七年级数学上册 第3章 一元一次方程(全章课件)
合集下载
3.2 一元一次方程及其解法(课件)沪科版(2024)数学七年级上册
(2) 合并同类项: 把方程变形为 ax=b(a, b 为常数,且a
≠ 0)的形式;
(3)系数化为 1: 得到方程的解 x= ba(a ≠ 0).
知2-讲
解法提醒 移项一般习惯上将含未知数的项放在等号
的左边,常数项放在等号的右边 .若移项时为计 算简便不是这样放置的,在合并时可直接交换 过来,这不需要变号,因为等式有对称性 .
知1-练
(1) 12x+y=1-2y; (2) 7x+5=7( x-2);
(3)
5x2-
1 3
x-2=0;
(4)
2 x-1
=5;(5)
3 4
x=
1 2
;
(6) 2x2+5=2(x2-x) .
解题秘方:利用一元一次方程的定义进行判断 .
知1-练
解: (1) 含有两个未知数,不是一元一次方程; (2) 化简后 x 的系数为 0,不是一元一次方程; (3) 未知数 x 的最高次数为 2,不是一元一次方程; (4) 等号左边不是整式,不是一元一次方程; (5)(6) 是一元一次方程 . 判断一元一次方程不仅要看
例3 解方程:8-3x=x+6.
知2-练
解题秘方:利用移项解一元一次方程的步骤(移项 →合并同类项→系数化为 1)解方程.
解: 移项,得 -3x-x=6 - 8. 合并同类项,得 -4x=-2.
两边都除以 - 4,得 x= 12.
3-1.解方程:
知2-练
(1)5x-2=7x+8;
(2) -2x-23 =x+ 13.
是乘法分配律 . 2. 解方程中的去括号法则与整式运算中的去括
号法则相同 .
例4 解方程: 2(x-3) -3(3x-1) =6(1-x) .
3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件
【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.
3人教版七年级数学上册第三章 3.1.2 等式的性质 优秀教学PPT课件
通常用a b表示一般的等式.
试一试
我们可以直接看出像4x=24,x+1=3这样简单 方程的解,但是仅靠观察来解比较复杂的方 程是困难的。因此,我们还要讨论怎样解方 程。方程是含有未知数的等式,为了讨论解 方程,我们先来看看等式有什么性质。
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
1、什么叫方程的解?
使方程左右两边的值相等的未知数的值叫 做方程的解。
2、什么叫解方程?
求出使方程左右两边都相等的未 知数的值的过程叫做解方程。
检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的 解,反之,则不是.
第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程.
(难点)
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
(1)a,b,c三个物体就单个而言哪个最重? (2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平 两边至少应该分别放几个物体a和物体c?
解:(1)根据图示,知 2a=3b,2b=3c,所以 a=32 b,b=32 c,则 a=
9 4
c,因为94
c>32
c>c,即 a>b>c,所以 a,b,c 三个物体就单个而言,
试一试
我们可以直接看出像4x=24,x+1=3这样简单 方程的解,但是仅靠观察来解比较复杂的方 程是困难的。因此,我们还要讨论怎样解方 程。方程是含有未知数的等式,为了讨论解 方程,我们先来看看等式有什么性质。
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
1、什么叫方程的解?
使方程左右两边的值相等的未知数的值叫 做方程的解。
2、什么叫解方程?
求出使方程左右两边都相等的未 知数的值的过程叫做解方程。
检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的 解,反之,则不是.
第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程.
(难点)
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
(1)a,b,c三个物体就单个而言哪个最重? (2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平 两边至少应该分别放几个物体a和物体c?
解:(1)根据图示,知 2a=3b,2b=3c,所以 a=32 b,b=32 c,则 a=
9 4
c,因为94
c>32
c>c,即 a>b>c,所以 a,b,c 三个物体就单个而言,
2024七年级数学上册第3章3.2一元一次方程及其解法第2课时用去分母法解一元一次方程课件新版沪科版
C
6,其错误的原因是(
)
A. 分母的最小公倍数找错
B. 去分母时,漏乘了分母为1的项
C. 去分母时分子部分的多项式未添括号,导致符号错误
D. 去分母时,分子未乘相应的数
返回
1
2
3
4
5
6
7
8
9
10
11
知识点2
用去分母法解一元一次方程
4. [2024·合肥四十五中月考]根据下列解方程
.+.
1
2
3
4
5
6
7
8
9
10
11
【解】将2 x +3, x -2分别看成一个整体,移项、合并
同类项,得
(2 x +3)= ( x -2),
即 (2 x +3)= ( x -2).
去分母,得2(2 x +3)= x -2.
去括号,得4 x +6= x -2.
移项、合并同类项,得3 x =-8.
返回
1
2
3
4
5
6
7
8
9
10
11
6. [母题 教材P100例3]解下列方程:
+
−
+
-1=
-
.
