|AB →|=3,则向量EC →的模等于________.【解析】 (1)在平行四边形ABCD 和ABDE 中,∵AB →=ED →,AB →=DC →,∴ED →=DC →. (2)由(1)知,ED →=DC →,∴E 、D 、C 三点共线,|EC →|=|ED →|+|DC →|=2|AB →|=6. 【答案】 (1)AB →,DC →(2)68.(2012·榆林高一检测)把平面上一切单位向量归结到共同的始点O ,那么这些向量的终点所组成的图形是________.【解析】 单位向量的长度是一个单位,方向任意,若单位向量有共同的始点O ,则其终点构成一个单位圆.【答案】 以O 为圆心的单位圆 三、解答题 9.图2-1-12O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在如图2-1-12所示的向量中:(1)分别找出与AO →,BO →相等的向量;(2)找出与AO →共线的向量; (3)找出与AO →模相等的向量; (4)向量AO →与CO →是否相等? 【解】 (1)AO →=BF →,BO →=AE →. (2)与AO →共线的向量有:BF →,CO →,DE →.(3)与AO →模相等的向量有:CO →,DO →,BO →,BF →,CF →,AE →,DE →. (4)向量AO →与CO →不相等,因为它们的方向不相同.10.设在平面内给定一个四边形ABCD ,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,求证:EF →=HG →.【证明】 如图所示,连接AC .在△ABC 中,由三角形中位线定理知,EF =12AC ,EF ∥AC ,同理HG =12AC ,HG ∥AC .所以|EF →|=|HG →|且EF →和HG →同向,所以EF →=HG →.11.如图是中国象棋的半个棋盘,“马走日”是中国象棋的走法,“马”可以从A 跳到A 1或A 2,用向量AA 1→、AA 2→表示“马”走了一步.试在图中画出“马”在B 、C 分别走了一步的所有情况.图2-1-13【解】 如图所示,在B 处有3种走法;在C 处有8种走法.【教师备课资源】1.向量在实际问题中的应用如图,半圆的直径AB =6,C 是半圆上的一点,D 、E 分别是AB 、BC 上的点,且AD =1,BE =4,DE =3.(1)求证:向量AC →∥DE →; (2)求|AC →|.【思路探究】 (1)先证AC ∥DE ,再证AC →∥DE →; (2)根据平行线分线段成比例求|AC →|.【规范解答】 (1)证明:∵AB 是半圆的直径,C 是半圆上的点, ∴AC ⊥BC .① ∵AB =6,AD =1, ∴DB =5.又∵BE =4,DE =3, ∴BE 2+DE 2=DB 2,∴△BED 是直角三角形,且∠BED 为直角, ∴DE ⊥BC .②由①、②知,AC ∥DE , ∴AC →∥DE →.(2)由(1)知,AC ∥DE , ∴BD ∶BA =DE ∶AC , ∴AC =BA ·DE BD =185, ∴|AC →|=185.1.解答本题的关键是平面几何知识在解题中的应用.2.解决此类问题,首先理解平面几何知识及实际问题与向量的联系,然后准确作出几何图形,转化为几何问题求解.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解】 (1)如图所示(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线. 又|AB →|=|CD →|, ∴在四边形ABCD 中,AB 綊CD ,∴四边形ABCD 为平行四边形, ∴|AD →|=|BC →|=200 km. 2.知识拓展易错环节的避免与方法技巧归纳(1)书写符号出错,如向量a 误写成a ,零向量0误写成数字0等.(2)向量的方向把握不好,如a ∥b ,应有a 、b 方向相同或相反或二向量中至少有一个为零向量三种情况.(3)向量的问题与线段问题相混淆,把无方向的线段问题不加思考地搬到向量中,如|a |=|b |误推为a =±b 等.(4)向量不同于我们以前学过的数量,学习时应结合实际明确它是一种新的量,它是既有大小又有方向的一种量.(5)从实际出发,明确平行向量、相等向量、共线向量的基本性质. (6)平行向量可以平行移动,因此任意一组平行向量都可以移到同一直线上.(7)非零向量a 与b 相等,则必有|a |=|b |,且a 与b 的方向相同,反之也成立. (8)两个非零向量方向相同或相反,则它们共线,但要注意零向量与任一向量共线,零向量的方向是任意的.(9)长度等于一个单位的向量叫做单位向量.对于任意非零向量a 的单位向量是a|a |,这实质上告诉了求任意非零向量a 的单位向量的方法.(10)注意向量平行,向量所在直线不一定平行,还有可能共线.(11)相等向量不但模相等,方向还要相同,两非零平行向量方向相同或相反. (12)零向量在共线向量问题中是一个特别的对象,应按照平行向量的补充规定来判断;考查向量应考查其大小和方向,二者缺一不可,对于一个向量只要不改变其大小与方向是可以任意平行移动的,即我们研究的向量是自由向量;平行向量与向量的模无关,而方向包含相同和相反两种情形.3.动态课件制作一个动态课件,展示在平面内的一个向量AB →平移至A ′B ′→后,仍然有AB →=A ′B ′→,但此时两条有向线段不等价.从而说明向量只与大小、方向有关,而有向线段与大小、方向、起点位置均有关.2.2平面向量的线性运算2.2.1 向量加法运算及其几何意义●三维目标 1.知识与技能(1)掌握向量的加法运算,并理解其几何意义.(2)会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力.2.过程与方法通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法.3.情感、态度与价值观(1)通过对向量的加法运算的探究学习,经历数学探究活动的过程,体会由特殊到特殊的认识事物规律,培养探索精神与创新意识.(2)通过本节的学习,学会用数学的方式解决问题、认识世界,进而领会数学的价值,不断提高自己的文化修养.●重点、难点重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.难点:理解向量加法的定义.●教学建议首先从数及数的运算谈起,有了数只能进行计数,只有引入了运算,数的威力才得以充分展现.类比数的运算,向量也能够进行运算.运算引入后,向量的工具作用才能得到充分发挥.实际上,引入一个新的量后,考察它的运算及运算律,是数学研究中的基本问题.数学中,教师应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算.1.