浅谈泰勒公式及其应用

合集下载

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是高等数学中的一个非常重要的定理,在各个领域都有广泛的应用。

它是用多项式来逼近函数的一种方法。

本文将介绍泰勒公式及其在高等数学课程中的应用。

1. 泰勒公式泰勒公式是由英国数学家泰勒于1715年发现的,它是逼近函数的一种方法。

若函数f(x)在点a处n阶可导,则在点a附近,函数f(x)可以写成一个n次多项式与余项(也称为剩余项)之和,即:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^(n)(a)(x-a)^n/n! +Rn(x)其中,Rn(x)为余项(或剩余项),满足:Rn(x) = f^(n+1)(c)(x-a)^(n+1)/(n+1)!其中,c是a和x之间的某个数。

泰勒公式可以用来求函数在某个点的近似值、函数的渐进线、优化函数等。

下面将介绍一些具体的应用。

2.1 函数的近似值通过泰勒公式,我们可以利用一个多项式来逼近函数,在一定范围内可以用这个多项式来近似表示原函数。

例如,在求解微积分中的极值时,我们需要求出函数的极点,但某些函数的极点难以求解,此时我们可以用泰勒公式来近似求解。

假设f(x)为要求的函数,那么根据泰勒公式我们可以得到f(x)的一个n次多项式,将它代入原函数中,可以求得原函数在某个点处的近似值。

2.2 函数的渐进线函数的渐进线是指在x轴两侧曲线逐渐趋近于一条直线的现象。

对于一些函数,如y=1/x,y=lnx,y=x^α等,它们的渐进线分别是y=0,y=x轴,y=0。

2.3 优化函数在数学中,优化是指在一系列可能的解中寻找最优解。

根据泰勒公式,我们可以用一个多项式来近似表示函数,然后利用它对函数进行优化。

例如,在求解函数最大值时,我们可以将函数用泰勒公式近似表示,然后将其一阶导数置为0,求得此时的x值,即为函数的最大值。

3. 结论泰勒公式在高等数学课程中是一个非常重要的概念,它可以用来逼近函数、求函数的渐进线、优化函数等,对于解决数学问题具有重要的作用。

泰勒公式的应用范文

泰勒公式的应用范文

泰勒公式的应用范文泰勒公式是一种在微积分中用来近似计算函数值的方法。

它将一个函数表示为一个无穷级数的形式,使得我们可以通过计算级数中的有限项来近似计算函数的值。

泰勒公式广泛应用于数学、物理学、工程学和计算机科学等领域,并对数值计算和数学建模等重要任务具有重要意义。

以下将介绍泰勒公式在这些领域的一些应用。

一、在数学领域的应用:1.函数近似:泰勒公式可用于近似计算一个函数在其中一点的函数值,特别是在点附近的小区间内。

这对于无法直接计算的复杂函数或含有未知变量的函数是非常有用的。

2.导数和高阶导数的计算:泰勒公式可以通过计算级数中的有限项来近似计算一个函数在其中一点的导数。

这对于无法直接计算导数或高阶导数的函数是非常有用的。

3.极限计算:泰勒公式提供了一种计算函数在一个点的极限的方法,特别是对于无法直接计算的函数或复杂函数而言。

二、在物理学领域的应用:1.运动学和动力学:泰勒公式可用于近似计算运动学和动力学中各种物理量的变化率,如速度、加速度和力。

2.波动学:泰勒公式可以近似计算波函数随时间和位置的变化,从而帮助解决波动学相关的问题,如声波、光波和电磁波等。

3.热力学:泰勒公式可用于计算物体在热力学过程中的温度、能量和熵等的变化。

三、在工程学领域的应用:1.信号处理:泰勒公式可以用于近似表示信号在时间域和频域中的变化,从而帮助处理和分析各种类型的信号。

2.控制理论:泰勒公式可用于近似表示控制系统中各种变量的变化,从而帮助设计和优化控制器,以实现稳定和可靠的系统性能。

3.电路分析:泰勒公式可用于近似计算电路中各种元件的电压、电流和功率等的变化,特别是在非线性电路和非稳态电路的分析中。

四、在计算机科学领域的应用:1.数值计算:泰勒公式可用于近似计算各种数学函数的值,从而帮助实现高效和准确的数值计算方法,如数值积分、数值微分和数值优化等。

2.图像处理:泰勒公式可以用于近似表示图像中各个像素值的变化,从而帮助实现图像增强、图像压缩和图像恢复等处理算法。

泰勒公式在极限计算上的应用

泰勒公式在极限计算上的应用

泰勒公式在极限计算上的应用泰勒公式是数学中一种重要的近似计算工具,它被广泛应用于各种数学分析问题的解决中。

本文将从泰勒公式的原理、应用场景和具体例子等方面进行阐述,以展示泰勒公式在极限计算中的重要性。

一、泰勒公式的原理泰勒公式是以数学家布鲁诺·德·泰勒命名的,它描述了函数在其中一点附近用一系列多项式逼近的方法。

泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...+f^n(a)(x-a)^n/n!+R_n(x)其中,f(x)是要逼近的函数,a是逼近点,f'(x)、f''(x)等是函数f(x)的各阶导数,R_n(x)是余项。

二、泰勒公式的应用场景1.函数近似计算:在实际问题中,很多函数难以直接求解,但通过泰勒公式可以将其近似为多项式函数进行计算。

这在物理学、工程学以及经济学等领域中得到广泛应用。

2.极限计算:泰勒公式可以通过多项式函数逼近,将复杂的极限计算问题简化为多项式函数的极限计算。

这样可以减少计算的复杂性,并且提高计算的精确度。

三、泰勒公式在极限计算中的应用举例1.计算常函数的其中一点的极限:考虑函数f(x)=a,是一个常数函数。

要计算f(x)在x=a处的极限。

根据泰勒公式,可以将f(x)在a处进行多项式逼近:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x)由于f(x)=a,所以f'(x)=0,f''(x)=0,...,f^n(x)=0。