【解】去分母,得10(3 x +2)-20=5(2 x -1)-4(2 x +1).
去括号,得30 x +20-20=10 x -5-8 x -4.移项、合并
同类项,得28 x =-9.系数化为1,得 x =- .
系数化为1,得 x =- .
2024七年级数学上册第3章一元一次方程及其解法第1课时用移项法去括号法解一元一次方程课件新版沪科版
所以(-2)★3
=(-2)×32+2×(-2)×3+(-2)
=(-2)×9+2×(-2)×3+(-2)
=-18+(-12)+(-2)
=-32.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(2)若
+
★
★(-2)=16,求 a 的值.
【解】因为 a ★ b = ab2+2 ab + a ,
7
8
9
10
11
12
13
14
15
16
17
10. [新考向 传承数学文化]我国古代数学著作《孙子算经》
中有这样一道题,原文如下:今有百鹿入城,家取一
鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大
意为:今有100头鹿进城,每家取一头鹿,没有取完,剩
下的鹿每3家共取一头,恰好取完,问:城中有多少户人
家?在这个问题中,城中人家的户数为
所以
+
★3
+
+
+
2
=
×3 +2×
×3+
=
+
+
×9+3( a +1)+
=8 a +8.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
因为
+
★
★(-2)=16,
所以(8 a +8)★(-2)=16,
人教版七年级上册(新)第三章《一元一次方程》说课课件(30张PPT)
本节课是在学生已具备的感性认识基础上,重点研究什么是方程,一元
一次方程和找相等关系列方程。通过对这一部分内容的学习,使学生认识到 方程是更方便、更有力的数学工具,从算术方法到代数方法是数学的进步, 让学生充分感受到方程作为刻画现实世界有效模型的意义,体会列方程中蕴 涵的“数学建模思想”。
2、教学目标分析
础.它一方面是对小学学段学习的有关算术方法解题和简单方程的运 用的进一步发展,也是今后学习二元一次方程组、一元二次方程、函 数等知识的基础,有承上启下的作用。
1、教材的地位和作用
《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程
的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学 模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在 解决问题中与他人合作的重要性,获得解决问题的经验.
(1)一台计算机已使用1700小时,预计每月再使用150小时, 经过多少月这台计算机的使用时间达到规定的检修时间2450小时? (2)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍, 长方形的长、宽各应是多少? (3)某校女生占全校学生数的52%,比男生多80人,这个学校有多 少学生?
情感目标
程是刻画现实世界的一种有效的数学模型,初步体会建立
数学模型的思想。
3、教材重点、难点分析
知道什么是方程,一元一次方程,使学生理解问题情
境,探究情境中包含的数量关系,最终用方程来描
Hale Waihona Puke 重点述和刻画事物间的相等关系。
难点
思维习惯的转变, 从问题情境中找等量关系列方程
二、学情分析
学生刚刚进入中学,理性思维的发展还很有限,他们在知识经 验、心理品质等方面依然保留有小学生的特点:天真活泼,对新鲜 事物很感兴趣,具有强烈的求知欲,形象思维已经比较成熟,但抽 象思维能力还比较薄弱。
人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)
问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1
解: (1)把m=2分别代入方程的左边和 右边. 左边= 8 , 右边= 4 因为左边 ≠ , 右边,
所以m=2 不是 原方程的解.
问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1 解: (2)把m=1分别代入方程的左边和右边 . 左边= 5 ,
一切问题都可以转化为数 学问题,一切数学问题都可以 转化为代数问题,而一切代数 问题又都可以转化为方程。因 此,一旦解决了方程问题,一 切问题将迎刃而解。
——笛卡儿
笛卡儿,1596年3月 31日生于法国都兰城。 笛卡儿是伟大的哲学 家、物理学家、数学 家、生理学家,解析 几何的创始人。
问题7:
根据下列问题,设未知数,列出方程。 (1)环形跑道一周长是400 m,沿跑道跑多少周, 可以跑3000 m? 解:设跑x周,依题意得, 400x=3000 (2)甲种铅笔每支0.3元,乙种铅笔每支0.6元, 用9元钱买了两种铅笔共20支,两种铅笔各买了 多少支? 解:设买甲种铅笔x支,乙种铅笔(20-x)支, 依题意得展
希腊数学家丢番图(公元3–4世纪) 的墓碑上记载着: 他生命的六分之一是幸福的童年; 再活了他生命的十二分之一,两颊长起了细细的胡须;
他结了婚,又度过了一生的七分之一;
再过五年,他有了儿子,感到很幸福; 可是儿子只活了他全部年龄的一半; 儿子死后,他在极度悲痛中过了四年,也与世长辞了。 根据以上信息,你能知道丢番图的寿命吗?