教学中,应以熟悉的位移的合成和力的合成为背景,引导学生进行实验,使学生形成感知:“既有大小,又有方向的量可以相加,并且可以依据“三角形法则”来进行”.在此基础上,给出向量加法的定义.2.向量加法运算主要是向量加法的三角形法则和平行四边形法则.教科书从几何角度具体给出了通过三角形法则或平行四边形法则作两个向量和的方法.教学中要注意向量加法的三角形法则和平行四边形法则所对应的物理模型.另外,使学生体会两种加法法则在本质上是一致的.对任意向量与零向量相加,教科书中给出了规定.3.为了让学生认识数的加法与向量加法的区别及联系,可引导学生探究有关向量加法中模的大小关系加强理解,只不过两个数的和是一个数,两个向量的和仍是一个向量.4.引导学生类比数的运算律,通过画图验证向量加法的交换律与结合律.●教学流程创设问题情境,引出问题:对比数的加法运算,如何求出两个向量的和呢?⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!(见学生用书第37页)课标解读1.理解向量的加法及其运算法则、运算律.(重点)2.理解向量加法的几何意义.(难点)3.数的加法与向量的加法的联系与区别.(易混点)向量加法的定义及其运算法则分析下列实例:(1)飞机从广州飞往上海,再从上海飞往北京(如图),这两次位移的结果与飞机从广州直接飞往北京的位移是相同的.(2)有两条拖轮牵引一艘轮船,它们的牵引力分别是F 1=3 000 N ,F 2=2 000 N ,牵引绳之间的夹角为θ=60°(如图),如果只用一条拖轮来牵引,也能产生跟原来相同的效果.1.从物理学的角度,上面实例中位移、牵引力说明了什么?体现了向量的什么运算? 【提示】 后面的一次位移叫前面两次位移的合位移,四边形OACB 的对角线OC →表示的力是OA →与OB →表示力的合力.体现了向量的加法运算.2.上述实例中位移的和运算、力的和运算分别用什么法则? 【提示】 三角形法则和平行四边形法则. 1.向量加法的定义图2-2-1定义:求两个向量和的运算,叫做向量的加法.已知非零向量a 、b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →,如图2-2-1.对于零向量与任一向量a ,规定0+a =a +0=a .2.向量求和的法则角形法则已知非零向量a ,b ,在平面上任取一点A ,作A B →=a ,B C →=b ,则向量A C →叫做a 与b 的和,记作a +b ,即a +b A B →+B C →=A C →行四边形法则已知两个不共线向量a ,b ,作A B →=a ,A D →=b ,以A B →,A D →为邻边作▱ABCD ,则对角线上的向量A C →=a +b向量加法的运算律实数的运算律有哪些?向量的加法是否也有相似的运算律? 【提示】 交换律和结合律、有.交换律 结合律a +b =b +a(a +b )+c =a +(b +c )(见学生用书第38页)向量的加法运算化简下列各式:(1)MB →+AC →+BM →; (2)PA →+PB →+AO →+OP →; (3)AB →+DF →+CD →+BC →+FA →.【思路探究】 多个向量相加,可尝试运用向量加法的三角形法则,也可以观察向量的字母直接运算.解题时要灵活运用运算律,以达到化简的目的.【自主解答】 (1)MB →+AC →+BM →=(MB →+BM →)+AC →=0+AC →=AC →. (2)PA →+PB →+AO →+OP →=(PA →+AO →)+(OP →+PB →)=PO →+OB →=PB →. (3)AB →+DF →+CD →+BC →+FA →=AB →+BC →+CD →+DF →+FA →=0.1.进行向量的加法运算时常常用到向量平移,还要运用运算律来调整顺序. 2.当运算结果为零向量时,不要写成数字0,因为向量的和仍为向量.化简下列各式: (1)(AB →+MB →)+BO →+OM →; (2)OA →+OC →+BO →+CO →.【解】 (1)(AB →+MB →)+BO →+OM →=AB →+BO →+OM →+MB →=AB →. (2)OA →+OC →+BO →+CO →=BO →+OC →+CO →+OA →=BA →.利用向量证明几何问题如图所示,已知E 、F 分别是▱ABCD 的边DC 、AB 的中点,求证:四边形AECF 是平行四边形.图2-2-2【思路探究】 要证四边形AECF 为平行四边形,只需证AE →=FC →. 【自主解答】 在▱ABCD 中,AD →=BC →, 又由E 、F 分别是DC 、AB 的中点,得DE →=FB →. 所以AE →=AD →+DE →=FB →+BC →=FC →, 又A 、E 、C 、F 四点不共线, 故四边形AECF 是平行四边形.1.用向量证明几何问题的一般步骤: (1)把几何问题中的边转化成相应的向量;(2)通过向量的运算及其几何意义得到向量间的关系; (3)还原成几何问题.2.要注意有向线段表示的向量相等,说明有向线段所在直线平行或重合且长度相等.已知:如图,四边形ABCD 中,AO =OC ,DO =OB .图2-2-3求证:四边形ABCD 为平行四边形. 【证明】 ∵AO =OC ,DO =OB , ∴AO →=OC →,DO →=OB →. ∴DO →+OC →=OB →+AO →, ∴DC →=AB →.即DC ∥AB 且|DC →|=|AB →|, ∴四边形ABCD 为平行四边形.向量加法的实际应用如图所示,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.图2-2-4【思路探究】 解答本题先明确飞行路程与两次位移和的含义,再解Rt △ABC ,求出|AC →|和∠BAC ,最后结合图形作答.【自主解答】 设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B地按南偏东55°的方向飞行800 km ,则飞机飞行的路程指的是|AB →|+|BC →|; 两次飞行的位移的和指的是AB →+BC →=AC →. 依题意,有|AB →|+|BC →|=800+800=1 600(km), 又α=35°,β=55°,∠ABC =35°+55°=90°, 所以|AC →|=|AB →|2+|BC →|2=8002+8002=8002(km).其中∠BAC =45°,所以方向为北偏东35°+45°=80°.从而飞机飞行的路程是1 600 km ,两次飞行的位移和的大小为800 2 km ,方向为北偏东80°.向量加法的实际问题的解题步骤如下:(1)用向量表示相应问题中既有大小又有方向的量; (2)利用平行四边形法则或三角形法则求向量的和; (3)利用直角三角形知识解决问题.为了调运急需物资,如图所示,一艘船从长江南岸A点出发,以5 3 km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东5 km/h.图2-2-5(1)试用向量表示江水的速度、船速以及船实际航行的速度;(2)求船实际航行的速度的大小与方向(用与江水的速度方向间的夹角表示). 【解】 (1)如图所示,AD →表示船速,AB →表示水速. 易知AD ⊥AB ,以AD ,AB 为邻边作矩形ABCD ,。