将这些值代入泰勒公式,得到:f(x)=a+R_n(x)当x趋近于a时,余项R_n(x)趋近于0,所以f(x)的极限为a。

2.计算正弦函数的极限:考虑函数f(x) = sin(x)。

高考数学冲刺指南泰勒公式的展开与应用

高考数学冲刺指南泰勒公式的展开与应用

高考数学冲刺指南泰勒公式的展开与应用高考数学冲刺指南:泰勒公式的展开与应用在高考数学的冲刺阶段,掌握泰勒公式的展开与应用对于提高成绩、拓展解题思路具有重要意义。

泰勒公式是高等数学中的一个重要工具,但在高考中,通常会以较为基础和简化的形式出现。

接下来,让我们一起深入了解泰勒公式的奥秘。

一、泰勒公式的基本概念泰勒公式是用一个多项式来近似表示一个函数。

简单来说,如果我们有一个函数 f(x),在某个点 x = a 附近,我们可以用一个多项式 P(x)来近似它,这个多项式就是泰勒展开式。

对于一个 n 次可导的函数 f(x),在 x = a 处的泰勒展开式为:f(x) = f(a) + f'(a)(x a) + f''(a)/2!(x a)²+ f'''(a)/3!(x a)³++fⁿ(a)/n!(x a)ⁿ + Rₙ(x)其中,f'(a)、f''(a)、f'''(a)等分别表示函数 f(x)在 x = a 处的一阶导数、二阶导数、三阶导数……,n! 表示 n 的阶乘,Rₙ(x) 是余项,表示用多项式近似函数时产生的误差。

二、常见函数的泰勒展开1、指数函数 e^xe^x = 1 + x + x²/2! + x³/3! + x⁴/4! +2、正弦函数 sin xsin x = x x³/3! + x⁵/5! x⁷/7! +3、余弦函数 cos xcos x = 1 x²/2! + x⁴/4! x⁶/6! +这些常见函数的泰勒展开式在解题中经常会用到,需要同学们牢记。

三、泰勒公式在高考中的应用1、函数的近似计算在某些题目中,可能需要对复杂函数进行近似计算,这时泰勒公式就派上用场了。

例如,计算 e^01 时,可以使用 e^x 的泰勒展开式,取前几项进行计算,就能得到较为精确的近似值。

2、证明不等式通过泰勒展开,可以将复杂的函数转化为多项式形式,从而更容易进行不等式的证明。

taylor公式及其应用

taylor公式及其应用

taylor公式及其应用Taylor公式是数学中的一个重要理论,它是将某个函数在某点附近展开成无限项的多项式,并且可以用于各个数学领域中的求解问题。

下面我们将对Taylor公式及其应用进行详细介绍。

一、Taylor公式的定义Taylor公式是将一个函数在某一点附近展开成一个无限项的多项式的表达式。

它的一般形式为:f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n其中f(x)表示原函数,x表示自变量的值,a表示展开中心,f^{(n)}(a)表示在a点处的n阶导数,n!表示n的阶乘,(x-a)^n表示自变量与展开中心的差的n次方。

二、Taylor公式的应用1. 函数求导很多函数的求导运算可以通过Taylor公式来解决。

比如f(x)的导函数为f'(x),那么可以通过Taylor公式展开f(x),然后求导得到f'(x)的表达式。

2. 函数逼近Taylor公式可以用于对函数进行逼近,在某一点附近用一条直线或曲线去逼近函数的值。

这个近似值可以用来进行数值计算,比如在数值方法中应用广泛。

3. 函数的错误估计Taylor公式中每一项的误差都会随着项数的增加而逐渐减小。

因此,可以通过Taylor公式来估计某个函数的误差范围,从而优化数值计算的结果。

4. 求函数值通过Taylor公式展开,可以用少量的计算得到特定点的函数值。

这在某些数值计算领域中非常有用,比如计算机图形学中的三维曲面绘制。

5. 解微积分方程在微积分领域中,有很多微积分方程难以用解析法求解。

而Taylor公式可以通过展开式子,求取高阶导数来求解微积分方程。

以上就是Taylor公式及其应用的详细介绍。

在数学领域中,Taylor公式的应用非常广泛,具有较高的实用性和理论性。

泰勒公式高中数学应用

泰勒公式高中数学应用

泰勒公式高中数学应用泰勒公式是数学中一种重要的数值逼近方法,常应用于高等数学、物理学等科学领域中。

它的基本思想是通过泰勒级数将一个函数在一些点处展开成无穷级数,从而在该点的邻域内用该级数来逼近原函数的值,从而简化计算或研究问题。

下面将介绍泰勒公式的原理以及在高中数学应用中的具体例子。

泰勒公式的原理:泰勒公式是将一个函数在其中一点的邻域内用无穷级数来表示的方法。

它利用函数在该点处的导数以及所有高阶导数来进行级数展开。

对于光滑函数f(x),在特定点a处的泰勒级数展开可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...这里f(a)为函数在点a处的函数值,f'(a)为一阶导数在点a处的函数值,f''(a)为二阶导数在点a处的函数值,依此类推。

可以看出,泰勒级数展开的每一项都是原函数在a点的一些导数乘以(x-a)的幂和阶乘的商。

泰勒级数展开常常会被截断为有限项,这样就得到了泰勒公式:f(x)≈f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...+f^n(a)(x-a)^n/n!这里n为截断的项数。

在高中数学中,泰勒公式主要应用于以下几个方面:1.函数逼近:在一些情况下,一些函数无法直接求出解析表达式,但是可以通过泰勒公式对其进行逼近计算。

比如,对指数函数exp(x)在x=0处进行泰勒级数展开:exp(x) = 1 + x + x^2/2! + x^3/3! + ...然后,可以通过截断泰勒级数并选取合适的项数,来逼近计算exp(x)的值。

这种方法同样适用于对三角函数、对数函数等的逼近计算。

2.函数极值:在高中数学的最优化问题中,经常需要求取函数的极值点。

泰勒公式可以辅助求解函数的极值点。

泰勒公式及其在极限运算中的运用

泰勒公式及其在极限运算中的运用

泰勒公式及其在极限运算中的运用泰勒公式是数学分析中的一个重要公式,广泛应用于函数极限、导数计算以及微积分等领域。

本文将对泰勒公式进行详细介绍,并讨论其在极限运算中的应用。

泰勒公式是由苏格兰数学家布鲁尔-泰勒 (Brook Taylor) 在18世纪提出的。

该公式是将一个函数在其中一点的附近进行多项式展开的一种方法。

泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+Rn(x)在该公式中,f(x)表示需要求解的函数,a是给定的点,f(a)是函数在该点的函数值,f'(a)是函数在该点的一阶导数值,f''(a)是函数在该点的二阶导数值,f^n(a)表示函数在该点的n阶导数值。