右边= 5 ,
因为左边 = 右边, 所以m=1 是 原方程的解. 使方程中等号左右两边相等的未知数的值, 叫做方程的解
中国人对方程的研究有悠久 的历史,“方程”一词最早出现 于《九章算术》.《九章算术》 全书共分九章,第八章就叫“方 程”. 宋元时期,中国数学家创立 了“天元术” ,即用“天元”表 示未知数进而建立方程,“立天 元一”相当于现在的“设未知数 x”. 14世纪初,我国元朝数学家 朱世杰创立了“四元术”,四元 指天、地、人、物,相当于四个 未知数.
初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》课件
例 一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,
逆风飞行要3小时,求两城距离.
解:设飞机在无风时的速度为x km/h,
则在顺风中的速度为(x+24) km/h ,在逆风中的速度为(x-
根据题意,得
24)km/h.
17
6
+ 24 = 3( − 24).
解得 x=840.
若同时出发,则快者追上慢者时,快者用的时间=慢者用的时间.
3.航行问题
顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度.
顺风速度=无风速度+风速;逆风速度=无风速度-风速.
往返于A,B两地时,顺流(风)航程=逆流(风)航程.
甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往
返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A
点后,又立即转身跑向B点……若甲跑步的速度为5 m/s,乙跑步的速度为
4 m/s,则起跑后100 s内,两人相遇的次数为( B
A.5
B.4
C.3
100×2
解:设两人相遇的次数为x,依题意有
5+4
解得x=4.5,
因为 x为整数,
所以 x取4.
我们可以解决哪些实际问题呢?
例 一艘船从甲码头到乙码头顺流而行,用了 2 h;从乙码头返
回甲码头逆流而行,用了 2.5 h.已知水流的速度是 3 km/h,求
船在静水中的平均速度.
分析:等量关系为这艘船往返的路程相等,即
顺流速度___顺流时间___逆流速度___逆流时
=
×
×
间.
解:设船在静水中的平均速度为 x km/h,
湘教版数学七年级上册3.3 一元一次方程的解法课件(共25张PPT)
6.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林, 不知寺中几多僧. 三百六十四只碗, 众僧刚好都用尽. 三人共食一碗饭, 四人共吃一碗羹. 请问先生名算者, 算来寺内几多增?
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入
人教版七年级数学上册3.利用去括号解一元一次方程课件
x=- 4 . 3
(2)3x-7( x-1)=3-2( x+3).
解:去括号,得
3 x-7 x+7=3-2 x-6.
移项,得
3 x-7 x+2 x=3-6-7.
合并同类项,得
-2x=-10.
系数化为1,得
x=5.
通过以上解方程的过程,你能总结出解含 有括号的一元一次方程的一般步骤吗?
去括号
移项 合并同类项
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
用三个字母a,b,c表示去括号前后的变化规律: a + (b + c) = a + b + c
a -(b + c) = a -b - c
讲授新课
合并同类项 12x=162000
系数化为1 x=13500
方程中有带括号的 式子时,去括号是 常用的化简步骤.
例1 解下列方程:
(1)2x-( x+10)=5x+2( x-1);
解:去括号,得
2x-x-10=5x+2x-2.
移项,得
2x-x-5x-2x=-2+10.
合并同类项,得 6x=8.
系数化为1,得
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
练一练
3. 某羽毛球协会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为300元/张和400元/张的 两种门票共8张,总费用为2700元.请问该协会购买 了这两种门票各多少张?
依题意,有(575+25)t=(575-25)(4.6-t). 解得t=2.2. 则(575+25)t=600×2.2=1 320. 答:这架飞机最远能飞出1 320 km就应返回.
(2)3x-7( x-1)=3-2( x+3).
解:去括号,得
3 x-7 x+7=3-2 x-6.
移项,得
3 x-7 x+2 x=3-6-7.
合并同类项,得
-2x=-10.
系数化为1,得
x=5.
通过以上解方程的过程,你能总结出解含 有括号的一元一次方程的一般步骤吗?
去括号
移项 合并同类项
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
用三个字母a,b,c表示去括号前后的变化规律: a + (b + c) = a + b + c
a -(b + c) = a -b - c
讲授新课
合并同类项 12x=162000
系数化为1 x=13500
方程中有带括号的 式子时,去括号是 常用的化简步骤.
例1 解下列方程:
(1)2x-( x+10)=5x+2( x-1);
解:去括号,得
2x-x-10=5x+2x-2.
移项,得
2x-x-5x-2x=-2+10.
合并同类项,得 6x=8.
系数化为1,得
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
练一练
3. 某羽毛球协会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为300元/张和400元/张的 两种门票共8张,总费用为2700元.请问该协会购买 了这两种门票各多少张?
依题意,有(575+25)t=(575-25)(4.6-t). 解得t=2.2. 则(575+25)t=600×2.2=1 320. 答:这架飞机最远能飞出1 320 km就应返回.