高中数学 第二章平面向量教学设计教案人教版必修4
第二章平面向量教学设计人教A版数学必修4一、教材分析向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景和深刻的几何背景,是解决几何问题的有力工具. 在数学和物理中都有广泛的应用.在本单元中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学及物理中的一些问题.发展运算能力和解决实际问题的能力.1.本单元的教学内容的范围(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。
(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义。
②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。
③了解向量的线性运算性质及其几何意义。
(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义。
②掌握平面向量的正交分解及其坐标表示。
③会用坐标表示平面向量的加、减与数乘运算。
④理解用坐标表示的平面向量共线的条件。
(4)平面向量的数量积①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。
②体会平面向量的数量积与向量投影的关系。
③掌握数量积的坐标表达式,会进行平面向量数量积的运算。
④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。
本章知识结构如下:平面向量、实际背景向量及其基本概念线性运算向量的数量积基本定理坐标表示向量的应用根据数学知识的发展过程与学生的认知过程安排内容向量是高中数学课程近年来引进的新内容,为了保证其科学性,同时又易于被学生接受,根据向量知识的发展过程和学生的思维规律,根据“标准”对向量内容的定位,并考虑到学生在数及其运算中建立起来的经验,本章按照如下次序来编排:向量的实际背景及基本概念一向量的线性运算一平面向量基本定理及坐标表示一向量的数量积一向量应用举例.课标要求的具体化和深广度分析①平面向量的实际背景及基本概念《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示.如:用向量a,则-a表示____.一辆汽车从A地出发向西行驶了100km,到达B地,可以用向量a表示,那么从B地出发到A达地应如何表示?向量a,b都是非零向量,下面说法不正确的是()(A)向量a与b反向,则向量a+b与向量a的方向可能相同(B)向量a与b反向,则向量a+b与向量b的方向可能相同(C)向量a与b反向,且a b>,则向量a+b与向量a的方向可能相同(D)向量a与b反向,且a b<,则向量a+b与向量a的方向可能相同理解向量的概念,掌握向量的几何表示,了解共线向量②向量的线性运算《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过实例,掌握向量加、减法的运算,并理解其几何意义.②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义.③了解向量的①如:若向量a表示向东走了2km,b表示向南走了1km,则a-b表示___________.已知下列各式①AB BC CA++;②AB MB BO OM+++;③OA OB BO CO+++;④AB AC BD CD-+-;①掌握向量的加法与减法,并理解其几何意义.②掌握实数与向量的积的运算,理解两个向量共线的充要条件.③会进行向量的线性运算.线性运算性质及其几何意义.其中结果为零向量的个数为()(A)1(B)2(C)3(D)4②已知向量a,b满足AB =a+2b,BC =-5a+6b,CD =7a-2b,则一定共线的三点是()(A)A,B,D (B)A,B,C(C)B,C,D (D)A,C,D③如:在ABC∆中,D,F分别是AB,AC的中点,BF与CD交于O,设AB =a,AC =b,用a,b表示向量AO.③平面向量的基本定理及坐标表示《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①了解平面向量的基本定理及其意义.②掌握平面向量的正交分解及其坐标表示.③会用坐标表示平面向量的加、减与数乘运算.④理解用坐标表示的平面向量共线的条件.①如:某人在静水中游泳,速度为每小时3km,水流的速度为每小时4km,如果他要垂直游到对岸,则他的实际速度是多少?②如:已知平行四边形ABCD的三个顶点坐标分别为A(-2,1),B(3,4),C(-1,3),则顶点D的坐标为___________.③如:已知(0,1)A,(3,4)B-且点C在AOB∠的平分线上,若2OC=,则向量OC=_________.④已知向量(,12)OA k=,(4,5)OB=,(,10)OC k=-且A,B,C三点共线,则k=_________.①了解平面向量的基本定理②理解平面向量的坐标的概念③掌握平面向量的坐标运算④理解两个向量共线的充要条件④平面向量的数量积《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.②体会平面向量的数量积与向量投影的关系.③掌握数量积的坐标表达式,会进行平面向量数量积的运算.④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.①如:用两根夹角为120角的等长的绳子悬挂一个灯具,若灯具的重量为10N,则每根绳子的拉力大小是_________.②如:已知点(0,1)A-,(2,2)B,(4,6)C-,则AB在AC上的投影的值为_________.③如:a=(-3,2),b=(-4,k),若(5a-b)⋅(3a-b)=55,求实数k的值.④如:两单位向量a,b的夹角为60,则两向量p=2a+b与q=3a+2b的夹角为_________.换垂直的题①明确平面向量数量积的定义、数学表达式及其几何意义②明确向量b在向量a的方向上的投影③掌握数量积的公式,能进行数量积的运算④明确两向量夹角的意义,掌握两向量垂直的充要条件,能用两种形式表示向量垂直的充要条件.