最后一项Rn(x)表示剩余的误差,即多项式展开与原函数之间的差值。

泰勒公式的应用之一是极限运算。

当需要求解一些函数在其中一点的极限值时,可以利用泰勒公式来进行近似计算。

具体的步骤如下:1.选择给定的点a;2.求解函数在该点的一阶、二阶、三阶...n阶导数值;3.将导数值代入泰勒公式中,并计算多项式展开的和;4.计算剩余项Rn(x);5.将得到的多项式展开式和剩余项带入极限公式中,计算极限值。

在极限运算中,泰勒公式的应用可以大大简化计算的复杂度。

若函数是连续可导的,且多项式展开的项数足够多,那么剩余项Rn(x)的大小趋近于零,可以忽略不计。

这样,通过泰勒公式计算得到的多项式展开式就是函数在给定点的极限值的一个很好的近似。

泰勒公式的应用并不仅限于极限运算,还可以用来计算函数的导数值。

通过求解各阶导数值,可以利用泰勒公式将函数在其中一点的值展开成其导数的和。

这对于函数的近似计算和函数特性的研究有着重要的意义。

总结来说,泰勒公式是一种重要的数学工具,可以用于函数的近似计算和函数在其中一点的极限运算。

泰勒公式的应用与技巧

泰勒公式的应用与技巧

泰勒公式的应用与技巧
泰勒公式又称为差分量化展开式,它具有极强的多项式和多元函数近似扩展能力,能够精确地表示一个函数曲线的关系,在工程领域应用广泛。

以下是泰勒公式的应用与技巧:
1. 应用
(1) 在离散系统分析中,泰勒公式可以提供系统动态响应曲线以及各自对输入信号的响应,从而降低系统设计的复杂性。

(2) 在数值分析中,泰勒公式可以用来估算函数值及其发散性,进而可以估算函数的零点及其根的估计精度。

(3) 在经济学领域,泰勒公式用来分析一系列宏观经济指标的变化对经济效果的影响,以此决定政策制定的深度和维度。

(4) 在电子工程领域,泰勒公式可以用来表征电路作用功能,求解电路实现特定功能的最优解,从而提高电路设计的效率。

2. 技巧
(1) 避免系数繁多带来的计算量大,可以将展开项作简化处理,以消除多余系数,且减少复杂度。

(2) 对于数据情况复杂的情况,可以采用交叉验证的方法,令数据集分割成多组,轮流用作训练集和测试集进行模型训练和验证,从而可以更准确地识别数据趋势。

(3) 充分利用光滑点和区间插值减少计算量,使用雅可比条件数字求
导法应对多变量多元函数及其导数求解。

(4) 针对大量样本,可以采用分类、线性回归、判别分析等机器学习模型,来更精确地分析泰勒公式的表达结果。

泰勒公式的应用超强总结

泰勒公式的应用超强总结

泰勒公式的应用超强总结泰勒公式(Taylor series)是一种用来近似表示函数的方法,它将一个光滑的函数表示为多项式的形式。

在实际应用中,泰勒公式有着广泛的应用,包括物理、工程、经济等领域。

以下是泰勒公式的一些超强应用总结。

1.函数逼近:泰勒公式可以将一个复杂的函数逼近成一个多项式,用来简化计算。

这在数值计算和科学建模中广泛应用。

比如,在物理学中,我们可以使用泰勒公式将一个非线性运动的函数逼近成一个线性函数,从而简化计算。

2.误差估计:通过泰勒公式,我们可以对近似函数的误差进行估计。

在实际计算中,我们通常使用有限项的泰勒公式近似计算,而丢弃高阶项将会引入误差。

通过估计误差,我们可以更好地控制近似结果的精度,从而提高计算效率。

3.求解无解析解的问题:有些函数在数学上没有解析解,即无法用一个简单的表达式表示。

泰勒公式可以帮助我们近似求解这些问题。

比如,在微积分中,我们可以使用泰勒公式近似求解一些复杂的微分方程,从而得到数值解。

4.数值积分:泰勒公式可用于数值积分的近似计算。

在实际计算中,我们通常使用数值积分方法来计算曲线下面积或求解积分方程。

泰勒公式可以将被积函数展开成无穷级数,再通过对级数进行近似计算来求解积分。

5.精确度改善:通过对泰勒公式进行适当的变换和近似,可以提高计算结果的精度。

在数值计算中,我们经常会遇到舍入误差和近似误差等问题,通过泰勒公式的应用可以对这些误差进行修正和改善,从而得到更精确的计算结果。

6.其他应用领域:泰勒公式还可以应用于信号处理、图像处理、优化问题等领域。

例如,在信号处理中,泰勒公式可以用来进行信号的近似重构和滤波。

在优化问题中,泰勒公式可以用来近似目标函数,并帮助我们求解最优化问题。

总之,泰勒公式在科学和工程中具有广泛的应用。

通过对函数的逼近和近似,我们可以简化计算、提高精度、解决无解析解的问题,以及在数值计算、积分、优化等领域中得到更好的结果。

因此,掌握泰勒公式的应用是非常重要的,可以帮助我们更好地理解和解决实际问题。

taylor公式的应用

taylor公式的应用

Taylor公式的应用一、什么是T a y l o r公式T a yl or公式是数学中的一个基本定理,描述了一个函数在某一点附近的局部行为。

它通过一系列的多项式逼近函数,能够准确地描述函数的近似值。

T ay lo r公式在多个领域都有广泛的应用,例如物理学、工程学和金融学等。

二、T a y l o r公式的推导根据Ta yl or公式的定义,函数可以用多项式进行逼近。

设函数f(x)在x=a处具有n阶连续导数,那么在x=a处展开得到的n阶T ay lo r多项式为:$$f(x)=f(a)+f'(a)(x-a)+\fr ac{f''(a)}{2!}(x-a)^2+\cd ot s+\f rac{f^{(n)}(a)}{n!}(x-a)^n$$式中,$f'(a)$表示函数f(x)在x=a处的导数,$f''(a)$表示二阶导数,$f^{(n)}(a)$表示n阶导数,'!'表示阶乘运算。