人教版数学七年级上册一元一次方程(方程的概念)课件
再见
从算式到方程是数学的进步!
根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?
解:设正方形的边长为x cm. 等量关系:正方形边长×4=周长, 列方程:4x=24.
根据下列问题,设未知数并列出方程: (2) 一台计算机已使用1700 h,估计每月再使用150 h,经过多少 月这台计算机的使用时间到达规定的检修时间2450 h? 解:设x月后这台计算机的使用时间到达2450 h.
一元一次方程中的“元”是指未知数,“一元”是指只 含有一个未知数;“一次”是指含未知数的项的次数都是1.
怎样将一个实际问题转化为方程问题?列方程的根据是什么? 实际问题 抓关键句子找等量关系 一元一次方程 设未知数列方程
分析实际问题中的数量关系,利用其中的相等关系列出方程, 是用数学解决实际问题的一种方法.
巩固练习
②③⑤
本题源于《教材帮》
课堂练习
D
2.某市对城区主干道进行绿化,计划把某段公路的一侧全部栽上
树苗,要求公路的两端各栽一棵,并且每两棵的间隔相等.如果
每隔5米栽一棵,则缺21棵树苗;如果每隔6米栽一棵,则树苗
正好用完.设原有树苗x棵,则根据题意列出方程正确的是( A )
A.5(x+21-1)=6(x-1)
视察下列方程,它们有什么共同点?
x - x 1 60 70
70 y=60(y+1)
70(z-1)=60z
问题1:每个方程中,各含有几个未知数? 1个
问题2:说一说每个方程中未知数的次数. 1次
问题3:等号两边的式子有什么共同点? 都是整式
只含有一个未知数,未知数的次数都是1,等号两边都是整式, 这样的方程叫做一元一次方程.
人教版七年级上数学教学课件第三章一元一次方程全章
如果a=b(c≠0),那么 a b . cc
【等式性质1】 如果a b,那么a c b c.
【等式性质2】 如果a b,那么ac bc.
如果a bc 0 ,那么a b .
cc
1.等式两边都要参加运算,并且是作同一种运算.
注 2.等式两边加或减,乘或除以的数一定是同一个数
意
或同一个式子.
检验一个数值是不是方程的解的步骤: 1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的解, 反之,则不是.
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1
根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
试妨问决
一分题这
50千米
70千米
青山
翠湖 秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
问题:如图,汽车匀速行驶途经王家庄、青
山、秀水三地的时间如表所示,翠湖在青山、
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
(3) y 3 6 y 9 (5) x2 1
(4) 0.32m (3 0.02m) 0.7
(6) 1 y 4 1 y
2
3
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个正方形,正方形的边 长是多少? 解:设正方形的边长为x cm, 根据题意列方程得:4x=24. 变式:用一根长24 cm的铁丝围成一个长方形,使它的长 是宽的1.5倍,长方形的长、宽各是多少? 解:设长方形的宽为x cm,则它的长为1.5x cm, 根据题意列方程得:2(x+1.5x)=24.
【等式性质1】 如果a b,那么a c b c.
【等式性质2】 如果a b,那么ac bc.
如果a bc 0 ,那么a b .
cc
1.等式两边都要参加运算,并且是作同一种运算.
注 2.等式两边加或减,乘或除以的数一定是同一个数
意
或同一个式子.
检验一个数值是不是方程的解的步骤: 1.将数值代入方程左边进行计算, 2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的解, 反之,则不是.
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1
根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
试妨问决
一分题这
50千米
70千米
青山
翠湖 秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
问题:如图,汽车匀速行驶途经王家庄、青
山、秀水三地的时间如表所示,翠湖在青山、
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
(3) y 3 6 y 9 (5) x2 1
(4) 0.32m (3 0.02m) 0.7
(6) 1 y 4 1 y
2
3
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个正方形,正方形的边 长是多少? 解:设正方形的边长为x cm, 根据题意列方程得:4x=24. 变式:用一根长24 cm的铁丝围成一个长方形,使它的长 是宽的1.5倍,长方形的长、宽各是多少? 解:设长方形的宽为x cm,则它的长为1.5x cm, 根据题意列方程得:2(x+1.5x)=24.
解一元一次方程——移项人教版七年级数学上册PPT精品课件
6. 填空: (1)当代数式2x-2与3+x的值相等时,x= 5 ; (2)当x= 2 时,x-1的值与3-2x的值互为相反数.
重难易错
7. (例3)把一批图书分给七年级(11)班的同学阅读,
若每人分3本,则剩余20本,若每人分4本,则缺25
本,这个班有多少学生?
解:设这个班有x个学生, 根据题意得3x+20=4x-25, 移项,得3x-4x=-25-20. 合并同类项,得-x=-45. 解得x=45. 答:这个班有45人.