⑤向量的应用《标准》表述《标准》要求的具体化和深广度分析《大纲》相应的要求经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算如图,在平行四边形ABCD中,13DE DC=,AE与BD交于F,用向量的方法证明:14DF DB=.掌握平面两点间的距离公式、掌握线段的定比分点和中点坐标公式、平移公式,并能熟练运用,会用平面向量数量积处理长度、角度等有关问题能力和解决实际问题的能力.ABCD E F实际问题如:一条河的两岸平行,河的宽度为0.4km ,一艘船从一岸边的A 处出发驶向对岸,已知船速为15kmv h =,水速为23kmv h =,欲使航行最短,则所用时间为_________.(2)本单元变化之处①删繁就简,降低了知识的难度 ②调整章节,凸显了知识的框架 ③贴近生活,重视了知识的应用 (3)人教B 版向量一章的教材特点强调向量法的基本思想,明确向量运算及运算律的核心地位向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决.另外,向量及其运算(运算律)与几何图形 的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示.例如,平行四边形是表示向量加法和减法的几何模型,而向量的加法及其交换律(=+a b b +a )又可以表示平行四边形的性质(在平行四边形AB ∥CD 中,AD ∥BC ,AB ∥CD ,ABD ∆≌CBD ∆).这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起.几何中的向量方法与解析几何的思想具有一致性,不同的只是用“向量和向量运算”来代替解析几何中的“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.如果把解析几何的方法简单地表述为 [形到数]——[数的运算]——[数到形], 则向量方法可简单地表述为[形到向量]——[向量的运算]——[向量和数到形].教科书特别强调了向量法的上述基本思想,并根据上述基本思想明确提出了用向量法解决几何问题的“三步曲”.为了使学生体会向量运算及运算律的重要性,教科书注意引导学生在解决具体问题时及时进行归纳,同时还明确使用了“因为有了运算,向量的力量无限;如果没有运算,向量只是示意方向的路标”的提示语.说明:由于我们按照必修1,必修4的顺序进行教学,因此向量法这种解决问题的方法就显得尤其重要,他为今后学习解析法奠定了基础。
(完整版)高中数学必修4第二章平面向量教案完整版
第1课时§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... A(起点)B(终点)aOABaaa bb b7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.第2课时§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +b=+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到A BCa +ba +baa b b abb aan 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = aOabBa ba -b作法:在平面内取一点O , 作= a , = b 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1︒AB 表示a - b .强调:差向量“箭头”指向被减数 2︒用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图较繁,但最后作图可统一.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a.2)若a ∥b , 如何作出a - b ?2.3平面向量的基本定理及坐标表示第4课时§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λO ABa B’b-b bBa + (-b )a b a -bA ABBB’Oa -b a a bbO AOBa -ba -b BA O-ba ρ=2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量第5课时§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x . 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定.设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --= 二、讲解新课:a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中b ρ≠a ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ρ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (b ρ≠0)01221=-=⇔y x y x ba λ§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0. ⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两C个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅c a = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |. 4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a |cos θ 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a ba ⋅5︒ |a ⋅b | ≤ |a ||b |第8课时二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角. 2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )C证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2第9课时三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | C5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。