三、使用T aylor公式进行函数逼近T a yl or公式可以将复杂的函数用多项式逼近,从而简化计算和分析过程。

下面介绍几个常见的应用示例。

1.函数局部近似利用Ta yl or公式,可以在一个点附近对函数进行局部逼近。

通过忽略高阶项,我们可以得到函数的线性或二次逼近,从而更容易理解函数在该点的行为。

2.数值计算T a yl or公式在数值计算中有广泛的应用。

例如,通过将函数展开为有限项的Ta yl or多项式,可以用较小的代价来计算函数值。

这在数字积分、数值微分和常微分方程数值解等领域都有重要意义。

3.求解复杂问题有些函数可能很难直接求解,但是对于这些函数,我们可以使用已知的函数通过T ay lo r公式进行逼近,从而转化为求解简化的问题。

这样可以大大简化计算的难度。

4.牛顿法牛顿法是一种经典的数值方法,用于求解方程的根。

它通过不断迭代逼近的方式,利用函数的Ta yl or展开来快速找到近似的根。

浅谈泰勒公式的应用

浅谈泰勒公式的应用

浅谈泰勒公式的应用泰勒公式是数学中的一个重要工具,它可以将一个光滑函数在一些点的附近用无穷阶的多项式来近似表示。

泰勒公式的应用非常广泛,涉及到物理、工程、金融等多个领域。

以下将从几个方面来浅谈泰勒公式的应用。

一、函数近似表示泰勒公式可以将一个函数在一些点附近用多项式来近似表示。

这对于研究函数的性质和行为非常有用。

比如,在数值计算中,我们常常需要对函数进行逼近计算,而泰勒公式可以提供一个简单而准确的方法。

此外,在物理学中,泰勒公式也常用于描述物理量的变化规律,比如速度、加速度等。

二、数值计算在数值计算中,泰勒公式可以用于求解函数的近似值。

通过选择适当的展开点和多项式次数,可以得到满足精度要求的近似解。

泰勒公式的应用在数值积分、数值微分和数值方程求解等方面都有重要作用。

比如,在求根算法中,泰勒公式可以用于构造迭代格式,从而提高求解效率。

三、物理建模泰勒公式在物理建模中也有广泛的应用。

物理现象往往可以用函数来描述,而泰勒公式可以将函数在其中一点附近展开成多项式,从而方便对物理现象进行研究。

比如,在力学中,我们可以利用泰勒公式来研究物体的运动规律,推导出牛顿第二定律等重要定理。

此外,在电磁学中,泰勒公式也可以用于描述电场和磁场的变化规律。

四、金融工程泰勒公式在金融工程中也有一定的应用。

金融市场中的价格变动往往是连续的,而泰勒公式可以将价格变动用多项式来逼近。

这对于金融衍生品的定价和风险管理非常重要。

比如,在期权定价中,可以利用泰勒公式将期权价格展开成多项式,从而方便计算和分析。

此外,在风险管理中,泰勒公式也可以用于计算金融产品的敏感性,帮助投资者进行风险控制。

总之,泰勒公式是数学中的一个重要工具,它的应用涵盖了各个领域。

无论是数值计算、物理建模还是金融工程,泰勒公式都发挥着重要的作用。

通过泰勒公式,我们可以对函数进行近似表示,进行数值计算,描述物理现象和分析金融风险。

因此,熟练掌握泰勒公式的应用是非常重要的。

泰勒公式及其在在计算方法中的应用

泰勒公式及其在在计算方法中的应用

泰勒公式及其在在计算方法中的应用泰勒公式是数学中的一个重要工具,通过使用多项式函数逼近给定函数,从而在计算方法中得到广泛应用。

泰勒公式由苏格兰数学家詹姆斯·泰勒提出,用于将一个函数在其中一点的局部信息表示为一个多项式级数。

泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn在这个公式中,f(x)是要逼近的函数,x是近似计算的点,a是计算的基准点,n表示多项式的阶数。

f'(a)表示函数在点a处的一阶导数,f''(a)表示二阶导数,f^n(a)表示n阶导数。

Rn是一个余项,表示多项式逼近的误差。

当n趋向于无穷大时,余项应趋近于零,此时泰勒公式收敛于原函数。

泰勒公式在计算方法中的应用非常广泛。

下面介绍几个常见的应用:1.函数逼近:泰勒公式可以将一个复杂的函数逼近为一个多项式函数,使得计算变得更加简单。

逼近后的多项式函数在计算机程序和数值计算中更容易处理。

例如,当我们需要计算一个数的正弦值时,可以使用泰勒公式将正弦函数逼近为一个多项式级数,从而可以通过计算一系列多项式项的和来得到较为精确的近似值。

2.数值积分:泰勒公式在数值积分中有重要的应用。

通过将被积函数在其中一点进行泰勒展开,并将展开式中的高阶导数消去,可以得到一些简化的数值积分公式。

这些公式允许我们通过计算少数几个函数值来近似计算复杂函数的积分值。

数值积分在物理学、工程学和统计学等领域中都有广泛应用。

3.常微分方程的数值解:泰勒公式可以用于数值解常微分方程。

通过将微分方程在一些点进行泰勒展开,并忽略高阶导数项,可以得到一阶或二阶的数值微分方程。

从而我们可以通过迭代的方式递进计算微分方程的解。

这种数值解法在科学计算和工程模拟中非常重要。

4.误差分析:泰勒公式的余项Rn可以用来分析逼近的误差。

通过估计余项的大小,可以知道逼近多项式与原函数之间的误差有多大。

对泰勒公式的理解及泰勒公式的应用

对泰勒公式的理解及泰勒公式的应用

对泰勒公式的理解及泰勒公式的应用泰勒公式是数学中的一个重要概念,它用于将一个函数在其中一点的局部近似展开成一个无穷级数,从而可以在该点附近进行更为精确的计算和研究。

泰勒公式的应用广泛,能够帮助解决很多实际问题,以下将对其理解和应用进行详细介绍。

首先,我们来解释一下泰勒公式的基本概念。

泰勒公式是由18世纪英国数学家布鲁诺·泰勒提出的,他发现了这个公式后,使得对于非常复杂的函数在局部进行近似计算成为可能。

泰勒公式的基本形式是:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f(x)是我们想要进行近似计算的函数,a是我们选取的展开点,x是我们要计算的点,f'(a)、f''(a)等表示函数在展开点a处的导数。