•
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
•
2. 中国人对蔬菜的热爱,本质上是对土地 和家乡 的热爱 。本诗 主人公 就是这 样一位 采摘野 菜的同 时,又 保卫祖 国、眷 恋家乡 的士兵 。
•
3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。
(3)若3a3b5n-2与10b3m+nam-1是同类项,则m= 4 ,
n= 3.5
.
二级能力提升练 11. 解方程:2x+18=-3x-2.
解:2x+3x=-2-18,5x=-20,x=-4.
13. 小明早晨上学时,每小时走5千米,中午放学 沿原路回家时,每小时走4千米,结果回家所 用的时间比上学所用的时间多10分钟,问小 明家离学校有多远?
8. 某商店销售一批服Байду номын сангаас,每件售价150元,可获利25%,
七年级数学上册教学课件-一元一次方程
七年级数学上册
第三章 一元一次方程
一元一次方程
前 言
学习目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种
进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的
概念。
重点难点
重点:列出方程,了解方程的概念。
难点:从实际问题中寻找相等的关系。
问题
一辆客车和一辆卡车同时从A地出发同向行驶,客车的行驶速度是70
【答案】D
【分析】只含有一个未知数(元),并且未知数的次数是1(次)的方程叫做一
元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【详解】解:A、3x+1是代数式,故此选项错误;
B、3x+1>2,是不等式,故此选项错误;
C、y=2x+1,是一次函数,故此选项错误;
D、3x+1=2属于一元一次方程,故此选项正确.
归纳
实际问题
设未知数
列方程
一元一次方程
分析实际问题中的数量关系,
利用其中的相等关系列出方程,
是用数学解决实际问题的一种
方法.
方程的解
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值
就是方程的解。
4x=24
1700+150x=2450
0.52x− 1−0.52 x=80
当x=6时,方程等号左右两边相等,所以x=6
练习
例1 根据下列问题,设未知数并列出方程:
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
分析:正方形的四条边都相等,已知正方
形的周长是24cm,所以设边长为x,列方
程得4x=24
解:设正方形的边长为x cm.
第三章 一元一次方程
一元一次方程
前 言
学习目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种
进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的
概念。
重点难点
重点:列出方程,了解方程的概念。
难点:从实际问题中寻找相等的关系。
问题
一辆客车和一辆卡车同时从A地出发同向行驶,客车的行驶速度是70
【答案】D
【分析】只含有一个未知数(元),并且未知数的次数是1(次)的方程叫做一
元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
【详解】解:A、3x+1是代数式,故此选项错误;
B、3x+1>2,是不等式,故此选项错误;
C、y=2x+1,是一次函数,故此选项错误;
D、3x+1=2属于一元一次方程,故此选项正确.
归纳
实际问题
设未知数
列方程
一元一次方程
分析实际问题中的数量关系,
利用其中的相等关系列出方程,
是用数学解决实际问题的一种
方法.
方程的解
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值
就是方程的解。
4x=24
1700+150x=2450
0.52x− 1−0.52 x=80
当x=6时,方程等号左右两边相等,所以x=6
练习
例1 根据下列问题,设未知数并列出方程:
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
分析:正方形的四条边都相等,已知正方
形的周长是24cm,所以设边长为x,列方
程得4x=24
解:设正方形的边长为x cm.
人教部编版七年级数学上册《第三章 一元一次方程【全章】》精品PPT优质课件
解:设正方形的边长为x cm. 列方程 4x = 24.
(2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使用时 间达到规定的检修时间2450 h?
解: 设x月后这台计算机的使用时间达到2450 h, 那么在x月里这台计算机使用了150x h.
列方程
1700 + 150x = 2450
5. 列方程:
(1)某校七年级(1)班共有学生48人,
其中女生人数比男生人数的
4 5
多3人,这个班
有男生多少人?
解:设这个班有男生x人 x+( 4 x+3)=48 5
(2)把1400元奖学金按照两种奖项奖给22名 学生,其中一等奖每人200元,二等奖每人50 元,获得一等奖的学生有多少人? 解:设获得一等奖的学生有x人
(4)x的三分之一减y的差等于6
x y6
____3______________
(5)比a的3倍大5的数等于a的4倍
___3_a_+__5_=__4_a_______
(6)比b的一半小7的数等于a与b的和
1
___2__b_-_7_=__a_+__b_____
4. x=3,x=0,x=-2,各是下列哪个方程的解? (1)5x+7=7-2x; (2)6x-8=8x-4; (3)3x-2=4+x.
解:设甲种铅笔买了x支,乙种铅笔买了(20x)支,
0.3x+0.6(20-x)= 9
3.一个梯形的下底比上底多2 cm,高是5 cm, 面积是40 cm2,求上底.
解:设上底为x cm,
1(x+x+2)×5 = 40 2
4.用买10个大水杯的钱,可以买15个小水杯, 大水杯比小水杯的单价多5元,两种水杯的 单价各是多少元?