高中数学 第二章 平面向量教案 新人教A版必修4
aaa平面向量复习教案一、教学目标1.知识与技能:通过复习本章知识点,提高综合运用知识的能力”. 2.过程与方法:通过知识回顾,例题分析,强化训练,体现向量的工具作用. 3.情感态度与价值观:通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段. 三、重点难点教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题. 教学难点:如何将几何等实际问题化归为向量问题. 四、教学设想一、基础知识:(一)平面向量的计算及其性质: (1)+=+;(2)(-+=-;平行四边形法则三角形法则(3))(,≠=λ⇔和共线;(4的模(即长度)0≥(5+≤+≤-+≤-≤-。
(6)θcos =⋅,其中θ为向量a 和b 的夹角。
==(7)()()⋅+⋅+⋅+⋅=+⋅+;那么()()___=+⋅- (8)⊥⇔=⋅0 (二)向量的坐标表示和运算:在平面中,若,不共线(可作为平面的一组基底),则任意向量,有且只有一组数(y x ,)使得y x +=当我们选定的一组基为直角坐标系上两互相垂直的单位向量和j ,则平面任意向量c 可以表示成j y i x c +=,那么任意向量和坐标平面上的一个点坐标相对应,如图所示,即),(y x =, (1)设),(),,(2211y x y x ==则=+=-=λ=⋅=;若//,则;⊥,则;(填坐标关系)(2)已知点),(11y x A 、),(22y x B 则向量==; 二、例题选讲 (一)加减运算例1、(1)在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =()A .2133b c + B .5233c b -C .2133b c - D .1233b c +(2)已知ABC ∆和点M 满足0MA MB MC --→--→--→+=+.若存在实数m 使得AB AC AM m --→--→--→+=成立,则m=()A .2B .3C .4D .5(3)已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为() A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),练习:1、如图1所示,D 是ABC ∆的边AB 上的中点,则向量CD = A.12BC BA -+B. 12BC BA -- C. 12BC BA - D. 12BC BA + 2、在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =_______。
人教版高中必修4第二章平面向量课程设计
人教版高中必修4 第二章平面向量课程设计课程目标通过该课程的学习,学生将会了解和掌握以下内容:1.平面向量的概念和性质;2.平面向量的运算;3.使用平面向量解决几何问题。
课程重点平面向量的运算和几何应用是本章的重点。
课程难点学生在学习本章时可能会遇到如下难点:1.对平面向量的概念和性质不够熟悉;2.平面向量的运算理论较多,需要认真掌握;3.平面向量的几何应用需要理论和实际操作相结合。
课程过程第一节:平面向量的概念和性质1.引导学生认识平面向量的概念;2.讲解平面向量的性质,并给出相关例题进行巩固;3.通过小组合作方式,帮助学生理解和运用平面向量的概念和性质。
第二节:平面向量的运算1.讲解平面向量的加法和减法运算,以及相关的性质和规律;2.给出相关的例题进行巩固;3.引导学生理解平面向量在平面上的几何意义。
第三节:平面向量的数乘运算1.引导学生认识平面向量的数乘运算;2.讲解平面向量的数乘运算规律和性质,并给出相关例题进行巩固。
第四节:平面向量的数量积与向量积1.讲解平面向量的数量积和向量积的概念和性质;2.给出相关的例题进行巩固;3.引导学生理解平面向量的数量积和向量积在几何中的应用。
第五节:平面向量在几何中的应用1.通过一些实际问题,引导学生理解平面向量在几何中的应用;2.帮助学生掌握使用平面向量解决几何问题的方法;3.给出相关例题进行巩固,并加强学生的实际操作能力。
课程方式本课程将采用以下方式进行教学:1.讲授:教师讲解理论知识,引导学生思考;2.合作:学生以小组为单位进行合作,互相交流、讨论和解决问题;3.实践:通过一些实际问题,帮助学生掌握平面向量在几何中的应用;4.检测:通过测试、练习、作业等方式对学生的学习情况进行检测。
考核方式本章的考核方式包括以下几个方面:1.思考问题:学生需要对某些问题展开思考;2.作业:针对本章的知识点布置作业;3.测试:对学生本章知识点进行测试;4.课堂表现:学生能否认真听课、积极发言、参与合作等。
人教版高中必修4第二章平面向量教学设计
人教版高中必修4第二章平面向量教学设计一、教学目标1.理解平面向量的概念和性质;2.掌握平面向量的加法、减法及数量积运算;3.熟练掌握平面向量在几何问题中的应用。
二、教学内容1. 平面向量的概念和性质1.平面向量的定义;2.平面向量的模长、方向和单位向量;3.平行向量和相等向量;4.平面向量的线性运算。
2. 平面向量的加法和减法1.平面向量加法的定义和性质;2.平面向量减法的定义和性质;3.平面向量的加法和减法规律。
3. 平面向量的数量积1.平面向量的数量积的定义;2.平面向量的数量积的性质;3.平面向量的数量积计算方法。
4. 平面向量的应用1.平面向量在几何中的应用,如向量的坐标、向量的共线和平行、向量的垂直、向量的夹角等;2.平面向量在物理力学中的应用。
三、教学方法1.示范法教学,通过举例进行说明;2.对比法教学,让学生了解和区分各概念之间的关系;3.互动式教学,促进学生的参与和主动性;4.实践性教学,通过练习和应用提高学生的能力。
四、教学重点和难点1. 教学重点1.平面向量的概念和性质;2.平面向量的加法、减法及数量积运算;3.平面向量在几何问题中的应用。
2. 教学难点1.平面向量在实际应用中的抽象概念;2.平面向量的加法、减法及数量积的计算。
五、教学步骤1. 导入环节通过举一些实际问题引入平面向量的概念,让学生了解平面向量在实际生活中的应用。
2. 知识讲解1.平面向量的概念和性质;2.平面向量的加法、减法及数量积运算;3.平面向量在几何问题中的应用。
3. 实例讲解分别给出一些实例,让学生通过举例进行了解和习题练习。
4. 练习检验通过课堂练习来检验学生的掌握程度,同时也可以在课后留下作业来进一步巩固学生的知识点。