通过泰勒公式,我们可以将一个函数在展开点附近进行多项式的近似计算。

当我们选择展开点a的时候,泰勒公式将能够更精确地计算出函数在a点附近的值。

并且,如果我们考虑更多的项,那么计算结果的精确度将会更高。

在实际应用中,泰勒公式有许多重要的应用。

下面将介绍几个常见的应用场景:1.函数的近似计算:泰勒公式能够将一个函数在展开点附近进行多项式的近似计算,从而能够更好地了解函数在该点附近的性质。

这对于一些复杂的函数,如三角函数、指数函数等,是非常有用的。

通过选择合适的展开点和项数,我们可以更精确地计算函数的值,并且可以得出函数的一些重要性质,如最值、极限等。

2.计算函数的导数:泰勒公式是计算函数导数的一种重要工具。

由于泰勒公式展开的多项式在展开点处的各阶导数就是函数在展开点处的导数,通过将函数展开成多项式形式后,我们可以更容易地计算出函数的各阶导数。

这对于解决一些特殊函数导数的计算问题非常有帮助。

3.极限的计算:泰勒公式可以使用泰勒级数无穷展开形式帮助计算各种函数的极限。

泰勒公式和运用范文

泰勒公式和运用范文

泰勒公式和运用范文泰勒公式(Taylor series)是数学中一个非常重要的工具,它被用于在给定函数的其中一点附近近似展开这个函数。

泰勒公式的运用广泛,既用于数学推导,还用于物理、工程等领域中的问题求解。

本文将介绍泰勒公式的原理,并给出一些常见的应用例子。

一、泰勒公式的原理泰勒公式可以用来近似表示一些函数在其中一点附近的值。

公式的具体形式如下所示:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...其中,f(x)代表原函数在点x处的值,f(a)代表原函数在点a处的值,f'(a)、f''(a)、f'''(a)分别代表原函数在点a处的一阶、二阶、三阶导数的值。

x-a表示x相对于点a的偏移量。

泰勒公式可以通过不断添加高阶导数项来提高近似的精度。

当阶数无限逼近时,就得到了原函数的精确表达。

大多数情况下,我们只需要保留前几项就能够得到足够精确的近似结果。

二、泰勒公式的应用举例1.正弦函数的泰勒展开正弦函数是一个周期为2π的函数,我们可以将其在其中一点进行泰勒展开。

假设我们要在点a附近展开正弦函数,那么泰勒公式的表达式为:sin(x) = sin(a) + cos(a)(x-a) - sin(a)(x-a)²/2! - cos(a)(x-a)³/3! + ...当a=0时,泰勒展开简化为:sin(x) = x - x³/3! + x⁵/5! - x⁷/7! + ...这个公式可以用来计算比较小角度范围内的正弦值,由于幂函数和阶乘函数的增长速度很快,展开后的结果准确度相对较高。

2.自然指数函数的泰勒展开自然指数函数e^x是一个在整个实数域上定义的函数,我们可以将其在点0附近进行泰勒展开。

泰勒公式的表达式为:e^x=1+x+x²/2!+x³/3!+...这个公式可以用来计算自然指数函数的近似值,只需要保留前几项即可得到足够精确的结果。

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是高等数学中一种常用的数学工具,它可以将一个函数在某点附近展开成无穷次幂的形式,从而方便我们进行运算和近似计算。

泰勒公式的应用非常广泛,下面将介绍一些泰勒公式的常见应用。

一、泰勒公式的定义及展开形式泰勒公式是数学中的一种近似计算方法,它是由英国数学家James Gregory和Brook Taylor独立发现的,所以又称为Gregory-Taylor公式。

对于任意可导的函数f(x),泰勒公式可以将其在某一点a附近展开成无穷次幂的形式,表示为:f(x)=f(a)+f'(a)(x-a)+f''(a) (x-a)^2/2!+f'''(a) (x-a)^3/3!+...+f^n(a)(x-a)^n/n!+Rnf'(a)表示函数f(x)在点a处的导数,f''(a)表示函数f(x)在点a处的二阶导数,f^n(a)表示函数f(x)在点a处的n阶导数,n!表示n的阶乘,Rn表示剩余项。

二、泰勒公式的应用1.函数的近似计算泰勒公式可以通过截取展开式的前几项,近似计算一个函数的极限。

特别是当函数在某点处的极限存在但不容易计算时,我们可以利用泰勒公式进行近似计算,从而得到更精确的结果。

3.函数的图像绘制由于泰勒公式将一个函数表示为一系列多项式的和,因此可以利用这个特性,将一个函数的图像近似为一系列多项式的图像的和。

如果我们截取展开式的前几项,就可以得到近似于原函数图像的图像,从而方便我们进行观察和分析。

4.误差估计剩余项Rn在泰勒公式中起到了重要的作用,它表示了使用泰勒公式近似计算的误差。

通过对剩余项的分析和估计,我们可以得到一个近似值的误差范围,从而判断近似结果的有效性,并进行误差的控制和优化。

泰勒公式是一种非常重要的数学工具,在高等数学的学习中具有广泛的应用。

它在函数的近似计算、极限计算、图像绘制和误差估计等方面都发挥着重要的作用。

泰勒公式及其应用实践

泰勒公式及其应用实践

泰勒公式及其应用实践第一部分:泰勒公式的基本原理泰勒公式是数学中的一种重要工具,用于表示一个函数在某点附近的近似表达式。

其基本原理可以简单描述为利用函数在某点处的导数来近似表示这个函数的值。

泰勒公式的一般形式可表示为:$$ f(x) = f(a) + f'(a)(x-a) + \\frac{f''(a)}{2!}(x-a)^2 + \\cdots $$其中,f(a)代表函数在点a处的函数值,f′(a)代表函数在点a处的一阶导数,f″(a)代表函数在点a处的二阶导数,依次类推。

第二部分:泰勒公式的应用实践实例一:求函数在某点处的近似值假设有一个函数$f(x) = \\sin(x)$,要求在x=0处的函数值。

首先,我们可以计算出$f(0) = \\sin(0) = 0$,然后我们可以利用泰勒公式来近似表示$\\sin(x)$在x=0处的值。

根据泰勒公式的展开形式,我们可以得到:$$ \\sin(x) = x - \\frac{x^3}{3!} + \\frac{x^5}{5!} - \\cdots $$将x=0带入上式,可以得到$\\sin(0) = 0$,这与实际情况吻合。