(2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使用时 间达到规定的检修时间2450 h?
解: 设x月后这台计算机的使用时间达到2450 h, 那么在x月里这台计算机使用了150x h.
列方程
1700 + 150x = 2450
5. 列方程:
(1)某校七年级(1)班共有学生48人,
其中女生人数比男生人数的
4 5
多3人,这个班
有男生多少人?
解:设这个班有男生x人 x+( 4 x+3)=48 5
(2)把1400元奖学金按照两种奖项奖给22名 学生,其中一等奖每人200元,二等奖每人50 元,获得一等奖的学生有多少人? 解:设获得一等奖的学生有x人
(4)x的三分之一减y的差等于6
x y6
____3______________
(5)比a的3倍大5的数等于a的4倍
___3_a_+__5_=__4_a_______
(6)比b的一半小7的数等于a与b的和
1
___2__b_-_7_=__a_+__b_____
4. x=3,x=0,x=-2,各是下列哪个方程的解? (1)5x+7=7-2x; (2)6x-8=8x-4; (3)3x-2=4+x.
解:设甲种铅笔买了x支,乙种铅笔买了(20x)支,
0.3x+0.6(20-x)= 9
3.一个梯形的下底比上底多2 cm,高是5 cm, 面积是40 cm2,求上底.
解:设上底为x cm,
1(x+x+2)×5 = 40 2
4.用买10个大水杯的钱,可以买15个小水杯, 大水杯比小水杯的单价多5元,两种水杯的 单价各是多少元?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/10/1
5、根据下列问题,设未知数,列出方程:
(1)、环形跑道一周长400m,沿跑道 跑多少周,可以跑3000m? (2)、甲种铅笔每枝0.3元,乙种铅笔 每枝0.6元,用9元钱买了两种铅笔共20 枝,两种铅笔各买了多少枝?
(3)、一个梯形的下底比上底多2㎝, 高是5㎝,面积是40㎝2,求上底.
0.7x=1400 式叫做 方程
。
2x-2=6
判断方程的两个关键要素:
2020/10/1
①有未知数 ②是等式
我回顾,我思考
3、判断下列各式哪些是方程?
①1+2=3
(×)
③x+y=2
√( )
⑤x²-1=0
(√)
⑦ 2 3x (√)
x 1
2020/10/1
②1+2x=4 √( )
④x+1
( ×)
⑥6a+8=3 (√)
方程的概念: 1.含有未知数 2.等式
2020/10/1
问题:你能通过观察求下列方程的解吗?
(1)3x – 5 = 22; (2)0.28 – 0.13y = 0.27y + 1. 第(1)题比较容易解答, 第(2)题较复杂,仅依靠观察来解比较复杂的方 程是有困难的。 因此,我们还要讨论怎样解方程。
2020/10/1
观察、思考:
+ -
归纳:等式就像平衡的天平,它具有与上面的
事实同样的性质。比如“8 =6+2”,我们在两边 都加上6,就有“8 + 6 = 6+2 + 6”;两边都减去11, 就有“8 – 11 =6+2 – 11”。
2020/10/1
问题1:你能用文字来叙述等式的这个性质吗? 等式性质1: 等式的两边加上(或减去)同一个数 (或式子),结果仍相等。
2020/10/1
智力闯关,谁是英雄
第一关 xk 1 21 0 是一元一次方程,则k=__2_____ 第二关: x|k| 21 0 是一元一次方程,则k=_1_或___-_1
第三关 : (k 1)x|k| 21 0 是一元一次方程,则k=_-_1:
第四关:(k 2)x2 kx 21 0 是一元一次方程,则k =__-_2_
3.1 从算式到方程
3.1.1 一元一次方程
2020/10/1
2020/10/1
2020/10/1
2020/10/1
我回顾,我思考
1、象这种用等号“=”来表
1+2=3
示相等关系的式子,
5=7-2
叫 等请式大家观察。左边的这
3+b=2b+1 4+x=7
些式子,看看它们有什
2、么象共这同样的特含征有?未知数的等
2020/10/1
1、通过本节的学习你有什么收获?
一种方法——列方程解决实际问题的方法; 三个概念——方程、一元一次方程、方程
的解;
2、在这部分学习中,你还有什么困难?
2020/10/1
自主探索~~~
上有20头、
思
下有52足,
维
问鸡兔各有
拓
多少?