六、教学资源1.人教版高中数学必修4教材;2.数学教学PPT和实例练习;3.数学教学视频和在线练习。
七、教学评估1.通过平时练习成绩的评测来检验学生的理论掌握和计算能力;2.通过单元测试和模拟考试来评估学生的整体学习效果。
高中数学:第二章《平面向量》教案(新人教A版必修4)
第二章平面向量第12课时复习课一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,a·b=|a||b|cos =x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、典型例题例1.对于任意非零向量a与b,求证:||a|-|b||≤|a±b|≤|a|+|b|证明:(1)两个非零向量a与b不共线时,a+b的方向与a,b的方向都不同,并且|a|-|b|<|a±b|<|a|+|b|(3)两个非零向量a与b共线时,①a与b同向,则a+b的方向与a.b相同且|a+b|=|a|+|b|.②a与b异向时,则a+b的方向与模较大的向量方向相同,设|a|>|b|,则|a+b|=|a|-|b|.同理可证另一种情况也成立。
例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c i j解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是a =i -3j , b =j , c =-3i 所以-3a =33b +c |即c =3a -33b例3.下面5个命题:①|a ·b |=|a |·|b |②(a ·b )2=a 2·b 2③a ⊥(b -c ),则a ·c =b ·c ④a ·b =0,则|a +b |=|a -b |⑤a ·b =0,则a =0或b =0,其中真命题是( ) A ①②⑤ B ③④ C ①③ D ②④⑤巩固训练1.下面5个命题中正确的有( ) ①a =b ⇒a ·c =b ·c ; ②a ·c =b ·c ⇒a =b ;③a ·(b +c )=a ·c +b ·c ; ④a ·(b ·c )=(a ·b )·c ; ⑤b a a ba 2=⋅.A..①②⑤B.①③⑤C. ②③④D. ①③2.下列命题中,正确命题的个数为( A ) ①若a 与b 是非零向量 ,且a 与b 共线时,则a 与b 必与a 或b 中之一方向相同;②若e 为单位向量,且a ∥e 则a =|a |e ③a ·a ·a =|a |3④若a 与b 共线,a 与c 共线,则c 与b 共线;⑤若平面内四点A.B.C.D ,必有AC +BD =BC +ADA 1B 2C 3D 43.下列5个命题中正确的是①对于实数p,q 和向量a ,若p a =q a 则p=q ②对于向量a 与b ,若|a |a =|b |b 则a =b ③对于两个单位向量a 与b ,若|a +b |=2则a =b ④对于两个单位向量a 与b ,若k a =b ,则a =b4.已知四边形ABCD 的顶点分别为A(2,1),B(5,4),C(2,7),D(-1,4),求证:四边形ABCD 为正方形。
(完整版)高中数学必修4第二章平面向量教案完整版
第1课时§2。
1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。
2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0。
0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量。
说明:零向量、单位向量的定义都只是限制了大小。
5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段.....的起点无关...... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........).。
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系。
A(起点)B(终点)aOABaaa bb b第2课时§2。
2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法。
高中数学平面向量教案(精选6篇)
高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。
高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。
会用基底表示平面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。
活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。
因为OC=OM+ON,所以c=6 e1+6e2。
向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。
活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。
必修4第二章 平面向量正交分解及坐标表示教案
第课
(单元)
主题
平面向量的正交分解和坐标表示及运算
1课时标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
过程
与方法
情感态度与价值观
教
材
分
析
重点
平面向量的坐标运算
难点
向量的坐标表示的理解及运算的准确性
学情分析
过程
教学内容
自主学习
不看不讲
一、复习引入:1.力的分解(正交分解);2.平面向量基本定理
二、讲解新课:
1.平面向量的坐标表示:如图,在直角坐标系内,我们分别取与 轴、 轴方向相同的两个单位向量 、 作为基底.任作一个向量 ,由平面向量基本定理知,有且只有一对实数 、 ,使得 ,我们把 叫做向量 的(直角)坐标,记作 …(2),与 相等的向量的坐标也为 .特别地, 、 .
例3.已知三个力的合力 ,且 , ,求 的坐标.
例4.已知点 , , , ,求点C,D的坐标和的 坐标.
例5.已知 中点A(2,1),B(1,3),C(3,4),求点D的坐标。
.
高效训练
不练不讲
1.若A(0,1),B(1,2),C(3,4),则 .
2.已知点 , , ,则点D的坐标是.
3.若点A(1,3),B(2,4), 与 相等,则x为
如图,当向量起点在原点时,则点 的位置由 唯一确定,定义向量坐标为终点坐标,即若 ,则 .
合作探究
不议不讲
2.平面向量的坐标运算
(1)若 , ,则 ,(终点坐标减去起点坐标)
(2)若 , ,则 , ,
,(两个向量的坐标的对应运算).
三、讲解范例:
例1.已知原点 ,点 , ,求 、 、 的坐标.