实例二:解析求导问题泰勒公式还可以应用于解析求导的问题。

通过泰勒公式的展开,我们可以得到函数在某点处的导数表达式,从而可以简化导数的计算过程。

以函数f(x)=e x为例,我们可以通过泰勒公式展开来求f′(x)的表达式。

首先,我们知道e x在x=0处的求解,可以得到e0=1,然后根据泰勒公式展开:$$ e^x = 1 + x + \\frac{x^2}{2!} + \\frac{x^3}{3!} + \\cdots $$对上式求导,可以得到:$$ \\frac{d}{dx}e^x = 1 + x + \\frac{x^2}{2!} + \\frac{x^3}{3!} + \\cdots = e^x $$这样,我们就成功地求出了e x的导数表达式,从而简化了导数的计算过程。

泰勒公式及其应用

泰勒公式及其应用

泰勒公式及其应用泰勒公式是数学中一种用于近似函数值的方法,它可用来在其中一个点附近的小区间内用多项式来表示一个函数。

泰勒公式可以用于求解函数的近似值、研究函数的性质以及优化算法等方面的应用。

泰勒公式的一般形式如下:设函数f(x)处处可导,且规定x为实数。

若在开区间(a,b)内有无限次可导的函数f(x)则对于(a,b)内的任意实数x及正整数n,有:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)(x-x0)^2/2!+...+f^n(x0)(x-x0)^n/n!+Rn(x)其中,x0为(a,b)内的任意固定点,Rn(x)为用(x-x0)^n的余项,且满足lim Rn(x)=0。

泰勒公式的应用广泛,以下介绍几个常见的应用:1.近似计算:泰勒公式可以用于计算函数在其中一点附近的近似值。

通过截取泰勒级数的前几项,可以用一个简单的多项式代替原函数,从而简化计算。

例如,可以用泰勒公式来近似计算指数函数、三角函数等复杂函数在其中一点附近的函数值,从而简化计算过程。

2.函数展开:泰勒公式可以将一个任意函数在其中一点附近展开成多项式的形式,从而研究函数的性质。

通过观察和分析泰勒展开式的形式,可以推导出函数的导数、极值、拐点等重要性质,进一步理解函数的行为特征。

3.数值优化:泰勒公式可以用于求解优化问题中的极值。

通过将目标函数在极值点展开为泰勒级数,可以通过近似的方式来确定极值点的位置。

这种方法常用于计算机算法中的数值优化问题,例如梯度下降法等。

4.工程应用:泰勒公式在工程中有广泛的应用。

例如,在电子电路设计中,可以使用泰勒公式来近似计算非线性元件的响应特性,从而简化电路的分析和设计。

在物理学中,泰勒公式可以用于解析力学、电磁学等领域的问题,通过近似计算来简化复杂的数学模型。

总结起来,泰勒公式是数学中一个重要的工具,它可以用于近似计算、函数展开、数值优化和工程应用等多个方面。

在实际问题中,泰勒公式的应用可以帮助我们理解和求解复杂的函数及其性质,进而提供了有效的计算和分析方法。

浅谈泰勒公式及其应用

浅谈泰勒公式及其应用

浅谈泰勒公式及其应用泰勒公式是数学中的一个重要定理,由英国数学家泰勒(Brook Taylor)于18世纪提出。

它通过将一个光滑函数在特定点附近进行多项式级数展开,从而将该函数用无穷级数表示。

泰勒公式及其应用在数学、物理、工程学等领域都有广泛的应用。

泰勒公式的一般形式为:对于任意实数x和可微的函数f(x),在点a 附近存在一些正整数n,使得函数f在点a处的n阶导数存在。

则函数f 在点a附近可以近似表示为以点a为中心的n阶泰勒展开多项式,即f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x)其中Rn(x)为余项,并且有以下表示方式:Rn(x)=(x-a)^(n+1)f^(n+1)(ξ)/(n+1)!其中ξ位于x和a之间。

泰勒公式的应用十分广泛。

一方面,泰勒公式可以用来近似计算函数的值。

由于泰勒展开多项式是以函数在特定点a的各阶导数为系数,而函数的导数通常是利用数值方法或者近似公式得到的,所以可以通过计算低阶导数的值来近似计算更高阶导数的值,并利用泰勒公式进行函数的近似计算。

这种方法在数值计算、数学极限计算以及工程问题中都有广泛的应用。

另一方面,泰勒公式也可以用来研究函数的性质。

通过泰勒公式,可以将一个复杂的函数用一个简单的多项式来描述,从而帮助我们研究函数在特定点附近的行为。

特别是当n趋近于无穷大时,泰勒公式可以用来研究函数的收敛性、奇点、极值等性质。

泰勒公式的应用可以使我们更好地理解和描述函数的行为。

泰勒公式的一个重要特点是,它可以将任意次可导函数在特定点附近展开成多项式形式,而展开的多项式可以逐项求和,从而将复杂的函数转化为简单的多项式。

不同的函数,通过泰勒公式展开的多项式会有不同的形式,这使得泰勒公式具有广泛的适用性。

总之,泰勒公式是数学中一个重要而广泛应用的工具。

它不仅可以用于函数的近似计算,还可以用来研究函数的性质。

关于泰勒公式及其应用的思考与讨论

关于泰勒公式及其应用的思考与讨论

关于泰勒公式及其应用的思考与讨论
一、介绍
泰勒公式是一个数学工具,被广泛应用于数学和物理的旋转系统研究中,可以用来求解非线性振动系统的动力学行为。

泰勒公式可以以低次数(一般为二次)的多项式来反映变量的瞬时值,以及变量的变化量。

泰勒公式可以说是一种解析解方法,它的核心思想是对变量的时间变
化量进行多项式拟合,通过拟合可以解答非线性振动系统动力学行为问题,并可以用来描述非线性物理系统中的非线性模型。