宽
2020/10/1
2020/10/1
3.1.2 等式的性质
2020/10/1
我掌握,我巩固
1、方程(a+6)x2 +3x-8=7是关于x的一元一次方 程,则a= __-6___。
2、列方程:某数χ的相反数比它的 求某数。
解:-χ = χ+1
大1,
3、一元一次方程2x-3=5的解是( A )
A、4
B、5
C、6
D、7
2020/10/1
4、x=2是下列哪个方程的解? (1)(4). (1) 3x-1=2x+1 (2) 3x+1=2x-1 (3) 3x+2x-2=0 (4) x-2=0
2020/10/1
我探究,我发现
下面的三个方程: 4x=24, 1700+150x=2450, 0.52x-(1-0.52)x=80
有什么共同点?
①都只含有一个未知数; 一②元未一知次数方的程次:只数含都有是一1;个未知数(元),未知 ③数等的号次两数边都都是是1,整等式号;两边都是整式,这样 ④的方都是程方叫程一。元一次方程。
⑧5x+2≥0 (×)
讨论交流
算术方法: 列出的算式表示解题的计算过程,其 中只能 用已知数.对于较复杂的问题,列算式比 较困难. 列方程(代数方法): 方程是根据题中的等量关系 列出的等式.其中既含已知数,又含未未知数.使 问题的已知量与未知量之间的关系很容易表示, 解决问题就比较方便.
所以,从算术到方程是数学的进步.
2020/10/1
小试身手
练习二:判断下列式子是不是一元一次
方程?
①2x+9=50 (√)
②x+y=9
( ×)
③3x2-4+x=0 (×)
⑤2+x=9 (√)
⑦ 1 5(×) x3
④6y+4=y+8 ⑥x+2 ⑧3x+x+1=5
(√ ) (× ) ( √)
注意:一元一次方程中,只含有一个未知数,且未知数
如果a = b,那么a ±c = b ±c
的次数都是1,等号两边都是整式。
2020/10/1
思考
想一想:⑴使得方程4x=24成立的x的值为 多少?
当x=6时,方程4x=24成立。
(2)使得方程5x+2=12成立的x的值为多少? 当x=2时,方程5x+2=12成立。
方程的解:使方程中等号左右两边相等 的未知数的值叫方程的解。
2020/10/1
实践练习
x=1和x=5哪一个是方程1700+150x=2450的解?
解:当x=1时 方程的左边=1700+150×1 =1700+150=1850
方程的左边≠右边,所以x=1不是方程 1700+150x=2450的解。
当x=5时 方程的左边=1700+150×5=2450 方程的左边=右边,所以x=5是方程 1700+150x=2450的解。
2020/10/1
我探究,我发现
根据下列问题,设未知数并列出方程:
(1)用一根长为24cm的铁丝围成一个正方形, 正方形的边长是多少? (2)一台计算机已使用1700小时,预计每月再使 用150小时,经过多少个月,这台计算机的使用 时间达到规定的检修时间2450?
(3)某校女生占全体学生数的52%,比男生多80 人,这个学校有多少学生?
2020/10/1
①4+x=7, ② 2x, ③ 3x+1,
④ a+b=b+a, ⑤ a2+b2 ⑥ c=2πr
⑦ 1+2=3, ⑧ 2ab, ⑨ S= 1 ah,
3
2
⑩ 2x-3y
ห้องสมุดไป่ตู้
上述这组式子中,( ①④⑥⑦⑨)是等式, ( ②③⑤⑧⑩ ) 不是等式,为什么?
2020/10/1
什么是方程?
含有未知数的等式叫做方程.
5、根据下列问题,设未知数,列出方程:
(1)、环形跑道一周长400m,沿跑道 跑多少周,可以跑3000m? (2)、甲种铅笔每枝0.3元,乙种铅笔 每枝0.6元,用9元钱买了两种铅笔共20 枝,两种铅笔各买了多少枝?
(3)、一个梯形的下底比上底多2㎝, 高是5㎝,面积是40㎝2,求上底.
0.7x=1400 式叫做 方程
。
2x-2=6
判断方程的两个关键要素:
2020/10/1
①有未知数 ②是等式
我回顾,我思考
3、判断下列各式哪些是方程?
①1+2=3
(×)
③x+y=2
√( )
⑤x²-1=0
(√)
⑦ 2 3x (√)
x 1
2020/10/1
②1+2x=4 √( )
④x+1
( ×)
⑥6a+8=3 (√)
方程的概念: 1.含有未知数 2.等式
2020/10/1
问题:你能通过观察求下列方程的解吗?