人教A版高中数学必修4《二章 平面向量 2.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示》教案_14
向量的几何表示教学设计1.教学内容解析本节课是《普通高中课程标准实验教科书数学4》(人教A 版)第二章第一节“平面向量的实际背景及基本概念”第一课时。
平面向量的实际背景及基本概念是向量知识体系中的起始内容,起着为其他知识学习奠基的重要作用。
一方面,它能为其他向量知识的学习奠基,通过了解向量的实际背景,理解向量的含义及几何表示等内容,奠定学生学习向量的线性运算、平面向量的基本定理及坐标表示和平面向量数量积的知识基础;另一方面,它能为学习新的数学对象奠基,学生通过认识向量,形成向量相关概念的过程,可以获得认识其他数学对象的基本方法和途径,可以为学习和研究其他数学对象奠定方法基础。
所以,平面向量的实际背景及基本概念作为向量的起始课及概念型课,其教学必须要有“交代问题背景、引入基本概念、渗透研究方法、构建研究蓝图”的大气。
由于是第一课时,所以笔者重点在于章引言,向量概念的引入,向量的表示,零向量、单位向量和平行向量的教学,不讲相等向量和共线向量。
2.教学目标设置课堂教学目标如下.(1)从如何由A点确定B点的位置,速度既有大小和方向抽象出向量的概念并与数量区分;(2)经历从实数的表示到“带箭头的线段”,从有向线段到向量的几何表示,掌握向量的几何表示、符号表示,模的表示,感受类比的思想,体会数学的实用性、表达的简洁美;(3)理解从大小看:零向量、单位向量,从方向看:平行向量;(4)体会认识新的数学概念基本思路:1.归纳共性;2.抽象定义;3.符号表示;4.认识特殊;5.研究一般;进而提高提出问题、研究问题的能力;3.学生学情分析(1)在物理学中,已经知道速度,力,位移等是既有大小又有方向的物理量(矢量);(2)如何作力的图示;(3)已经经历并了解实数的形成过程;(4)对实际生活中的一些常见的量,能识别它们是否具有大小、方向;(5)在以前的学习中,能运用类比的思想发现问题、提出问题,进而解决问题。
但是,高一学生在思维辨析方面还比较薄弱,教师要适度加以引导,指导学生进行辨析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平面向量第1课时平面向量的实际背景及基础概念【知识与技能】1.理解平面向量、有向线段的概念,掌握向量的几何表示;2.掌握向量的模、零向量、单位向量、平行向量、相等向量共线向量等概念3.会辨认图形中的相等向量;4.清楚认识现实生活中的向量和数量两个不同概念,把握其本质区别,提高辨识能力. 【过程与方法】向量的概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量关系的运算.向量不同于数量,它是一种新的量,既有大小又有方向,关于数量的运算在向量范围内不一定适用.因此,本章在介绍向量概念时,说明了向量与数量的区别.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念.本节是本章的入门课,概念较多,但难度不大.可根据在原有的位移、力等物理概念来学习向量的概念,结合图形来区分平行向量、相等向量、共线向量等概念.一、教学目标1.理解向量、零向量、单位向量、相等向量的意义,并能用数学符号表示向量;2.理解向量的几何表示,会用字母表示向量;3.了解平行向量、共线向量、和相等向量的意义,并会判断向量的平行、相等、共线;4.通过对向量的学习,使学生对现实生活的向量和数量有一个清楚的认识,培养学生进行唯物辩证思想.二、教学重点⑴向量的概念,相等向量的概念,向量的几何表示.⑵向量是一种新的量,其特征有两个:既有大小,又有方向.让学生认识到方向性的存在是认识向量概念的关键,还要让学生理解向量和数量的区别联系,建立一种新的量的思维体系.⑶相等向量只与方向、大小有关,与位置没有关系,进一步理了解学习的向量是自由向量,为以后运用向量解决平面数形问题奠定基础.三、教学难点⑴向量概念的理解.由于向量是一种新的量,与以前的数量是不同的体系,两者之间既有联系又有区别;⑵引入向量概念之后,随之带来一系列相关概念是比较多的,如零向量,单位向量,相等向量,平行向量,共线向量.对于它们要抓住本质特征,让学生在比较中找出相近概念的区别与联系,而且由于向量同时具有几何图象的特征,在学习时还要在图形中辩清它们相等、平行,且图形还可以从简单到复杂逐步分清向量所对应的有向线段的身份、地位和作用.四、教学具准备直尺、投影仪.五、教学过程㈠设置情境问:(边画图边讲解)美国“小鹰”号航空母舰导弹发射处接到命令:向1200公里处发射两枚战斧式巡航导弹(精度10米左右,射程超过2000公里),试问导弹是否能击中伊拉克的军事目标?答:不能,因为没有给定发射的方向.问:现实生活中还有哪些量既有大小又有方向?哪些量只有大小没有方向?答:力、速度、加速度等有大小也有方向,温度和长度只有大小没有方向.㈡向量的概念:力、速度、加速度等也是既有大小也有方向的量,我们把既有大小又有方向的量叫做向量.数学中用点表示位置,用射线表示方向.常用一条有向线段表示向量.在数学中,通常用点表示位置,用射线表示方向.(1)意义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等(2)向量的表示方法:①几何表示法:点和射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度符号表示:以A 为起点、B 为终点的有向线段 记作AB (注意起讫).②字母表示法:可表示为(印刷时用黑体字)例 用1cm 表示5n mail (海里) (3)模的概念:向量AB 的大小——长度称为向量的模。
记作:||,模是可以比较大小的注意:①数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。
②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