二、应用
1.泰勒公式的积分运算可用来对非线性系统的动力学行为进行分析,
常用于振动及控制领域的研究。

2.泰勒公式也用于描述旋转物体对外部输入的反应,这是研究旋转系
统动力学过程的基本方法。

3.泰勒公式可以用来描述电磁波的传播,常用于描述电磁波传播的非
线性模型,也可以用来研究其在其中一种介质中的传播特性。

4.泰勒公式还可以用来求解从原子或分子的状态转换,用于描述介质
的光谱特性。

5.泰勒公式也可用来描述磁场波动,可用于研究磁体中的磁场变化,
以及磁场在不同介质中的传播特性。

6.泰勒公式还用于研究热物理学中的温度场,可用来描述热量在流体
或固体介质中的传播特性,以及温度场的变化。

泰勒公式及泰勒级数的应用

泰勒公式及泰勒级数的应用

泰勒公式及泰勒级数的应用泰勒公式和泰勒级数是数学中非常重要的概念,它们在各个领域的应用非常广泛。

本文将详细介绍泰勒公式及其应用,以及泰勒级数的定义和相关应用。

一、泰勒公式泰勒公式是一个关于函数在一些点附近的展开式。

给定一个函数$f(x)$和一个点$a$,泰勒公式可以表示为:$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \cdots$$其中,$f'(a)$表示函数$f(x)$在点$a$处的导数,$f''(a)$表示二阶导数,$f'''(a)$表示三阶导数,依次类推。

这个展开式可以一直延伸下去,是一个无穷级数。

泰勒公式是在一个点的附近进行的展开,因此只在局部范围内有效。

当取$a=0$时,泰勒公式变成了麦克劳林级数。

泰勒公式的应用非常广泛,特别是在近似计算和数值分析中。

通过泰勒公式,我们可以用低阶导数来近似计算高阶导数的值,从而简化复杂的计算过程。

二、泰勒级数泰勒级数是指将函数在其中一点进行泰勒展开后的无穷级数表示。

具体而言,给定一个函数$f(x)$和一个点$a$,泰勒级数可以表示为:$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \cdots$$不同于泰勒公式,在泰勒级数中,展开点$a$可以是任意点。

泰勒级数包含了函数在该点附近的无穷阶导数信息,在一些条件下,可以用级数的有限项来逼近原函数的值。

泰勒级数的应用涵盖了许多领域,下面我们分别介绍一些常见的应用。

1.函数逼近泰勒级数可以用来逼近一个函数在其中一点的值。

通过截取级数的有限项,就可以得到原函数在该点的一个近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论文提要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具,它的用途很广泛,本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。