(1)3x – 5 = 22; (2)0.28 – 0.13y = 0.27y + 1. 第(1)题比较容易解答, 第(2)题较复杂,仅依靠观察来解比较复杂的方 程是有困难的。 因此,我们还要讨论怎样解方程。
2020/10/1
观察、思考:
+ -
归纳:等式就像平衡的天平,它具有与上面的
事实同样的性质。比如“8 =6+2”,我们在两边 都加上6,就有“8 + 6 = 6+2 + 6”;两边都减去11, 就有“8 – 11 =6+2 – 11”。
2020/10/1
问题1:你能用文字来叙述等式的这个性质吗? 等式性质1: 等式的两边加上(或减去)同一个数 (或式子),结果仍相等。
2020/10/1
智力闯关,谁是英雄
第一关 xk 1 21 0 是一元一次方程,则k=__2_____ 第二关: x|k| 21 0 是一元一次方程,则k=_1_或___-_1
第三关 : (k 1)x|k| 21 0 是一元一次方程,则k=_-_1:
第四关:(k 2)x2 kx 21 0 是一元一次方程,则k =__-_2_
3.1 从算式到方程
3.1.1 一元一次方程
2020/10/1
2020/10/1
2020/10/1
2020/10/1
我回顾,我思考
1、象这种用等号“=”来表
1+2=3
示相等关系的式子,
5=7-2
叫 等请式大家观察。左边的这
3+b=2b+1 4+x=7
些式子,看看它们有什
2、么象共这同样的特含征有?未知数的等
2020/10/1
1、通过本节的学习你有什么收获?
一种方法——列方程解决实际问题的方法; 三个概念——方程、一元一次方程、方程
的解;
2、在这部分学习中,你还有什么困难?
2020/10/1
自主探索~~~
上有20头、
思
下有52足,
维
问鸡兔各有
拓
多少?
宽
2020/10/1
2020/10/1
3.1.2 等式的性质
2020/10/1
我掌握,我巩固
1、方程(a+6)x2 +3x-8=7是关于x的一元一次方 程,则a= __-6___。
2、列方程:某数χ的相反数比它的 求某数。
解:-χ = χ+1
大1,
3、一元一次方程2x-3=5的解是( A )
A、4
B、5
C、6
D、7
2020/10/1
4、x=2是下列哪个方程的解? (1)(4). (1) 3x-1=2x+1 (2) 3x+1=2x-1 (3) 3x+2x-2=0 (4) x-2=0
2020/10/1
我探究,我发现
下面的三个方程: 4x=24, 1700+150x=2450, 0.52x-(1-0.52)x=80
有什么共同点?
①都只含有一个未知数; 一②元未一知次数方的程次:只数含都有是一1;个未知数(元),未知 ③数等的号次两数边都都是是1,整等式号;两边都是整式,这样 ④的方都是程方叫程一。元一次方程。
⑧5x+2≥0 (×)
讨论交流
算术方法: 列出的算式表示解题的计算过程,其 中只能 用已知数.对于较复杂的问题,列算式比 较困难. 列方程(代数方法): 方程是根据题中的等量关系 列出的等式.其中既含已知数,又含未未知数.使 问题的已知量与未知量之间的关系很容易表示, 解决问题就比较方便.
所以,从算术到方程是数学的进步.
2020/10/1
小试身手
练习二:判断下列式子是不是一元一次
方程?
①2x+9=50 (√)
②x+y=9
( ×)
③3x2-4+x=0 (×)
⑤2+x=9 (√)
⑦ 1 5(×) x3
④6y+4=y+8 ⑥x+2 ⑧3x+x+1=5
(√ ) (× ) ( √)
注意:一元一次方程中,只含有一个未知数,且未知数
如果a = b,那么a ±c = b ±c
的次数都是1,等号两边都是整式。
2020/10/1
思考
想一想:⑴使得方程4x=24成立的x的值为 多少?
当x=6时,方程4x=24成立。
(2)使得方程5x+2=12成立的x的值为多少? 当x=2时,方程5x+2=12成立。
方程的解:使方程中等号左右两边相等 的未知数的值叫方程的解。
2020/10/1
实践练习
x=1和x=5哪一个是方程1700+150x=2450的解?
解:当x=1时 方程的左边=1700+150×1 =1700+150=1850
方程的左边≠右边,所以x=1不是方程 1700+150x=2450的解。
当x=5时 方程的左边=1700+150×5=2450 方程的左边=右边,所以x=5是方程 1700+150x=2450的解。
2020/10/1
我探究,我发现
根据下列问题,设未知数并列出方程:
(1)用一根长为24cm的铁丝围成一个正方形, 正方形的边长是多少? (2)一台计算机已使用1700小时,预计每月再使 用150小时,经过多少个月,这台计算机的使用 时间达到规定的检修时间2450?
(3)某校女生占全体学生数的52%,比男生多80 人,这个学校有多少学生?
2020/10/1
①4+x=7, ② 2x, ③ 3x+1,
④ a+b=b+a, ⑤ a2+b2 ⑥ c=2πr
⑦ 1+2=3, ⑧ 2ab, ⑨ S= 1 ah,
3
2
⑩ 2x-3y
ห้องสมุดไป่ตู้
上述这组式子中,( ①④⑥⑦⑨)是等式, ( ②③⑤⑧⑩ ) 不是等式,为什么?
2020/10/1
什么是方程?
含有未知数的等式叫做方程.