㈢介绍向量的一些相关概念(探索研究)问:长度为零的向量叫什么向量?如何表示?长度为1的向量叫做什么向量?是不是只有一个?(学生看书回答)答:长度为零的向量叫做零向量,表示为:0;长度等于1的向量叫做单位向量,有A(起点) B (终点) a许多个,每个方向都有一个.问:满足什么条件的两个向量是相等向量?符号如何表示?单位向量是相等向量吗?。
答:如果两个向量大小相等且方向相同,那么这两个向量叫做相等向量,a b 单位向量不一定是相等向量,单位向量的方向不一定相同.问:有一组向量,它们的方向相同或相反,那么这组向量有什么关系?答:平行.问:对!我们把方向相同或相反的两个向量叫做平行向量,符号如何表示?如果我们把一组平行向量的起点全部移到同一点O,这时它们是不是平行向量?这时各向量的终点之间有什么关系?答:是平行向量,a//b,各向量的终点都在同一条直线上.由此,我们把平行向量又叫做共线向量.㈣例题分析【例题】例1判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D④四边形ABCD是平行四边形当且仅当AB=⑤一个向量方向不确定当且仅当模为0⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相同.例2 下列命题正确的是(A.a与b共线,b与c共线,则a与cB.C.向量a与b不共线,则a与bD.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例3判断下列命题真假或给出问题的答案(1)平行向量的方向一定相同?(2)不相等的向量一定不平行.(3)与零向量相等的向量是什么向量?(4)与任何向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的充要条件是什么?(7)共线向量一定在同一直线上吗?解:(1)根据定义:平行向量可以方向相反,故命题(1)为假;(2)平行向量没有长、短要求,故命题(2)为假;(3)只有零向量;(4)零向量;(5)平行向量;(6)模相等且方向相同;(7)不一定,只要它能被平移成共线就行.说明:零向量是向量,只不过它的起、终点重合.依定义、其长度为零.例4如图1,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA 、OB OC 、,相等的向量. 解:=======练习:(投影)在上题中 变式一,与向量长度相等的向量有多少个?(11个) 变式二,是否存在与向量长度相等,方向相反的向量?(存在) 变式三,与向量OA 共线的向量有哪些?(有CB 、DO 和EF )3.演练反馈(投影)(1)下列各量中是向量的是( )A .动能B .重量C .质量D .长度(2)等腰梯形ABCD 中,对角线 AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过P 且AB EF //,则下列等式正确的是( )A .BC AD =B .BD AC = C .PF PE =D .PF EP =(3)物理学中的作用力和反作用力是模 相等 且方向 相反 的共线向量4.总结提炼(1)描述一个向量有两个指标:模、方向.(2)平行概念不是平面几何中平行线概念的简单移植,这儿的平行是指方向相同或相反的一对向量,它与长度无关,它与是否真的不在一条直线上无关.(3)向量的图示,要标上箭头及起、终点,以体现它的直观性.㈤板书设计习题(课本P88)参考答案1.略;2.略;3. |AB|=2,||=2.5,|EF|=3,||=22;4.(1)是,(2)不是. 习题2.1(A组)参考答案1.略;2.略;3.与DE相等的向量有:AF,FC;与相等的向量有:,与相等的向量有:,;4. 与a相等的向量有:,,;与b相等的向量有:,;与c相等的向量有:,,;5. ||=233;6.(1)错;(2)对;(3)对;(4)错习题2.1(B组)参考答案1.都不是.2.略.3. 24对.第2课时向量的加法运算及其几何意义【知识与技能】1.掌握向量的加法运算,并理解其几何意义;2.会用向量加法的三角形法则和平行四边形法则作出已知两个向量的和向量;3.将向量运算与熟悉的数的运算进行类比,理解向量加法运算的交换律和结合律,会用它们进行向量计算.【过程与方法】数能进行运算,向量也能进行运算.但是,对向量与数之间不同的地方要非常小心,也即运算中除了考虑大小,还要考虑方向问题.借助于物理中力的合成可进行向量的加法运算,即用“三角形法则”和“平行四边形法则”建立了向量加法运算与几何图形之间的关系.根据三角形法则,和向量a+b对应的有向线段,就是平移a、b对应的有向线段,使得()的起点与()的终点重合,则以()的起点为起点以()的终点为终点的有向线段就是和向量+对应的有向线段;而根据平行四边形法则,就是平移、对应的有向线段,使得、的起点重合,并以、对应线段为边作平行四边形,以公共起点为起点,对角线所对应的有向线段就是和向量a +对应的有向线段.一、教学目标(1)掌握向量的加法的定义,会用向量加法的三角形法则和会用向量加法的平行四边形法则作两个向量的和向量;(2)掌握向量加法的交换律和结合律,并会用它们进行计算;(3)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(4)培养学生化归的数学思想.二、教学重点:向量的加法的定义,向量加法的三角形法则和平行四边形法则,作两个向量的和向量;三、教学难点:对向量加法定义的理解.四、教具:多媒体、投影仪五、教学过程㈠设置情境请同学看这样一个问题:(投影)(1)由于大陆和台湾没有直航,因此2003年春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和时什么?(2)如图1(2),飞机从A 到B ,再改变方向从B 到C ,则两次位移的和是+,应该是_____________.(3)如图1(3),船的速度是,水流速度是则两个速度的和是+应该是___________.答:(1)这人两次的位移的和是从台北到上海;(2)飞机两次位移的和是;(3)两个速度的和是AC .两个向量的和仍是一个向量.本节课就来研究两个向量的和(板书课题:向量的加法).㈡探索研究(1)向量的加法的定义:已知向量b a ,,在平面内任取一点A ,作b BC a AB ==,,则向量AC 叫做向量b a ,的和。