即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值。

浅谈泰勒公式及其应用摘 要: 本文介绍了泰勒公式及几个常见函数的展开式,针对泰勒公式的应用讨论了八个问题.即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值.关键词:泰勒公式泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明.1 预备知识定义 1.1 若函数f 在点0x 存在直至n 阶导数,则有()()()n n f x T x T x ==+()0no x x +,即()()()()()()()()()().!!2000200000n n n x x o x x n x f x x x f x x x f x f x f -+-+⋯+-''+-'+=为⑴式.⑴式称为函数f 在点0x 处的泰勒公式,()()()x T x f x R n n -=称为泰勒公式的余项,形如()nx x o 0-的余项称为佩亚诺型余项.所以⑴式又称为带有佩亚诺余项的泰勒公式.当00=x 时,得到泰勒公式:()()()()()()()n n x o n f x f x f f x f ++⋯+''+'+=!0!20002.它也称为(带有佩亚诺余项的)麦克劳林公式.定义1.2 若函数f 在[]b a ,上存在直至n 阶的连续导函数,在()b a ,内存在()1+n 阶导函数,则对任意给定的x ,[]b a x ,0∈,至少存在一点()b a ,∈ξ,使得()()()()()()()()()()()()()100100200000!1!!2++-++-+⋯+-''+-'+=n n n n x x n x fx x n x f x x x f x x x f x f x f 为⑵式.⑵式同样称为泰勒公式,它的余项为()()()()()()()()1001!1++-+=-=n n n n x x n x f x T x f x R , ()00x x x -+=θξ ()10<<θ,称为拉格朗日型余项.所以⑵式又称为带有拉格朗日型余项的泰勒公式.当00=x 时,得到泰勒公式()()()()()()()()()112!1!0!2000+++++⋯+''+'+=n n n n x n x f x n f x f x f f x f θ.它也称为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式:⑴()n xx xx o n n x e ++⋯+++=!!221; ⑵()()m m m x o m x x x x x 212153)!12(1!5!3sin +--+⋯++-=--;⑶()()12242)!2(1!4!21cos ++-+⋯++-=m m m x o m xx x x ;⑷()()()n nn x o nx x x x x +-+⋯++-=+-1321321ln ; ⑸()()()n nax o x n n a a a a a axx ++-⋯-+⋯+++=+!)1()1(!2111; ⑹()n n x o x x x x++⋯+++=-2111.2.泰勒公式的应用2.1利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数极限转化为类似多项式有理式的极限,就能简捷地求出.例2.1 求 0lim→x xx x x 3sin )cos (sin -. 证 设()()x x f sin =, ()x x g cos =用泰勒公式在0=x 处展开 它们的导数是有规律的分别按x cos ,x sin -,x cos -,x sin 和x sin -,x cos -,x sin , x cos 循环.f 在0=x 处的1,2,……阶导数分别为1,0,1-,0,1……(循环);g 在0=x 处的1,2,……阶导数分别为1,0,1-,0,1……(循环);()()⋯⋯-+-+=-+=∑∞=!5!3!10!0)0(0sin 530x x x i f x f x i i i()()⋯⋯-+-=-+=∑∞=!4!21!0)0(0cos 420x x i g x g x i i ii f ,i g , f ,g 为i 的阶导数代入所求式中原式0lim x →= ⎥⎦⎤⎢⎣⎡⋯⋯+-⎥⎦⎤⎢⎣⎡⋯⋯+---32353!31!11)!51!41()!31!21()(x x x x 20231111()()2!3!4!5!lim 111!3!x x x →⎡⎤---+⋯⋯⎢⎥⎣⎦=⎡⎤-+⋯⋯⎢⎥⎣⎦()112!3!=- 13=2.2 利用泰勒公式证明中值公式例2.2 设)(x f 在[]b a ,上三次可导,试证:∃(,)c a b ∈使得3)())((241)(2)()(a b c f a b b a f a f b f n -+-⎪⎭⎫⎝⎛+'+= ①证(待定常数法)设k 为使下式成立的实数0)(241)(2)()(3=---⎪⎭⎫⎝⎛+'--a b k a b b a f a f b f ② 这时,我们的问题回归为证明:),(b a c ∈∃使得)(c f k '''= ③令 3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--= ④ 则0)()(==b g a g根据罗尔定理,),(b a ∈∃ξ,使得,0)(='ξg 有④式,即:()028222)(2=--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+''-⎪⎭⎫ ⎝⎛+'-'ξξξξξk a a f a f f ⑤这是关于k 的方程,注意到()ξf '在点2ξ+a 处的泰勒公式; ()2221222⎪⎭⎫⎝⎛-'''-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+''+⎪⎭⎫ ⎝⎛+'='a f a a f a f f ξξξξξ ⑥其中()b a c ,∈,比较⑤,⑥可得③式证毕2.3利用泰勒公式判断函数敛散性当要求判断极限的敛散性且条件出现有二阶和二阶以上导数时,考虑用泰勒公式展开判断极限敛散性.例2.3设)(x f 在点0=x 的某一邻域内具有二阶连续导数,且()0lim=→xx f x .证明:级数)1(1∑∞=n nf 绝对收敛. 分析:可以先用泰勒公式求出)(x f 在点0=x 处的二阶导数,利用二阶导数判断0→x 时)(x f 的趋势.证 由()0lim=→xx f x ,又)(x f 在0=x 的邻域内具有二阶连续导数,可以推出0)0(=f ,0)0(='f .将)(x f 在0=x 的邻域内展开成一阶泰勒公式:=)(x f ()()2221!21)0()0(x f x f f f ξξ''=''+'+,其中ξ在0与x 之间. 由于题设,()x f ''在邻域内包含原点的一个小闭区间上连续,因此,0>∃M 使得M x f ≤'')(,于是:222)(21)(x M x f x f ≤''=ξ. 令n x 1=,则212)(n M x f ⋅≤.因为∑∞=121n n 收敛,所以∑∞=1)1(n n f 绝对收敛.2.4 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例2.4 当0≥x 时,证明≥x sin -x 361x . 证 取()x f 361sin x x x +-=, 00=x ,则 ()00=f ,()00='f , ()00=''f , ()='''0f x cos 1-, ()0)(n f ≥0.带入泰勒公式,其中3=n ,得()3!3cos 1000x x x f θ-+++=,其中10<<θ. 故 当0≥x 时,≥x sin 361x x -.2.5利用泰勒公式判断函数的极值例2.5(极值的第二充分条件)设f 在0x 的某邻域()δ;0x U 内一阶可导,在=x 0x 处二阶可导,且()00='x f , ()00≠''x f . (ⅰ)若()00<''x f ,则f 在0x 取得极大值. (ⅱ)若()00>''x f ,则f 在0x 取得极小值.证 由条件,可得f 在0x 处的二阶泰勒公式()()()()()()()22002000!2o x x o x x x fx x x f x f x f -+-+-'+= .由于()00='x f ,因此()()=-0x f x f ()()()20012x x o x f -⎥⎦⎤⎢⎣⎡+''. ① 又因()00≠''x f ,故存在正数δδ≤',当x ()δ'∈;0x U 时,()021x f ''与 ()()1210o x f +'' 同号.所以,当()00<''x f 时,①式取负值,从而对任意()δ'∈;0o x U x 有 ()()00<-x f x f , 即 f 在0x 取极大值.同样对()00>''x f ,可得f 在0x 取极小值. 2.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些比较复杂的初等函数的幂级数展开式.例2.6 求函数x e x -1在0=x 处的幂级数展开式,并确定它收敛于该函数的区间.解 由于()=++⋯+++=n xx xx o n n x e !!221∑∞=0!n nn x ()+∞∞-∈,x 而=-x11∑∞=0n nx()1,1-∈x ,则=-xe x1=∑∞=0nn!x n n n x n ∑∞=⎪⎭⎫ ⎝⎛+⋯+++0!1!21!111 ()1,1-∈x , 2.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用()x f 麦克劳林展开得到函数的近似计算式为()()()()()()nn x n f x f x f f x f !0!20002+⋯+''+'+≈,其误差是余项()x R n .例2.7 计算8.1ln 2.1ln +, 误差小于001.0.8.1ln 2.1ln +()()2.012.01ln -+= ()04.01ln -=()--=04.0()()⋯--+-304.0204.032由于第二项已经001.0<,所以只取前两项即可 结果是0408.00008.004.0-=--.2.8利用泰勒公式求高阶导数在某些点的数值如果)(x f 泰勒公式已知,其通项中的加项n x x )(0-的系数正是)(!10)(x f n n ,从而可反过来求高阶导数数值,而不必再依次求导.例2.8求函数x e x x f 2)(=在1=x 处的高阶导数)1()100(f .解 设1+=u x ,则e e u e u u g xf u u ⋅+++==+2)1(2)1()1()()(,)0()1()()(n ug f =, 0=u e u 在的泰勒公式为)(!100!99!9811001009998u o u u u u e u++++⋯++=, 从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g ++++⋯++++=, 而)(u g 中的泰勒展开式中含100u的项应为()100100!100)0(u g ,从)(u g 的展开式知100u 的项为100)!1001!992!981(u e ++,因此 ())!1001!992!981(!100)0(100++=e g ,()10101)0(100⋅=e g ,()().10101)0()1(100100e g f ==本文主要介绍了泰勒公式以及它的八个应用,使我们对泰勒公式有了更深一层的理解.怎样应用泰勒公式解题有了更深一层的认识,只要在解题训练中注意分析,研究题设条件及其形式特点并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]华东师范大学数学系,数学分析(第三版)[M]高等教育出版社1981.[2]陈传章金福林:《数学分析》(下)北京:高等教育出版社,1986.[3]张子兰崔福菊:《高等数学证题方法》陕西:陕西科学出版社,1985.[4]王向东:《数学分析的概念和方法》上海:上海科学技术出版社,1989[5]同济大学数学教研室主编:高等数学[M].北京:人民教育出版社,1999.[6]刘玉琏傅沛仁:数学分析讲义[M].北京:人民教育出版社,2000.。

相关文档
最新文档